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Abstract

The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for
over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following
the refinement of methods for its isolation and characterization. The paradigm in liver injury of
activation of quiescent vitamin A-rich stellate cells into proliferative, contractile, and fibrogenic
myofibroblasts has launched an era of astonishing progress in understanding the mechanistic basis
of hepatic fibrosis progression and regression. But this simple paradigm has now yielded to a
remarkably broad appreciation of the cell's functions not only in liver injury, but also in hepatic
development, regeneration, xenobiotic responses, intermediary metabolism, and immunoregulation.
Among the most exciting prospects is that stellate cells are essential for hepatic progenitor cell
amplification and differentiation. Equally intriguing is the remarkable plasticity of stellate cells, not
only in their variable intermediate filament phenotype, but also in their functions. Stellate cells can
be viewed as the nexus in a complex sinusoidal milieu that requires tightly regulated autocrine and
paracrine cross-talk, rapid responses to evolving extracellular matrix content, and exquisite
responsiveness to the metabolic needs imposed by liver growth and repair. Moreover, roles vital to
systemic homeostasis include their storage and mobilization of retinoids, their emerging capacity for
antigen presentation and induction of tolerance, as well as their emerging relationship to bone
marrow-derived cells. As interest in this cell type intensifies, more surprises and mysteries are sure
to unfold that will ultimately benefit our understanding of liver physiology and the diagnosis and
treatment of liver disease.

I. Introduction

The hepatic stellate cell, first described by Kupffer in the 19th century, has emerged in the past
25 years as a remarkably versatile mesenchymal cell that is vital to hepatocellular function and
the liver's response to injury. Indeed, the paradigm of stellate cell activation into contractile
myofibroblasts as the major pathway in hepatic fibrogenesis associated with liver injury has
dominated the focus of studies on this fascinating cell type. Beyond this well-known role,
however, a broad range of newly discovered activities, some of which are entirely unexpected,
have ignited mounting interest and led to a greater understanding of the complexity of cellular
homeostasis in liver. Progress in this area has accelerated as a result of greatly refined methods
of cellular isolation, sophisticated genetic models of disease, and improved tools of analysis,
including flow cytometry, quantitative real-time PCR, confocal imaging, and molecular
markers of cellular origin and phenotype. As a result, the number of related publications has
grown dramatically (Fig. 1).
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Countless studies have explored the importance of hepatic stellate cells in liver fibrosis and
repair, but a more comprehensive review article about this cell type, apart from its role in
fibrosis, has been lacking for at least a decade. Thus this review will primarily highlight the
tremendous breadth of new knowledge about the features of the stellate cell and its functions
and responses in all aspects of liver function, rather than emphasizing only its role in fibrosis,
for which several recent reviews are recommended (35,165,167,213,263,313,363).

A. Historical Perspective

Kupffer's initial description of stellate cells was made in 1876, using a gold chloride method
that identifies vitamin A-containing droplets (678). Referring to these cells as
“sternzellen” (“star cells” in German) (24,677), their identity was later confirmed by Rothe
(1882) (677). Kupffer's initial observations failed to distinguish stellate cells from resident
hepatic macrophages (now referred to as “Kupffer cells”), however, leading to some confusion
about whether sternzellen were phagocytic, a property normally associated only with
macrophages. Ironically, more recent studies have confirmed that indeed stellate cells can
phagocytose apoptotic bodies (85), although the India Ink method used by Kupffer to document
phagocytosis almost surely identified macrophages, not stellate cells.

A range of staining techniques were subsequently used to characterize stellate cells, including
a Golgi silver method used by Zimmerman to identify “hepatic pericytes,” a fat-staining method
used by Ito to define “fat-storing cells” (266), and a silver impregnation technique used by
Suzuki to describe “interstitial cells.” More recently, Bronfenmajer, Schaffner, and Popper
(75) proposed the name “lipocytes” to reflect their role in fat (vitamin A) uptake and pointed
out the resemblance of these cells to fibroblasts. Finally, Nakane (433) and Wake (678) firmly
established the stellate cell as a discrete cell type capable of storing vitamin A. Wake (676–
678), using Kupffer's original gold chloride method to provide the definitive descriptions of
stellate cells in situ, thereby established that “perisinusoidal cells” were the same as those
described initially by Kupffer almost 100 years earlier.

An important functional role of stellate cells in liver repair emerged from the seminal
descriptions by Kent (295) and others (409,459,718) revealing the close proximity of this cell
type to collagen fibers in injured liver. Their work also suggested that stellate cells were
precursors to the “fibroblasts” often described in liver injury. The consistent morphological
association between hepatic stellate cells and extracellular matrix (398) provoked interest in
the early 1980s in developing methods to isolate stellate cells from rat (172,321), mouse
(103), and human liver (171,699) (see sect. IVA).

B. Nomenclature

With the explosive growth in studies of hepatic stellate cells, confusion arose because of its
many different names, prompting investigators in the field to agree in 1996 to a standardized
name, hepatic stellate cell, to refer to the resting form of this cell type found in normal liver,
a term now widely adopted (448a), instead of a litany of synonyms, including perisinusoidal

cell, Ito cell, lipocyte, parasinusoidal cell, and fat-storing cell.

II. Ultrastructure and Morphological Features

Hepatic stellate cells are located in the subendothelial space, between the basolateral surface
of hepatocytes and the anti-luminal side of sinusoidal endothelial cells. They comprise
approximately one-third of the nonparenchymal cell population and ∼15% of the total number
of resident cells in normal liver (200,271). Some studies describe a slight pericentral
predominance in normal human liver (75), while in porcine liver they are more prominent in
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periportal zones (682); the functional significance of these divergent patterns between species,
if any, is unclear.

A. Ultrastructure

Stellate cells in normal liver have spindle-shaped cell bodies with oval or elongated nuclei (see
Fig. 2). Their perikaryons lie in recesses between neighboring parenchymal cells.
Ultrastructurally, their have moderately developed rough endoplasmic reticulum (rER),
juxtanuclear small Golgi complex (142), and prominent dendritic cytoplasmic processes (Fig.
3) (674). The subendothelial processes wrap around sinusoids between endothelial cells and
hepatocytes. On each of these processes, there are numerous thorny microprojections (spines)
(679). The function of these projections had been obscure until a recent, elegant study has
demonstrated that these protrusions serve a vital role as the cell's leading edge in “sensing”
chemotactic signals, and then transmitting them to the cell's mechanical apparatus to generate
a contractile force (414).

A single stellate cell usually surrounds more than two nearby sinusoids (679). On the other
side of the cell (i.e., the anti-luminal surface), multiple processes extend across the space of
Disse to make contact with hepatocytes (679,680). This intimate contact between stellate cells
and their neighboring cell types may facilitate intercellular transport of soluble mediators and
cytokines. In addition, stellate cells are directly adjacent to nerve endings (56,658), which is
consistent with reports identifying neurotrophin receptors (95), and with functional studies
confirming neurohumoral responsiveness of stellate cells (336,455,550).

B. Retinoid Storage

The most characteristic feature of stellate cells in normal liver is their cytoplasmic storage of
vitamin (retinoid) droplets (678). In unfixed tissue or cultured cells, the retinoid droplets exhibit
a striking, rapidly fading blue-green autofluorescence when excited with the light of ∼328 nm
(Fig. 4) (174,499). The number of droplets varies with the species and the abundance of vitamin
A stores of the organism (499,587). The vitamin A droplets in stellate cells display a
heterogeneous pattern, with the volume of droplets differing depending on the intralobular
position of the cells (192). Vitamin A fluorescence is more concentrated in periportal regions
than pericentral regions (682,739). Two types of vitamin A droplets have been described
(675): type I droplets are membrane bound and of variable size, but usually smaller than 2 μm
in diameter. They are likely derived from “multivesicular bodies,” which are considered a type
of lysosome (194,708). Type II droplets are not membrane bound and are larger (up to 8 μm).
The relationship between types I and II droplets and their functional differences are unclear.
According to Wake (675), type II fat droplets form by fusion of several type I droplets.
Yamamoto and Ogawa (708), however, believed type II droplets to be the precursor of type I
droplets.

A well-known feature of artic animals, particularly polar bears, seals, and Arctic foxes, is their
high concentration of hepatic vitamin A (586), such that early explorers who ate uncooked
polar bear liver suffered from a syndrome of hypervitaminosis A, which is characterized by
severe liver injury (449). However, there are no distinct features of these arctic mammals
identified to date that distinguish their vitamin A storage pathways from those of humans, and
thus the reason why these animals are protected from hepatic toxicity due to vitamin A is
unclear. Moreover, the requirement for vitamin A-storing cells appears to be a vital
evolutionary trait, since stellate cells can be identified even in relatively primitive vertebrates
including halibut (722) and the lamprey (681).

During liver injury, the fine structure of stellate cells changes considerably. They lose their
characteristic droplets and become “activated” (see sect. VI). The rER becomes enlarged,
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accompanied with a well-developed Golgi apparatus, suggesting active protein synthesis
(174,421) (Fig. 4). Bundles of numerous microfilaments appear beneath the cell membrane
(142). The activated stellate cells then evolve into myofibroblast-like cells (see sect. VI) with
newly formed collagen fibrils surrounding them.

III. Origin and Cytoskeletal Phenotype of Stellate Cells

A. Embryologic Origin(s)

The embryologic origin of stellate cells has been elusive. Currently, the bulk of evidence
supports their originating from either endoderm (300,624,666) or the septum transversum
(553) as it forms from cardiac mesenchyme during invagination of the hepatic bud (135,728,
733). In support of a septum transversum origin, stellate cells express the mesoderm
transcriptional factor Foxf1, which is typically localized to the septum transversum
mesenchyme during liver development (280). In support of an endoderm origin, on the other
hand, it has been suggested that stellate cells and hepatoblasts share a common origin based
on the transient coexpression of cytokeratins in both cell types (300,666).

Stellate cells appear in the second half of the third month of gestation in human development
(193). At birth in rats, stellate cells have still not reached their final size, which requires an
additional 5 weeks (680). A more recent study has characterized a population of vitamin A-
storing cells from day 13 fetal rat liver having a surface phenotype of intercellular adhesion
molecule 1 (ICAM-1)+, vascular cell adhesion molecule 1 (VCAM-1)+, and β3-integrin+

(331). The cells are able to proliferate in serum-free hormonally defined medium and express
hepatocyte growth factor (HGF), stromal-derived growth factor-1, and Hlx homeodomain
transcription factor, implicating them in regulating hepatic development. Further
characterization of these cells is likely to lead to efforts to assess their contribution to
hepatocellular growth and progenitor cell expansion.

In humans, a population of cells has been characterized in midgestation of embryonic liver
development using specific antibodies that are CD34+ cytokeratin (CK)7/8+ and also express
CD13, CD59, nerve growth factor receptor (NGFR), desmin, and α-smooth muscle actin (α-
SMA), leading the authors to conclude that they represent embryonic precursors of adult stellate
cells derived from endoderm (193,624). These cells were larger with more cytoplasm than
CD34+CK7/8− cells and had cytoplasmic projections, also characteristic of stellate cells.

Confusion has increased in the past decade because a neural crest origin has also been suggested
based on stellate cells' expression of several neural crest markers, including glial fibrillary
acidic protein (GFAP), nestin, neurotrophins and their receptors, N-CAM, synaptophysin,
nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), Rho-N, N-cadherin
(192), as well as cellular prion protein (249). However, fate mapping studies of neural crest-
derived cells in developing mouse liver have recently failed to localize to hepatic stellate cells
during late gestation (94,193), undermining the possibility of a neural origin.

A separate issue is whether stellate cells and sinusoidal endothelial cells derive from a common
precursor cell, a likely possibility given their shared mesenchymal phenotype, close proximity
in situ, and joint expression of several angiogenic effectors, for example, receptors for vascular
endothelial cell growth factor (VEGF) (10). However, no studies have specifically addressed
this issue, either in models of development, liver injury, or regeneration following partial
hepatectomy, despite the fact that endothelial cells are vital to liver development (403).

The source of activated stellate cells and myofibroblasts in liver injury has provoked extensive
study and debate (590), especially the notion that bone marrow contributes a substantial fraction
of these cells. This issue is discussed in detail in section IIIB; however, at least one study
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indicates that bone marrow may also contribute to quiescent stellate cells as well (26), possibly
from circulating “fibrocytes” that home to the liver (314). Mice administered a bone marrow
transplant containing cells expressing green fluorescent protein (GFP) but without liver injury
had evidence of GFP expression in their livers (26). Although the turnover of stellate cells in
normal liver is unknown, it seems unlikely that substantial repopulation from bone marrow
occurs in the absence of liver injury or a specific stimulus to bone marrow cell recruitment.
Moreover, recent studies examining bone marrow contributions to hepatocyte repopulation
have emphasized the important contribution of cell fusion to the apparent amplification of bone
marrow-derived cells (216,651).

B. Heterogeneity and Plasticity of Hepatic Stellate Cells

As implied in the preceding paragraphs, the development of antibodies to a range of
cytoskeletal and cell surface markers has facilitated the extensive characterization of the stellate
cell's phenotype. What has emerged from these analyses is an appreciation of their tremendous
heterogeneity and plasticity in adult liver, depending on their lobular location, the species
examined, and whether the tissue is normal or injured.

In 1984, Yokoi (718) detected desmin in stellate cells, an intermediate filament typical of
contractile cells. This finding suggested a similarity between stellate cells and myogenic cells.
Since then, desmin has been widely used as a “gold standard” for identifying stellate cells in
rodent liver, although in humans its expression is unreliable (171,571). A more recent study
suggests that a significant fraction of stellate cells may lack vitamin A (31,517), indicating a
heterogeneous phenotype in these cells, as detailed below. Desmin-negative cells are
concentrated in the pericentral zone, where they may represent up to 50% of the total stellate
cell pool whereas periportal stellate cells are typically desmin positive (31).

α-SMA is one of the six actin isoforms expressed in mammalian tissues. Its presence is typical
for vascular smooth muscle cells (179,606) and myofibroblasts, or contractile fibroblasts,
where it is localized within microfilament bundles (572,589). Induction of α-SMA is the single
most reliable marker of stellate cell activation (see sect. V), because it is absent from other
resident liver cells in either normal or injured liver except the smooth muscle cells surrounding
large vessels. Interestingly, while its expression connotes a contractile phenotype, its genetic
deletion leads to enhanced fibrosis in a rodent model of renal injury (632).

These early observations of stellate cell plasticity rapidly led to the conclusion that rather than
a single cell type with an identical retinoid and cytoskeletal phenotype, stellate cells contain
variable amounts of vitamin A and differing combinations of intracellular filaments, depending
on their lobular location, the species studied, whether the liver was normal or injured, and the
nature of the liver injury (i.e., biliary vs. parenchymal). Moreover, as described in section
VIA, there is a continuum of changes in gene expression during stellate cell activation, such that
the quiescent cell first becomes activated, then continues to evolve into a myofibroblast-like
cell. However, activated stellate cells are distinct from myofibroblasts in their vitamin content,
contractile activity, and relative responsiveness to cytokines, particularly transforming growth
factor (TGF)-β. Even when stellate cells reach replicative senescence, the pattern of gene
expression continues to evolve, with acquisition of a more inflammatory and less fibrogenic
phenotype (574).

The plasticity of stellate cell phenotype was underscored by findings from a double transgenic
mouse in which a GFP was driven by the collagen I promoter, while a red fluorescent protein
(RFP) was controlled by the α-SMA promoter (166,367). In this study there were mixed
populations of activated cells, some of which expressed GFP or RFP alone, others of which
expressed both. Specific patterns of gene expression were seen in cells expressing α-SMA,
with higher levels of ICAM-1, MMP-13, reelin, TIMP1, and synaptophysin mRNAs. Along
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this theme, another study demonstrated that stellate cell activation in liver fibrosis is also
associated with a switch from E- to N-cadherin expression (353), raising the interesting
prospect that stellate cells undergo epithelial to mesenchymal transition (601). In addition, in
cholestatic liver injury, portal fibroblasts may be a more important source of activated
myofibroblasts than stellate cells around proliferating bile ducts (41). Collectively, these
findings reinforce earlier histochemical data highlighting the heterogeneity of stellate cells
with respect to both classical markers of stellate cell activation and even raise the possibility
of transdifferentiation from epithelium.

C. Extrahepatic Stellate Cells

Following the detailed characterization of hepatic stellate cells, it became clear that similar
cells existed in other organs. In particular, pancreatic stellate cells are nearly identical to hepatic
stellate cells, and both are presumed to share a common origin (77,466). Pancreatic stellate
cells display the same heterogeneous cytoskeletal phenotype as hepatic stellate cells. The
similarity is further reinforced by a direct transcriptome analysis of the two cell types, revealing
that while isolated human hepatic and pancreatic stellate cells differ considerably compared
with skin fibroblasts, there were only 29 mRNAs that were different between the two types of
stellate cells. Most of the divergent genes were mRNAs regulating extracellular matrix
expression and turnover, cell adhesion, or cell-cell communication, in addition to three
transcription factor genes (77). Furthermore, it is likely that these minor differences between
hepatic and pancreatic stellate cells could have arisen primarily as a result of different culture
conditions rather than fundamental differences between the two cell types. Similarities between
hepatic and pancreatic stellate cells also extend to pathways of fibrogenesis, including similar
roles of cytokines (13) and alcohol metabolites (14), especially acetaldehyde (see Ref. 466 for
review).

Still, there are fundamental differences in the micro-environments of hepatic and pancreatic
stellate cells that could condition these cells to respond differently to normal homeostatic
controls and to injury. For example, liver receives a dual blood supply that includes
predominantly venous blood, such that hepatic stellate cells are less prone to ischemia when
arterial blood flow is compromised. On the other hand, pancreatic injury, unlike hepatic injury,
is associated with disruption of zymogen granules containing proteases, exposing resident cells
to proteolysis. It is tempting to speculate that either or both of these differences may contribute
to the enhanced regenerative capacity of liver compared with pancreas. Another difference is
that desmoplasia is a far more common component of pancreatic cancer than hepatocellular
carcinoma, with evidence that pancreatic cancer cells release potent fibrogenic mediators
(30).

While less thoroughly characterized, vitamin A-storing cells are present in a variety of other
tissues including lung, kidney, and intestine (243,431,678); lipid droplets in these sites increase
in rats with hypervitaminosis A (431). In addition, cell types resembling activated stellate cells
are also demonstrable in injured kidney (361) and lung (294), where pathways of fibrogenesis
are thought to be quite similar. One key difference between kidney and liver fibrogenic cells,
however, is the apparently larger contribution of epithelial to mesenchymal cell transition in
renal fibrosis than in liver (281,601).

IV. Models and Methods of Characterizing Stellate Cells

A. Cell Isolation Methods

The development of techniques for isolating and cultivating hepatic stellate cells represented
a major advance in exploring the cell's roles in normal and injured liver. Studies 25–30 years
ago characterized the growth of mesenchymal cells derived from liver tissue, which in
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retrospect may have been derived from stellate cells (182,672). Cell studies of this type
described a “fibroblast-like” phenotype with potential for extracellular matrix production. With
the realization that such cells were likely derived from stellate cells, Knook et al. (321), then
our laboratory (172,174), utilized in situ digestion followed by density gradient centrifugation
to isolate stellate cells based on their buoyancy attributable to intracellular vitamin A. Initially
these methods required vitamin A supplementation to increase yields, until it was recognized
that vitamin A content increased in normal rats with age. By using larger, older rats (>350 g),
yields of 40–100 million cells per normal animal (95–99% purity) were obtained routinely,
which were increased further in animals with liver injury (unpublished observation). Several
different gradient materials can be utilized, including metrizamide (321), arabinogalactan
(172), or Nycodenz (241). Considerations for the choice of material include precision,
reproducibility, cost, and ease of preparation. Gradient separation has also been used to
successfully isolate stellate cells from normal human liver suitable for primary culture,
although purity is less than for rodent cells (171).

Density gradient separation remains the most widely used approach for stellate cell isolation,
but favors the isolation of cells that are relatively vitamin A-rich and therefore less “activated.”
Indeed, in animals with liver injury, large numbers of stellate cells are recovered from higher
density (i.e., lower level) gradient layers; such vitamin A-poor cells are typically more activated
in terms of cytoskeletal markers and extracellular matrix gene expression. The difficulty with
these vitamin A-poor isolates is their heterogeneity, since they may contain significant numbers
of sinusoidal endothelial cells and Kupffer cells (172). Studies of such isolates therefore may
be confounded because of paracrine stimulation of stellate cells by soluble mediators from
other nonparenchymal cells, an issue discussed in section VH describing gene array profiling
of stellate cells.

Two cell isolation approaches that avoid density gradients are fluorescent cell sorting and
explant culture. Cell sorting, based on endogenous vitamin A fluorescence, has been reported
in one study (406). Lower yields and dependence on costly technology greatly limit its
applicability, although it remains valuable for obtaining ultrapurified stellate cells. Outgrowth
of activated stellate cells from human liver biopsy material has gained favor (60,691) and is
reminiscent of earlier studies (182,672), albeit now utilizing more refined cell markers. The
limitations of this approach are the potential heterogeneity of the culture and the inability to
track early events in cellular activation, since the method relies on outgrowth of activated cells
on plastic in tissue culture. Still, careful characterization of the cells by immunostaining for
cytoskeletal markers and extracellular matrix products does allow for the generation of
meaningful data.

While methods for stellate cell isolation were initially developed in rats and then adapted to
humans, the development of transgenic and knockout mouse models has more recently required
the isolation of murine stellate cells. The methods required are fundamentally the same but
require a larger number of animals to achieve an adequate yield. A growing number of such
models have utilized either standard isolation or in situ analysis with cell specific markers to
characterize the cells (239,280,510,608,645).

B. Cell Lines

To overcome the need for primary cell isolation entirely, stellate cell clones/lines have been
developed which recapitulate some features of the in vivo activated phenotype; their use has
increased dramatically in recent years (219). Such stable, immortal cell lines offer the
advantage of a ready supply of cells, homogeneity, and the potential for many investigators to
work in the same carefully defined system. Cell lines currently in use have been generated by
either spontaneous immortalization in long-term culture, stable expression of simian virus 40
(SV40) T antigen, or ectopic expression of telomerase. Cell lines each differ somewhat in their
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state of activation, transfectability, and mRNA expression profiles (see sect. VH), but in general
have accelerated progress in elucidating stellate cell biology and hepatic fibrosis. However, it
is prudent to always validate findings derived from cell lines to the in vivo state using either
primary stellate cells or in situ methods to confirm that gene or protein expression identified
in cell lines is physiologically relevant. A large number of lines have been reported, but only
those most extensively studied are described below.

Several rodent stellate cell lines have been characterized. Greenwel, Rojkind, and co-workers
(208) reported stellate cell clones derived from normal or CCl4-treated rat liver, which have
variable levels of collagen gene expression and responsiveness to interleukin-6. Subsequently,
our laboratory characterized a rat stellate cell line generated by stable expression of the SV40
T antigen (671). This line, termed “HSC-T6,” is particularly valuable for studies of retinoid
metabolism based on their similar retinoid phenotype as primary cells (671). Similarly, the
“PAV-1” line displays features of retinoid metabolism akin to that of primary cells (563,
564). A recent addition is the rat line “PQ” generated by single cell cloning, which has key
features of primary stellate cells (474), although there is not evidence yet that the line is truly
immortalized.

Several human stellate cell lines have also been generated. The L190 line is derived from a
human hepatic mesenchymal cell tumor (428). The cells accumulate vitamin A, express a large
number of matrix components, morphologically resemble stellate cells, and express smooth
muscle actin; monoclonal antibodies raised to these cells recognized tenascin, an extracellular
matrix glycoprotein known to be secreted by stellate cells (428). Another cell line, “GRX,” is
derived from fibrotic tissue of a mouse with schistosomal liver disease (69). Like L190 cells,
its morphology, vitamin A production, and matrix production are similar to stellate cells,
although neither L190 nor GRX has been distinguished from vascular smooth muscle cells
with certainty. In part this reflects the lack of a stellate cell-specific marker (see sect. IIIB).
Nonetheless, such cell lines may be useful tools to explore the biology of stellate cells, although
correlation with cells both in primary cells and in vivo will be essential. Schnabl et al. (574)
described a cell line immortalized by ectopic expression of the human telomerase gene, thereby
preventing cellular senescence that typically accompanies telomere shortening (574); this line
has been extensively characterized by cDNA microarray (574,575). Similarly, we generated
two human stellate cell lines, LX-1 and LX-2 using SV40 T antigen for LX-1 cells, and
spontaneous immortalization in low serum for LX-2 cells, and have extensively validated their
similarities to human culture activated stellate cells (704). A particular advantage of LX-2 cells
is their relative transfectability, which facilitates introduction of ectopic genes by transient
transient at a higher efficiency than in most cell lines. The line has also been used in a number
of subsequent studies examining responses to cytokines, hypoxia, and other stimuli (34,85–
87,89,228,483,596,629,636,730). Other human cell lines include one created by telomerase
expression in the L190 cells (597) and another derived from explant culture (691).

A recent report describes a cryopreservation technique for freezing primary stellate cells using
dimethyl sulfoxide (442). If reproducible in other laboratories, the technique will also
accelerate progress by enabling the sharing of cells between investigators, especially those
without the means to isolate their own primary cells.

C. Effects of Matrix and Culture Conditions

Progressive cellular activation, as defined by loss of vitamin A, proliferation, and increased
extracellular matrix production, occurs when stellate cells are plated in primary culture on
standard tissue culture plastic (see Fig. 3) (29,173,195). This “spontaneous activation” can be
exploited to study cellular events similar to those occurring in liver injury and can be further
accelerated by incubation in conditioned medium from hepatic macrophages (168,404,405).
Early primary culture is important for studying signaling events in stellate cell activation, but
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is limited by the heavy dependence on repeated cell isolations and by prep-to-prep variability.
The problem can be overcome somewhat by passaging cells with trypsin and replating to
increase yields; however, this leads to progressive deviation from the quiescent phenotype.

In addition to using uncoated plastic as a culture substratum, stellate cells grow well on a variety
of extracellular matrices which can up- or downregulate their activation (579). For example,
when grown on a type I collagen matrix, stellate cells are more fibrogenic in response to TGF-
β than on type IV collagen (114). Even more striking is the preservation of a quiescent
phenotype when stellate cells are maintained on a laminin-rich gel that mimics the effects of
a basement membrane (173,181,463). This quiescent phenotype can also be maintained if cells
are prevented from adhering by growth in suspension on a nonadherent surface (176).

While the effect of a gel on preserving stellate cell quiescence was reproducible, we and other
investigators were unable to define a specific matrix constituent that conferred quiescence.
However, a fascinating explanation for the effects of a gel substratum has been offered by
recent studies implicating matrix stiffness as the key determinant of stellate cell activation in
these systems (694). Thus the deformability of the substrate, in addition to, or instead of, its
chemical composition may regulate stellate cell responsiveness. While the receptors that
mediate these responses are not firmly identified, integrins are strong candidates based on their
important role in mediating cell-substratum interactions in stellate cells and other mesenchymal
cell types. The emergence of matrix stiffness as regulator of stellate cell biology resonates with
recent clinical studies utilizing a device that measures stiffness to determine the physical state
of liver and in particular its matrix content (160). Continued efforts to refine both chemical
and physical determinants of stellate cell function are critical to optimize methods for
developing artificial liver devices, where the physical properties of the substratum and cell-
cell interactions may be vital to preserving differentiated hepatic function (215). In particular,
use of three-dimensional culture systems may be particularly relevant to such efforts by
recapitulating a more physiological microenvironment (227,585,631).

D. Other Models: Liver Slices, In Vivo Methods

Liver slices were developed decades ago in an attempt to preserve the native milieu of resident
liver cells, but were abandoned when methods for primary cell isolation were developed. With
continued refinements, however, liver slices again offer some unique advantages (664,668)
and have more recently been used to test drug targeting methods (410,411), antifibrotic
therapies (224), and cell fate during injury and repair following exposure to hepatotoxins
(221). The slice technology can be complemented with either real-time PCR for stellate cell-
specific genes (665) or laser-capture microdissection to enrich for stellate cells recovered from
within the slice.

In vivo methods for stellate cell analysis were developed as a result of refined culture methods
and improved antibodies suitable for in situ immunohistochemistry. Maher et al. (371)
pioneered the use of stellate cell isolation from injured rodents to characterize their gene
expression as a reflection of their in vivo behavior, an approach which has now been adapted
to a variety of models and species. Concordance between levels of gene and protein expression
in these isolated cells and tissue is extremely high, further validating the method. At the same
time, countless studies have used tissue immunohistochemistry to identify stellate cells in liver,
but the most prominent proteins analyzed to date include α-SMA, desmin, and GFAP (see Ref.
192 for review).

Identifying promoters that selectively drive transgene expression in stellate cells of mice has
been a difficult challenge. Recent studies, however, have convincingly used components of
either collagen α(1)I, collagen α2(I), or α-SMA promoters to direct transgene expression in
activated stellate cells (311,312,367). More challenging has been the identification of
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transgenic promoters to ectopically express genes in quiescent stellate cells. For this purpose,
a recent study described use of a 2.2-kb promoter of the GFAP gene (700), which corresponds
to separate findings using the same promoter fragment to drive reporter gene expression in
cultured stellate cells (407). The development of these important tools should provide
significant new opportunities for genetic mouse models in which gene expression is selectively
augmented or knocked out in hepatic stellate cells but unaffected in other resident liver cell
types.

V. Functions of Hepatic Stellate Cells in Normal Liver

A. Role in Liver Development and Regeneration

Stellate cells can be found within the progenitor cell niche in normal and regenerating liver,
which is situated near the Canals of Hering (549,716,717) (see sect. III). The functional
importance of these stellate cells is supported by evidence that mouse fetal liver-derived
Thy1+ cells, which express classical features of hepatic stellate cells (α-SMA, desmin, and
vimentin), promote maturation of hepatic progenitors through cell-cell contact in culture
(26). Progenitor cell expansion can also be driven by vagal stimulation (96), but it is unclear
if this pathway requires participation by stellate cells. Regardless, this finding suggests that
the denervated (i.e., transplanted) liver may lack a vital pathway controlling hepatic
regeneration after injury. Adding to the intrigue of these cells, quiescent stellate cells also
express epimorphin, a mesenchymal morphogenic protein, which is increased after partial
hepatectomy, coincident with a decline in stellate cell expression of α-SMA (723). Similarly,
another stellate cell-derived morphogen, pleiotrophin, is also secreted by stellate cells and may
contribute to hepatocyte regeneration (20).

Stellate cells may also be vital to the development of intrahepatic bile ducts during development
(352). This observation complements evidence of paracrine interactions between bile duct
epithelium and either stellate cells or portal fibroblasts both in culture (330) and in vivo
(307). It also complements findings of synemin (an intermediate filament typically associated
with stellate cells) expression in both stellate cells and the epithelial component of the ductular
reaction to various liver diseases and cholangiocarcinoma (569). Similarly, in a rat study of
hepatic responses to a carcinogen, a subset of nestin positive cells (i.e., stellate cells)
coexpressed hepatocyte and epithelial markers (323). Finally, the recent characterization of a
fetal hepatic stellate cell isolate from rat (331) could accelerate efforts to explore the stellate
cell's role in bile duct and progenitor expansion in culture and in vivo models.

In addition to their emerging role in hepatic development, there is growing evidence that stellate
cells are also vital to the hepatic regenerative response in adult liver, but further investigation
is urgently needed. An important study has identified neurotrophin signaling as a paracrine
pathway in stellate cells that contributes to hepatocellular growth following injury, in part
through stimulation of HGF secretion by stellate cells (481). In a similar approach, mice
heterozygous for the Foxf1 forkhead transcription factor (Foxf1 +/−) display defective stellate
cell activation after CCl4 administration, as assessed by α-SMA expression (280). At the same
time, these animals have increased liver cell injury and apoptosis, but reduced fibrosis and
diminished expression of Notch-2 and IP-10, compared with wild-type controls. Most
intriguingly, the animals have defective epithelial regeneration, although it is difficult to tease
out the potential mechanisms based on these data alone. In particular, it is unclear if products
of activated stellate cells are required to attenuate hepatocyte injury, enhance hepatocellular
regeneration, or both. The role of stellate cells in hepatic regeneration would be ideally
addressed if methods are developed to determine the impact of ablating or inactivating these
cells on regeneration of normal liver following partial hepatectomy. A genetic model of cell-
specific deletion has been quite informative in understanding the role of hepatic macrophages
(133,164) in liver injury and repair, for example.
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A number of potential hepatocyte mitogens are secreted by stellate cells, including HGF
(368,568), epidermal growth factor (29,416,427), epimorphin (723), and pleiotrophin (20). As
yet, however, their relative contribution and modes of regulation during hepatic regeneration
have not been clarified.

Even more interesting, a subset of hepatic stellate cells express CD133, which is a stem cell
marker (326), suggesting that stellate cells might have pleuripotent potential in developing or
adult liver. This very intriguing finding merits further exploration, as two recent studies have
identified CD133 as a marker of stemlike cells in several tissues (532,726), including colon
cancer (451,526).

B. Retinoid Metabolism

In normal liver, stellate cells play a key role in the storage and transport of retinoids (vitamin
A compounds). Under physiological conditions, ∼50–80% of total retinoid of the body is stored
in the liver (62), of which 80–90% is stored in stellate cells (240,241). Most vitamin A is stored
in cytoplasmic droplets in the form of retinyl esters, predominantly retinyl palmitate (240,
241). The composition of these droplets is affected by dietary intake. They contain not only
retinoids, but also significant amounts of triglycerides, phospholipids, cholesterol, and free
fatty acids (425,706).

Dietary retinol in the intestinal epithelium is esterified with long-chain fatty acids and packaged
into chylomicrons for transport to the systemic circulation through mesenteric lymphatics. In
the liver, these retinol-containing chylomicrons are taken up by hepatocytes and then
transferred to stellate cells for storage; a small amount remains within hepatocytes. Within
hepatocytes, retinyl esters are hydrolyzed to free retinol before being transferred to stellate
cells (63). This process is mediated by retinol-binding protein (RBP) (61). In addition, stellate
cells also take up RBP-bound retinoids directly from circulating blood (8). Direct release of
RBP-bound retinol from stellate cells into plasma may also occur (62). The storage and
transport of retinoids are influenced by the vitamin A status of the animal. In vitamin A-
deficient conditions, dietary retinoids transported to the liver are rapidly bound to RBP in
hepatocytes and exported to the circulation without transfer to stellate cells (40,63).

Several retinoid-related proteins have been identified in stellate cells, including cellular retinol-
binding protein (CRBP), retinol palmitate hydrolase, cellular retinoic acid-binding protein
(CRABP), bile salt-dependent and -independent retinol ester hydrolase, and acyl coenzyme
A:retinal acyltransferase (59,175). Whether stellate cells produce RBP is still in question,
because of contradictory reports on the presence of RBP mRNA in stellate cells between
different studies (64,175).

1. Effects of retinoids on stellate cells—The biological role of retinoids in regulating
stellate cell activation remains a puzzle. Although loss of retinoid is a prominent feature
accompanying stellate cell activation both in vivo (421) and in culture (175), it is unknown
whether this process is a prerequisite for activation to occur. The reports about effects of
retinoids on stellate cells and fibrogenesis are contradictory (115,116,199,236,423,460,461,
563,582,583,588). In culture, both retinol and retinoic acid suppress stellate cell proliferation,
and retinoic acid (RA) is 1,000 times more potent than retinol (116). In contrast, 9-cis-RA and
9,13-di-cis-RA, two metabolites of RA, promote fibrosis by upregulating plasminogen
activator, which in turn induces the production and activation of TGF-β (460,461). This process
is mediated by RA receptor (RAR)-α. However, in another study using a rat model of fibrosis
induced by bile duct ligation, the increase in TGF-β production was attributed to diminished
RA signaling in stellate cells (457). More recently, divergent effects of all-trans-RA and 9-
cis-RA on stellate cells have been observed (234). There are also different effects between
natural and synthetic retinoids (236).
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Since almost all the vitamin A in liver is stored in stellate cells, studies examining retinoid
content in whole liver predominantly reflect the features of retinoids in stellate cells.
Accordingly, loss of total retinoid but increased RA in liver during injury may have
implications for stellate cell function (440). These observations differ from changes observed
in vitamin-A deficient animals, in whom expression of lecithin:acyl transferase (LRAT), the
enzyme responsible for esterifying retinol, is downregulated rapidly along with a retinoic acid
responsive cytochrome P-450, Cyp26 (551).

C. Immunoregulation

The emergence of stellate cells as significant mediators of hepatic immunoregulation has been
among the most surprising discoveries about the cell type (369) (see Fig. 5). Stellate cells can
amplify the inflammatory response by inducing infiltration of mono- and polymorphonuclear
leukocytes. Activated stellate cells produce chemokines that include monocyte chemotactic
peptide (MCP)-1 (393), CCL21 (66), RANTES, and CCR5 (580). They express toll-like
receptors (TLRs) (472), indicating a capacity to interact with bacterial lipopolysaccharide
(LPS), which in turn stimulates stellate cells (76). Stellate cells also can function as professional
antigen presenting cells (660,670,700) that can stimulate lymphocyte proliferation or apoptosis
(322). In addition to mononuclear cell chemoattractants, stellate cells produce neutrophil
chemoattractants, which could contribute to the neutrophil accumulation characteristic of
alcoholic liver disease (372), as well as complement protein C4 (153), which contributes to the
liver's inflammatory response.

Stellate cells both regulate leukocyte behavior and are affected by specific lymphocyte
populations. For example, CD8 cells harbor more fibrogenic activity towards stellate cells than
CD4 cells (559), which may explain in part the increased hepatic fibrosis seen in patients with
hepatitis C virus (HCV)/human immunodeficiency virus (HIV) coinfection, where CD4/CD8
ratios are reduced, compared with patients mono-infected with HCV alone.

The role of pattern recognition receptors in stellate cells is also being uncovered. Activated
human stellate cells express TLR4 and the other two molecules (CD14 and MD2) which
together form the LPS receptor complex (472). Low concentrations of LPS induce activation
of NFκB and JNK in activated human stellate cells, leading to expression of chemokines and
adhesion molecules. Mouse stellate cells express TLR4 and TLR2 and respond to a range of
pathogen-associated molecular patterns (PAMPs) including LPS, lipoteichoic acid, and N-
acetyl muramyl peptide with secretion of interleukin (IL)-6, TGF-β, and MCP-1 (76,471).
These in vitro results suggest that bacterial wall products produce an inflammatory phenotype
in stellate cells, but notably do not induce matrix deposition, since fibronectin and collagen
transcripts were not increased. Signaling to stellate cells via TLR4 may function to enhance
an adaptive immune response against bacterial pathogens. It is also possible that ligation of
TLR4 is just the initial step of a series of signals that are required for differentiation of stellate
cells into a fully fibrogenic phenotype. This may occur by recruitment of Th2-type Kupffer
cells or other immune cells, which provide additional signals such as IL-13. In addition, TLR4
signaling leads to downregulation of a TGF-β pseudoreceptor, BAMBI (584), which thereby
amplifies fibrogenic activity of stellate cells.

Although TLRs and members of the caterpillar family were identified as recognizing molecular
patterns in pathogens, there is no theoretical constraint limiting recognition of “self” molecular
patterns that are usually hidden inside cells. In fact, there is increasing evidence that self
molecules may activate some of these receptors. The best evidence is presentation of apoptotic
mammalian DNA, which is relatively CpG rich and can activate TLR9 (669). This pathway is
important in auto-activation of B cells and may have a role in the activation of stellate cells by
apoptotic cells (83). A further example is the activation of immune cells by uric acid, which is
dependent on the presence of NALP3 and the adaptor molecule ASC (399). It will be important
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to identify the molecules from apoptotic bodies that provoke stellate cells, as none have been
identified; pattern recognition receptors may play an important role in this process. Of equal
importance, the identification of apoptotic fragments from damaged hepatocytes as fibrogenic
stimuli is an important conceptual advance, which has led to new approaches to
hepatoprotective therapies using caspase inhibitors in patients with chronic liver disease
(663).

The interactions between the immune system and stellate cells are not unidirectional; instead,
there is significant evidence that stellate cells also modulate the hepatic immune response. This
is best demonstrated by their expression of the costimulatory molecule B7-H1 (PDL-1 or
programmed death ligand-1) on activated but not resting stellate cells (725). B7-H1 binds to
PD1, which is an immunoglobulin superfamily member related to CD28 and CTLA-4, but
which lacks the membrane proximal cystine that allows these molecules to homodimerize
(206). PD1 is expressed on a range of immune cells including CD4+ T cells, and at very low
levels PD1 activation is sufficient to inhibit the earliest stages of T-cell activation. PD1 also
inhibits expression of the cell survival gene bcl-xl and limits activation of Akt. The final effect
of PD1 may be very context dependent, and influenced by the stage of T-cell differentiation
and the degree of stimulation via the T-cell receptor. Stellate cells induced apoptosis of T cells
activated in an alloassay, but did not inhibit proliferation or cytokine production. This suggests
that activated stellate cells have a mechanism for inhibiting T cell-mediated cytotoxicity and
conversely can induce T-cell apoptosis. An immunotolerizing role is also suggested by
experimental models in mice in which transplanted stellate cells protect islet allografts from
rejection (102), as well as enhancing engraftment of transplanted hepatocytes (49).

D. Secretion of Lipoproteins, Growth Factors, and Cytokines

1. Apolipoproteins and lipids—Stellate cells secrete apolipoprotein E (162,512), a feature
characteristic of smooth muscle cells (375). In one study they also expressed apo A-I and apo
A-IV (512), whereas in another, the mRNAs for apo A-I and A-IV were not detected by PCR
(162). The functional importance of apolipoprotein production in stellate cells is not clearly
defined.

Another family of lipids, prostaglandins, is also secreted by stellate cells. Prostaglandins play
important roles in hepatic metabolism and inflammation, as well as neural-mediated
vasoregulation. In early primary culture, rat stellate cells rapidly release prostaglandin (PG)
F2α and D2 when incubated with the neurotransmitter norepinephrine or ATP (25). This finding
has special in vivo relevance because of the close proximity of stellate cells to nerve endings
in normal liver (see sect. II). Highly activated rat stellate cells also produce PGI2 and PGE2 in
response to ethanol, which appears to be dependent on production of acetaldehyde (159). The
production of leukotriene C4 and B4 has also been reported (48). To date, the roles of
prostaglandins in stellate cell activity are not fully clarified.

2. Production of growth factors and cytokines—Stellate cells are an important source
of cytokines in the liver (see Table 1). Signal transduction through binding of these cytokines
to their membrane receptors comprises the main pattern of cell-cell interactions in both normal
and injured liver. A consistent theme throughout studies of stellate cell signaling is the
importance of autocrine signaling. For virtually all growth factors, stellate cells not only secrete
cytokines but also respond to them, emphasizing the importance of tightly regulated local
control of cytokine action within the pericellular milieu.

Stellate cells secrete TGF-α and epidermal growth factor (EGF), two potent epithelial growth
factors that play important roles in hepatocyte proliferation during liver regeneration (29,
416,427). TGF-α and EGF also stimulate mitosis in stellate cells (416,699), creating an
autocrine loop for cellular activation. HGF is a more potent hepatocyte mitogen produced by
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stellate cells (368,568). Production of HGF by stellate cells diminishes during acute liver injury
(368). Stem cell factor (SCF) has also been identified in stellate cells in rats undergoing liver
regeneration induced by partial hepatectomy combined with 2-acetoaminofluorene (177). In
addition, insulin-like growth factor (IGF) I and II are secreted by stellate cells (487,737).

Platelet-derived growth factor (PDGF), a dimer of two subunits referred to as A- and B-chain,
is the most potent stellate cell mitogen described thus far (488,491–493). PDGF A-chain
mRNA has been detected in activated human stellate cells (387). During liver injury, stellate
cells display increased PDGF production as well as the upregulation of PDGF receptors
(496,702). An interesting model emphasizing the activity of PDGF in liver is one in which a
mouse with transgenic expression of PDGF-C not only stimulates fibrosis, but also leads to
the development of hepatocellular carcinoma (HCC) (113). This is one of only very few models
resembling human liver disease in which fibrosis precedes cancer, similar to most cases of
HCC, which arise in cirrhotic livers.

Acidic fibroblast growth factor (aFGF) is another mitogenic cytokine that has been identified
in stellate cells in situ in late hepatic development and during hepatic regeneration (397).
Stellate cells also display an autocrine loop for basic FGF (bFGF), which is mitogenic towards
culture-activated rodent and human stellate cells (397,493,547,548,699).

Stellate cells produce macrophage colony-stimulating factor (M-CSF) (488) and MCP-1
(112,395), which regulate macrophage accumulation and growth (see sect. VC). MCP-1
production is stimulated by thrombin, IL-1α, interferon-γ, and tissue necrosis factor (TNF)-α
(391,395). It is blocked by H-7, an inhibitor of protein kinase C (PKC) (395), suggesting the
involvement of PKC in the signaling pathway leading to MCP production. M-CSF synthesis
is stimulated by PDGF and bFGF (488). The secretion by stellate cells of these macrophage
growth factors may play a role in amplifying the inflammatory and fibrogenic response during
liver injury.

The neutrophil inflammatory response in injured liver is also amplified by stellate cells through
the production of platelet activating factor (PAF). PAF promotes chemotaxis of neutrophils
and stimulates their activation (489). Its production is increased by thrombin, LPS, and calcium
ionophores (489). PAF and its receptors are induced on stellate cells during experimental
fibrosis (712).

Generation of an increasing number of chemokines has been ascribed to stellate cells. These
include cytokine-induced neutrophil chemoattractant (CINC), a rat form of human IL-8
(372), RANTES (580), C-X-C chemokine ligand 1 (81), and macrophage inflammatory
protein-2 (81,612) among others (385) (see Fig. 5). Upregulation of at least one chemokine,
eotaxin, may portend a more aggressive course of hepatitis and fibrosis in patients with chronic
HCV (627).

Stellate cells may participate in amplifying the acute phase response by secreting IL-6 (208,
646). LPS, IL-1β, and TNF-α are potent stimuli of IL-6 production (646). On the other hand,
IL-10 is an anti-inflammatory cytokine produced by stellate cells.

Upregulation of IL-10 occurs in early stellate cell activation (645,685) and has prominent
antifibrogenic activity by downregulating collagen I expression while upregulating interstitial
collagenase. IL-10 knockout mice develop severe hepatic fibrosis following CCl4
administration (364,365,644).

Stellate cells also express several adhesion molecules, including ICAM-1 (237), VCAM-1
(318), and neural cell adhesion molecule (NCAM) (317,435,436). The expression of ICAM-1
is increased following stellate cell activation and may play a role in lymphocyte adherence to
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activated stellate cells (237). In situ studies have demonstrated an upregulation of both ICAM-1
and VCAM-1 following CCl4-induced liver injury(318). The peaks of the immunoreactivity
of these two molecules coincided with maximal cell infiltration; moreover, the inflammatory
cytokine TNF-α increases the transcripts of both CAMs (318). It is likely that ICAM and
VCAM are involved in modulating the recruitment of inflammatory cells during liver injury.
Stellate cells expressing NCAM have been found in close proximity to nerve endings in the
liver (317). The function of this adhesion molecule in stellate cells is not known.

TGF-β is one of the most important cytokines expressed following liver injury. Stellate cells
secrete latent TGF-β1 in response to injury, which, after its activation, exerts potent fibrogenic
effects in both autocrine and paracrine patterns, with autocrine being most important (58,
209,213,359,504). TGF-β1 is increased in experimental and human hepatic fibrosis (97,213).
Upregulation of TGF-β1 in activated stellate cells occurs through multiple mechanisms.
Factors including Sp1 (272) and KLF6 (306) transactivate the TGF-β1 promoter, which has
multiple GC boxes, the promoter element responsive to these transcription factors. There are
also multiple mechanisms mediating the activation of latent TGF-β1, including cell surface
activation following binding to cell-surface mannose-6-phosphate/IGF-II receptor (117) or
binding to a number of proteins secreted by stellate cells (209), such as α2-macroglobulin (9),
decorin, and biglycan (417). Recent studies suggest the important role of local plasminogen
activator (PA)/plasmin in activating latent TGF-β1(255,460,461). This mechanism is regulated
by metabolites of RA. The signaling of TGF-β1 in rat stellate cells involves the activation of
Ras, Raf-1, MEK, and mitogen-activated protein (MAP) kinase (522). The roles of Smads have
been extensively explored in recent years in stellate cells (71,239,256,257,282,325,349,357,359,
362,458,467,595,596,656,698,732,734) (see sect. VE).

Activated stellate cells also produce activin, a structurally related member of the TGF-β family
(482). A natural inhibitor of activin is follistatin, whose expression decreases during stellate
cell activation, leading to more unopposed activin activity (482).

Connective tissue growth factor (CTGF) (also known as CCN2) is a growth factor modulator
protein that promotes fibrogenesis in skin, lung, and kidney (73,134,185,217,248,267,470,
507,599). CTGF is strongly expressed during hepatic fibrosis, and stellate cells appear to be
one source of this cytokine in the liver (475,477); however, hepatocytes may be even more
important (214). While earlier studies had suggested CTGF is regulated by TGF-β in stellate
cells, a more recent report indicates that its expression in stellate cells is TGF-β and Smad 2/3
independent, in contrast to hepatocytes where CTGF regulation is TGF-β dependent (214).
These findings are particularly interesting in emphasizing that the regulation of the same
cytokine may be completely divergent between two resident liver cell populations, pointing to
the potential of cell- and pathway-specific inhibition of a factor that is widely expressed
(214).

Endothelin-1 (ET-1) was originally identified as a potent vasoconstrictor produced mainly by
endothelial cells (711). Stellate cells are a major source as well as a target of this cytokine
during liver injury (286,289,376,377,495,535,539,545). ET-1 has a prominent contractile
effect on stellate cells and myofibroblasts, which may contribute to portal hypertension in the
cirrhotic liver (309,393,534). In addition, ET-1 promotes the proliferation of early-cultured
stellate cells, whereas it inhibits fully activated ones (i.e., cultured for more than 1 wk) (544).
These responses are mediated through ET-1 receptors (see sect. VE). Interestingly, stellate cells
also produce nitric oxide (NO), a physiological antagonist to ET-1 (540). NO production is
attributable to the activity of the inducible form of NO synthase in stellate cells (540) and is
highly responsive to proinflammatory cytokines or endotoxemia (36,238,483,641,643). NO
may play a role in the maintenance of microcirculation during liver injury.
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Stellate cells also secrete cystatin C (212), a serum protein filtered by the kidney and used as
a sensitive marker of glomerular filtration rate (621). Interestingly, the blood levels of cystatin
C predict risk of death from a myocardial infarction or cardiovascular deaths, for unclear
reasons (600).

E. Biology of Membrane and Nuclear Receptors

1. Biology of membrane receptors—Cytokines regulate stellate cell biology by specific
and high-affinity binding to their membrane receptors. So far, several cytokine receptors have
been identified in either quiescent or activated stellate cells (see Table 1). In addition, other
receptors such as integrin, whose ligands are not cytokines, are also important in regulating
stellate cell behavior. The generation of a monoclonal antibody to membrane proteins or
synthetic carriers that mimic the receptor-binding domains of key cytokines may facilitate the
development of stellate cell-specific targeting in vivo for diagnostic and therapeutic
applications (45,139).

PDGF receptor was the first membrane receptor identified in stellate cells. It is composed of
α- or β-subunits as either homodimers or heterodimers. In rat stellate cells, the β-subunit is the
predominant isoform (233,486,493,496), whereas in human stellate cells, both α- and β-
subunits are detectable (699). Activated PDGF receptor recruits the signaling molecule Ras,
followed by activation of ERK/MAP kinase pathway (91,163). In addition, phosphoinositol 3-
kinase (PI 3-kinase) and STAT-1 also contribute to PDGF signaling in stellate cells (291,
390). There is also evidence that PDGF signaling requires NADPH oxidase (2). The presence
of PDGF receptors has been exploited by developing targeting reagents intended to direct
therapies directly to stellate cells (3,46).

TGF-β receptors have been extensively characterized in stellate cells (71,213,259,693). All
three forms of TGF-β receptors, types I, II, and III (betaglycan), are expressed. TGF-β1 binding
and responsiveness are greatly enhanced during activation in vivo and in vitro (176) and
induced by corticosteroids (697). A complex signaling pathway downstream of TGF-β
receptors has been uncovered in stellate cells involving classical TGF-β intracellular effectors,
the Smad proteins, in particular Smads 1, 2, and 3 (71,259,693,698) and the inhibitor of
differentiation (Id) protein (698). Interestingly, Smad signaling evolves with stellate cell
activation (128,130,357) and plays different roles during progressive cellular activation
(656). Recent findings suggest that altered Smad signaling may underlie the stellate cell's
response to matrix stiffness (694). An endogenous antagonist to Smad-2/3-mediated stellate
cell activation is Smad7 (129,324). Antagonism of TGF-β signaling is an important and
promising approach to antifibrotic therapy, either through administration of N-acetyl cysteine
(325), Smad7 (129), soluble TGF-β receptors (197,657), interferon-γ (695), bone morphogenic
protein-7 (729), or a variety of other means (359).

CTGF receptors expressed by stellate cells include avβ3-integrin (185) and the low-density
lipoprotein receptor-related protein (LRP), which is a heparin-dependent adhesion receptor
(CTGF) (186). The effects of ET-1 are mediated through two G protein-coupled receptors.
Receptor types A and B have been identified in both quiescent and activated stellate cells
(245,289,535,537). The relative prevalence of ETA and ETB receptors changes with stellate
cell activation (495). The ETB receptor is the predominant mediator of stellate cell contraction
(535) and can be antagonized by a Rho-ROCK inhibitor (290). In addition, the proliferative
effect of ET-1 in quiescent stellate cells is mediated through the ETA receptor (495), whereas
its growth inhibitory effect in activated stellate cells is mediated through the ETB receptor
(377).

In view of their contractile activity and potential role in vasoregulation, it is not surprising that
stellate cells express a large number of other receptors, cytoskeletal proteins, and intracellular
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mediators that either enhance or antagonize cellular contraction (see Ref. 534 for review).
Mediators of contraction include ROCK (290), Rho GTP binding proteins (285,715), a sodium-
calcium exchanger that is induced during cellular activation (432), and eicosanoids (287).
Relaxants include NO (342), C-type and atrial natriuretic peptides (205,637), which regulate
calcium signaling following interaction with its receptor, as well as carbon monoxide generated
by stellate cell-derived heme oxygenase (350,623).

Induction of receptors for VEGF has been identified during stellate cell activation both in vivo
and in culture (10,12,109,400). VEGF receptor upregulation is associated with enhanced
mitogenesis in response to VEGF, which is further synergized by bFGF. Because VEGF plays
a critical role in angiogenesis, this finding suggests that stellate cells may be involved in typical
“angiogenic” responses, broadening their potential roles in both wound healing and tumor
formation (343).

Stellate cells also express the receptor for thrombin, a serine protease derived from prothrombin
(388), which may stimulate migration of active cells (202). The binding of thrombin to its
receptor leads to cellular proliferation and increased production of MCP-1. In addition, other
proteinase receptors are expressed on stellate cells, indicating the presence of complex
regulation of their multiple functions (38,78,154–156,180,494).

In addition to receptors for cytokines, other membrane receptors have also been characterized
in stellate cells. Integrins are a special type of membrane receptor that transduce signals from
extracellular matrix to cells (232,418). They are heterodimeric transmembrane proteins
composed of α- and β-subunits whose ligands are matrix molecules rather than cytokines.
Several integrins, disintegrins, related molecules, and their downstream effectors have been
identified in stellate cells, including α1β1, α2β1, α6β4, α8β1, αvβ1, and αvβ3, and integrin-
linked kinase (92,140,178,185,220,269,302,339,347,392,408,447,494,508,509,593,694,735,736,738).
In particular, integrin ligands contain an arginine (Arg)-glycine (Gly)-aspartate (Asp)
tripeptide sequence. The common presence of Arg-Gly-Asp (RGD) within many integrin
ligands has raised the possibility of using competitive RGD antagonists to block integrin-
mediated pathways in fibrogenesis (268). Another matrix binding molecule, CD44, the
hyaluronic acid receptor, has been identified on activated stellate cells (301), which promotes
cellular migration.

An unusual family of tyrosine kinase receptors called “discoidin domain receptors” (DDR) has
been uncovered, whose ligands are fibrillar collagens rather than growth factors (334). The
intriguing identification of DDR mRNA in activated stellate cells (251,382,456,463,704) raises
the possibility that this receptor may mediate interactions between stellate cells and the
surrounding interstitial matrix, particularly as it accumulates in progressive liver injury.

Stellate cells express cannabinoid receptors, molecules that evolved as a component of an
endogenous cannabinoid signaling pathway (123,274,332,727). Endogenous cannabinoids can
provoke stellate cell death via necrosis involving mitochondrial reactive oxygen species
(603–605). Initial studies of the role of cannabinoids in hepatic fibrosis had yielded apparently
paradoxical findings, which have largely been reconciled now that the divergent effects on
liver fibrosis of the two cannabinoid G protein-coupled receptors (CB1 and CB2) have been
clarified. Studies in human stellate cells demonstrate that activation of CB2 is anti-fibrogenic
(279), and stimulation of cultured stellate cells with an endogenous cannabinoid, anandamide,
provokes stellate cell death, albeit through a CB2 ligand-independent pathway (605). In
experimental models of liver injury, CB1 receptor is induced primarily in hepatic stellate cells
as they activate into myofibroblasts during liver injury (279,638). Antagonism of this receptor
in an acute model of injury due to CCl4 or in isolated cells led to decreased expression of TGF-
β, the most potent fibrogenic cytokine; this reduces cellular proliferation and increases
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myofibroblast apoptosis, both of which would effectively reduce fibrosis. In addition, stellate
cells from CB1 receptor −/− mice display reduced phosphorylation of ERK and Akt, which
explains the cells' decreased cellular growth and survival, respectively (638).

Studies of weight regulation and appetite have uncovered complex signaling pathways both in
the brain and in the periphery, especially the liver. In particular, adipokines, or hormones
produced by adipose (among other sources), are emerging as major mediators of hepatic
metabolism, injury, and fibrosis (106,127,386). Stellate cells express leptin (501) and its
receptors (253,254,468,565), which mediate a range of biologic activities, including
fibrogenesis (88,105,566), in part by enhancing TGF-β (636), cell survival (505), inflammation
(5,252) and by repressing metalloproteinase expression (88). Leptin's natural counterregulator,
adiponectin, is also expressed by stellate cells (701) and is antifibrotic (106,127,282,386).

Hepatic stellate cells express P2Y receptors, which link extracellular ATP to inositol
trisphosphate-mediated cytosolic calcium signaling (132,328). Stellate cells only express the
type I inositol trisphosphate receptor, which shifts into the nucleus upon cellular activation
(328), suggesting a novel pathway for regulation of fibrogenesis. Other nucleotide receptors
have also been identified on stellate cells (634).

Adenosine receptors are expressed by stellate cells, and they provide at least two signals, the
stimulation of fibrosis and the provision of a “stop signal” as stellate cells reach sites of injury
following migration (228). Antagonism of adenosine signaling by caffeine through its
phosphodiesterase antagonism could explain the protective effect of coffee drinking on liver
injury and the development of hepatic fibrosis in large epidemiologic surveys (99,315,556,
557).

Activity of the hedgehog (Hh) signal pathway has been identified in stellate cells (602). The
presence of this pathway is quite interesting, since it was initially described in the development
of Drosophila as a segment polarity gene required for embryonic patterning and is often
reactivated in tumors (345,630). Hh signaling contributes to stellate cell activation (602), but
an even more exciting issue is whether this pathway also contributes to the potential
pleuripotency of stellate cells, as suggested by their expression of CD133 (326) (see sect. VA).

Chemokine receptors are a family G protein-coupled receptor mediating a range of cellular
activities including leukocyte chemotaxis, angiogenesis, myofibroblast proliferation and
migration, neoplasia, and the response to viral antigens (101,296,385). They are particularly
attractive therapeutic targets because their structure makes them inherently
“targetable” (196). Chemokine receptors identified thus far on stellate cells include CCCR5,
whose ligand, RANTES, is induced by NFκB signaling, and stimulates stellate cell migration
and proliferation (580) (see Fig. 5). The cells also express CXCR3, which can activate Ras,
Akt, and PI 3-kinase, also leading to migration and proliferation (67). As with virtually all
cytokine pathways in stellate cells, components of autocrine signaling are present, although in
the case of MCP-1, its conventional receptor, CCR2, does not mediate MCP-1's effects,
suggesting the presence of an as-yet-unidentified receptor (394).

As noted in section V, stellate cells are assuming an increasingly central role in inflammatory
signaling. In addition to chemokine receptors, they express CD40 (581), which provides an
important functional bridge to immune cells, which express CD40 ligand. CD40L engagement
by stellate cells stimulates production of MCP-1 and IL-8, which are both proinflammatory
signals.

Angiotensin receptors have assumed vital importance in stellate cell biology based both on
their key role in cellular activation and on mounting evidence that their antagonism represents
a very promising antifibrotic strategy (37). Activated human and rodent stellate cells express
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all components of the renin-angiotensin system including angiotensin II and its cognate
receptor (38,688,690). Moreover, infusion of angiotensin II induces stellate cell activation and
inflammation in rats (36). The effects of angiotensin are mediated through NADPH oxidase,
a multiprotein complex that generates reactive oxygen species (39,120). Within this complex,
only rac1 has been identified as a functionally active component (120), as underscored by a
transgenic mouse model in which over-expression of rac1 in stellate cells amplified injury and
fibrosis (104). Most importantly, antagonism of angiotensin signaling, either by angiotensin
converting enzyme inhibitors, or by receptor antagonists, is antifibrotic in animal models
(278,515,689), and in a retrospective human study of patients following liver transplantation
(527). As a result of this promising animal and retrospective human data, a controlled
prospective trial of angiotensin II type I receptor antagonist, irbesartan, is underway in France
(http://clinicaltrials.gov/ct/show/NCT00265642?order=2).

Although not a cytokine, ferritin, an iron binding protein, also binds specifically to high-affinity
cellular receptors on stellate cells (516). Activation-dependent binding of ferritin is followed
by internalization and is dependent on the H subunit (516). While these findings are intriguing,
it is uncertain whether ferritin binding is functionally related to stellate cell activation.

A number of other membrane receptor systems have been identified on stellate cells, including
those for hydroxytamine (351), somatostatin (611), catecholamines (455,560), endogenous
opioids (137), serotonin (554), and oxidized LDL (CD36) (576). Stellate cells also express
receptors for advanced glycation end products (RAGE) (150), a member of the
immunoglobulin superfamily. Consistent with their neural phenotype, stellate cells express
neurotrophin receptors (95). Interestingly, serotonin receptors, in particular SSR2, SSR3, and
SSR5 (611), are induced during stellate cell activation (473,554). These receptors
downregulate cellular activation (337,524), suggesting that octreotide and other somatostatin
analogs merit exploration as antifibrotic agents.

2. Biology of nuclear receptors—A dramatic increase in knowledge about intracellular
nuclear receptors has greatly benefited our understanding of stellate cell biology. These
receptors are members of the nuclear hormone receptor superfamily (659). In the presence of
their cognate ligands, they translocate to the nucleus and act as transcription factors. Not only
has information emerged about retinoid receptors in stellate cells, but also about the entire
nuclear receptor family, in particular peroxisome proliferators activated receptors (PPARs), as
well as the farnesoid X receptor (FXR).

Retinoid receptors have been extensively explored in stellate cells given their important role
in retinoid metabolism. However, no clear, coherent model for retinoid receptors in this cell
type has emerged, and some of the data are contradictory. Stellate cells express retinoic acid
receptors (RAR) α, β, and γ (175,692) as well as retinoid X receptors (RXR) α and β, but not
γ (659).

In culture, RXR-α is the dominant receptor (659), but stellate cells express all six major
isoforms (RAR-α, -β, -γ and RXR-α, -β, -γ)(671) and modulate a number of target genes,
including cellular retinol binding protein (CRBP) (671) and collagen I (684). Natural and
synthetic retinoids elicit a range of activities (236): synthetic RXR agonists and 9-cis-RA
downregulate stellate cell proliferation and synthesis of collagen I and fibronectin. In contrast,
all-trans-RA and RAR agonists both reduce collagen I, collagen III, and fibronectin but have
no effect on stellate cell proliferation. Finally, RAR-specific antagonists provoke stellate cell
mitogenesis. In cultured stellate cells, an increase in 9,13-di-cis-RA transactivates RAR-α and
stimulates plasminogen activation and TGF-β-dependent procollagen synthesis (461). These
findings are paralleled in vivo in an experimental model of porcine serum-induced fibrosis, in
which 9,13-di-cis-RA increases despite a decrease in total retinoid content (461), suggesting
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that this relatively minor RAR-α ligand may have a pivotal role in retinoid-mediated
fibrogenesis.

In contrast to a lack of clarity about retinoid receptors in stellate cells, exciting advances have
been made in understanding PPARs, a family of transcription factors also belonging to the
nuclear receptor superfamily (145). For example, PPAR-γ is predominantly expressed in
adipose tissue where it regulates lipid metabolism and adipocyte differentiation. Yet, PPAR-
γ is also expressed in human stellate cells, and its activity is reduced during activation in culture
(183). PPAR-γ functions as a heterodimer with RXR, the 9-cis-RA receptor (183). The PPAR-
γ ligands 15-deoxy-prostaglandin J2 (15d-PGJ2) and ciglitizone decrease PDGF-induced
proliferation of activated stellate cells and inhibit α-SMA expression during stellate cell
activation (389). This suggests that reduced transcriptional activity of PPAR-γ augments
stellate cell activation and modulates mitogen-induced proliferation in activated cells.
Furthermore, prostaglandins produced by stellate cells through the upregulation of COX-2
expression may exert autocrine effects through PPAR-γ, which are blocked by COX-2
antagonism (497).

Increasing evidence that PPAR-γ ligands are antifibrotic towards cultured stellate cells (422,
732) and in animals (184,292,648) has led to promising clinical trial results for the treatment
of fatty liver and fibrosis associated with the metabolic syndrome (44,441,503). Ongoing trials
are further exploring the efficacy of PPAR-γ ligands not only in NASH, but also in other types
of chronic liver disease, including HCV. At least one mechanism of PPAR-γ's antifibrotic
activity involves suppression of the proximal alpha1(I) collagen promoter via inhibition of
p300-facilitated binding of the transcription factor NF-1 (714).

Other PPARs, although less extensively studied than PPAR-γ, are also active in stellate cells
(146). In particular, PPAR-β stimulates stellate cell proliferation (235). While increasing
attention is directed to PPAR-δ in general (341), no reports have described its expression yet
in stellate cells.

Pregnane-X-receptor has been identified in stellate cells and PXR ligands inhibition cellular
activation in culture (229). In vivo, pregnenolone-16α-carbonitrile, a PXR ligand, inhibits
fibrogenesis through both PXR-dependent and -independent pathways (384).

Stellate cells also express the vitamin D receptor (190), suggesting a potential role of these
cells in vitamin D homeostasis and responsiveness. In support of this prospect, 1,25-
dihydroxyvitamin D3 is mitogenic in cultured stellate cells (356).

Estrogens, in particular, 17β-estradiol (358) and estradiol (598,703,713), are antifibrotic in
liver, which may contribute to the decreased risk of fibrosis progression in females compared
with males (57,124,686). Indeed, in cultured stellate cells, estradiol inhibits activation through
an antioxidant effect, whereas this activity is antagonized by progesterone (265); estradiol's
effect may be mediated by estrogen receptor (ER)-β, since stellate cells express ER-β but not
ER-α (598).

Glucocorticoid receptor is also expressed by stellate cells (511), but its contribution to stellate
cell behavior has not been explored.

The FXR is a major regulator of bile flow by stimulating expression of several key genes
involved in cellular bile acid export (107,531), and its therapeutic activation may become a
major advance in the management of cholestasis (616). Surprisingly, however, FXR is also
expressed by stellate cells, where it has an antifibrotic activity through upregulation of its target
molecule SHP (155,156). FXR ligands suitable for human administration have been developed,
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and clinical trials for cholestatic liver diseases are anticipated, with antifibrotic trials likely to
follow.

Liver X receptor, a nuclear receptor that is a nutritional sensor of cholesterol metabolism and
major regulator of lipid metabolism, lipid metabolism, glucose homeostasis, and inflammation
(42), has also been identified in stellate cells (655), further implicating this cell type as a
participant in lipid homeostasis.

F. Adipogenic Features

The extensive characterization of signaling pathways for leptin, adiponectin, and PPAR-γ in
stellate cells has highlighted remarkable parallels between this cell type and adipocytes. This
relationship has been emphasized in studies by Tsukamoto and co-workers (594,653,655),
underscoring that the transcriptional program required for adipocyte differentiation is nearly
identical to that required for maintaining stellate cells in their quiescent, vitamin A-storing
phenotype. In particular, forced expression of either PPAR-γ or sterol regulatory element
binding protein 1c (SREBP-1c), two key regulators of adipogenesis, or incubation of stellate
cells with an “adipogenic” mix of soluble factors, drive the cells towards a quiescent phenotype
(594,653). In contrast, two anti-adipogenic signals, TNF-α and Wnt, promote activation
(655). Stellate cells also express a number of other adipogenic transcription factors, including
CCAAT/enhancer-binding protein (C/EBP)α, C/EBPβ, C/EBPδ, PPAR-γ, liver X receptor-α,
SREBP-1c, and adipocyte-specific genes (594), as well as adipokines including leptin and
adiponectin (127,386).

G. Detoxifying and Antioxidant Enzymes, pH Regulation, and Generation of Oxidant Stress

Several enzymes involved in both intermediary metabolism and detoxification of ethanol and
xenobiotics have been identified in stellate cells. Stellate cells contain alcohol (93) and
acetaldehyde (710) dehydrogenase, although it is unlikely that the cell type plays a significant
role in ethanol detoxification based on its relatively low numbers compared with hepatocytes.
However, the cells may be responsive not only to lipid peroxides and hydrogen peroxide
generated during ethanol metabolism (98,207,443,445,446), but also to acetaldehyde adducts,
which stimulate the secretion of chemokines (299).

Stellate cells express several P-450 enzymes, specifically CYP2C11, 3A2, 2D1, Cyp2S1
(383), and CYP3A (480). Interestingly, activity of these enzymes decreases during culture-
induced activation (707), possibly rendering stellate cells more sensitive to either xenobiotics
or oxidant stress.

The α-, μ-, and π-isoforms of glutathione S-transferase have been identified in stellate cells,
both by enzymatic assay as well as Northern and Western blots (344); these enzymes are
important for detoxification of xenobiotics and the response to oxidant stress, a finding with
implications for both normal liver function as well as the response to injury (122). Activated
stellate cells also express stellate cell activation associated protein (STAP), an endogenous
peroxidase catabolizing hydrogen peroxide and lipid hydroperoxides (288). Stellate cells
contain glutathione synthase (373), as well as the mRNA for the glutathione peroxidase I, the
selenium-dependent isoform (335), which is induced during stellate cell activation in vivo.
Glutathione levels may in fact discriminate between oxidative stress and activation due to TGF-
β1 (119). On the other hand, manipulation of glutathione stores in stellate cells has no effect
on cellular activation (373). Interestingly, whereas culture-induced stellate cell activation leads
to accumulation of glutathione, activation in vivo does not (374), highlighting one of the rare
examples where culture-induced activation pathways are divergent from those associated with
stellate cell activation in vivo. Finally, addition of N-acetyl-L-cysteine (NAC) to stellate cells,
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which restores cellular glutathione levels, leads to stellate cell cycle arrest and induction of
p21 (302).

Stellate cells also have tightly regulated systems for monitoring cellular pH (125), which are
closely linked to cellular activation. Specifically, the Na+/H+ exchanger is the main
intracellular (pHi) regulator in rat stellate cells, and stellate cell activation is associated with
an increase in pHi and in PDGF-stimulated activity of the Na+/H+ exchanger (125,626).
Inhibition of this transporter by amiloride (125) has led to studies in animal models
demonstrating an antifibrotic effect of antagonizing this transporter (47).

There is mounting evidence for a key role of NADPH oxidase (NOX) in mediating several
pathways critical to stellate cell activation, including responses to angiotensinogen II and
PDGF, apoptosis of cellular debris, and generation of oxidant stress (120). Specifically, stellate
cells express key components (p22phox, gp91phox, p47phox, and p67phox) of a nonphagocytic
form of NADPH oxidase that produces superoxide (2). This enzyme is induced during stellate
cell activation and generates superoxide upon engagement of ANG II with its receptors (39).
ANG II signaling leads to phosphorylation of the p47 subunit of NOX, increased superoxide
production, and stellate cell activation, responses which are blunted in p47 −/− mice (39). These
animals have reduced fibrosis after liver injury due to bile duct ligation, attesting to the
biological relevance of this pathway. Interestingly, phagocytic activity of stellate cells towards
apoptotic bodies is also linked to NOX induction, with increased oxidative stress; this response
is inhibited by the NOX inhibitor diphenylene iodonium (DPI) (730). Finally, NOX also
mediates downstream effects of PDGF receptor signaling, and DPI blocks proliferative effects
of PDGF (2).

H. Transcriptome and Proteome Analyses

The development of array technologies to characterize patterns of gene (i.e., mRNA)
expression from the entire transcriptome has provided a valuable tool for uncovering new
information about cellular and molecular biology of liver (23). In general, microarrays can be
used clinically to define features of disease, forecast prognosis, and predict response to
therapies. While in the clinical setting arrays have been primarily applied to the management
of cancer, the technology is proving equally valuable in defining cellular and tissue responses
in nonmalignant diseases, including fibrosis and tissue repair. In particular, cDNA microarrays
have been used to interrogate stellate cells in the hope of uncovering new insights into the cell's
complex biology. This approach offers several benefits for the study of stellate cells: 1) to
uncover novel genes not previously ascribed to these cells; 2) to define pathways or clusters
of gene expression that underlie phenotypic transitions of stellate cells, in particular stellate
cell activation associated with hepatic fibrogenesis; 3) to validate stellate cell culture models
by demonstrating similar patterns of gene expression as cells in vivo; and 4) to reveal potential
targets of antifibrotic therapies.

By applying these criteria, the mountain of information typically provided by a microarray
experiment can be placed in some rational context (573). While the technology continues to
evolve, current methods utilize platforms (i.e., silicon chips) that contain the entire
transcriptome, although they do not routinely distinguish alternative mRNA splice forms of
genes (111), which is an increasingly important mechanism of genetic diversity (187,614). For
each potentially new transcript, it is also essential to validate the reported expression or change
using a more direct method, typically quantitative realtime PCR or related methods including
Northern or Western hybridization. With continued standardization of microarray methods and
publication requirements that obligate investigators to make their raw data available publicly
(131,136,247), array results can be used by all investigators to either validate findings or define
new research questions, thereby accelerating progress considerably.
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Studies utilizing gene array methodologies have begun to apply each of these four benefits to
stellate cell analysis, using either human or rodent cells or immortalized cell lines. For example,
an unanticipated role of Wnt signaling was uncovered by a comparison of quiescent rat primary
(early culture) stellate cells from normal liver, to cells activated by growth in culture for 8–14
days (273). Not only was Wnt signaling induction validated directly, but the array methodology
also confirmed the induction of Wnt target genes, which were complemented by evidence of
Wnt induction in vivo. Similarly, in an analysis of activated stellate cells from mouse using
serial analysis of gene expression (SAGE), a technique conceptually similar to subtractive
hybridization (667), a novel intracellular mediator of bone morphogenic protein, gremlin, was
identified (65). Novel genes have also been uncovered in a recent cDNA microarray study of
activated rat stellate cells, including the chemokines CCL6, CXCL14; proteases MMP-10 and
MMP-23; neural markers neutrotrimin, neurexin-1, and synaptotagmin-9; fat metabolism
enzyme LRAT; cell surface receptors adenosine receptor 2a, GRP 91; and cytoskeletal proteins
anillin, plexin, and C1 (121). A similar approach was employed in a study analyzing gene
expression patterns in human stellate cells isolated from human fibrotic liver, compared with
normal primary stellate cells (561). In another report comparing stellate cells from normal rat
liver, cirrhotic liver, and normal cells activated by growth on plastic, there were distinct
differences between normal cells and those activated by plastic, but fewer differences between
stellate cells from normal versus cirrhotic liver (275).

Recently, gene expression patterns from stellate cells isolated from normal rat liver were
compared with rats with fibrosis from either CCl4 or bile duct ligation, or to normal cells
activated by growth on plastic (121). Expression profiles in stellate cells between the two
fibrotic models were remarkably similar but differed substantially from ultrapurified (i.e., using
flow cytometry) culture-activated stellate cells. However, when stellate cells were isolated
using standard gradient methods alone, which typically contain ∼5% of other nonparenchymal
cells (especially Kupffer cells), the gene expression pattern much more closely resembled
activated stellate cells from fibrotic liver. This might suggest that the most widely used stellate
cell isolation methods with gradient centrifugation alone are most relevant to understanding
the biology of stellate cells in vivo. Studies have also been conducted to identify genes
associated with activation of mouse stellate cells, revealing additional transcripts that regulate
a range of cellular functions, several of which were not anticipated (360).

In a microarray study of human stellate cells after extended culture, cells became senescent
and switched from a primarily fibrogenic to an inflammatory phenotype, with decreased
proliferation gene expression and increased apoptosis (575). Those inflammatory genes
included IL-8, cyclooxygenase 2, superoxide dismutase, and ICAM-1, among others (575).
There were also cytoskeletal rearrangements and reduced expression of fibrogenic mRNAs.
However, findings were not validated directly to demonstrate that the phenotypes described in
culture had a counterpart in vivo.

Array methodology has also been used to define pathways and target genes affected by a
specific stimulus. For example, a study in the human LX-2 stellate cell line identified genes
associated with the response to hypoxia, revealing transcripts associated with kinase activation,
cellular respiration, membrane transport, transcriptional regulation, and protease activities,
among others (596).

Array has also been used extensively to validate that the gene expression patterns of
immortalized stellate cell line resemble those of primary cells. Such studies have analyzed a
human line expressing ectopic telomerase (574), as well as human stellate cells immortalized
with either the SV40 T antigen or low-serum conditions (704).
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In addition to analyses of isolated stellate cells, a number of studies have characterized gene
array patterns from whole liver to assess evolution of mRNA expression during disease,
primarily HCV. In part, these studies are performed to identify gene clusters that may reveal
novel pathways of disease or predict clinical outcomes. While this approach cannot directly
ascribe gene expression to stellate cells, in many cases their contribution to the pool of
expressed mRNAs can be inferred, but must be validated using in situ methods or analysis of
isolated cells. Nonetheless, at least six studies in humans (22,53,338,591,592,610) and one in
rats (506) have explored this question, with interesting results. For example, one study of HCV-
infected livers (591) identified mRNAs for the fibrosis-associated protein extracellular matrix
metalloproteinase inducer (EMMPRIN) (CD147) and discoidin domain receptor-1 (CD167),
which had not previously been identified in liver, prompting the need to explore these
transcripts in isolated stellate cells. Another study indicated that genes involved in matrix
turnover and immune response may be critically associated with the transition from mild to
moderate fibrosis (22), highlighting the key role of stellate cell behavior in this transition.
Similarly, an analysis of human livers with HCV uncovered an abundance of transcripts
associated with inflammation and matrix turnover in early fibrosis, whereas in advanced
fibrosis genes associated with cellular proliferation predominated (338). Yet another study in
whole liver of patients with HCV reported a predominance of transcription factors that are
regulated by interferon (53). Finally, in a study of patients who had serial liver biopsies
following liver transplantation for HCV (610), discrete gene expression patterns emerged that
predicted fibrosis progression, including transcripts clearly associated with activated stellate
cells/myofibroblasts, for example, collagen XII, a calcium channel, and two myosin
polypeptides and a myosin binding protein. This study is particularly important because gene
expression patterns were compared in samples from the same patients during disease
progression, beginning with a normal donor organ at the time of transplant.

Proteomics technology remains a rapidly evolving approach to probe cell and tissue function,
including liver, and offers the advantages of identifying different posttranslational
modifications, including phosphorylation and glycosylation, as well as uncovering new
proteins or protein isoforms (23,484,613). A number of studies have used proteomics to
characterize proteomic patterns in whole liver of rodents (161,705) and either human liver
(415,498), or serum (231), but only one study to date has specifically characterized the
proteome of quiescent and activated stellate cells. Bach Khristensen and colleagues (27)
described over 300 stellate cell proteins, including a novel globin molecule, STAP or
cytoglobin, which has been characterized in detail in follow-up studies (19,434). In addition,
they identified 26 other proteins regulated similarly in culture and in vivo, including
upregulation of calcyclin, calgizzarin, and galectin-1 as well as downregulation of liver
carboxylesterase 10 and serine protease inhibitor 3 (27). These results demonstrate the promise
of using proteomics to uncover information complementary to that obtained by cDNA
microarray.

Among proteomics studies of whole liver reported to date, the vast majority of proteins
identified are derived from hepatocytes, as their total protein content vastly exceeds proteins
derived from stellate or other nonparenchymal cells. Nonetheless, some stellate cell-related
proteins may emerge from this approach.

In addition to genomics and proteomics, a whole range of other “omics” technologies are being
developed (333,426). The term omics refers to the analysis of different classes of molecules,
processes, or functions and structures as systems (297). Currently, these include glycomics,
kinomics, metabolonomics nutrigenomics, toxicogenomics, and ecotoxicoproteomics; it
would seem inevitable that these technologies will be applied to stellate cell biology. To date,
however, only glycomics has been studied in relation to hepatic fibrosis to uncover patterns of
protein glycosylation in serum that correlate with the stage of disease (79).
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VI. Stellate Cell Responses in Liver Injury and Repair

A. Stellate Cell Activation: Features, Regulation, and Reversibility

The clarification of stellate cell responses in hepatic injury and repair has been a significant
turning point in understanding the basis of hepatic fibrosis. In particular, the identification of
stellate cell activation as a key event in fibrogenesis has provided an important framework for
conceptualizing the liver's response to injury. As noted in section I, this review is not intended
to focus primarily on mechanism of hepatic fibrosis, but rather on broader aspects of stellate
cell behavior. The reader is referred to many recent reviews for more comprehensive updates
on fibrosis pathogenesis (35,165,167,213,313,363).

Stellate cell “activation” refers to the conversion of a resting vitamin A-rich cell to one that is
proliferating, fibrogenic, and contractile. While it is increasingly clear that other mesenchymal
cell populations also contribute to extracellular matrix accumulation, stellate cell activation
remains the most dominant pathway leading to hepatic fibrosis (see Fig. 6). Moreover, stellate
cell activation represents a continuum, such that early changes in cellular phenotype may be
distinct from those occurring with progressive injury and activation in terms of growth
characteristics, response to soluble mediators, inflammatory signaling, and apoptotic potential
(128,204,210,504,552,575). Finally, the paradigm of activation of resident mesechymal cells
into fibrogenic myofibroblasts extends to many tissues beyond liver (243).

Activation consists of two major phases: initiation and perpetuation, followed by resolution of
fibrosis if injury subsides (see Fig. 7).

Initiation (also called a “preinflammatory stage”) refers to early changes in gene expression
and phenotype that render the cells responsive to other cytokines and stimuli. Initiation results
mostly from paracrine stimulation, primarily due to changes in surrounding extracellular
matrix, as well as exposure to lipid peroxides and products of damaged hepatocytes.

Perpetuation results from the effects of these stimuli on maintaining the activated phenotype
and generating fibrosis. Perpetuation involves autocrine as well as paracrine loops. It is
comprised of several discrete responses including proliferation, contractility, fibrogenesis,
matrix degradation, retinoid loss, and inflammatory cell infiltration.

Resolution of fibrosis refers to pathways that either drive the stellate cell to apoptosis, or
contribute to their reversion to a more quiescent phenotype.

1. Initiation—The earliest changes observed during stellate activation result from paracrine
stimulation by all neighboring cell types, including sinusoidal endothelium, Kupffer cells,
hepatocytes, and platelets. As noted above, early injury to endothelial cells stimulates
production of cellular fibronectin, which has an activating effect on stellate cells (270).
Endothelial cells are also likely to participate in conversion of TGF-β from the latent to active,
profibrogenic form. Platelets are another important source of paracrine stimuli, including
PDGF, TGF-β, and EGF (28).

Kupffer cell infiltration and activation also contribute to stellate cell activation. Kupffer cells
stimulate matrix synthesis, cell proliferation, and release of retinoids by stellate cells through
the actions of cytokines (especially TGF-β) and reactive oxygen intermediates/lipid peroxides
(55).

Hepatocytes are a potent source of fibrogenic lipid peroxides, although effects on stellate cell
collagen synthesis and proliferation may be dose dependent (450). Hepatocyte apoptosis
following injury also promotes stellate cell initiation through a process mediated by Fas (83,
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84). This process may involve the TNF-related apoptosis-inducing ligand (TRAIL) (83,84).
Whereas hepatocyte necrosis associated with lipid peroxidation is considered a classical
inflammatory and fibrogenic stimulus, recent findings also implicate apoptosis, or programmed
cell death, in the fibrogenic response. Apoptotic fragments released from hepatocytes are
fibrogenic towards cultured stellate cells (85) and activate Kupffer cells (82) (see sect. VIC).
Also, Fas-mediated hepatocyte apoptosis is fibrogenic in vivo in experimental animals (84).

The cytochrome CYP2E1 plays an important role in the generation of reactive oxygen species
that stimulate hepatic stellate cells (443). Cultured hepatic stellate cells grown in the presence
of the HepG2 cell line expressing CYP2E1 (E47 cells) leads to increased production of
collagen, an effect prevented in the presence of antioxidants or a CYP2E1 inhibitor (443).
These data suggest that the CYP2E1-derived reactive oxygen species are responsible for the
increased collagen production. In similar experiments using cocultured hepatic stellate and
E47 cells, the addition of arachidonic acid plus ferric nitrilotriacetate (agents that potentiate
oxidative stress) further induced collagen synthesis (444). These findings may help to explain
the pathogenesis of liver injury in alcoholic liver disease since CYP2E1 is alcohol inducible.

2. Perpetuation—Perpetuation of stellate cell activation involves at least seven discrete
changes in cell behavior: proliferation, chemotaxis, fibrogenesis, contractility, matrix
degradation, retinoid loss, and WBC chemoattractant/cytokine release. The net effect of these
changes is to increase accumulation of extracellular matrix. As an example, proliferation and
chemotaxis lead to increased numbers of collagen-producing cells. Cytokine release by stellate
cells can amplify the inflammatory and fibrogenic tissue responses, and matrix proteases may
hasten the replacement of normal matrix with one typical of the wound “scar.”

A) Proliferation: PDGF is the most potent stellate cell mitogen identified (68,486). Induction
of PDGF receptors early in stellate cell activation increases responsiveness to this potent
mitogen (702). Downstream pathways of PDGF signaling have been carefully characterized
in stellate cells and include PI 3-kinase, among others (340,494). In addition to proliferation,
PDGF stimulates Na+/H+ exchange, providing a potential site for therapeutic intervention by
blocking ion transport (126). Other compounds with mitogenic activity in stellate cells and a
potential role in fibrogenesis include vascular endothelial cell growth factor (720), thrombin
and its receptor (388,391), EGF, TGF-α, keratinocyte growth factor (620), and bFGF (724).
Signaling pathways for these and other mitogens have been greatly clarified in stellate cells,
offering many potential sites for therapeutic intervention (see Ref. 494).

B) Chemotaxis: Stellate cells can migrate towards cytokine chemoattractants (369,385,494),
explaining in part why stellate cells align within inflammatory septae in vivo. A number of
chemoattractants have been identified, prominent among which are PDGF (250,310), MCP-1
(394), and CXCR3 (67). In contrast, adenosine (228) blunts chemotaxis and may immobilize
cells once they reach the site of injury (see also sect. VD). The mechanical features of stellate
cell chemotaxis have recently been explored, revealing that PDGF-stimulated chemotaxis is
associated with cell spreading at the tip, movement of the cell body towards the stimulant, and
retraction of trailing protrusions associated with transient myosin phosphorylation (414).

C) Fibrogenesis: Stellate cells generate fibrosis not only by increased cell numbers, but also
by increasing matrix production per cell. The best-studied component of hepatic scar is collagen
type I, the expression of which is regulated both transcriptionally and posttranscriptionally in
hepatic stellate cells by a growing number of stimuli and pathways. A detailed review of
collagen gene regulation in stellate cells is beyond the focus of this review, but several recent
references are recommended (7,188,257,258,260,354,528,617–619,652).
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The most potent stimulus for production of collagen I and other matrix constituents by stellate
cells is TGF-β, which is derived from both paracrine and autocrine sources (see Refs. 71,
213,259 for reviews). Signals downstream of TGF-β include a family of bifunctional molecules
known as Smads, upon which many extracellular and intracellular signals converge to fine-
tune and enhance TGF-β's effects during fibrogenesis (259) (see sect. VD). TGF-β also
stimulates the production of other matrix components including cellular fibronectin and
proteoglycans (198). In addition to a major role for Smad proteins, TGF-β1 stimulates collagen
in stellate cells through a hydrogen peroxide- and C/EBPβ-dependent mechanism (189). The
response of Smads in stellate cells differs between acute and chronic injury to further favor
matrix production (128,357,628).

As mentioned above, lipid peroxidation products are emerging as important stimuli to
extracellular matrix production (625). Their effects may be amplified by loss of antioxidant
capacity of stellate cells as they activate (see sect. VG) (696). These important insights have
provided the rationale for the evaluation of antioxidants in the treatment of a variety of liver
diseases.

Connective tissue growth factor (CTGF/CCN2) is also a potent fibrogenic signal towards
stellate cells (185,475,476,507) and may be specifically upregulated by hyperglycemia and
hyperinsulinemia (477). While stimulation of CTGF production has traditionally been
considered TGF-β dependent (217), the possibility of TGF-β-independent regulation is
increasingly likely (73).

D) Contractility: Contractility of stellate cells may be a major determinant of early and late
increases in portal resistance during liver fibrosis. The collagenous bands typical of end-stage
cirrhosis contain large numbers of activated stellate cells (534,536,537). These impede portal
blood flow by constricting individual sinusoids and by contracting the cirrhotic liver. The
acquisition of a contractile phenotype during stellate cell activation has been documented in
culture and in vivo and is mediated in part by receptors that interact with the extracellular
matrix and are driven by calcium signaling (413). As noted in section VD, endothelin-1 and
nitric oxide are major counterregulators controlling stellate cell contractility, in addition to a
growing list of additional mediators including angiotensinogen II, eicosanoids, atrial natriuretic
peptide, somatostatin, and carbon monoxide, among others (see Refs. 525,534,536,537 for
reviews). While most studies implicate calcium signaling in response to endothelin-1-induced
contractility (490), a recent study contradicts that view by demonstrating calcium-independent
contractile force in stellate cells (413).

As stellate cells activate, the expression of the cytoskeletal protein α-SMA is increased (514,
538), which confers increased contractile potential. More extensive descriptions of α-SMA and
other contractile filaments are reviewed above and in several reports (192,448,525,546,661).
While the conventional wisdom is that α-actin expression enhances tissue fibrosis, mice lacking
this protein in myofibroblasts have increased renal fibrosis in experimental glomerulonephritis
(633), suggesting that α-actin induction may be a counterregulatory response to enhanced
fibrogenesis by myofibroblasts, including activated stellate cells.

E) Matrix Degradation: Fibrosis reflects a balance between matrix production and
degradation. The degradation of extracellular matrix is a key event in hepatic fibrosis. Early
disruption of the normal hepatic matrix by matrix-degrading proteases hastens its replacement
by scar matrix, which has deleterious effects on cell function. Disruption of the normal liver
matrix is also a requirement for tumor invasion and desmoplasia (15) and may be particularly
relevant to pancreatic stellate cells (466). Degradation in these contexts is referred to as being
“pathological.” On the other hand, resorption of excess matrix in patients with chronic liver
disease provides the opportunity to reverse hepatic dysfunction and portal hypertension.
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An understanding of mechanisms involved in matrix remodeling has evolved significantly in
the past several years. A critical element in matrix remodeling is a family of matrix-
metalloproteinases (also known as matrixins). These are calcium-dependent enzymes that
specifically degrade collagens and noncollagenous substrates (16,50,262). As a general rule,
the matrix-metalloproteinases fall into five categories based upon their substrate specificity:
1) interstitial collagenases (MMP-1, -8, -13), 2) gelatinases (MMP-2,-9, and fibroblast
activation protein), 3) stromelysins (MMP-3, -7, -10, -11), 4) membrane type (MMP-14, -15,
-16, -17, -24, -25), and 5) metalloelastase (MMP-12).

Stellate cells are the principal source of MMP-2 (18,420), MMP-9 (226), MMP-13 (the rodent
equivalent of MMP-1) (567), and stromelysin (673). Activation of latent MMP-2 may require
interaction with hepatocytes (639,640). Markedly increased expression of MMP-2 is
characteristic of cirrhosis (51). MMP-9 may also be secreted by stellate cells (225,227).

A major determinant of progressive fibrosis is failure to degrade the increased interstitial or
scar matrix. Matrix metalloproteinase-1 (MMP-1) is the main protease that can degrade type
I collagen, the principal collagen in fibrotic liver. Sources of this enzyme are not as clearly
established as for the type IV collagenases. Stellate cells express MMP-1 mRNA, but little
enzyme can be detected (420).

Regulation of matrix metalloproteinase activity occurs at many levels, among which is their
inactivation by binding to tissue inhibitors of metalloproteinases (TIMPs) (262). Stellate cells
also produce functional TIMP-1 and TIMP-2 (17), and sustained production of these proteins
during liver injury could inhibit the activity of interstitial collagenases, leading to reduced
degradation of the accumulating matrix during liver injury. TIMP-1 also is anti-apoptotic
towards stellate cells (429), and thus its sustained expression in liver injury will enlarge the
population of activated stellate cells by preventing their clearance. In support of TIMP's role
in vivo, transgenic overexpression of TIMP-1 in liver, or administration of TIMP neutralizing
antibodies, both delay regression of liver fibrosis in experimental animals (721).

Stellate cells express uroplasminogen activator receptor (uPA-R) and its inhibitor (PAI-1), as
well as other components of the plasmin system (152,154,255,320,348,731). These findings
suggest that stellate cells contain most, if not all, of the molecules necessary to either activate
or inhibit metalloproteinases.

Most recently, increased proteolytic activity ascribed to a disintegrin and metalloproteinase
with thrombospondin type repeats (ADAMS)-13 has been reported in activated stellate cells
(447). However, the native substrate(s) and biological role of this protease is not known.

F) Retinoid Loss (See Sect. IIA): Activation of stellate cells is accompanied by the loss of
the characteristic perinuclear retinoid (vitamin A) droplets. In culture, retinoid is stored as
retinyl esters, whereas the form of retinoid released outside the cell during activation is retinol,
suggesting that there is intracellular hydrolysis of esters prior to export (175). Whether retinoid
loss is required for stellate cells to activate, and which retinoids might accelerate or prevent
activation are not clarified.

3. Resolution—As attention has turned to the treatment of liver fibrosis, the issue of how
stellate cell activation resolves has become quite critical (147,169,170,262). Two potential
pathways account for reduction in activated stellate cells, either reversion to a quiescent
phenotype or clearance through apoptosis. Although reversion can be accomplished in cultured
stellate cells through transfer of activated cells to a basement membrane matrix (181,462), this
has not been validated in vivo. To do so, genetic lineage tracing would be required to confirm
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that cells once activated have resumed a quiescent phenotype; however, such studies have not
yet been reported.

In contrast, a large amount of evidence supports the importance of stellate cell apoptosis during
regression of liver fibrosis (262,264). In culture, stellate cells are sensitive to CD95-L and
TRAIL-mediated apoptosis, and NK cells can induce apoptosis of stellate cells by a TRAIL-
mediated mechanism (510) (see sect. VC). NGF derived from hepatocytes is also apoptotic
towards stellate cells (454) and is antagonized by serotonin receptor signaling (554). Apoptosis
requires an intact proteosomal degradation pathway, since its inhibition prevents stellate cell
apoptosis (6). In a recent study (510), an antifibrotic effect of NK cells was indicated by the
presence of increased fibrosis in mice depleted of NK cells by anti-asialo-GM1 antibody and
by decreased fibrosis after NK cell activation by a TLR3 ligand poly I:C. The NK cell-induced
stellate cell apoptosis was specific for activated stellate cells that expressed the NK cell
activating receptor NKG2D. The activated NK cells deliver a lethal blow to stellate cells by
inducing apoptosis with TRAIL. In this study, NK cell function was dependent on interferon-
γ and provided an explanation for earlier experiments demonstrating an important antifibrotic
role for interferon-γ (541). The antifibrotic role of NK cells was further supported by evidence
of their direct adhesion to stellate cells in mouse livers, and by the development of greater
fibrosis in mice genetically deficient in NK cells (412). Most recently, these findings have been
reinforced by studies in humans with HCV (424). In addition to NK cells, activated Kupffer
cells can also provoke stellate cell apoptosis by a unique caspase 9- and a receptor-interacting
protein-dependent mechanism (158).

The antifibrotic role of NK cells is also consistent with the clinical data of increased liver
fibrosis in the setting of therapeutic immunosuppression. The effect of single
immunosuppressive agents on NK cell function is minimal, but the combination of
cyclosporine and corticosteroids results in significant loss of NK cell cytotoxicity (246). In
addition, cyclosporine renders some cells resistant to NK cell-mediated cytotoxicity. The effect
of HIV infection on NK cell number and function is more complex. Some NK cell subsets
coexpress CD4 and HIV coreceptors and are targets for infection with HIV. NK cells from
HIV-infected patients have reduced cytolytic activity and decreased production of cytokines
(149). The hypothesis that NK cells limit liver fibrosis by inducing stellate cell apoptosis
predicts that NK cell function will be relatively impaired in individuals with rapid progression
of fibrosis compared with those in whom liver fibrosis progresses slowly. It may also explain
why fibrosis accelerates with aging (502), since NK cell function declines with age.

B. Transcriptional Regulation of Stellate Cell Behavior

Evolving concepts of transcriptional gene regulation have now been applied to stellate cell
biology and fibrosis (see Fig. 8). Both genetic and epigenetic regulation are critical to stellate
cell responses and are reviewed extensively in several recent articles (141,379,380,529,594,
654). In addition, evidence of posttranscriptional control has been described in stellate cells as
well (355).

Stellate cell activation may result from either “activating” events, such as induction of
transcription factor splice forms, as well as loss of repressive signaling. These complex
cascades illustrate how transcriptional regulation in stellate cells is finely tuned and involves
several interdependent layers of both transcriptional, translational, posttranslational, and
epigenetic control. In addition, the identification of microRNAs has emerged as a major new
pathway of gene regulation in many systems including cancer (662); however, this area has
not yet been explored in stellate cells.

A growing number of transcription factors have been identified in stellate cells, yet these only
represent a small number of the total number of factors contributing to transcriptional control
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(see Table 2). Many target genes of these transcription factors in stellate cells have been
reported, but those target genes most intensively evaluated have included type I collagen (α1-
and α2-chains), TGF-β1 and TGF-β receptors, MMP-2, TIMPs 1 and 2, and α-SMA (141,
379,380,529,594,654).

The following four examples illustrate how stellate cell activation may be controlled by widely
divergent regulatory pathways, including transcription factors that contribute to stellate cell
activation directly and whose deletion attenuates fibrosis (e.g., Foxf1 and JunD), alternative
splicing of a growth inhibitory transcription factor (e.g., KLF6), epigenetic regulation of a
factor regulating stellate cell survival (e.g., NFκB), and regulation of a transcription factor
whose expression maintains stellate cell quiescence (e.g., Lhx2).

1. Foxf1 and JunD—The requirement for “activating” transcription factors is the most direct
transcriptional pathway to provoke stellate cell activation. As discussed in section VA, Foxf1
expression contributes to the activation of stellate cells, and deletion of one Foxf1 allele reduces
stellate cell activation and fibrosis (280). A remarkably similar story has emerged about JunD,
which is a member of the AP-1 transcription factor complex (276). Studies initially performed
in cultured stellate cells identified JunD as a transcriptional regulator of TIMP-1 (609), a
molecule whose sustained expression in injured liver contributes to stellate cell survival and
inhibition of matrix degradation. More recently, this finding has been complemented by
evidence that JunD knockout mice are protected from CCl4-induced hepatic fibrosis, associated
with reduced numbers of activated stellate cells and diminished expression of hepatic TIMP-1
(608). Moreover, stellate cells isolated from these JunD −/− animals have reduced TIMP-1
expression, whereas the activation of JunD in wild-type cells requires ERK-dependent
phosphorylation of a specific serine residue (Ser-100) (608).

2. KLF6—Several years ago we employed subtractive hybridization cloning to isolate cDNAs
upregulated during early stellate cell activation in vivo (335). Among these was a novel zinc
finger transcription factor, which was initially termed “Zf9” and is now called “Kruppel-like
factor 6 (KLF6)” that is rapidly induced as an immediate-early gene during stellate cell
activation in vivo and in culture is a member of a growing family of related zinc finger
transcription factors that share identical C2H2 COOH-terminal DNA binding domains (54).
Because KLF6 was induced during stellate cell activation, we assumed that it stimulated this
process and identified a number of relevant transcriptional targets including TGF-β1 and its
receptors (306), urokinase type plasminogen activator (70,615). Subsequently, we identified
KLF6 as a growth inhibitory protein that functions as a tumor suppressor gene that inactivated
a number of cancers including prostate (439), colon (521), and hepatocellular carcinoma
(327). These findings were paradoxical to our initial studies in that they contradicted the
presumption that KLF6 is growth promoting in stellate cells. The paradox may have been
resolved with the discovery that KLF6 is alternatively spliced (437,438) and that growth-
promoting short forms, rather than full-length isoforms, are overexpressed during stellate cell
activation. This observation is currently being further evaluated with attempts to identify
stimuli that drive alternative splicing of stellate cells during injury responses and cancer.

3. Epigenetic regulation of NFκB activity—Methylation of CpG islands in upstream
regulatory regions typically leads to gene repression. Elegant studies by Mann and colleagues
(140,380,452,453) have demonstrated induction during stellate cell activation of two key
molecules contributing to methylation of CpG islands, the repressors CBF1 and MeCP2. These
molecules critically regulate expression of IκB, the major NFκB repressor complex. When
stellate cells are quiescent, CBF1 and MeCP2 are low, and thus transcription of the IκB gene
is high. The net effect is strong inhibition of NFκB activity, leading to stellate cell apoptosis
and decreased fibrogenesis. In contrast, when CBF1 and MeCP2 are high, IκB is repressed and
NFκB activity is disinhibited or increased, which promotes stellate cell survival and therefore
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increased fibrosis. This finding has been exploited by demonstrating that sulfasalazine, a
commonly used anti-inflammatory drug indicated for treatment of inflammatory bowel disease,
inhibits the kinase (IKK) that activates IκB. Based on the findings in isolated stellate cells,
sulfasalazine and related compounds accelerate recovery from experimental fibrosis by
clearance of activated stellate cells through apoptosis (223,453). Since these activated cells
typically express high levels of TIMP-1, a metalloproteinase inhibitor, their clearance leads to
increased net activity of matrix degrading proteases.

4. Lhx2—This LIM homeodomain protein had been explored primarily for its role in neural
and hematopoietic differentiation (500) before its significance to stellate cell activation was
uncovered. Initial analysis of the Lhx2 knockout mouse revealed that late fetal demise was due
to loss of hematopoiesis in liver (500). Subsequently, Carlsson and colleagues (683) recognized
that the liver phenotype was due to excessive accumulation of extracellular matrix (ECM) in
these Lhx2 −/− livers. Indeed, stellate cells in these livers are highly activated and account for
this ECM accumulation, and overexpression of Lhx2 in normal cultured stellate cells also leads
to decreased activation and ECM gene expression. Thus Lhx2 appears to be a transcriptional
factor that preserves stellate cell quiescence, raising the interesting concept that activation of
stellate cells may be a “default” pathway requiring tonic inhibition by Lhx2 and possibly related
factors. Recently, the same approaches have identified a similar role for the transcription factor
FoxO1, since stellate cell activation and fibrosis are amplified in cells or mice with reduced
FoxO1 activity (1).

C. Paracrine Interactions With Other Resident Liver Cells

Stellate cells exist in a multicellular milieu where cell-cell interactions underlie the tightly
regulated homeostatic control required for normal liver function and the response to disease.
Interactions between stellate cells and inflammatory cells have been extensively reviewed in
section VC, but bidirectional regulatory pathways between stellate and other resident liver cells
are equally important (370).

In normal liver, hepatocytes and stellate cells cooperate in retinoid metabolism where the
compounds are first taken up by hepatocytes, then transferred to stellate cells for storage (see
sect. IIA). In liver injury, hepatocytes are a potent source of fibrogenic lipid peroxides (366,
443,625) and Fas-mediated apoptotic fragments (84,85) as well as acute phase reactants
(319) and plasminogen activators (731). α2-Macroglobulin generated by hepatocytes may
reduce fibrogenesis by sequestering TGF-β (577). Cytokine cross-talk is equally important and
includes TGF-β (58,419), TGF-α (284), insulin-like growth factors and binding proteins (72,
211,607), HGF (108,305,469,709), VEGF (109), NGF (21,454), CTGF (507), IL-6 (32),
thrombospondin (430), as well as other paracrine factors derived from hepatic tumor cells
(34,148). Stellate cells may also support hepatocyte function ex vivo, which could advance the
development of liver support devices (687). There is also evidence that HCV-infected
hepatocytes may release fibrogenic factors towards stellate cells (578,647), which could
explain how patients with normal serum transaminases infected with HCV can still develop
hepatic fibrosis. Similarly, HCC cells expressing the HBV X protein stimulate stellate cells to
produce the angiogenic molecule angiopoieitin-2 (562). Finally, in hemachromatosis, iron-
laden hepatocytes are thought to contribute to hepatic stellate cell activation (518,519).

Stellate cell interactions with Kupffer cells were among the first paracrine interactions
described among nonparenchymal cells in liver (55,164,168,316,370,404,405) and may be
either pro- or antifibrotic. Kupffer cell infiltration typically precedes stellate cell activation in
animal models of liver injury (242,277). Release of chemotactic mediators, for example MCP-1
or osteopontin (293), contributes to their infiltration. Kupffer cell-derived fibrogenic mediators
include TGF-β (404,405) and lipid peroxides (642). In support of their role in activating stellate
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cells, Kupffer cell inactivation by gadolinium chloride reduces stellate cell activation and
fibrosis in animal models (530). In hemachromatosis, iron accumulation in Kupffer cells and
macrophages is thought to induce stellate cell activation (346,485). Kupffer cells may also be
stimulated by apoptotic fragments to release fibrogenic mediators (82). On the other hand,
Kupffer cells may stimulate stellate cell apoptosis (158). Cross-talk between stellate and
Kupffer cells following exposure to LPS may also impair liver regeneration (4).

Stellate and sinusoidal endothelial cells are likely to have a common embryologic precursor.
This fact, combined with their close physical proximity, makes paracrine interactions quite
likely and potentially important. Controlled, coordinated release of proteases may be a critical
early event in hepatic regeneration (303,304), possibly to activate latent mitogens including
HGF (396). Both cell types exhibit coordinated induction of VEGF receptors during liver injury
(10). This interaction may be especially important during tumorigenesis (464). In addition,
early changes in cellular fibronectin splice forms generated by sinusoidal endothelium activate
hepatic stellate cells (270). Other pathways shared between these two cell types include TGF-
β (58,118), IGF-I (117), leptin (253,254), plasminogen (348), endothelin, and nitric oxide
(533,542,543,719).

Recent studies provide mounting evidence of close interactions between stellate cells and bile
duct epithelium. Such a relationship might explain why activated stellate cells encircle
proliferating bile ducts in cholestatic liver injury (308). In culture, secretions from bile duct
epithelium induce α-SMA in perisinusoidal fibrogenic cells (330) due to stimulation by MCP-1.
Most intriguing is the intimate relationship between stellate cells and bile duct cells during
liver development and repair (see sect. III) raising the possibility that stellate cells are required
for differentiation of bipotential epithelial cells into biliary epithelium or even the possibility
of transdifferentiation between the two cell types.

D. Behavior of Stellate Cells in Liver Disease

Involvement of stellate cells in the fibrotic response to liver injury has been recognized for
several years (75,459) (see sect. I). Stellate cell activation from a quiescent to a highly
fibrogenic cell in diseased liver is characterized morphologically by enlargement of rER,
diminution of vitamin A droplets, ruffled nuclear membrane, appearance of contractile
filaments, and proliferation (555,570). Cells with features of both quiescent and activated cells
are often called “transitional cells.” Studies in animals have defined the time course and
localization of proliferating stellate cells in different models of injury (242,277,378,635). These
and related studies consistently demonstrate active proliferation of stellate cells in regions of
greatest injury, which is typically preceded by an influx of inflammatory cells and is associated
with extracellular matrix accumulation.

The recognition of stellate cells' importance in normal and injured liver has led to a greater
appreciation of their role in many human liver diseases (401). Alcoholic liver disease is the
best-studied example, with numerous reports documenting features of activation in situ (230,
244,459). Activation of stellate cells, as assessed by expression of α-SMA, may occur in the
presence of steatosis alone (520), suggesting that bland steatosis may be a precursor of hepatic
fibrosis, even without apparent inflammation. Studies of viral hepatitis (201,218,222,261,
298) and massive hepatic necrosis (52,144) have confirmed morphological and
immunohistological features of stellate cell activation. In hepatocellular carcinoma (143,649)
and biliary malignancy (569), activated stellate cells contribute to the accumulation of tumor
stroma. These findings are supported by animal studies suggesting that activated stellate cells
contribute to hepatic metastases (464,465), and culture studies demonstrating paracrine
activation of stellate cells by tumoral cells (148). In addition, a primary benign tumor of stellate
cells, spongiotic pericytoma, has been described in rats treated with carcinogens (622), as well
as a malignant tumor from which the L190 stellate cell-like cell line has been derived (428).
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Stellate cells have been characterized in a number of other human diseases, including vascular
disease (570), hematologic malignancy (570), biliary disease (570), mucopolysaccharidosis
(523), acetaminophen overdose (402), and leishmaniasis (138) as well as in drug abusers
(650). In addition, stellate cells have been readily identified in fibrosis and granuloma
formation associated with schistosomiasis (33,74,100). In primary biliary cirrhosis (PBC), a
slowly progressive cholestatic disease primarily in woman, large multivesicular stellate cells
have been described (80), the significance of which is unclear. In PBC, these may be seen at
the same time as portal fibroblasts (203), and both cell types are likely to generate fibrosis.

Stimulation of stellate cells by lipid peroxides may be important in many forms of liver fibrosis,
but is particularly pertinent to diseases associated with iron overload. A role for lipid peroxides
is suspected in these diseases (e.g., hemochromatosis), based on both in situ studies that show
a correlation between the presence of aldehyde adducts and stellate cell collagen gene
expression (43,283,478,479).

Because α-SMA is a sensitive marker of activated stellate cells in situ, it is increasingly used
as an early indication of fibrogenic activity in human liver disease, even before extracellular
matrix accumulates. For example, two studies have used α-actin staining to predict early
development of liver fibrosis in patients following liver transplantation for HCV (191,558).
Similar studies have been performed in patients with nonalcoholic fatty liver disease, which
also has a variable rate of fibrosis (110,151). The value of using α-actin staining to quantify
fibrogenesis is underscored by its inclusion as a primary end point in clinical trials of
antifibrotics in HCV refractory to antiviral therapies
(http://clinicaltrials.gov/ct/show/NCT00244751?order=9).

VII. Unanswered Questions and Future Directions

The unfolding mysteries of the hepatic stellate cell and the breadth of its protean features have
far exceeded anyone's imagination when the cell was first isolated over 20 years ago. With that
in mind, it is difficult to predict what additional surprises will emerge from ongoing study of
this fascinating cell type. Nonetheless, some key issues are likely to challenge current and
future investigators. In particular, the stellate cells' pleuripotency and roles in both liver
development and regeneration merit intense evaluation and await the development of better
genetic models to confirm these prospects. Continued elucidation of the stellate cell's immune
functions is very important, in particular its contribution to the unusually high
immunotolerance of liver, as well as its potential role in viral infection (including HIV), graft
versus host disease, and fibrogenesis. More evidence of subtle and complex crosstalk between
stellate cells and inflammatory cell subsets is sure to emerge. The myriad, intersecting
pathways of hepatic stellate cell activation will continue to yield new paradigms relevant to
tissue repair in other organs as well. We still await evidence that activated stellate cells can
revert to a more quiescent state in vivo, which will require sophisticated genetic models but
could provide further evidence of the cell's remarkable plasticity. The use of stellate cells to
support hepatocellular differentiation in culture and hepatocyte engraftment in vivo are also
promising new roles. Based on these findings, the potential use of stellate cells in liver assist
devices merits further study and could create new prospects for patients with end-stage liver
disease. One thing is certain, stellate cells will continue to fascinate, engage, and excite liver
biologists, immunologists, and clinicians for the foreseeable future.
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Fig. 1.

Growth of the hepatic stellate cell field in 25 years. This graph illustrates the number of citations
per year between 1980 and 2005 in Medline using the search terms of either hepatic stellate
cell, Ito cell, lipocyte, fat storing cell, or perisinusoidal cell.
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Fig. 2.

Morphology of hepatic stellate cells in normal liver. A: diagram of the hepatic sinusoid
demonstrating the relative orientation of stellate cells (in blue, indicated with arrows) within
the sinusoidal architecture. B: higher resolution drawing of stellate cells situated within the
subendothelial space. [From Friedman and Arthur (169).]
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Fig. 3.

Ultrastructure of cultured stellate cells. Primary rat hepatic stellate cells cultured for 7 days on
either uncoated plastic (left panel) or Matrigel (right panel). Cells on plastic become activated
and are flat, with well-developed endoplasmic reticulum (ER) and some lipid droplets (L). In
contrast, cells on Matrigel (GM, gel matrix) remain quiescent with condensed nuclear
chromatin (N) and a high density of vitamin A-containing lipid droplets. Acellular debris (D)
and secreted matrix (M) are trapped within the Matrigel surrounding the cell (bar = 10 μm).
[From Friedman et al. (173).]
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Fig. 4.

Cultured hepatic stellate cells in primary culture. A: high-power phase (left panel) and
fluorescence (right panel) micrograph of primary cultured rat stellate cells, demonstrating
cytoplasmic vitamin A droplets that fluorescence when excited by ultraviolet light (bar = 20
μm). B: low-power fluorescence micrograph of rat hepatic stellate cells in primary culture on
plastic for 1 wk, photographed under ultraviolet light (bar = 80 μm). [From Friedman et al.
(174).]
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Fig. 5.

Immunoregulatory roles of stellate cells (see text).
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Fig. 6.

Sources of myofibroblasts in liver injury. Multiple sources of fibrogenic myofibroblasts are
likely in liver injury depending on the site and nature of the injury. While resident stellate cells
appear to be the most likely source, periportal fibroblasts may be especially prominent in biliary
injury, whereas bone marrow and possible epithelial-mesenchymal transition may contribute
as well.
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Fig. 7.

Pathways of stellate cell activation and resolution. Following liver injury, hepatic stellate cells
undergo “activation,” which connotes a transition from quiescent vitamin A-rich cells into
proliferative, fibrogenic, and contractile myofibroblasts. The major phenotypic changes after
activation include proliferation, contractility, fibrogenesis, matrix degradation, chemotaxis,
retinoid loss, and WBC chemoattraction. Key mediators underlying these effects are shown.
The fate of activated stellate cells during resolution of liver injury is uncertain but may include
reversion to a quiescent phenotype and/or selective clearance by apoptosis. [From Friedman
(165).]
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Fig. 8.

Mechanisms of transcriptional regulation of stellate cell activation (see text).
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Table 1

Repertoire of cytokines and membrane receptors associated with hepatic stellate cells

Cytokine Family Cytokines Receptor(s)

Proliferative or fibrogenic

Transforming growth factors TGF-β1/TGF-α, BMP4 and BMP6 TGF-β receptor types I, II and III; mannose-6-
phosphate receptor

Platelet-derived growth factors PDGF-B β-PDGF-R and α-PDGF-R

Epidermal growth factor NR EGF receptor

Stem cell factor Stem cell factor NR

Hepatocyte growth factor HGF c-met

Connective tissue growth factor (CCN2) CTGF (CCN2) αvβ3-Integrin, low-density lipoprotein receptor-
related protein (LRP)

Fibroblast growth factors aFGF and bFGF FGF receptor-2 (flg)

Endothelin-1 ET-1, ECE ET-A and ET-B receptors

Leptin Leptin OB-Ra and OB-Rb

Plasminogen UPA/PAI-1 uPAR

Vascular endothelial cell growth factor VEGF VEGFR-1 (Flt1) and VEGFR-2 (Flk1)

Insulin-like growth factors IGF-I and IGF-II IGF-IR

Thrombin NR Thrombin receptor

RGD containing and integrin ligands Fibronectin, tenascin Integrins α1β1, α2β1, α6β4, α5β1, α8β1, αvβ1 αvβ3,
integrin-linked kinase

Fibrillar collagens Collagens I, II Discoidin domain receptors 1 and 2

Cannabinoids NR CB1 receptor

Purines Ubiquitous P2Y receptors

Adenosine Ubiquitous A(2a) adenosine receptor

Renin-angiotensin Angiotensin II, renin, ACE Angiotensin II types 1 and 2 receptors

Serotonin NR SSR2, SSR3, and SSR5 receptors

Hedgehog Indian hedgehog and sonic hedgehog Patched

Galectins Galectin-3 NR

Chemotactic/inflammatory

Advanced glycation end products (AGE) NR Receptors for AGE (RAGE)

Macrophage colony stimulating factor M-CSF NR

Endothelin ET-1, ECE ET-A and ET-B

Platelet activating factor PAF PAF receptor

CD40 CD40 ligand NR

Tumor necrosis factor-α TNF-α TNFR1, p75NTR

Chemokines CXCL1, MCP-1 RANTES, MIP-1, eotaxin,
IL-8

CXCR3

Opioids NR Delta 1 and Delta 2 opioid receptors

Oxidized LDL NR CD36

Toll like receptor ligands NR TLR4, CDl4

Regenerative

Interleukin-6 IL-6 NR

Neurotrophins NGF, BDNF, NT-4, NT-4/5 P75-NTR; Trk-B, Trk-C
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Cytokine Family Cytokines Receptor(s)

Hepatocyte growth factor HGF c-met

Antifibrogenic

Interleukin-10 IL-10 IL-10 receptor

Cannabinoids NR CB2 receptor

Adiponectin Adiponectin NR

Hepatocyte growth factor HGF c-met

Follistatin Follistatin NR

Apoptotic

Fas signaling NR Fas

Miscellaneous

Cystatin Cystatin NR

Catecholamines Norepinephrine α1A- and β-adrenergic receptors

5-Hydroxytamine NR 5-Hydroxytamine receptor subtypes 1A, 2A, and 2B

Adrenomedullin Adrenomedullin NR

Complement cascade NR C5a receptor

Natriuretic peptides NR Natriuretic peptide receptor B

Shown is a compilation of data reported from all mammalian species describing expression of either mRNA or protein for a broad range of cytokines

and soluble factors, and/or their cognate receptors associated with hepatic stellate cells. The table is organized according to their main activity reported,

although most of these molecules have many activities. The table does not distinguish whether these molecules are associated with quiescent or

activated stellate cells. See text for details. NR, not reported.
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Table 2

Transcription factors expressed by hepatic stellate cells

Factor Function or Target Gene(s)

NF-κβ Regulates inflammation and apoptosis survival

AP-1 (c-Jun, JunB, Jun D, and c-Fos; Fra1, Fra2, and Fos-B) TGF-β1, TIMP-1, and IL-6 gene regulation

AP-2 Collagen gene regulation

Ets-1 Activation

NF-1 Collagen gene regulation

Smads Collagen gene regulation, growth arrest

C/EBP Collagen gene regulation

MEF2 Activation

E-box factors Regulate mannose-6-phosphate/IGF-II receptor

c-myb α-Smooth muscle actin

CREB Activation

CRP2 Quiescence

SREBP Quiescence

Lhx2 Quiescence

Kruppel-like zinc finger factors

KLF6 Varied

Sp1, Sp3 Collagen gene regulation

BTEB Collagen gene regulation

ZNF 267 MMP-10

Egr1 Activation

Nuclear hormone receptors

FXR Quiescence

PPARγ Quiescence

LXR Quiescence

PXR Quiescence

Vitamin D Receptor Activation

RAR-α, β/RXR Varied

Forkhead factors

Foxf1 Activation

FoxO1 Activation

Those transcription factors identified to date in hepatic stellate cells from any mammalian species are listed, along with their general function and/or

specific transcriptional targets in stellate cells.

Physiol Rev. Author manuscript; available in PMC 2010 June 21.


