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Abstract

Hepatocellular carcinoma (HCC), a major cause of cancer-related death in Southeast Asia, is frequently associated with
hepatitis B virus (HBV) infection. HBV X protein (HBx), encoded by a viral non-structural gene, is a multifunctional regulator
in HBV-associated tumor development. We investigated novel signaling pathways underlying HBx-induced liver
tumorigenesis and found that the signaling pathway involving IkB kinase b (IKKb), tuberous sclerosis complex 1 (TSC1),
and mammalian target of rapamycin (mTOR) downstream effector S6 kinase (S6K1), was upregulated when HBx was
overexpressed in hepatoma cells. HBx-induced S6K1 activation was reversed by IKKb inhibitor Bay 11-7082 or silencing IKKb
expression using siRNA. HBx upregulated cell proliferation and vascular endothelial growth factor (VEGF) production, and
these HBx-upregulated phenotypes were abolished by treatment with IKKb inhibitor Bay 11-7082 or mTOR inhibitor
rapamycin. The association of HBx-modulated IKKb/mTOR/S6K1 signaling with liver tumorigenesis was verified in a HBx
transgenic mouse model in which pIKKb, pS6K1, and VEGF expression was found to be higher in cancerous than non-
cancerous liver tissues. Furthermore, we also found that pIKKb levels were strongly correlated with pTSC1 and pS6K1 levels
in HBV-associated hepatoma tissue specimens taken from 95 patients, and that higher pIKKb, pTSC1, and pS6K1 levels were
correlated with a poor prognosis in these patients. Taken together, our findings demonstrate that HBx deregulates TSC1/
mTOR signaling through IKKb, which is crucially linked to HBV-associated HCC development.
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Introduction

Hepatocellular carcinoma (HCC), which occurs frequently in

Southeast Asia, is one of the most important causes of cancer-

related death in the world [1,2,3]. According to epidemiological

studies [4,5,6,7], there is a strong correlation between chronic

hepatitis B virus (HBV) infection and the occurrence of HCC.

HBV X protein (HBx) is a well-known viral non-structural gene

that operates as a multifunctional regulator by modulating activity

of host cellular genes such as p53 [11,12,13] and transactivating

some transcription factors including AP-1, NF-kB, CREB, and

TBP [14,15]. Moreover, HBx is involved in the activation of

multiple signaling pathways linked to cell proliferation and

survival, such as RAS/RAF/MAPK, MEKK1/JNK, and PI3K/

Akt [16,17,18]. Chronic inflammation is one of the key conditions

of persistent HBV infection and has been implicated in tumor

development [19,20,21]. The proinflammatory cytokines and

chemokines, such as tumor necrosis factor a (TNF-a), IL-1, IL-

6, and IL-8, produced in microenvironments, have been known to

promote tumor development [22,23]. TNF-a is considered one of

the most important factors involved in inflammation-mediated

tumorigenesis [24,25,26], and the transcription factor NF-kB,

a downstream signaling transducer of TNF-a, has been implicated

in oncogenesis by promoting expression of genes related to cell

proliferation and survival [27]. Activation of the inhibitor of

nuclear factor kB (IkB) kinase (IKK) by TNF-a phosphorylates

IkBs and promotes degradation of IkBs, resulting in nuclear

translocation of NF-kB and induction of NF-kB downstream genes

[28,29]. The involvement of the IKK/NF-kB pathway in HBV-

induced hepatitis and HCC is well documented [30,31,32],

whereas effects of IKKs independent of NF-kB on tumorigenesis

have also been found [33,34,35]. It was recently reported that

IKKb increased tumor development and tumor angiogenesis by
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activating the mTOR signaling pathway through inhibiting

tuberous sclerosis 1 (TSC1) [36,37,38]. Moreover, aberrant

activation of the mTOR/ribosomal protein S6 kinase 1 (S6K1)

signaling pathway increased cell proliferation and angiogenesis in

a rat HCC model [39,40]. In the present study, we investigated

whether HBx can modulate IKKb to inactivate TSC1’s inhibition

on mTOR so that it contributes to HCC development. We found

that HBx modulated IKKb/TSC1/mTOR signaling and up-

regulated cell proliferation and VEGF production in both

unstimulated and TNF-a-stmulated hepatoma cells. We further

used an HBx transgenic mouse model to verify whether HBx

upregulates IKKb/TSC1/mTOR signaling in vivo, and to

examine the association of upregulated IKKb/TSC1/mTOR

signaling with increased VEGF expression and angiogenesis in

liver tumorigenesis. Furthermore, we investigated the status of

IKKb/TSC1/mTOR signaling in specimens from HBV-associ-

ated human hepatomas, and analyzed the relationship between

the status of IKKb/TSC1/mTOR signaling and the prognosis of

HCC patients. We conclude that IKKb activates mTOR signaling

through TSC1 suppression to contribute to one crucial mechanism

underlying HBx-dependent pathogenesis of HCC.

Methods

Plasmid and Cell Lines
The pcDNA6.0-HBx plasmid was constructed by cloning the

cDNA product of the HBx gene into the pcDNA6.0 expression

vector. The cDNA of the HBx gene was obtained by preparing

RNA from serum of an HBV (+) patient followed by a reverse

transcription-polymerase chain reaction (RT-PCR) using reverse

transcriptase (SuperScript III; Invitrogen), oligo(dT) primers, and

HBx primers: Forward 59–

AAGCTTGCTGCTCGGGTGTGCTGCCAA–39 and Reverse

59–GGTACCGG CAGAGGTGAAAAAGTTGCA–39. The se-

quence of the HBx cDNA was confirmed by sequencing analysis.

The expression vectors payw1.2WT and payw*7 [41] for

wildtype and HBx-defective HBV genome, respectively, were

kind gifts from Dr. Jack R. Wands (The Warren Alpert Medical

School of Brown University).

Hep3Bx and HepG2x cells were derivatives of human

hepatoma Hep 3B and Hep G2 cells (both were from ATCC),

respectively, stably expressing the HBx gene, and were established

by transfecting Hep3B and HepG2 cells with pcDNA6.0-HBx

Figure 1. The IKKb/TSC1/mTOR signaling pathway is activated by HBx. (A). Expression of HBx mRNA in Hep3Bx, HepG2x, and parental
Hep3B and HepG2 cells was detected using semi-quantitative RT-PCR. Levels of GAPDH mRNA were used as an internal control. RNAs of a HBV-
positive patient’s serum (P) and RNAs of a control HBV-negative serum (N) were used as controls. (B). Levels of HBx protein were detected in lysates of
Hep3Bx, HepG2x, and parental Hep3B and HepG2 cells using Western blotting by antibody specific against HBx protein and b-actin. (C). Levels of
pIKKb(S181), pTSC1 (S511), pS6K1 (T389), total IKKb, total TSC1, total S6K1, and b-actin were assessed in lysates of Hep3Bx, HepG2x, and parental
Hep3B and HepG2 cells using Western blotting by specific antibody as indicated. (D). Data shown are ratios of viable cells in Hep3Bx and HepG2x cells
relative to that in Hep3B and HepG2 cells (set as 1), respectively, at 24 h after seeding using MTT assay. (E). Levels of pIKKb (S181), pS6K1 (T389), total
IKKb, total S6K1, HBx, and b-actin were assessed in lysates of Huh7 cells transfected with empty vector alone, payw1.2WT, or payw*7. (F). Levels of
pIKKb (S181), pTSC1 (S511), pS6K1 (T389), total IKKb, total TSC1, total S6K1, and b-actin were assessed in lysates of Hep3B and Hep3Bx with or without
TNF-a treatment using Western blotting as described earlier.
doi:10.1371/journal.pone.0041931.g001
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using Lipofectamine (Invitrogen) followed by drug selection [42].

These cells were maintained at 37uC in a 5% CO2 incubator with

Dulbecco’s modified Eagle’s/F12 medium plus 10% fetal bovine

serum.

Antibodies and Western Blotting
The primary antibodies used in this study were anti-TSC1 (37-

0400; Zymed Laboratories, Inc., San Francisco, CA), anti-

phosphorylated S6 kinase (T389) (9205; Cell Signaling Technol-

ogy, Inc., Beverly, MA), anti-S6 kinase (2215; Cell Signaling), anti-

phosphorylated IKKb (S181) (2681; Cell Signaling), anti-IKKb

(2684; Cell Signaling), anti-HBx (ab235; Abcam Co., Cambridge,

UK), anti-VEGF-A (Santa Cruz Biotechnology, Inc., Santa Cruz,

CA), anti-CD31 (ab28364; Abcam Co., Cambridge, UK), and

anti-actin (A2066; Sigma-Aldrich Co., St Louis, MO). The rabbit

polyclonal antibody against the phospho-S511 of TSC1 was a kind

gift from Dr Mien-Chie Hung (MD Anderson Cancer Center,

Houston, TX). The expression of IKKb, pIKKb (S181), TSC1,

pTSC1 (S511), S6K1 or pS6K1 (T389) was detected in cell lysates

prepared from cells lysed as described previously [37]. Fifty

micrograms of total protein lysates were resolved using sodium

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE),

transferred to polyvinylidene difluoride (PVDF) membranes, and

then probed with specific antibodies and HRP-conjugated

secondary antibodies. Immunoblots were then developed using

enhanced chemiluminescence.

Figure 2. TNF-a-stimulated increases of pTSC1 (S511), pS6K1 (T389) and cell proliferation in Hep3Bx and HepG2x cells are blocked
by the IKKb inhibitor Bay 11-7082, siRNA specific for IKKb, and the mTOR inhibitor rapamycin. (A). Lysates of Hep3Bx and HepG2x cells
treated with or without TNF-a in the presence or absence of Bay 11-7082 were analyzed for levels of pIKKb (S181), pTSC1 (S511), pS6K1 (T389), total
IKKb, total TSC1, total S6K1, and b-actin using Western blotting as described earlier. (B). Lysates of Hep3Bx and HepG2x cells with transfection of
IKKbsiRNAs or control siRNAs were assessed for levels of pTSC1 (S511), pS6K1 (T389), total IKKb, total TSC1, total S6K1, and b-actin. (C). Lysates of
Hep3Bx and HepG2x cells treated with or without TNF-a in the presence or absence of rapamycin were analyzed for levels of pIKKb (S181), pS6K1
(T389), total IKKb, and total S6K1. (D). Data shown are ratios of viable cells in Hep3B, Hep3Bx, HepG2, and HepG2x cells treated with or without TNF-
a in the presence or absence of Bay11-7082 or rapamycin relative to that in Hep3B and HepG2 cells without any treatment (set as 1), at 24 h after
seeding using MTT assay. Data are shown as means 6 S.D. of three experiments. Comparisons were made between different groups as indicated.
*P,0.001 is determined by X test.
doi:10.1371/journal.pone.0041931.g002
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Inhibitor Treatment and Knockdown of Gene Expression
by siRNAs
BAY 11-7082 and rapamycin were purchased from Calbiochem

(San Diego, CA), and recombinant human TNF-a was from

Roche Applied Sciences (Indianapolis, IN). Hep3B, Hep3Bx,

HepG2, and HepG2x cells were grown in complete medium and

exposed to 20 mg/ml TNF-a (Roche, Indianapolis, IN) with or

without pretreatment of 40 mM BAY 11-7082 for 45 min

(Calbiochem, San Diego, CA) or 100 nM Rapamycin (Calbio-

chem, San Diego, CA) for 3 h.

The MTT assay was used to measure cell proliferation and

viability in 5,000 cells seeded onto 96-well plates, treated with

TNF-a with or without BAY 11-7082 or Rapamycin for 24 h. The

amount of VEGF protein in the culture supernatants was assessed

using ELISA (BioSource; Invitrogen Corp., Carlsbad, CA)

according to the manufacturer’s instructions. IKKb siRNAs

(Smartpool [M-003503]; Upstate Biotechnology, Charlottesville,

VA) and control siRNAs (Smartpool [D-001206-13-05]; Upstate)

were transfected into cells using Lipofectamine to knock down

IKKb expression.

Real-time RT-PCR and Quantitative Real-time RT-PCR for
mRNAs
Total RNA was extracted from cells 48 h after transfection using

Rezol (ProTech Technology Enterprise Co., Ltd., Taipei, Taiwan)

according to the manufacturer’s instructions. Subsequently, 4 mg

RNA was converted to cDNA using SuperScript III, oligo (dT)

primers, and PCR using the following primers: HBx Forward 59–

AAGCTTGCTGCTCGGGTGTGCTGCCAA–39 and Reverse

59–GGTACCGG CAGAGGTGAAAAAGTTGCA–39; VEGFA

Forward 59–CATGAACTTTCTGC TGTCTTGG–39 and Re-

verse 59–CATTTGTTGTGCTGTAGGAAGC–39; GAPDHFor-

ward 59–TGAAGGTCGGAGTCAACGGATTTGGT–39 and

Reverse 59–CATG TGGGCCATGAGGTCCACCAC–39. For

real time RT-PCR reactions, 1 mg of total RNA from each sample

were used in the RT reaction (M-MLV Reverse Transcriptase;

Invitrogen). The TaqMan gene expression real time PCR assays

(ABI PRISM 7900 HT Sequence Detection System; Applied

Biosystems) were used to assess the mRNA expression levels of the

endogenous VEGFA and GAPDH (Applied Biosystems, Foster

City, CA, USA; assay ID: Hs00900055_m1 for VEGFA and

Hs99999905_m1 for GAPDH). Expression analysis was done in

triplicate for each sample. In each run, the endogenous control gene

(GAPDH) and one no-template-control (NTC) were also run in

triplicate. The fold difference for each samplewas obtained using the

following equation: 2–ddCt. Ct is the threshold cycle.

HBx Transgenic Mice, Tissue Preparation, and
Immunohistochemical Analysis
The lines of HBx transgenic mice used in this study were

established and described elsewhere [43]. The HBx transgenic

mice were bred in a specific pathogen-free environment and all

mouse experiments complied with the guidelines in the ‘‘Guide for

the Care and Use of Laboratory Animals’’ (NIH publications 86-

23 revised 1985) and were approved by the Institutional Animal

Figure 3. Expression of VEGF is increased in Hep3Bx and HepG2x cells and is further enhanced by TNF-a and blocked by IKKb
inhibitor Bay 11-7082 or the mTOR inhibitor rapamycin. (A). The expression levels of secreted VEGF in the culture medium of Hep3B, Hep3Bx,
HepG2, and HepG2x cells were measured by ELISA assay as described in the Methods. (B). The expression levels of VEGFA mRNA were assessed in
Hep3B, Hep3Bx, HepG2, and HepG2x cells using semi-quantitative RT-PCR (left) or real-time RT-PCR (right) as described in the Methods. (C). The
amounts of secreted VEGF in the culture medium of Hep3B, Hep3Bx, HepG2, or HepG2x cells treated with or without TNF-a in the presence or
absence of Bay11-7082 or rapamycin were measured by ELISA assay. Data are shown as means 6 S.D. of three experiments. Comparisons were made
between different groups as indicated. *P,0.001 is determined by X test.
doi:10.1371/journal.pone.0041931.g003
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Figure 4. Increased expression levels of pIKKb(S181), pS6K1(T389), and VEGF-A in liver tissues of HBx transgenic mice. (A). A gross
view of representative liver tumors (T1, T2, T3) developed in HBx transgenic mice in several months of breeding. The ALT values are shown. (B). The
H&E staining of non-tumor and tumor parts in HBx transgenic mice. (C). The expression levels of pIKKb (S181), IKKb, pS6K1 (T389), S6K1, VEGF-A, HBx,
and b-actin detected by Western blotting in non-tumor and tumor parts of liver tissues of three HBx transgenic mice (#824, #825, and #826) were

HBx Deregulates IKKb/TSC1/mTOR Signaling in HCC
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Care and Use Committee (IACUC) of College of Medicine,

National Cheng Kung University (Approval Number: 98129). The

HBx transgenic mice developed hepatic tumor after 13 to 16

months of age. To ensure the mice could develop hepatic tumor,

the transgenic mice were bred for up to 21 months, and

approximately 90% incidence of HCC was observed in HBx

transgenic male mice at an age of 19–20 months. After the mice

had developed liver cancer, the mice were sacrificed, and liver

tissue was collected, extracted, fixed, and stained with hematoxylin

and eosin as previously described [42]. pIKKb, pS6K1, VEGF-A,

and CD31 expression was immunohistochemically detected on

paraffin-embedded liver sections (3 mm) using specific antibodies

mentioned earlier.

Patients’ Characteristics
Institutional Review Board of the Human Investigation

Committee of College of Medicine, National Cheng Kung

University approved the study. Written informed consent was

obtained from patients participating in this study. A total of ninety-

five patients admitted to National Cheng-Kung University

Hospital (Tainan, Taiwan) with HBV-associated HCC who

received curative surgery between 1 January 2003 and 31

December 2006 were enrolled, and samples of their resected liver

tumor tissue were assembled in a tissue microarray. All 95 patients

showed positive for serum HBV surface antigen and for HBx in

tumor specimens analyzed using PCR, and negative for antibodies

to the hepatitis C virus. The patients were regularly followed up at

clinic visit every 1 to 3 months after curative surgery. The patients

included 70 (73.7%) males and 25 (26.3%) females with age range

of 44 to 77 years (mean age 60.7 years). The median follow-up

time was 38 months (range, 6 to 53 months). At the end of the

follow-up, 28 patients had died of disease. The 1-year disease

specific survival rate was 92.1% and 3-year disease specific survival

rate was 74.2%.

Immunohistochemistry and Clinical Association Study
Immunohistochemical staining for pIKKb, pTSC1, and pS6K1

protein expression was examined on adjacent 4-mm formalin-fixed

paraffin-embedded tissue sections. An experienced gastrointestinal

pathologist reviewed all specimens. Amino-ethylcarbazole chro-

mogen was used for visualization. The positive protein staining

was only considered in cytoplasmic immunoreactivity of cancer

cells on a semi-quantitative scale that combined staining intensity

and percentage of positively stained cells. Staining intensity was

evaluated as low (0–10% positive cancer cells) or high (.10%

positive cancer cells). Statistical analyses were done using a x2 test,

Fisher’s exact test, or Kaplan-Meier survival test. Significance was

set at P,0.05.

Results

HBx Upregulates IKKb and mTOR Activity
We established human hepatoma Hep 3Bx and Hep G2x cell

lines which stably express HBx to investigate the effects of HBx

overexpression on IKKb/TSC1/mTOR signaling. The expres-

sion of HBx in Hep3Bx and Hep G2x was confirmed by both RT-

PCR and Western blotting analysis (Fig. 1A, B). Next, we

evaluated whether HBx overexpression affected levels of phos-

pho-IKKb (pIKKb) (S181), phospho-TSC1 (pTSC1) (S511), and

mTOR downstream phospho-S6K1 (pS6K1) (T389). While there

were no significant differences in total protein levels of IKKb,

TSC1, S6K1 in cells with or without overexpression of HBx

(Fig. 1C), we found overexpression HBx enhanced levels of

pIKKb, pTSC1, and pS6K1. Consistently, we observed signifi-

cantly increased proliferation in cells stably expressing HBx

compared with control cells expressing vector only (Fig. 1D). To

verify the role of HBx in enhancing levels of pIKKb and pS6K1 in

a more natural setting mimicking HBV infection, we transfected

Huh7 cells with empty vector alone, wildtype HBV full genome

expression vector payw1.2WT, or payw*7 which is a paywWT

mutant vector harboring an orchre termination signal after codon

7 in the HBx open reading frame [41]. We found that levels of

phosphorylation of IKKb and S6K1 in cells transfected with

wildtype HBV expression vector payw1.2WT were higher than

that in cells transfected with HBx defective mutant payw*7 or

vector only (Fig. 1E). Moreover, when cells were treated with the

proinflmmatory cytokine TNF-a, overexpression of HBx syner-

gistically enhanced TNF-a-stimulated pIKKb, pTSC1, and

pS6K1 (Fig. 1F). These results demonstrate that HBx upregulates

basal and TNF-a-induced IKKb and mTOR activity.

HBx Deregulates TSC1/mTOR Signaling and Increases Cell
Proliferation through IKKb
We found that HBx enhanced basal and TNF-a-stimulated

IKKb and mTOR activity, and concomitantly increased phos-

phorylation and inactivation of TSC1 (Fig. 1). We hypothesized

that the effect of HBx on mTOR was mediated by IKKb-

mediated phosphorylation and inactivation of TSC1. The Hep3Bx

and HepG2x cells were treated with the IKKb inhibitor Bay11-

7082 in the presence or absence of TNF-a, and the levels of

pIKKb (S181), pTSC1 (S511), and pS6K1 (T389) were examined.

In agreement with our hypothesis, inhibition of IKKb by Bay11-

7082 abolished the TNF-a-stimulated phosphorylation of TSC1

and S6K1 in both Hep3Bx and HepG2x cells (Fig. 2A), the finding

of HBx-upregulated mTOR activity mediated by IKKb was in

parallel confirmed using a specific IKKb siRNA to knockdown

IKKb expression (Fig. 2B). To confirm that the HBx-mediated

increase in phosphorylation of S6K1 was through mTOR

activation, cells were treated with mTOR inhibitor rapamycin

when stimulated with TNF-a. As shown in Fig. 2C, basal and

TNF-a-stimulated phosphorylation of S6K1 was abolished by

rapamycin treatment in both Hep3Bx and HepG2x cells.

Consistently, TNF-a-stimulated cell proliferation in Hep3Bx and

HepG2x cells was completely blocked by treatment with Bay11-

7082 or rapamycin (Fig. 2D). These results suggest that HBx

activates mTOR activity and cell proliferation through IKKb-

mediated inactivation of TSC1.

compared to the normal liver tissues of the wild-type age-matched mouse. The HBx mRNA levels were also measured by RT-PCR and the GAPDH
mRNA levels were used as an internal control. The relative levels of pIKKb (S181), pS6K1 (T389), and VEGF-A were quantified by densitometry and
normalized with total IKKb, total S6K1, and actin. Results are shown as ratios of average levels of pIKKb (S181) pS6K1 (T389), and VEGF-A in non-tumor
and tumor parts of liver tissues of three HBx transgenic mice (#824, #825, and #826) relative to that in the normal liver tissues of the wild-type age-
matched mouse (set as 1). Data are shown as means 6 S.D. of measurements of three mice. (D). Immunohistochemistry analyses show expression
levels of pIKKb (S181), pS6K1 (T389), VEGF-A, and CD31 in normal liver tissues of the wild-type mouse, and non-tumor and tumor parts of liver tissues
of HBx transgenic mice. One representative data are shown. N= 3.
doi:10.1371/journal.pone.0041931.g004
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Figure 5. Positive association between pIKKb(S181), pTSC1(S511), and pS6K1(T389) in HBV-associated human HCC specimens. (A).
Immunohistochemistry analysis of pIKKb (S181), pTSC1(S511) and pS6K1(T389) in tumor tissues of 95 human HBV-associated HCC specimens. Results
of one representative specimens stained by specific antibodies are shown. (B). Upper graph shows percentages of specimens with low or high pIKKb
(S181) expression in which pS6K1 (T389) expression was high or was not observed (low). Lower graph shows percentages of specimens with low or

HBx Deregulates IKKb/TSC1/mTOR Signaling in HCC

PLoS ONE | www.plosone.org 7 July 2012 | Volume 7 | Issue 7 | e41931



HBx Increases VEGF Production through IKKb/TSC1/
mTOR Signaling
Since activation of mTOR pathway could up-regulate the

angiogenesis process [36,37], we used IKKb inhibitor Bay 11-

7082 and mTOR inhibitor rapamycin to clarify whether HBx

could induce VEGF production through IKKb/TSC1/mTOR

signaling. The expression level of VEGF in cell culture superna-

tant was checked by ELISA, and we observed increased VEGF

production in the Hep 3Bx and Hep G2x cells compared with

control Hep 3B and Hep G2 cells (p,0.001) (Fig. 3A). Results of

semi-quantitative and real-time RT-PCR assay showed that the

expression of VEGF-A messenger RNA was also upregulated in

Hep 3Bx and Hep G2x cancer cells (Fig. 3B). In order to further

clarify whether HBx enhanced VEGF production was related to

IKKb/TSC1/mTOR signaling, effects of TNF-a (20 ng/ml)

combined with or without pretreatment of IKKb inhibitor Bay

11-7082 or mTOR inhibitor rapamycin were examined. We

found that TNF-a-enhanced VEGF production in Hep 3Bx and

Hep G2x was substantially suppressed by treatment with Bay 11-

7082 or rapamycin, as compared with that in control Hep 3B and

Hep G2 cells (p,0.001) (Fig. 3C). These observations indicate that

HBx increases the VEGF production of the hepatoma cells due to

modulation of the IKKb/TSC1/mTOR pathway.

HBx-mediated Upregulation of IKKb/TSC1/mTOR
Signaling is Associated with Liver Tumorigenesis in HBx
Transgenic Mice
To further understand the contribution of the HBx-modulated

IKKb/TSC1/mTOR signaling pathway in liver tumorigenesis,

we used an HBx transgenic mouse model which has been shown to

develop liver tumors [42] (Fig. 4A, B). We found that the average

expression levels of both pIKKb and pS6K1 were higher in both

the non-tumor parts and liver tumor tissues of the HBx transgenic

mice liver compared with the normal liver tissues of the wild-type

mice (Fig. 4C). Concurrently, significantly higher levels of VEGF-

A were also found in liver tumor tissues of HBx transgenic mice

compared with the normal liver tissues of the wild-type mice

(Fig. 4C). In agreement with the results of Western blottings,

immunohistochemical staining revealed higher expression levels of

pIKKb, pS6K1, VEGF-A, and CD31 in liver tumors of HBx

transgenic mice compared with adjacent non-tumor parts and

wild-type mice liver tissues (Fig. 4D). Thus, findings of the HBx

transgenic mouse model support that HBx enhances the IKKb/

mTOR signaling pathway and promotes VEGF–A production

and new vessels formation.

Immunohistochemical Staining Reveals Positive
Correlations between pIKKb and pTSC1, and between
pIKKb and pS6K1 in HBV-associated Human HCC Tissue
Specimens
To validate the relevance of the upregulation of TSC1/mTOR

pathway via IKKb signaling in HBV-associated human HCC, we

evaluated the expression of pIKKb, pTSC1, and pS6K1 in a tissue

microarray of 95 HBV-associated human HCC tissue specimens

by immunohistochemical staining. All 95 patients who received

curative surgery were positive for both serum HBV surface antigen

and HBx, but negative for antibodies to hepatitis C virus (data not

shown). Expression of pIKKb, pTSC1, and pS6K1 was detected

in human HCC tissue specimens (Fig. 5A). Analysis of immuno-

histochemical staining of 95 HCC tissue specimens revealed that

pS6K1 was detected in 35 (60%) of the 58 specimens with high

pIKKb expression, but it was detected in only 10 (27%) of the 37

specimens with low pIKKb expression, indicating that pS6K1

expression was positively associated with pIKKb expression

(P,0.01) (Fig. 5B, upper). More, pTSC1 expression was detected

in 32 (55%) of the 58 specimens with high pIKKb expression, but

it was detected in only 4 (11%) of the 37 specimens with low

pIKKb expression (P,0.01) (Fig. 5B, lower). We next analyzed

the correlation of the expression of pIKKb (S181), pTSC1 (S511),

and pS6K1 (T389) in HCC specimens with patients’ recurrence-

free survival data. The Kaplan-Meier recurrence-free survival

curves showed that high levels of pIKKb (S181), pTSC1 (S511)

and pS6K1 (T389) were associated with early recurrence of HCC

(Fig. 5C). Multivariate analysis indicated that expression of pIKKb
(S181) (HR, 2.37; 95% CI, 1.33–4.2 [P= 0.003]), pTSC1 (S511)

(HR, 2.07; 95% CI, 1.01–4.26 [P= 0.048]) and pS6K1 (T389)

(HR, 2.56; 95% CI, 1.39–4.74 [P= 0.0027]) were predictors of

patients’ recurrence-free time (Table 1). In addition, concomitant

expression of pIKKb (S181) and pS6K1 (T389) was a better

predictor of patients’ recurrence-free survival (HR, 4.11; 95% CI,

1.65–7.92 [P= 0.0013]) than each factor alone (Table 1). Taken

together, these data suggest that HBx-modulated IKKb/TSC1/
mTOR pathway may play a crucial role in HBV-associated

human HCC development and progression.

Discussion

The link between HBV and the development of hepatocellular

carcinoma has been well established, but the pathogenic mech-

anism responsible for the transformation of normal hepatocytes to

HCC is still far from understood, especially in view of the

contribution of HBx to cancer progression. We have provided

evidence that HBx activates IKKb, which leads to inactivation of

TSC1 and activation of mTOR/S6K1 and to the production of

angiogenesis factor VEGF-A in HBx expressing hepatoma cells

and liver tissues of HBx transgenic mice. The HBx-associated

IKKb/TSC1/mTOR signaling pathway may play a molecular

switch that allows HBV-related HCC tumor progression. This is

likely to be clinically relevant to pathogenesis as we found

a statistically significant correlation between the phosphorylation

of IKKb and phosphorylation of TSC1, and between the

phosphorylation of IKKb and phosphorylation of S6K1 in

HBV-associated HCC specimens.

Chronic hepatitis B virus (HBV) infection causes an inflamma-

tion process in the normal liver tissue, resulting in liver damage

that may subsequently evolve into liver cirrhosis and tumor

development. The proinflammatory cytokine TNF-a has been

shown to play a promoting role for tumor development [21,23,44],

and activation of NF-kB, a downstream signaling transducer of

TNF-a, has long been implicated in the development of HBV-

associated HCC [45,46]. HBx has been shown to activate NF-kB

by directly interacting with NF-kB [47,48], up-regulating TNF-

a expression [48], or promoting phosphorylation and degradation

of IkB [50]. HBx was also shown to activate NF-kB and up-

high pIKKb (S181) expression in which pTSC1 (S511) expression was high or was not observed (low). Positive correlations was noted between pIKKb
(S181) and pS6K1 (T389) (*P,0.01) and between pIKKb (S181) and pTSC1 (S511) (*P,0.01). (C) The Kaplan-Meier disease-free survival curves show
that expression of pIKKb (S181) (p=0.003), pTSC1 (S511) (p= 0.048), or pS6K1 (T389) (p= 0.0027) is associated with early tumor recurrence. Co-
expression of pIKKb (S181) and pS6K1 (T389) (p= 0.0013) was a better predictor of patients’ recurrence-free time survival in HCC patients who
received curative surgery for up to 48-month investigation.
doi:10.1371/journal.pone.0041931.g005
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regulate genes involved in cell invasion by IKKb activation [51].

Recently, HBx was shown to activate NF-kB through modulating

TRAF2/TAK1 signaling cascade [52]. The mechanism by which

HBx activates IKKb remains unclear, but it is conceivable that

HBx may activate IKKb by up-regulating TNF-a receptor

stimulation through increasing TNF-a expression [49] and/or

by modulating the TRAF2/TAK1 signaling module to increase

IKKb activation [52]. Additionally, HBx may activate IKKb

through activation of Ras/Raf/MEK [53] or protein kinase C

(PKC) pathway [54], which has been known to be associated with

IKK activation. Nevertheless, HBx may use alternative mechan-

isms to activate IKKb. IKKs’ activities independent of NF-kB

have been reported [33,34,35], and IKKb was found to

phosphorylate TSC1 and block the inhibitory effect of TSC1 on

mTOR activity, resulting in increased tumorigenesis and angio-

genesis [36,37,38]. Consistent with these findings, our results

demonstrate that HBx up-regulates IKKb to deregulate TSC1/

mTOR signaling and to promote cell proliferation and VEGF

production. Moreover, activation of the mTOR signaling pathway

has been found in a significant portion of HCC examined, and

mTOR inhibition showed antitumoral effects, although the

relationship between the status of HBx and mTOR activation

was not known [39,55,56]. HBx was demonstrated to enhance

VEGF expression by up-regulation of HIF-1a transcription

[57,58]. Our results showed that HBx can modulate IKKb/

TSC1/mTOR signaling to increase VEGF-A production and

TNF-a further up-regulates VEGF-A production in Hep3B and

HepG2 cells overexpressing HBx. Similarly, using an HBx

transgenic mouse liver tumor model, we demonstrated higher

expression of pIKKb, pS6K1, and VEGF-A, and neovasculariza-

tion in tumor tissues when compared with the non-neoplastic area

of the HBx transgenic liver.

We demonstrated that treatment of liver cancer cells with

mTOR inhibitor rapamycin and IKKb inhibitor Bay11-7082

effectively blocked the HBx-induced cell proliferation and VEGF-

A production. Currently available treatments for non-operable

advanced HCC patients, including local ablation therapy (radio-

frequency ablation and percutaneous ethanol injection), trans-

arterial chemo-embolization (TACE), chemotherapy and radio-

therapy, are ineffective, resulting in very poor survival rates of

patients [2,3]. Furthermore, our observations in specimens of the

clinical HBV-associated HCC patients demonstrated that the

expression of pIKKb (S181), pTSC1 (S511), and pS6K1 (T389) in

human HCC tissue samples was correlated with early tumor

recurrence and poor patients’ survival. Moreover, we showed that

the combination of pIKKb (S181) and pS6K1 (T389) expression

was a better predictor of survival. Our findings suggest that

pIKKb (S181) and pTSC1 (S511) and pS6K1 (T389) might be

used as prediction of poor treatment outcomes of HCC patients.

Therefore, HCC patients who have a significantly elevated risk of

poor treatment outcomes should receive more intensive therapy;

for example, surgery followed by adjuvant chemotherapy or target

therapy.

In conclusion, we demonstrate that HBx deregulates TSC1/

mTOR signaling through IKKb and renders liver cancer cells

more sensitive to TNF-a stimulation in activating mTOR

downstream S6K1 activity through IKKb signaling. Activation

of the IKKb/mTOR pathway occurs concomitantly with in-

creased cell proliferation and angiogenesis, which may associate

with the progression of the HCC. Consistently, blocking IKKb or

mTOR signaling with Bay 11-7082 or rapamycin, respectively,

inhibits the liver cancer cell growth and VEGF-A production,

suggesting that inhibitors of IKKb or mTOR signaling may be

useful as new therapeutics for the treatment of HBV-associated

HCC.

Table 1. Recurrence free survival in multivariate analysis.

Var

Hazard Ratio

(95% CI) P-value

Gender

Male 1.0

Female 0.5 0.08

(0.3–1.1)

Age

,50 years 1.0

§50 years 0.7 0.41

(0.4–1.5)

Albumin

Albumin ,3.5 g/dl 1.0

Albumin §3.5 g/dl 0.6 0.17

(0.3–1.2)

AFP

AFP,400 ng/ml 1.0

AFP.400 ng/ml 0.5 0.08

(0.2–1.1)

Differentiation

Well 1.0

Moderate 0.9 0.77

(0.5–1.7)

Poor 1.3 0.55

(0.6–3.1)

Primary tumor T stage

T1 1.0

T2& T3&T4 1.2 0.59

(0.6–2.4)

BCLC

A stage 1.0

B stage 1.8 0.07

(1.0–3.2)

pIKKb(S181)

Low expression 1.0

High expression 2.37 0.003

(1.33–4.2)

pTSC1(S511)

Low expression 1.0

High expression 2.07 0.048

(1.01–4.26)

pS6K1(T389)

Low expression 1.0

High expression 2.56 0.0027

(1.39–4.74)

pIKKb(S181) & pS6K1(T389)

Low expression & Low expression 1.0

High expression & High expression 4.11 0.0013

(1.65–7.92)

doi:10.1371/journal.pone.0041931.t001
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