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Abstract

Chronic hepatitis C progresses to cirrhosis within 20 years in
an estimated 20-30% of patients, while running a relatively
uneventful course in most others. Certain HCV proteins, such
as core and NS5A, can induce derangement of lipid
metabolism or alter signal transduction of infected hepato-
cytes which leads to the production of reactive oxygen
radicals and profibrogenic mediators, in particular TGF-{1.
TGF-f1 is the strongest known inducer of fibrogenesis in the
effector cells of hepatic fibrosis, i.e. activated hepatic stellate
cells and myofibroblasts. However, fibrogenesis proceeds
only when additional profibrogenic stimuli are present, e.g.
alcohol exposure, metabolic disorders such as non-alcoholic
steatohepatitis, or coinfections with HIV or Schistosoma
mansoni that skew the immune response towards a Th2 T cell
reaction. Furthermore, profibrogenic polymorphisms in
genes that are relevant during fibrogenesis have been
disclosed. This knowledge will make it possible to identify
those patients who are most likely to progress and who need
antiviral or antifibrotic therapies most urgently. However,
even the best available treatment, the combination of
pegylated interferon and ribavirin, which is costly and fraught
with side effects, eradicates HCV in only 50% of patients. While
the suggestive antifibrotic effect of interferons (IF-)>a,f),
irrespective of viral elimination, has to be proven in
randomised prospective studies, additional, well tolerated
and cost-effective antifibrotic therapies have to be developed.
The combination of cytokine strategies, e.g. inhibition of the
key profibrogenic mediator TGF-$, with other potential
antifibrotic agents appears promising. Such adjunctive
agents could be silymarin, sho-saiko-to, halofuginone,
phosphodiesterase inhibitors, and endothelin-A-receptor or
angiotensin antagonists. Furthermore, drug targeting to the
fibrogenic effector cells appears feasible. Together with the
evolving validation of serological markers of hepatic
fibrogenesis and fibrolysis an effective and individualised
treatment of liver fibrosis is anticipated.
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Natural evolution of hepatitis C infection

Acute infection with the hepatitis C virus is uneventful in most
of the cases, but runs a chronic course in an estimated 70% of
patients. Because of the paucity of early symptoms, most
infections are either diagnosed by chance due to transami-
nase elevations or in an advanced disease stage, when
complications have occurred. Development of cirrhosis is the
main determinant of morbidity and mortality, presenting either
in a compensated state with only minor abnormalities of liver
function or with fully decompensated liver disease which
usually portends a dire prognosis. Furthermore, compensated
as well as decompensated cirrhosis is a crucial precondition
for the development of hepatocellular carcinoma (HCC), with
an estimated yearly incidence of 2—-5% in cirrhotics with
hepatitis C. Consequently, only those patients whose HCV
infection has led to cirrhosis or tends to progress to cirrhosis
within a fairly short time period pose a major health problem,
whereas patients who do not progress or who progress slowly
usually do not require antiviral or antifibrotic treatment.

The natural evolution of chronic hepatitis C has been
analyzed in a large retrospective study from France.! Here,
roughly one third of patients progressed to cirrhosis in
approximately 20 years, one third within approximately 50
years, and one third did not show any progression (Figure
1). Apart from duration of infection, factors associated with
advanced fibrosis were male gender, age >40 years, older
age at infection, genotype 1 and alcohol abuse. However,
the fraction of HCV patients without progression may be
higher in nonselected patients, since the French study
mainly considered cases that came to attention due to
clinical or laboratory abnormalities. Thus the expected
number of HCV infections without such abnormalities, e.g.
including cases with persistently normal transaminases
which predicts a less severe course of the disease, is
higher.23

Antiviral treatment

Antiviral treatment is given to patients who fulfil the criteria of
chronic hepatitis (>6 months duration), with elevated
transaminases and at least some degree of histological
inflammation or fibrosis. In hepatitis C, transaminases and
histology do predict insufficiently whose disease will progress
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Figure 1 Natural course of hepatitis C and sustained response (SR) to
antiviral therapy. Numbers as to the natural course of the disease are derived
from retrospective studies; GT, genotype; NASH, non-alcoholic steatohepatitis

in a short time. But additional predictive parameters of
disease progression are being validated the clinical applica-
tion of which is pending.

Using the best available therapy, i.e. pegylated interferon
alfa and optimal doses of ribavirin, virus negativity 6
months after discontinuation of treatment (sustained
response) can be achieved in 40-50% and 80% of
patients with genotype 1 and 2/3, respectively.*° Retro-
spective analysis suggests that viral elimination stops
disease progression and may even induce reversion of
fibrosis.® Despite these promising results, at least 50% of
patients with genotype 1 which is the most frequent
genotype in the Western world (60—90% of those infected),
or with genotype 4 (which is prominent in Egypt) do not
respond to this optimised antiviral therapy, let alone the
patients who have contraindications to interferon or
ribavirin. Moreover, the costs of interferon and ribavirin
are out of reach for many health care systems and this
combination has significant side effects. Therefore, reason-
able pharmacological alternatives that retard fibrosis
progression are needed.

Mechanisms of hepatic fibrogenesis

Chronic liver diseases frequently lead to scarring (cirrhosis)
which is often accompanied by progressive loss of liver
function despite the use of immunosuppressive, antiviral or
antiinflammatory agents.

Fibrosis results from excessive accumulation of extra-
cellular matrix (ECM). The collagens are the most important
molecular targets, since (1) they represent the major matrix
proteins, (2) they form important mechanical scaffolds and
(3) their proteolysis by specific proteases appears to be
rate-limiting for ECM removal. The fibril forming interstitial
collagens type | and Ill, and the sheet-forming basement
membrane collagen type IV are the most abundant ECM
components in liver. In cirrhosis their content increases up
to 10-fold.” A variety of adverse stimuli such as toxins,
viruses, bile stasis, hypoxia can trigger fibrogenesis, i.e.,
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the excess synthesis and deposition of ECM, usually by
activation of cytokine release, or simply by mechanical
stress. In the acute phase of liver disease fibrogenesis is
balanced by fibrolysis, i.e., the removal of excess ECM by
proteolytic enzymes, the most important of which are the
matrix metalloproteinases (MMPs). MMP-1, -2, -3, -8, -9,
-12, -13 and -14 are expressed in human liver.2 With
repeated injury of sufficient severity, fibrogenesis prevails
over fibrolysis, resulting in excess ECM deposition, i.e.
fibrosis. Fibrogenesis is characterised by an upregulation of
ECM synthesis, a downregulation of MMP secretion and
activity, and by an increase of the physiological inhibitors of
the MMPs, the tissue inhibitors of MMPs (TIMPs). Among
the four known TIMPs, the universal MMP-inhibitor TIMP-1
is most important.9 However, an increase of certain MMPs
may also be detrimental. Thus activation of MMPs at the
wrong place and time can lead to removal of the regular,
differentiation-inducing ECM, such as basement mem-
branes, with subsequent unfavourable tissue remodelling,
architectural distortion and a fibrogenic response. An
example is MMP-2 which mainly degrades basement
membrane collagen and denatured collagens and which
is upregulated during fibrogenesis. Collagens, MMPs and
TIMPs are mainly produced by myofibroblastic cells (MF)
which either derive from activated hepatic stellate cells
(HSC) or from activated (portal and perivascular) fibro-
blasts'®'" (Figure 2). Activated liver macrophages, i.e.
Kupffer cells, or proliferating bile ductular epithelia, but also
endothelia, other mononuclear cells and myofibroblasts
themselves are sources of fibrogenic cytokines and growth
factors that can stimulate HSC and perivascular fibroblasts
to become MF. The prominent profibrogenic cytokine is
transforming growth factor 1 (TGF-$1) which is released
from almost any cell during inflammation, tissue regenera-
tion and fibrogenesis. Apart from immunosuppressive and,
in most cell types, antiproliferative effects TGF-f1 strongly
upregulates production and deposition of the major ECM
molecules.” =" Therefore, TGF-f1 as well as activated
HSC and MF are the prime targets for antifibrotic therapies
(Figure 2).

Genetic predisposition for hepatic fibrosis

Genetic polymorphisms may explain the widely differing
individual rates of fibrosis progression in chronic hepatitis C.
Several polymorphisms of genes that are involved in
inflammation, immune regulation and regeneration have been
implicated in autoimmune diseases, and some of these are
candidates for the regulation of hepatic fibrogenesis (Table 1).
While there is some minor contribution by IL-10 and TNF-«
gene polymorphisms, a recent study from Australia showed
that a promoter polymorphism at position —6 of the
angiotensin gene and a mutation causing a proline to arginine
substitution at amino acid position 25 of the TGFf1 precursor
confer susceptibility to accelerated fibrogenesis.'* Thus HCV
patients with both polymorphisms exhibited fibrosis stage 2.5
(with four being cirrhosis) compared to 0.5 for patients without
either of these polymorphisms. Furthermore, the HLA-
DRB1*11 allele appears to protect HCV patients from
progression to cirrhosis after liver transplantation.'®
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Figure 2 Initiation and maintenance of fibrogenesis. With continuous injury,
primarily to hepatocytes or bile duct epithelia, and/or mechanical stress the
normally quiescent hepatic stellate cells and portal fibroblasts undergo
activation and transdifferentiation to myofibroblasts. These myofibroblasts
produce excessive amounts of collagens, downregulate matrix metalloprotei-
nases (MMPs) and show an enhanced expression of the physiological
inhibitors of the MMPs (TIMP-1 and -2). TIMP-1 can also promote
myofibroblast proliferation and inhibit their apoptosis

Table 1 Genetic predisposition for hepatic fibrosis. These can predispose for
hepatic inflammation, viral persistence or fibrosis. Many mutations or
polymorphisms remain to be identified

Gender (protection by high dose estrogens)

Enzyme polymorphisms (ADH2,.4, ALDH2,_4, CYP2E1) for
alcoholic liver fibrosis

Metabolic syndrome — polygenetic (NASH)

Immune system (Th1 vs Th2 response)

Genes for regulation of regeneration and apoptosis (to be defined)

Gene polymorphisms (IL-10, TNF-o, IL-4R, TGF-$1, AT-II,
CTLA-4, MMP-3)

Contribution of a second hit

There is increasing evidence that severity and progression
of fibrosis in chronic liver diseases is not only caused by
repetitive exposure to a single detrimental external or
internal factor, but by additional events that exacerbate the
condition. This has been shown for the combination of
hemochromatosis with alcohol consumption or with chronic
viral hepatitis,’®~"® of alcoholic liver disease with chronic
viral hepatitis,’® and for the contribution by non-alcoholic
steatohepatitis, a disorder related to the metabolic syn-
drome."®~2" Thus even the consumption of as little as 10 g
of alcohol per day was associated with a significant effect
on histological fibrosis progression in HCV patients.'® In
contrast, the natural course of two large cohorts of young
women from lIreland and Germany who were infected
during Rhesus immunoprophylaxis more than 20 years ago,
has been uneventful, with less than 2% developing
cirrhosis and an estimated mean progression to cirrhosis
in more than 60 years.?>2® Similarly, among asymptomatic
HCV-infected blood donors, none developed cirrhosis 19—
24 years after exposure.?*
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The fibrogenic immune response

Immune-mediated damage is linked to fibrogenesis, but the
character of the immune response determines fibrosis
progression. Contrary to general thinking, fibrosis appears
not to be the logical consequence of significant macroscopic
inflammation as reflected by the mononuclear infiltrate, but
rather by the associated intrinsic or extrinsic immunosuppres-
sion. Here cytokines (growth factors) play a prominent role.
They can be subdivided into a fibrogenic, antifibrogenic and
neutral group. The latter has by definition no effect on the
fibrogenic effector cells, i.e. activated HSC and MF. As a rule
of thumb certain Th1 cytokines, i.e. those that stimulate
cellular immune responses, rather trigger matrix dissolution,
i.e., fibrolysis, whereas Th2 cytokines, which stimulate the
humoral immune response and can suppress Th1 T cells,
promote fibrogenesis. Examples are the interferons (Th1) on
one hand,®252% and transforming growth factor 1 (TGF-
$1),""~ "3 interleukin-4 (IL-4) and most likely IL-10 on the other
hand.?” Evidence comes from patients coinfected with both
HIV (Th2) and HCV (Th1 in acute, Th2 in chronic infection)
who progress more quickly to cirrhosis than patients infected
with HCV alone.?® Similarly, accelerated fibrosis progression
is found in HCV patients coinfected with Schistosoma
mansoni which triggers a Th2 cytokine profile.?®

Are there fibrogenic HCV proteins?

A major impediment to development of specific antiviral drugs
has been the lack of a highly replicative and low cost in vitro or
in vivo model of HCV infection. This may change after the
recent generation of human hepatoma cell lines that
persistently replicate HCV®® and of a mouse model that
harbours HCV-replicating human hepatocytes.®" Several
studies with HCV-transfected, preferably hepatocytic cell
lines and HCV-transgenic mouse models have emerged in
recent years®? that enable some conclusions to be drawn as
to possible direct profibrogenic and procarcinogenic mechan-
isms of certain HCV-proteins, irrespective of the host's
immune response. However, only some transgenic mouse
strains develop liver damage, pointing to additional, genetic
predispositions. Furthermore, numerous studies used a highly
expressed single gene or an incomplete set of HCV-genes, a
setting that does not mimic human infection which is usually
characterised by moderate viral replication in liver. Finally,
expression of a limited set of genes ignores the interactive
potential of HCV proteins with each other.®®

Overexpression of the cytoplasmatically located HCV
core has been analysed in detail. Sensitive C57BL/6 mice
with the core transgene driven by the albumin promoter
develop hepatic lipid accumulation (steatosis) after 6
months and hepatocellular carcinoma (HCC) after 16
months.3*3% In cell culture the core protein has transform-
ing potential.*® It can interact with the intracytoplasmic
TNF-a type 1 and the lymphotoxin f receptors, enhancing
their pro-apoptotic signal transduction,>*® and activate the
tumour suppressor p53.3° In addition, HCV core can
repress the cell cycle regulator p21WAF*° and via inhibition
of the p38 mitogen activated kinase pathway promote Fas-
induced apoptosis.*! Taken together, these data rather
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suggest a pro-apoptotic effect of core protein in hepato-
cytes, favouring the elimination of infected and potentially
transformed cells. On the other hand, anti-apoptotic Bcl-xI
can be upregulated.*? While the jury is open as to a
predominatly anti- or proapoptic effect of core protein, the
data regarding lipid accumulation in core-transfected
hepatocytes, one of the second hits that favour hepatic
fibrogenesis,?® are more homogeneous. Thus it interacts
with apolipoprotein Il and reduces microsomal triglyceride
transfer protein in vivo, inhibiting assembly and secretion of
regular VLDL particles.*® In transfected hepatoma cells
core activates the retinoid X receptor alpha which dimerises
with the peroxisome proliferator activated receptor alpha to
upregulate genes of lipid metabolism like cellular retinol
binding protein I and acetyl CoA-reductase.** Notably, by
interaction with mitochondria core protein induces reactive
oxygen intermediates and thus oxidative stress which can
induce steatohepatitis.*®4¢

The non-structural protein NS5A has also been im-
plicated in HCV pathogenicity. It can compromise the
antiviral and hypothetically antifibrotic effect of interferon,
obviously either by repression of protein kinase R or
alternative pathways*”*8. NS5A enhances the acute phase
response via activation of NF-kappa B and STAT-3 and, as
core, causes oxidative stress.*® In addition, NS5A has been
implicated in favouring cell cycle progression to the G2/M
by binding to the cyclin dependent kinase 1 (cdk1)/cdk2-
complex.%°

Transgenic mice that express very low levels of the
complete reading frame of the HCV polyprotein developed
significantly more spontaneous HCCs after 13 months
compared to their nontransgenic controls (5/38 vs 0/16),
while transgenic mice expressing significant levels of the
HCV structural proteins (Core, E1 and E2) only developed
HCC in a single case (1/43 vs 0/35).5' While steatosis
developed in all animals, inflammation, apoptosis and
histochemical fibrosis were not enhanced in both models,
and increased hepatocellular proliferation was only found in
the transgenic mice harbouring the complete HCV genome.
Matrix gene expression remains to be investigated in these
models which should also be challenged, to test how far a
second hit can promote both fibrosis and hepatocarcino-
genesis. Potential profibrogenic actions of HCV-proteins
are illustrated in Figure 3.

Serum markers of liver fibrosis

An index that uses «2-macroglobulin, y-globulin, haptoglobin,
y-GT and bilirubin could predict the absence or the presence
of significant fibrosis/cirrhosis (metavir stage 2—4) in 46% of
patients with chronic hepatitis C.>2 While 54% of the patients
could not be allocated, this index will not be suited to detect
day-to-day changes in the active processes of fibrogenesis or
fibrolysis. Classical serum fibrosis markers are matrix
constituents that are released into the circulation during
matrix remodelling. The majority of these markers appear to
reflect fibrogenesis rather than fibrolysis®® (Figure 4). These
surrogate markers may open the possibility to assess the
future evolution of fibrosis and the effect of potential
antifibrotic treatment in an individual patient and on a frequent
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Figure 3 HCV proteins as triggers of inflammation, apoptosis and
fibrogenesis. Core, NS3 and NS5A have been studied most intensively. All
three can interact with mitochondria and increase the formation of reactive
oxygen species (ROS). Core and NS5A associate with the membranes of the
endoplasmatic reticulum and golgi apparatus. In particular, they can enhance
intracellular lipid accumulation via interactions with apolipoprotein A1 (apoA1)
or A2 (apoA2) which cause inhibition of lipid transfer protein or defective
synthesis and transport of very low density lipoprotein (VLDL). Core has also
been shown to activate the retinoid X receptor (RXRx) which by dimerisation
with the peroxisome proliferator activated receptor alpha (PPAR-x) induces
proinflammatory NFkB, cytochrome P450A4 (CYPA4) (which combined with
steatosis favours lipid peroxidation and thus ROS formation) and lipid
degradation via enhanced f-oxidation (leading to reduction of VLDL
production). Taken together, the HCV proteins appear to induce both lipid
accumulation and degradation, with consequent derangement of lipid
compartmentalisation and metabolism, favouring ROS production. ROS lead
to induction of TGF-$, the strongest known promoter of fibrogenesis. Core has
also been shown to trigger apoptosis by interaction with TNF receptors and via
downregulation of p21 and p38, and upregulation of p53, while NS5A can
induce inflammation via NFkB and stat-3, and cell cycle progression via
activation of the cyclin dependent kinase cdk1/cdk2 complex
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Figure 4 Serum markers of fibrogenesis and fibrolysis. Procollagen
precursors released by fibrogenic cells are processed by procollagen
peptidases. Removal of the bulky propeptides allows the formation of collagen
fibrils in the extracellular space. Thus circulating propeptide levels should
reflect de novo synthesis and deposition of collagen, i.e. fibrogenesis. On the
other hand, action of matrix metalloproteinases (MMPs) is expected to
generate fragments of already deposited matrix proteins the levels of which
should reflect matrix dissolution, i.e. fibrolysis. The diagnostic and predictive
value of these markers is currently evaluated



basis. Several studies to validate these markers in large
prospective follow-up studies of patients with liver diseases
are currently under way. The availability of serological fibrosis
markers is central to the rapid clinical development and
validation of antifibrotic therapies.

Antifibrotic drug development

A major obstacle to antifibrotic drug development is the slow
evolution of significant fibrosis which takes years or even
decades in man. Sequential biopsy with semiquantitative and
preferably quantitative assessment of fibrous tissue remains
the gold standard to monitor fibrosis progression, but
sampling error remains a problem, since due to large
regenerative nodules that consist mainly of hepatocytes up
to 25% of patients with advanced fibrosis or cirrhosis may be
wrongly categorised as only slightly fibrotic.>* Consequently,
prospective studies in patients have to be large and testing of
the large spectrum of potential antifibrotic agents is
impossible. First proof of efficacy has to come from cell
culture data that show inhibition of proliferation, induction of
apoptosis and/or downregulation of collagen production in the
key fibrogenic liver cells, i.e. activated HSC and MF. This has
to be followed by suitable animal models of hepatic fibrosis to
show the antifibrotic effect in vivo in the absence of general
toxicity. Rat models are preferable, since significant fibrosis
can be produced within 3—10 weeks and, most importantly,
total liver collagen, the gold standard for fibrosis, can be
determined easily in a representative tissue sample using
biochemical methods. However, the in vivo models must
include a sizeable number of animals per treatment group
(n=10-20) and should be devoid of major hepatocyte
necrosis. This is important, since drugs with anti-inflamma-
tory, anti-necrotic or radical scavenging properties can
prevent necrosis and collapse, as is characteristic of the
models induced by carbon tetrachloride, dimethylnitrosamine
or galactosamine, but are not truly antifibrotic. Thus fibrosis
should evolve chronically and reproducibly, with no or little
inflammation and necrosis, as in biliary cirrhosis due to bile
duct occlusion. In addition, models of fibrosis reversion, e.g.
after induction by carbon tetrachloride or thioacetamide, are
alternatives to predict a true antifibrotic drug effect. Many
reports on so-called antifibrotic agents do not fulfil the above-
mentioned criteria, and the following examples will refer
mainly to those studies that provide sufficient in vivo evidence
for an antifibrotic effect. Importantly, on the long term a
decrease of fibrosis should be followed by an improvement of
portal hypertension and liver function.

Cytokine strategies to inhibit hepatic
fibrosis

Antifibrotic cytokines

While immunosuppressive or Th2 cytokines are usually
profibrogenic,?” ~2° most Th1 cytokines, especially the
antiviral interferons are antifibrogenic. This effect is linked,
at least in part, to the activation of stat-1 signalling pathways
(Figure 5). In cell culture interferon-a (IF-o) blocks activation,
proliferation and collagen synthesis of HSC and MF.%®
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Retrospective analyses and one small prospective study in
patients with chronic hepatitis C suggest that IF-« therapy can
prevent fibrosis progression, even in nonresponders to
antiviral therapy.?%2® The effect was dependent on IF-o
dose duration, and most pronounced in sustained respon-
ders. A recent analysis of four large international studies even
found reversion of cirrhosis in 75 out of 153 patients.®
However, there might be a problem of sampling error and
the number of initially noncirrhotic patients who had cirrhosis
on the second biopsy is not stated. Several large prospective
studies have been initiated (HALT-C, EPIC-3 and COPILOT,
PROFI-C) (Table 2) that try to answer the question of an
antifibrotic effect of longterm IF-o (up to 4 years) in
nonresponders to IF-a/ribavirin combination therapy by using
conventional follow-up histology. In PROFI-C nonresponders
to combination therapy receive retarded (pegylated) IF-« at
100 or 25 g per week combined with high-dose (840 mg/day)
silymarin or placebo for 2 years. Fibrosis progression is
assessed by collagen morphometry of pre- and post-
treatment biopsies and by sequential measurement of a
spectrum of serum fibrosis markers.

Antagonising profibrogenic cytokines

TGF-f1 is considered the most potent fibrogenic cytokine and
its inhibition therefore appears attractive.' ~'® Soluble TGF-
f1 decoy receptors or adenoviral constructs that block TGF-
p1 signalling have been developed that show antifibrotic
efficacy in vitro and in vivo'®*®=57 (Figure 6). It appears that
an approach targeting activated HSC and MF is necessary,
since TGF-f receptors are expressed on most cell types and
systemic inhibition that reaches sufficient levels to block
hepatic fibrogenesis may trigger autoimmune diseases and
cellular de-differentiation (Figure 7). Connective tissue growth
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Table 2 Prospective studies to prevent disease progression in hepatitis C.
Patients with no response or relapse after IF-u/fibavirin combination therapy are
included. Primary end-points are fibrosis progression, survival, development of
hepatocellular carcinoma or need for liver transplantation

HALT-C (USA)

Peginterferon o-2a 40 kD vs no treatment for
3.5 years, stage 3—-6, 900 pts. 10 US-
centers, 2000—-2006

Copilot Peginterferon «-2b 12 kD 50 pg/w vs

colchicine, stage 3—6, 800 pts. 2000—-2007

EPIC-3 Peginterferon «-2b 12 kD 50 ug/w vs no

(worldwide) treatment for 4 years, to be launched: 1000
pts. without, 800 pts. with cirrhosis

PROFI-C Four arms: peginterferon o-2b 12 kD 25 ug/w

or 100 ug/w plus silymarin 840 mg/d or
placebo for 2 years, 320 pts. 2000—-2005

fibrogenic gene |

transcription
'\Nucleus / SrmadT
. mad7-
. —

Figure 6 Anti-TGF-$1 strategies to inhibit fibrogenesis. Strategies have been
developed that neutralize TGF-$1, e.g. by blockage or inactivation of its
signaling receptors (T-fRI or T-fRII), the major signal transducers of the TGF-
f pathway, such as smad2 and smad3, or SARA (smad anchor for receptor
activation), a protein that allows docking of smad2 to the activated T-fRIl.
Alternatively, the inhibitory smad7 which is induced as an endogenous feed-
back inhibitor late after activation of profibrogenic genes can be delivered by
gene transfer
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Figure 7 Biological actions of TGF-f1. Apart from initiating a profibrogenic
response in mesenchymal cells, TGF-f1 is an essential mediator controlling
Th1 immune activation or cellular dedifferentiation. Its long-term untargeted
inhibition may trigger autoimmunity and neoplasia

factor (CTGF),%® a fibrogenic cytokine that is triggered by
TGF-p, is expressed mainly in hepatic mesenchymal cells, but
also in proliferating bile duct epithelia. Its inhibition may render
a more specific antifibrotic strategy. Reports on the antifibrotic
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activity of hepatocyte growth factor (HGF)®® have to be
interpreted with care, since HGF rather causes hypertrophy
and hyperplasia of (liver) epithelia, thus reducing the relative
and not the absolute collagen content in the organ, with an
inherent risk of promoting epithelial malignancy. IL-10, an
immunosuppressive cytokine, was reported to reduce liver
fibrosis in a study of 22 patients with chronic hepatitis C who
were treated for only 12 weeks. However, apart from IL-10
being a Th2-like cytokine for which a profibrogenic effect may
be anticipated, there is an inherent problem of sampling error
in a small study like this.?”

Other antifibrotic agents and combination
therapies

Plant-derived drugs

Several promising drugs derive from plants. Silymarin from
the milk thistle contains three prominent flavonoids, with
silibinin representing up to 60% of the dried extract. Silibinin
was shown to stimulate hepatocyte RNA synthesis, to actas a
radical-scavenger and hepatoprotectant, and to suppress
HSC proliferation and collagen synthesis in vitro. Importantly,
it reduced hepatic collagen accumulation in rat biliary fibrosis
secondary to bile duct occlusion, a model which leads to a
10—-12-fold hepatic collagen accumulation after 6 weeks, by
30-40%, even when treatment was started in an advanced
stage of fibrosis.®® The major alkaloid baicalein from the
traditional Chinese/Japanese plant extract Sho-saiko-to that
displays a structure similar to silibinin has radical-scavenging
but also antifibrotic properties in activated HSC in vitro and in
rat porcine serum-induced fibrosis in vivo.®' Halofuginone, a
semisynthetic alkaloid-derivative from the antimalarial plant
Dichroa febrifuga, was shown to normalise hepatic collagen
content in a fibrosis reversion model after induction of hepatic
fibrosis by thioacetamide.®? These drugs appear to mainly act
as anti-oxidants, though probably with different pharmacoki-
netics, pharmacodynamics and cellular specificities. Intracel-
lular oxidative stress is a relevant contributor to fibrogenesis,
and recent studies have shown the induction of profibrogenic
TGF-p1 by peroxide radicals,®®®* providing a rationale for the
use of intracellular anti-oxidants as adjunctive antifibrotic
agents (Figure 8).

Modulators of fibrogenic signal transduction

In vitro the phosphodiesterase inhibitor and cytokine
antagonist pentoxifylline suppresses proliferation and col-
lagen production by skin fibroblasts and HSC,%® while in rat
biliary fibrosis, oral pentoxifylline reduced hepatic collagen
accumulation by only 20%. The drug induced a hitherto
unmatched eightfold downregulation of hepatic procollagen
I mRNA, the product of activated HSC and MF, but this
was counterbalanced by a twofold increase of hepatic
TIMP-1 mRNA expression, with pentoxifylline apparently
stimulating bile duct epithelia and hepatocytes to express
TIMP-1.5¢ Better targeting of pentoxifylline to HSC and MF
may prevent upregulation of the profibrogenic TIMP-1
without compromising the downregulatory effect on procol-
lagen | expression.
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Figure 8 TGF-f1, oxidative stress and antioxidants. Oxidative stress and the
generation of hydrogen peroxide activate the TGF-f1 pathway and vice versa.
Certain antioxidants may therefore exert antifibrotic effects. Drugs that act
mainly extracellularly, like vitamin E, are expected to be less effective. NAc, N-
acetyl cysteine; SAMe, S-adenosyl-methionine
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Figure 9 Targeting of activation-dependent receptors. Receptors for
collagen VI (CVI) or PDGF”®~77 and other profibrogenic mediators are
predominantly upregulated on activated hepatic stellate cells/myofibroblasts.
Their respective ligands are in part produced in an autocrine and paracrine
manner by the activated cells themselves. These receptors can either be
blocked directly by use of antagonistic small peptides or peptide analogues, or
serve as ideal targets to deliver potential antifibrotic agents exclusively to the
fibrogenic focus. Antifibrotic agents can be coupled to these receptor-
recognizing molecules, leading to highly efficient delivery to the fibrogenic
cells, followed by internalisation with release of the antifibrotic priniciple.
CTGF, connective tissue growth factor; antisense, antisense constructs
directed to profibrogenic mRNAs

Antagonizing vasoactive mediators

Oral endothelin A receptor (ETAR) antagonists are attractive,
since the ETAR mediates HSC/MF contraction, proliferation
and possibly also collagen synthesis, whereas the ETgR
induces MF relaxation and inhibition of proliferation. In rat
biliary fibrosis the oral ETsR antagonist LU135252 reduced
hepatic collagen accumulation by up to 60% when given over
the full 6 weeks of the experiment, being still effective when
treatment was begun after week 3, a time point with an
already fourfold increased liver collagen.®” Angiotensin 1
receptor antagonists or angiotensin converting enzyme
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Table 3 Potential antifibrotic drugs that may be useful in antifibrotic combination
therapy. Examples of drugs for which antifibrotic activity has been shown in
suitable animal models of liver fibrosis or for which an antifibrotic effect can be
anticipated

Certain antioxidants: Silymarin, TJ-9 (Sho-saiko-to), (Halofuginone)
etc.

Pentoxifylline, PDE-3/4-antagonists (Rolipram)

Prostaglandin E2

Endothelin A receptor antagonists

Angiotensin-system inhibitors

NO-donors (Pyrro-NO)

Certain immunosuppressants: Mycophenolate, Sirolimus,
Leflunomide

Na*/H*-antiporter antagonists (Cariporide)

Histone diacetylase inhibitors: Trichostatin A, etc.

Growth factor antagonists: pirfenidone

inhibitors can retard liver fibrosis in suitable rat models.58%°

However, since the doses applied are up to 100-fold above
the doses given in human hypertension, their antifibrotic effect
in man remains controversial.

Modulation of growth factor bioactivity by
matrix-derived peptides

Certain growth factors and cytokines can bind to matrix
molecules. Basic fibroblast growth factor, some hematopoie-
tic growth factors, platelet-derived growth factor (PDGF),
HGF, keratinocyte growth factor (KGF) and others are
immobilised and protected from proteolytic degradation by
heparan sulphates. More importantly, the epithelial mitogens
HGF and KGF, the profibrogenic mitogens PDGF, oncostatin
M, and the pro-inflammatory cytokine IL-2 bind to the
abundant collagens.”®~"? This binding is reversible and
retains the factors in a biologically active form in the fibrotic
matrix. The collagenous consensus peptide (Gly-Pro-Hyp),
can liberate the collagen-bound factors from the matrix.” It
remains to be shown how far application of this peptide can
perturb matrix metabolism in fibrogenesis.

Reversion of the fibrogenic phenotype

A promising target is the induction of stress relaxation of
fibrogenic cells, a matrix (integrin) receptor-mediated process
that is associated with a decrease in collagen synthesis and
an increase in collagenase activity.”>’* Stress relaxation
occurs once mesenchymal cells are placed from a stressed,
two-dimensional environment (mimicking a situation of
wounding) into a relaxed, three-dimensional context. Thus,
the receptors for platelet-derived growth factor,”® endothelin-1
(via the ETAR) or the pericellular collagen VI”® transmit stress
signals that trigger proliferation and ECM synthesis in
activated HSC and MF. Apart from the possibility to directly
block these receptors, coupling receptor-ligands to a drug
carrier allows a highly specific targeting to the activated
fibrogenic cells in the liver. This has been shown both in vitro
and in vivo with cyclic peptides recognising the receptors for
PDGF, mannose-6-phosphate and collagen VI. More than
40% of the i.v. injected collagen VI receptor recognising
construct was found bound to activated HSC of fibrotic rat
livers, and in vitro data demonstrated its efficient internalisa-
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tion.”” Therefore, such carriers to receptors that are highly
upregulated on activated HSC and MF are promising vehicles
for targeted delivery of various antifibrotic agents (Figure 9).

Combination therapy for hepatic fibrosis

As in cancer therapy combination of several drugs that show
different actions by either blocking fibrogenesis, stimulating
fibrolysis, by inducing myofibroblast apoptosis, or reversion to
a fibrolytic phenotype is most promising. This will make it
possible to use lower, non-toxic amounts of single agents for a
treatment that will have to be given for years or even life-long.
Table 3 lists additional drugs that may be useful in such
combinations.
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