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Abstract
Hepatitis C virus (HCV) encodes a single polyprotein, 
which is processed by cellular and viral proteases 
to generate 10 polypeptides. The HCV genome also 
contains an overlapping +1 reading frame that may lead 
to the synthesis of an additional protein. Until recently, 
studies of HCV have been hampered by the lack of a 
productive cell culture system. Since the identification 
of HCV genome approximately 17 years ago, structural, 
biochemical and biological information on HCV proteins 
has mainly been obtained with proteins produced by 
heterologous expression systems. In addition, some 
functional studies have also been confirmed with 
replicon systems or with retroviral particles pseudotyped 
with HCV envelope glycoproteins. The data that have 
accumulated on HCV proteins begin to provide a 
framework for understanding the molecular mechanisms 
involved in the major steps of HCV life cycle. Moreover, 
the knowledge accumulated on HCV proteins is also 
leading to the development of antiviral drugs among 
which some are showing promising results in early-
phase clinical trials. This review summarizes the current 
knowledge on the functions and biochemical features of 
HCV proteins.
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IntroductIon
As for the other members of  the Flaviviridae family 

the genome of  Hepatitis C virus (HCV) encodes a 
single polyprotein. This 3010 amino acid polyprotein is 
processed by cellular and viral proteases to generate 10 
polypeptides[1] (Figure 1). The nonstructural proteins 
are released from the polyprotein after cleavage by HCV 
proteases NS2-3 and NS3-4A, whereas the structural 
proteins are released by host endoplasmic reticulum (ER) 
signal peptidase(s)[2]. Further processing mediated by a 
signal peptide peptidase also occurs at the C-terminus 
of  the capsid protein[3]. In addition to the large open 
reading frame encoding the polyprotein, the HCV genome 
contains an overlapping +1 reading frame that may lead 
to the synthesis of  an additional protein[4]. Despite the 
difficulties in propagating the virus in cell culture, a large 
body of  data has accumulated on HCV proteins since the 
identification of  HCV genome 17 years ago. A detailed 
knowledge of  the functions of  HCV proteins is important 
for the development of  new antiviral drugs. This review 
summarizes the current knowledge of  the functions and 
biochemical features of  HCV proteins. A brief  summary 
of  the functions of  HCV proteins is presented in Table 1. 

corE ProtEIn
The core protein is an RNA-binding protein that is 
supposed to form the viral nucleocapsid. It is removed 
from the polyprotein by a host signal peptidase cleavage 
at the C-terminus, yielding the immature form of  the 
protein[5], and the signal peptide present at the C-terminus 
of  the core is processed further by a host signal peptide 
peptidase, yielding the mature form of  the protein[3] 
(Figure 1). It has been shown that the mature form of  
core is a dimeric alpha-helical protein, which behaves as 
a membrane protein[6]. This protein can be separated into 
two domains: an N-terminal two-thirds hydrophilic domain 
(D1) and a C-terminal one-third hydrophobic domain 
(D2)[7]. The D1 domain includes numerous positively 
charged amino acids and has similar characteristics to the 
capsid proteins of  related pestiviruses and flaviviruses[6,7]. 
The D2 domain is required for proper folding of  domain 
D1 and is critical for the membrane characteristics of  the 
core[6,8]. It is worth noting that this domain is absent in the 
pestiviruses and flaviviruses but is found in GB virus B[6,9].

Little is known about the mechanisms of  HCV nucleo-
capsid assembly. In vitro nucleocapsid reconstitution ex-
periments with core segments have thus far yielded 
irregular particles larger than those isolated from infected 
subjects[10]. Full-length core protein has also been shown 
to assemble into nucleocapsid-like particles upon de novo 
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synthesis in cell-free systems made of  rabbit reticulocyte 
lysate or wheat germ extracts[11]. It has also been suggested 
that the attachment of  a core protein to a phospholipid 
layer is required as a template for proper assembly of  the 
nucleocapsid[6]. Although, little is known on the assembly 
of  the nucleocapsid, developing small molecules that block 
the signal peptide peptidase cleavage might be a way of  
inhibiting HCV assembly.

When expressed in the context of  heterologous 
expression systems or HCV replicons, core is found both 
attached to the ER and at the surface of  lipid droplets[7,12]. 
In some conditions, a minor proportion of  the core 
protein has also been found to be located in the nucleus[13]. 
More recently, the core protein has also been found to 
colocalize with mitochondrial markers in Huh-7 cells 
containing a full-length HCV replicon[14]. However, in the 
context of  an infectious virus, the core protein was only 
found in association with lipid droplets[15]. It has been 
reported that the traffic between rough ER membranes, 
the site of  capsid protein synthesis, and lipid droplets 
is regulated by signal peptide peptidase cleavage in the 
C-terminal region of  the core protein[3]. It is therefore 
likely that in the context of  HCV-infected cells, transport 
of  the C protein to the site of  lipid droplet assembly is 
rapid due to rapid cleavage by the signal peptide peptidase.

The core protein has been reported to interact with 
a variety of  cellular proteins and to influence numerous 
host cell functions[7,16,17]. It has indeed been proposed to be 
involved in cell signaling, apoptosis, carcinogenesis and lipid 
metabolism. However, in most cases, it is unclear if  these 
interactions occur in the course of  a normal infection or are 
artifacts of  ectopic expression or protein over-expression. 
Further studies with the recently developed cell culture 
system for HCV[18-20] should help clarify whether all the 
functions identified for HCV core protein can be observed 
in the context of  infected cells.

E1 And E2 GLYcoProtEInS
HCV glycoproteins, E1 and E2, are released from the 

polyprotein by a host signal peptidase cleavage[12] (Figure 1).  
They are type-I  transmembrane proteins with a large 
N-terminal ectodomain and a C-terminal transmembrane 
domain, and they assemble as noncovalent heterodimers[21]. 
The ectodomains of  HCV envelope glycoproteins E1 and 
E2 are highly modified by N-linked glycans. Indeed, E1 
and E2 possess up to 6 and 11 potential glycosylation sites, 
respectively, and most of  them are well conserved[22,23]. It 
is worth noting that some glycans have been shown to play 
a role in HCV glycoprotein folding or in virus entry[24]. 
Because they are essential for virus entry, HCV envelope 
glycoproteins are a good target for the development of  
antiviral molecules that block HCV entry[25].

Hypervariable regions (HVR) have been identified 
in the E2 envelope glycoprotein sequence[26]. The first 
27 amino acids of  the E2 ectodomain form HVR1. The 
apparent variability of  this region seems to be driven 
by antibody selection of  immune-escape variants. An 
HCV clone lacking HVR1 was found to be infectious 
but strongly attenuated in chimpanzees[27], supporting a 
functional role of  this domain, likely in virus entry[28,29]. 
Despite the sequence variability of  HVR1, the physico-
chemical properties of  the residues at each position and 
the conformation of  HVR1 are highly conserved among 
the various genotypes[30]. In addition, HVR1 is a global-
ly basic region and basic residues of  HVR1 have been 
shown to play a role in modulating virus entry[29]. Another 
hypervariable region, HVR2, has also been described in 
E2[26], and this region has been proposed to modulate E2 
receptor binding[31].

Although HCV glycoproteins can be detected at the 
plasma membrane when they are over-expressed[32-34], the 
E1E2 heterodimer is mainly retained in the ER[15,35]. The 
determinants for ER retention of  HCV envelope glyco-
proteins have been mapped in the transmembrane domains 
of  E1 and E2[36,37]. In addition to a membrane-proximal 
heptad repeat sequence in E2[38], these domains have also 
been shown to be essential for heterodimerization[39]. The 
transmembrane domains of  HCV envelope glycoproteins 
are not canonical transmembrane domains[40], and dynamic 
changes have been shown to occur in these domains after 
cleavage by the signal peptidase[41]. Indeed, before cleavage 
by a host signal peptidase, the transmembrane domains of  
E1 and E2 adopt a hairpin structure, and after cleavage, 
the signal-like sequence is reoriented toward the cytosol, 
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Figure 1  HCV genome organization (top) and polyprotein processing (bottom). 
HCV encodes a single polyprotein with the structural proteins (S) and the 
nonstructural proteins (NS) present in the N-terminal one-third and the C-terminal 
two-third of the polyprotein, respectively. The polyprotein processing and the 
location of the 10 proteins relative to the endoplasmic reticulum membrane are 
schematically represented. Scissors indicate cleavages by a host signal peptidase. 
Arrows indicate NS2-3 and NS3-4A cleavages. The intramembrane arrow indicates 
cleavage by a host signal peptide peptidase (SPP). The transmembrane domains 
of E1 and E2 are shown after signal-peptidase cleavage and reorientation of their 
C-terminus. In addition, the precleavage topology of the transmembrane domains 
of E1 and E2 is shown in light grey.

Table 1  Viral proteins and their functions in HCV life cycle

Protein Molecular Mass1 Function
Core 21 kDa RNA binding; nucleocapsid
E1 31-35 kDa Envelope glycoprotein; associate with E2
E2 70 kDa Envelope glycoprotein; receptor binding; 

associate with E1
p7   7 kDa Ion channel
NS2 21 kDa Component of NS2-3 proteinase
NS3 69 kDa N-terminal proteinase domain;

C-terminal NTPase/helicase domain
NS4A   6 kDa NS3-4A proteinase cofactor
NS4B 27 kDa Induces membrane alterations
NS5A 56-58 kDa Phosphoprotein
NS5B 68 kDa RNA-dependent RNA polymerase

1Estimated by SDS-PAGE.



leading to a single transmembrane passage. 
The two envelope glycoproteins, E1 and E2, play major 

roles at different steps of  the HCV life cycle (Figure 2).  
They are essential for virus entry[42,43], and they partici-
pate in the assembly of  infectious particles[19]. The E1 E2 
heterodimer is the viral component present at the sur-
face of  HCV particles and it is therefore the obvious 
candidate ligand for cellular receptors. As a first approach 
to identify potential HCV receptor(s), a soluble form 
of  HCV glycoprotein E2 has been used. This led to the 
identification of  a series of  putative receptors for HCV: 
CD81 tetraspanin[44], scavenger receptor class B type I (SR-
BI)[45], heparan sulfate[46] and the mannose binding lectins 
DC-SIGN and L-SIGN[47-49]. An approach using virus-
like particles produced in insect cells has also led to the 
identification of  the asialoglycoprotein receptor as another 
candidate receptor for HCV[50]. In addition, because of  the 
physical association of  HCV with low- or very-low-density 
lipoproteins (LDL or VLDL) in serum, the LDL receptor 
has also been proposed as another candidate receptor for 
HCV[51,52]. Among these molecules, only CD81 and SR-BI 
have been shown to play a role in HCV entry[43]. However, 
co-expression of  CD81 and SR-BI in non-hepatic cell 
lines does not lead to virus entry, indicating that other 
molecule(s) expressed only in hepatic cells, are necessary 
for HCV entry.

Interactions between viral envelope glycoproteins and 
potential receptors can have other consequences than a 
direct effect on virus entry. For instance, L-SIGN and 
DC-SIGN are not expressed on hepatocytes, and HCV 
interactions with these molecules may contribute to es-
tablishment or persistence of  infection both by the cap-
ture and delivery of  virus to the liver and by modulating 

dendritic cell functions as recently suggested[53,54]. It 
has also been shown that intracellular interaction bet-
ween HCV envelope glycoproteins and CD81 can lead 
to secretion of  exosomes containing E1 and E2 glyco-
proteins[55]. A soluble form of  E2 is also able to bind 
CD81 at the surface of  natural killer cells, and this in-
teraction inhibits cytotoxicity and cytokine production 
by these cells[56,57]. Binding of  a soluble form of  E2 to 
CD81 can also provide a co-stimulatory signal for T 
cells[58,59], activate B lymphocytes[58] and up-regulate matrix 
metalloproteinase-2 in human hepatic stellate cells[60]. 
It remains however to be determined whether HCV 
glycoprotein expressed in the context of  native particles 
will also have the same effects on cell functions.

Because they are exposed at the surface of  the virion, 
the envelope proteins are targets of  neutralizing antibodies. 
The recent development of  retroviral particles pseudotyped 
by unmodified HCV E1 and E2 envelope glycoproteins 
(HCVpp)[32-34] has allowed to initiate studies on neutralizing 
antibodies. As determined with HCVpp, it seems that 
the majority of  chronically infected patients have cross-
reactive neutralizing antibodies[61,62]. In contrast, neutralizing 
antibodies have not been detected in several cases of  acute 
resolving infection[61,62], and the detection of  neutralizing 
antibodies in acutely infected individuals did not seem to be 
associated with viral clearance[61]. However, another study 
has shown in some patients a progressive emergence of  a 
relatively strong neutralizing response in correlation with 
a decrease in viremia[63]. Further investigations on a large 
number of  acutely infected patients will be necessary to 
determine the role of  neutralizing antibodies in controlling 
HCV infections. Importantly, the majority of  neutralizing 
anti-HCV monoclonal antibodies that have been described 
recognize E2[32,34,64-66]. In addition, some of  the epitopes 
recognized by these antibodies have been mapped in the 
CD81 binding region of  E2 and in the C-terminus of  
HVR1[34]. Studies with these neutralizing monoclonal anti-
bodies will be essential to understand the mechanisms 
leading to HCV neutralization.

p7
The p7 polypeptide is located within the HCV polyprotein 
at the junction between the structural and nonstructural 
proteins[67,68]. It is released from the polyprotein by a host 
signal peptidase cleavage[12] (Figure 1). The p7 polypeptide 
is a small polytopic membrane protein composed of  two 
transmembrane domains with both its N- and C-termini 
oriented toward the lumen of  the ER[69]. The C-terminus 
of  p7 contains a sequence for reinitiation of  translocation, 
and when fused to a reporter protein, this sequence func-
tions as a signal peptide[69,70]. The double membrane span-
ning topology of  p7 with few residues accessible at one 
or the other side of  the membrane suggests that p7 like-
ly exerts its function(s) on membrane structures. When 
expressed by heterologous expression systems, p7 can be 
found in association with ER and/or mitochondrial mem-
branes[69,71,72]. In addition, a small proportion of  p7 can also 
be detected at the plasma membrane[69]. However, further 
investigations in the context of  an infectious virus will be 
necessary to confirm these subcellular localizations. The 

Figure 2  Schematic representation of the major steps of HCV life cycle. The virus 
binds to a receptor at the cell surface, which leads to endocytosis of the particle. 
Fusion between the viral envelope and an endosomal membrane leads to the 
release of HCV genome into the cytosol. HCV genome is a positive strand RNA, 
which is directly translated and all the viral proteins are simultaneously produced. 
Expression of HCV proteins induces intracellular membrane alterations (the 
membranous web), which is the site of RNA replication. The nonstructural proteins 
NS3 to NS5B assemble in association with cellular factors to form a replication 
complex, which is responsible for RNA replication. Accumulation of HCV genomic 
RNA and the structural proteins leads to the assembly of a nucleocapsid, which 
acquires its envelope within an intracellular compartment. The viral particle is then 
secreted by following the classical secretory spathway.
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p7 polypeptide is not required for RNA replication, and it 
is uncertain whether it is a virion component. Interestingly, 
the p7 polypeptide has been shown to have an ion channel 
activity in artificial lipid membranes[72-75]. In addition, it 
has been shown to be essential for infectivity of  HCV in 
chimpanzees[76]. These observations suggest that screening 
for small molecules that block the ion channel activity of  p7 
might be an approach to develop new anti-HCV molecules.

nS2
NS2 is an integral membrane protein that is not essential 
for the formation of  the replication complex[77,78]. The 
function of  NS2 in its mature form is unknown; however, 
before cleavage from the polyprotein, NS2 participates in 
a protease activity responsible for the cleavage at the NS2/
NS3 junction[79] (Figure 1). The first 180 residues of  NS3 
are also required for this cleavage. In addition, the NS2-3 
enzyme has been described as a cysteine proteinase[80]. 
The structure of  NS2 reveals a dimeric cysteine protease 
with two composite active sites[81]. Surprisingly, for each 
active site, the catalytic histidine and glutamate residues 
are contributed by one monomer, and the nucleophilic 
cysteine by the other. The host-cell chaperone Hsp90 
seems to be required to activate the NS2-3 proteinase[82]. 
Cleavage of  the NS2 N-terminus from p7 is mediated by a 
signal peptidase within the ER[69,70]. When expressed alone, 
NS2 is found located in association with ER membranes[83]. 
NS2 contains several stretches of  hydrophobic amino acids 
and is predicted to be a polytopic membrane protein[84,85]. 
The membrane topology of  NS2 is unclear, but the 
presence of  two internal signal-like sequences points 
to the existence of  four transmembrane segments[85]. 
However, since the processing at the NS2/NS3 junction 
has to take place in the cytosolic space, the presence of  
the C-terminus of  NS2 in the ER lumen suggests that 
a reorientation of  this region would have to occur after 
cleavage between NS2 and NS3. Interestingly, crossover 
sites for natural or infectious artificial inter-genotypic 
HCV chimeras have been mapped in NS2[18,86,87]. These 
data suggest that in addition to its role in the processing at 
the NS2/NS3 cleavage site, NS2 is also involved in virus 
assembly and release. It remains however to be determined 
by which mechanism NS2 contributes to the latter process. 
Due to its involvement in NS2-3 protease activity, NS2 
is an interesting target for the development of  anti-HCV 
molecules.

NS2 has been shown to be a short-lived protein 
whose degradation by the proteasome is regulated in a 
phosphorylation-dependent manner through the protein 
kinase CK2[83]. In addition, it has been shown to interact 
with the liver-specific pro-apoptotic CIDE-B protein and 
to be an inhibitor of  CIDE-B-induced apoptosis[88]. NS2 
might also potentially affect cellular gene transcription[89]. 
However, all these properties need to be further investi-
gated in the context of  the newly developed cell culture 
system for HCV[18-20]. 

nS3 And nS4A
NS3 is a multifunctional protein with an N-terminal 
serine-type protease domain and a C-terminal RNA 

helicase/NTPase domain. The NS3 protease domain 
has a typical chymotrypsin-like fold and is composed of  
two beta-barrel domains[90,91]. The protease activity of  
NS3 is enhanced by the NS4A cofactor. Indeed, NS4A 
contributes one beta-strand to the N-terminal protease 
domain and thereby allows its complete folding[90]. In 
addition, it induces a conformational change that leads to 
a repositioning of  the catalytic triad. NS3 by itself  has no 
transmembrane domain, but it associates non-covalently 
with the central domain of  NS4A, which is a membrane 
protein. When co-expressed with NS4A, NS3 is found in 
association with ER or ER-like membranes whereas it is 
diffusely distributed in the cytoplasm and nucleus when 
expressed alone[92]. Deletion analyses have revealed that the 
hydrophobic N-terminal domain of  NS4A is required for 
ER targeting of  NS3. Interestingly, NS4A also stabilizes 
the protease against proteolytic degradation. The NS3-4A 
protease has an unusually shallow substrate-binding pocket 
and therefore requires rather long interaction surfaces 
with the substrate (reviewed in[1,93]). This made the design 
of  efficient inhibitors of  this protease challenging[94]. 
The NS3-4A protease is responsible for the polyprotein 
cleavage in the region downstream of  NS3 (Figure 1), and 
this activity is essential for the generation of  components 
of  the viral RNA replication complex[95] (Figure 2). It is 
therefore not surprising that this protease has been the first 
target for the development of  new anti-HCV molecules[94].

In addition to its role in the processing of  the poly-
protein, the NS3-4A protease activity is also involved in 
blocking the ability of  the host cell to mount an innate 
antiviral response[96]. The NS3-4A has indeed been shown 
to interfere with double-stranded RNA signaling pathways. 
It disrupts the cellular RNA helicase retinoic acid-
inducible gene I (RIG- I ) pathway through proteolysis of  
a newly discovered essential adaptor protein of  interferon 
regulatory factor-3 (IRF-3) activation[97]. Due to its recent 
simultaneous discovery by four different groups, this 
adaptor protein has received four different names: IPS-1, 
Cardif, VISA and MAVS[98]. NS3-4A cleavage of  MAVS/
IPS-1/VISA/Cardif  results in its dissociation from the 
mitochondrial membrane and disruption of  signaling to 
the antiviral immune response[99]. NS3-4A also cleaves the 
TRIF (also called TICAM-1) adaptor protein to ablate 
Toll-like receptor-3 (TLR-3) signaling of  IRF-3 activation 
by extracellular double-stranded RNA[100]. However, this 
pathway has a minimal role in triggering the interferon 
antiviral response[101].

The C terminus of  NS3 encodes a DexH/D-box RNA 
helicase[102]. Enzymes of  this superfamily are capable of  
unwinding RNA-RNA duplexes in an ATP-dependent 
manner. The crystal structure of  the HCV helicase shows 
a Y-shaped molecule composed of  3 nearly equally sized 
subdomains[103,104]. Although monomeric NS3 can bind 
RNA with high affinity, RNA unwinding requires an 
NS3 dimer[105]. Kinetic analyses indicate that this enzyme 
undergoes highly coordinated cycles of  fast double-stranded 
RNA unwinding[105-107]. More recently, it has been reported 
that the cyclic movement of  NS3 helicase is coordinated 
by ATP in discrete steps of  11 base pairs, and that actual 
unwinding occurs in rapid smaller sub-steps of  2 to 5 
base pairs, also triggered by ATP binding, indicating that 
NS3 might move like an inchworm[108]. The NS3 helicase 
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activity can be modulated by interactions between the serine 
protease and helicase domains. Indeed the kinetics of  duplex 
RNA unwinding is slower for the isolated helicase domain as 
compared with the full-length NS3 protein[109]. In addition, 
the presence of  NS4A enhances productive RNA binding 
of  a full-length NS3-4A complex[107]. The function of  the 
NS3 helicase in the HCV life cycle is not known. It may 
be involved in initiation of  RNA replication by unwinding 
stable stem-loop structures at the termini of  positive and/or 
negative strand of  HCV RNA. It may also contribute to the 
process of  the replicase complex by removing stable RNA 
secondary structures and/or by displacing bound proteins 
that might interfere with RNA synthesis. Finally, it may 
also be required for dissociation of  the replicative form. 
Due to its enzymatic activity, the helicase domain of  NS3 is 
another potential target for the development of  anti-HCV 
molecules.

The NS3 protein has been reported to interact with 
several cellular proteins[17], and it has been proposed to be 
involved in carcinogenesis[110]. However, the relevance of  
these interactions needs to be confirmed in the context of  
the recently developed cell culture system for HCV[18-20].

nS4B
The NS4B protein is a highly hydrophobic nonstructural 
protein, which is predicted to contain four transmembrane 
domains[111,112]. It has recently been shown that NS4B is 
palmitoylated in the C-terminal region of  the protein[113]. 
The N- and C-termini of  NS4B are localized in the 
cytosol; however, a fraction of  the N-terminus can also be 
found in the ER lumen[112]. A putative amphipathic helix 
in the N-terminus of  NS4B has been proposed to mediate 
membrane association[114]. The NS4B protein is detected 
in association with ER membranes[111,112,115]. In addition, 
NS4B also induces intracellular membrane alterations, 
suggesting that one of  its functions is to induce the 
formation of  membranous structures supporting RNA 
replication[116]. However, the structure of  NS4B-induced 
membranes appears to be slightly distinct from the 
membranous web observed when all the HCV proteins are 
expressed, suggesting that other component(s) contribute 
to these membrane alterations. A nucleotide binding 
motif  has been found in NS4B[117]. This structural motif  
binds and hydrolyzes GTP. Interestingly, mutation of  this 
nucleotide binding motif  affects HCV RNA replication[117]. 
The potential presence of  NS4B domains on both sides of  
the ER membrane suggests that this protein plays a role in 
crosstalk between the ER lumen and the cytosol. Although 
a function can be attributed to this protein, it remains 
challenging to develop a high-throughput screening for 
small molecules targeting NS4B.

nS5A
NS5A is a membrane-associated protein containing a 
unique amphipathic alpha-helix at its N-terminus, which 
serves as an in-plane membrane anchor[118,119] (Figure 1). 
Like most HCV proteins, NS5A is detected in association 
with ER or ER-derived membranes[118]. Besides its 
membrane anchor sequence, NS5A contains three distinct 

domains that are separated by low complexity sequences 
(LCs) I and  II [120]. Recently, the x-ray crystal structure 
of  domain I  was solved[121]. It is composed of  a basic 
N-terminal subdomain IA and a predominantly acidic 
C-terminal subdomain IB. In subdomain IA a zinc ion 
is coordinated by a unique motif  of  4 fully conserved 
cysteine residues, which are absolutely essential for RNA 
replication[120,121]. In subdomain IB an unusual disulfide 
bond linking 2 cysteine residues near the C-terminal 
subdomain border was found. However, this disulfide 
bond does not seem to be essential for HCV RNA repli-
cation. Domain I  forms homodimers via contacts near 
the N-terminal end of  the molecules. This dimerization 
results in the formation of  a basic groove facing the 
cytosol at the surface of  the membrane. This 'claw like' 
structure is believed to provide an RNA binding site that 
might be involved in regulated genome targeting within 
the replication complex[121]. In line with this observation, 
NS5A has been shown to bind to HCV RNA and more 
specifically to the 3'-ends of  HCV plus and minus strand 
RNAs, with a preference for the polypyrimidine tract in 
the 3' non-translated region of  positive strand RNA[122]. 
Therefore, the structure of  domain I  of  NS5A provides 
a framework for the rational design of  small antiviral 
molecules. The other two domains of  NS5A are less 
characterized. Domain  II  has been proposed to be 
involved in inhibition of  the interferon-induced double 
stranded RNA activated protein kinase PKR[123], and 
domain III is a less conserved region, which can tolerate 
insertions or partial deletions[124,125].

NS5A is a protein which is essential for genome re-
plication[126,127]. Indeed, mutations that enhance RNA 
replication in cell culture map to the NS5A-coding sequence. 
In addition, NS5A has been shown to interact with NS5B, 
and this interaction is essential for maintenance of  sub-
genomic replicons in Huh-7 cells[128,129]. NS5A is expressed 
as a basally phosphorylated and a hyperphosphorylated 
forms[93]. The functional relevance of  the different pho-
sphorylated forms is unknown. However, mutations that 
reduce NS5A hyperphosphorylation can lead to a dra-
matic enhancement of  HCV genomic replication[124,130]. 
Furthermore, treatment of  cells carrying non-adapted repli-
cons with an inhibitor of  the cellular kinase(s) responsible 
for NS5A hyperphosphorylation leads to an increase in 
HCV genomic replication[131]. In addition to its role in 
HCV genomic replication, NS5A has initially attracted 
considerable interest because of  its potential role in modu-
lating the interferon response[132]. NS5A has also been 
shown to interact with components of  numerous cellular 
signaling pathways[17,133,134]. Among the potential cellular 
partners identified for NS5A, human vesicle-associated 
membrane protein-associated protein A (hVAP-A) is of  
particular interest because it is regulated by NS5A phos
phorylation[130,135]. Indeed, NS5A hyperphosphorylation 
disrupts interaction with hVAP-A and negatively regulates 
viral RNA replication. VAP-A is a protein found on ER 
and Golgi membranes, which is involved in intracellular 
vesicle trafficking. It remains however to be determined 
why NS5A hijacks hVAP-A at some step of  its life cycle. 
Another potentially important host cell factor interacting 
with NS5A is the geranylgeranylated protein FBL-2[136]. In 
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line with this observation, it has been shown that inhibition 
of  geranylgeranylation in cells abolishes HCV RNA 
replication[137]. 

nS5B
NS5B is a membrane-associated protein containing a 
C-terminal transmembrane domain[138], which is essential 
for RNA replication in cell culture[139] (Figure 1). Like most 
HCV proteins, NS5B is detected in association with ER or 
ER-derived membranes[140]. NS5B is an RNA-dependent 
RNA polymerase, which is the catalytic component of  the 
HCV RNA replication machinery. This enzyme synthesizes 
RNA using an RNA template. NS5B can initiate RNA 
synthesis de novo, at least in vitro, and it is assumed that 
de novo initiation is also operating in vivo[93]. The crystal 
structure of  the NS5B catalytic domain shows a structural 
fold comparable with other polymerases with palm, finger, 
and thumb subdomains[141,142]. The palm domain contains 
the active site of  the enzyme, whereas the fingers and the 
thumb modulate the interaction with the RNA chain. One 
structural peculiarity of  the enzyme is the fully encircled 
active site, which is due to multiple interactions between 
the finger and thumb subdomains creating a tunnel in 
which a single-stranded RNA molecule is directly guided 
to the active site. NTPs enter the active site via another 
positively charged tunnel. Binding of  the RNA template 
and initiation of  RNA synthesis are supposed to be regu-
lated by a highly flexible beta-hairpin loop located in the 
thumb domain and pointing toward the active site[126]. As 
observed for other viral polymerases, NS5B is an inter-
esting and promising target for the development of  new 
antiviral molecules targeting HCV[94]. 

The RNA-dependent RNA polymerase activity appears 
to be modulated by interaction with some other viral proteins 
(NS3 and NS5A)[93]. It has been shown that cyclophilin 
B, a peptidyl-prolyl cis-trans-isomerase, interacts with the 
C-terminal region of  NS5B and appears to stimulate its RNA 
binding activity[143]. In addition, cyclosporin A, an inhibitor 
of  cyclophilin B, inhibits HCV replication in cell culture[144]. 
However, how cyclophilin B activates replication remains 
to be determined. Furthermore, cyclophilin B does not 
seem to stimulate the RNA binding activity of  NS5B in all 
genotypes[145]. NS5B has also been shown to interact with 
other cellular proteins[146-148].

ALtErnAtIVE rEAdInG FrAME ProtEIn
In addition to the large open reading frame encoding 
the polyprotein, HCV genome contains an overlapping 
+1 reading frame that overlaps the sequence of  the core 
protein[4]. This alternative reading frame (ARF) lacks an 
in-frame AUG start codon, suggesting that its expression 
involves unusual translation-level events. In vitro studies 
indicate that ribosomal frameshifting may the process 
leading to translation of  the ARF. Frameshifting yields 
chimeric proteins that have segments encoded in the core 
sequence covalently attached to amino acids encoded in the 
ARF. Based on experiments with reporter gene constructs, 
the frameshift efficiency is in the range of  1% to 2%. The 
development of  an immune response against the ARF 

protein in HCV infected patients indicates that this protein 
is expressed during natural HCV infections and stimulates 
specific immune responses[149]. The role of  ARF protein in 
the HCV life cycle and/or pathogenesis is not yet known. 
However, the ARF protein is not required for HCV RNA 
replication. One cannot exclude that the ARF protein may 
be responsible for some of  the effects attributed to the 
core protein. Indeed, most studies seeking to define the 
function of  the core protein have used sequences likely 
to contain a combination of  the core protein and ARF 
protein. Due to the lack of  knowledge of  its function, the 
ARF protein is not currently considered as a target for the 
development of  new antiviral molecules.
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