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Hepatobiliary MRI: Signal intensity 
based assessment of liver function 
correlated to 13C-Methacetin breath 
test
Michael Haimerl1, Ute Probst1, Stefanie Poelsterl1, Lukas Beyer1, Claudia Fellner1,  

Michael Selgrad2, Matthias Hornung3, Christian Stroszczynski1 & Philipp Wiggermann  1

Gadoxetic acid (Gd-EOB-DTPA) is a paramagnetic MRI contrast agent with raising popularity and has 

been used for evaluation of imaging-based liver function in recent years. In order to verify whether 

liver function as determined by real-time breath analysis using the intravenous administration of 
13C-methacetin can be estimated quantitatively from Gd-EOB-DTPA-enhanced MRI using signal 

intensity (SI) values. 110 patients underwent Gd-EOB-DTPA-enhanced 3-T MRI and, for the evaluation 
of liver function, a 13C-methacetin breath test (13C-MBT). SI values from before (SIpre) and 20 min after 
(SIpost) contrast media injection were acquired by T1-weighted volume-interpolated breath-hold 
examination (VIBE) sequences with fat suppression. The relative enhancement (RE) between the plain 

and contrast-enhanced SI values was calculated and evaluated in a correlation analysis of 13C-MBT 

values to SIpost and RE to obtain a SI-based estimation of 13C-MBT values. The simple regression model 

showed a log-linear correlation of 13C-MBT values with SIpost and RE (p < 0.001). Stratified by 3 different 
categories of 13C-MBT readouts, there was a constant significant decrease in both SIpost (p ≤ 0.002) and 
RE (p ≤ 0.033) with increasing liver disease progression as assessed by the 13C-MBT. Liver function as 

determined using real-time 13C-methacetin breath analysis can be estimated quantitatively from Gd-

EOB-DTPA-enhanced MRI using SI-based indices.

To monitor patients with hepatic dysfunction, various liver function tests are used routinely in clinical practice. 
�ese tests may evaluate the increasing severity of illness, di�er between stages of disease and o�er a prediction of 
therapy outcome1–3. �e routine part of clinical investigations is based on analysis, where the levels of non-volatile 
compounds, such as proteins and ions, are measured and checked for abnormalities. As a complement to blood 
parameters, volatile compounds carry information concerning the biochemical status of the individual, which 
might be examined via breath tests4–10.

Di�erent orally or intravenously administered 13C-labeled substrates can re�ect the function of speci�c 
hepatocyte compartments in real time as they are processed by liver function-dependent metabolic pathways. 
�erefore, cytosolic, mitochondrial and microsomal processes can be investigated non-invasively to obtain infor-
mation about site-speci�c physiological and pathological metabolism5. A novel approach, which is already used 
in clinical routine, is the 13C-methacetin breath test (13C-MBT) established by Stockmann et al.11. �e principle 
underlying this real-time test is the ability to metabolize 13C-labeled methacetin by the hepatocyte endoplasmic 
reticulum-located cytochrome P450 1A2 (CYP1A2) into paracetamol and 13C-labeled formaldehyde, which will 
be eliminated as 13CO2

5,11–13. A�er intravenous (i.v.) injection, 13CO2 will be exhaled, and a 13CO2:
12CO2 ratio can 

be determined by a suitable device for breath analysis. Based on the values obtained by the 13C-MBT, real-time 
information of patients’ liver function can be directly obtained.

�e hepatocyte-speci�c magnetic resonance imaging (MRI) contrast agent gadoxetic acid (Gd-EOB-DTPA) 
has been established and used for diagnostic purposes to detect and characterize focal liver lesions. Several 
studies have reported the use of Gd-EOB-DTPA-based MRI to evaluate liver function, usually expressed via the 
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Child-Pugh score. However, no studies have yet compared the direct assessment of hepatic metabolic capacity 
and the indirect estimation of liver function based on MRI.

The purpose of this retrospective analysis was to evaluate the diagnostic performance of the Gd-EOB- 
DTPA-enhanced signal intensity (SI)-based quanti�cation of liver function compared with an established liver 
function test, the 13C-MBT.

Results
�e baseline characteristics of the 110 patients (83 men and 27 women; mean age, 60.84 ± 9.52 years; range, 
39–82 years) who were included in this study and underwent a 13C-MBT and T1-weighted VIBE MRI are sum-
marized in Table 1. Representative T1-weighted MRI scans and the corresponding SI-based indices, SIpre, SIpost 
and RE, are shown in Figs 1 and 2.

SI in T1-weighted MRI scans compared with 13C-MBT readout. In a simple linear regression 
model, RE values were strong linear predictors of the logarithmic values of uncategorized 13C-MBT readout 
values (r = 0.665, p < 0.001), while the SI values obtained from the HBP showed less predictive power (r = 0.554, 
p < 0.001). In contrast, SI values obtained without contrast enhancement showed no signi�cant correlation 
(p = 0.120) (Table 2). Scatterplots of SIpre, SIpost and RE values plotted against the logarithmic values of 13C-MBT 
are shown in Fig. 2.

SI-based results compared with 13C-MBT readout categories. Patients with normal liver function 
(Category 1) had a mean 13C-MBT readout of 391.21 ± 53.28 µg/kg/h, whereas patients with intermediate liver 
function (category 2) had a mean 13C-MBT readout value of 217.78 ± 49.39 µg/kg/h, and patients with severely 
impaired liver function had a mean 13C-MBT readout value of 93.03 ± 33.59 µg/kg/h (Table 1). All pairwise com-
parisons between Categories 1, 2 and 3 showed signi�cant di�erences (p ≤ 0.05) in the evaluated SI-based indices, 
except for SIpre values between Categories 1 and 3 and Categories 2 and 3 (Fig. 3A). �e SI values obtained from 
the HBP (SIpost; p < 0.005; Fig. 3B) and the RE values (p < 0.05; Fig. 3C) di�ered signi�cantly among the three 
13C-MBT based categories.

Discussion
One of the most common types of liver cancer is HCC, with a global cancer mortality rate of 9.1%14. As HCC is 
mostly based on preexisting liver cirrhosis, the early detection and assessment of liver cirrhosis is of high clinical 
relevance. Patients bene�t from rapid and accurate examinations of the liver condition. �us, the 13C-MBT has 
become more common, as it can provide liver failure predictions, liver transplant control, and liver disease sever-
ity estimations13,15–17. �e test is based on the analysis of volatile components exhaled during the 13C-methacetin 
metabolism by CYP1A2 in the endoplasmic reticulum12. Di�erent studies have demonstrated the predictive 
power of enzymatic hepatocyte functionality for liver resection13,15,17–21. Even in cases of non-cirrhotic, early-stage 
and primary biliary cirrhosis, the 13C-MBT can reliably indicate decreased liver function10. Nevertheless, this tool 
has some diagnostic restrictions, as it is unable to determine and distinguish between areas of reduced hepato-
cyte function and healthy areas. �erefore, 13C-MBT values describe the function of the whole liver. However, 
diagnostic imaging techniques might provide these details, which are crucial for both liver resection and liver 
transplantation. To reduce the number of di�erent examinations, researchers aim to establish liver tests capable 
of not only reliably re�ecting liver function but also revealing hepatic lesions in a single examination.

To this end, Gd-EOB-DTPA-enhanced MRI has been established as a promising approach for assessing liver 
function in the past few years. Gd-EOB-DTPA consists of a gadolinium ion covalently bound to a lipophilic eth-
oxybenzyl group and is absorbed by intact hepatocytes via triggered ATP-dependent organic anion-transporting 
polypeptide (OATP1 B1/B3) channels. Subsequently, Gd-EOB-DTPA will be excreted by multidrug-resistance 
protein 2 (MRP2) into the biliary system22–24. �e strength of Gd-EOB-DTPA is its hepatocyte-speci�c character, 
which improves the contrast-to-noise ratio, as it will not be taken up by cells other than hepatocytes (e.g., cells in 

parameters n = 110

13C-MBT categories

1
>315.0 [µg/kg/h]
n = 33

2
140.0–315.0 [µg/kg/h]
n = 46

3
<140.0 [µg/kg/h]
n = 31

male 83 (75.5%) 14 (42.4%) 43 (93.5%) 26 (83.9%)

female 27 (24.5%) 19 (57.6%) 3 (6.5%) 5 (16.1%)

age [years] 60.84 ± 9.52 59.88 ± 11.02 62.33 ± 9.40 59.65 ± 7.81

height [cm] 172.92 ± 7.62 168.97 ± 8.62 175.37 ± 7.27 173.48 ± 5.05

weight [kg] 85.84 ± 16.03 77.74 ± 19.80 89.96 ± 12.83 88.35 ± 12.80

SIpre 192.98 ± 38.40 204.80 ± 41.08 185.30 ± 35.71 191.80 ± 37.42

SIpost 347.36 ± 100.38 414.03 ± 87.85 345.59 ± 97.14 279.03 ± 67.09

RE 0.80 ± 0.37 1.04 ± 0.27 0.86 ± 0.35 0.46 ± 0.20

13C-MBT [µg/kg/h] 234.66 ± 124.08 391.21 ± 53.28 217.78 ± 49.39 93.03 ± 33.59

Table 1. Characteristics for all patients and each 13C-MBT readout category. Values indicate the mean ±  
standard deviation. RE: relative enhancement as a function of SI-based indices. SI: mean signal intensity of the 
liver. 13C-MBT: 13C-labeled methacetin metabolism liver function breath test.
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Figure 1. Liver function analysis in patients with normal liver function (A,B,C) and severely impaired liver 
function (D,E,F). �e patients underwent plain (A,D) and Gd-EOB-DTPA-enhanced HBP (B,E) T1-weighted 
VIBE sequences with fat suppression, as well as a 13C-MBT, over a maximum time span of 60 min (C,F). In the 
case of the displayed patients, a 13C-MBT readout value of 409 µg/kg/h (C) was considered normal liver function 
(SIpre, 182.67; SIpost, 441.67; RE, 1.42), while a 13C-MBT readout value of 57 µg/kg/h (F) was considered impaired 
liver function (SIpre, 258.50; SIpost, 332.83; RE, 0.29). �e lesion observed in the liver with impaired function 
(D,E) was caused by former radiofrequency ablations treatments. �e delta-over-baseline (DOB) was assessed 
inline automatically and describes the increase in the RPDB-corrected 13CO2:

12CO2 ratio to the basal value (blue 
line). �e evaluated 13C-MBT value was calculated as the product of the DOBmax, RPDB, CO2 production and 
molar mass of 13C-methacetin per body weight13. �e DOBmax (green line) was de�ned a�er an increase in DOB 
was no longer observable. At the time point 0, the 13C-methacetin was applied via bolus injection.

Figure 2. Correlation analysis of SI-based liver function indices to logarithmic values of 13C-MBT readout in 
scatterplots. �e SI values obtained without contrast enhancement (SI_pre) show no predictive power for the 
logarithmic values of 13C-MBT (r = 0.213, p = 0.120; A), while the contrast-enhanced SI values (SI_post) show a 
signi�cant correlation (r = 0.554, p < 0.001; B). A strong linear prediction of logarithmic 13C-MBT values can be 
observed for the relative enhancement (RE) values (r = 0.665, p < 0.001; C).

B (95% CI) p-value r

Log(13C-MBT)

RE 0.507 (0.398–0.615) <0.001 0.665

SIpre 0.001 (−0.001–0.002) 0.213 0.120

SIpost 0.002 (0.001–0.002) <0.001 0.554

Table 2. Simple linear regression models of SI-based indices with logarithmic values of 13C-MBT. RE: relative 
enhancement as a function of SI-based indices. SI: mean signal intensity of the liver. 13C-MBT: 13C-labeled 
methacetin metabolism liver function breath test. r: correlation coe�cient. B: linear regression coe�cient. CI: 
con�dence interval.
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metastatic lesions)25–27. At 20 min a�er contrast agent application, a signi�cant increase in the SI of the liver paren-
chyma is recorded, and the extent of this phenomenon is dependent on the integrity of the liver parenchyma. �e 
highest SI is exhibited by healthy liver tissue, while cirrhotic liver parenchyma shows only a slight increase in SI28,29. 
A loss of functioning hepatocytes, bridging of portal spaces or nodular regeneration of the liver parenchyma is 
associated with liver cirrhosis and hindered hepatocyte contrast agent uptake, causing decreased SI-based values30.

�e estimation of SI-based indices provides insights into regional hepatocyte-speci�c function, e�ciency, 
functionality and condition31. Nevertheless, the analysis is restricted by the relative character of the obtained 
SI values32. However, by the mathematical computation of SIpost with SIpre, a liver function index with increased 
reliability can be achieved. By calculating the RE, we correct the enhanced SI values to gain a SI ratio independent 
from arti�cial signal enhancement with increased explanatory power29,33–38.

To the best of our knowledge, this is the �rst study comparing SI-based MRI values re�ecting hepatocyte 
OATP1 B1/B3 and MRP2 pathway activity with the 13C-MBT.

We could demonstrate that the SI-based MRI values assessed in the HBP re�ect liver function in a suita-
ble manner, as estimated by 13C-MBT readout values. Similar to a previous study39, we observed that patients 
with normal liver function expressed the highest SI-based values (Category 1: SIpre, 204.80 ± 41.08; SIpost, 
414.03 ± 87.85; RE, 1.04 ± 0.27), while patients with decreased liver function showed decreased SI-based values 
(Category 2: SIpre, 185.30 ± 35.71; SIpost, 345.59 ± 97.14, RE, 0.86 ± 0.35; Category 3: SIpre, 191.80 ± 37.42; SIpost, 
279.03 ± 67.09; RE, 0.46 ± 0.20). In a correlation analysis of SI-based indices to 13C-MBT values, we were able to 
show that SI-based RE values signi�cantly support the 13C-MBT �ndings (RE, r = 0.665, p < 0.001) and there-
fore re�ect liver functionality. Similar to Utsunomiya et al.31, in this study, we tested the correlation of the mean 
SI obtained a�er contrast agent application (SIpost) to the results of a liver function test. In their case, the tested 
SI values showed a higher prediction of indocyanine green dye (ICG) retention at 15 min (r = −0.67, p < 0.01) 
than we obtained when testing against 13C-MBT values (r = 0.554, p < 0.001). However, this di�erence seems 
plausible because the ICG clearance test is, similar to the GD-EOB-DTPA pathway, dependent from OATP trans-
porter activity. �erefore, we expected a slightly less pronounced correlation between the 13C-MBT and SI-based 
values, as the 13C-MBT relies on an enzymatic metabolism, whereas contrast-enhanced MRI relies on OATP 
channel-triggered contrast agent uptake. In general, the ICG clearance test has certain limitations, as constant 
hemodynamic conditions (stable liver perfusion rate and hepatic blood �ow) are required for liver function 
analysis40–42 and, in cases of cholestasis and hyperbilirubinemia, carrier competition of bilirubin and ICG at the 
OATP1 transporter might occur43,44. It is also known that various drugs (e.g., rifampicin) exert inhibitory e�ects 
on the OATP pathway and might in�uence hepatocyte ICG uptake45,46. Similar to the �ndings of Tamada et al.36, 
we could show that the RE of the liver parenchyma serves as a reliable tool for liver function classi�cation, as 
the RE signi�cantly di�ers among di�erent stages of liver function (p ≤ 0.02). Additionally, it has been shown 
that the hepatic enhancement during Gd-EOB-DTPA-enhanced MRI is strongly a�ected by the degree of liver 
cirrhosis, as expressed by the ICG test, the Child-Pugh score or the MELD score34,47. �ese studies have shown 
that Gd-EOB-DTPA-enhanced MRI has potential as a reliable tool for liver function estimation in addition to its 
already established implementation for hepatic lesion detection.

Our study has several limitations. First, ROI placement may cause some variations due to the possible nonho-
mogeneous distribution of parenchymal changes. However, using the average of six repeated ROI measurements 
across an area of the liver parenchyma should provide reliable values. Second, this study was retrospective in 
nature, with only a limited patient population. �ird, the lack of histopathology is another potential limitation.

In conclusion, SI-based indices, such as the RE and contrast-enhanced SI values, can be used to determine 
liver function as assessed by 13C-MBT.

Materials and Methods
Patients. Local institutional review board approval of the University Hospital Regensburg was obtained 
for 13C-MBT and Gd-EOB-DTPA-enhanced MRI at 3 T. Only data from written informed consent patients 
were included for this analysis, also the study was performed in accordance with the relevant guidelines and 
regulations.

Figure 3. Boxplot analysis of SI-based indices separated by 13C-MBT readout categories. Native SI values (SI_
pre; A) show no signi�cant di�erence between the di�erent 13C-MBT readout categories, except for Categories 
1 and 2. SI values obtained a�er contrast enhancement (SI_post; B) and corrected by native SI values (RE; C) 
show signi�cant di�erences among the 13C-MBT readout categories. *p < 0.05; **p < 0.01; ***p < 0.001.
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�e retrospective analysis includes 110 patients (83 men and 27 women; median age, 61 years) who underwent 
both a 13C-MBT and Gd-EOB-DTPA-enhanced MRI at 3 T. �e patients underwent Gd-EOB-DTPA-enhanced 
T1-weighted volume-interpolated breath-hold examination (VIBE) MRI sequences with fat suppression. �e 
included patients did not have known reactivity to liver-speci�c MRI contrast media, 13C-methacetin intolerance 
or renal-speci�c contraindications to either MRI and Gd-EOB-DTPA administration.

�e patients underwent MRI and a liver function test for the following reasons:

•	 active hepatocellular carcinoma monitoring in the case of no (n = 1) or known liver cirrhosis (n = 30)
•	 follow-up in the case of known secondary malignancy (cholangiocarcinoma, n = 3; duodenal carcinoma, 

n = 1; rectal cancer, n = 4; sigma carcinoma, n = 2; uveal melanoma, n = 1) or benign hepatic lesion (focal 
nodular hyperplasia (FNH), n = 1; hemangioma, n = 3)

•	 preinterventional assessment in the case of known hepatocellular carcinoma (HCC) (n = 6) or known sec-
ondary liver malignancy / focal hepatic lesion (cholangiocarcinoma, n = 2; hemangioma, n = 1; mamma car-
cinoma, n = 1; rectal cancer, n = 4; sigma carcinoma, n = 1)

•	 postinterventional assessment in the case of known HCC (n = 19) or known secondary liver malignancy 
(cholangiocarcinoma, n = 3; colon carcinoma, n = 1; mamma carcinoma, n = 1; rectal cancer, n = 1; sigma 
carcinoma, n = 2; thymoma, n = 1)

•	 in the case of suspected liver disease or focal hepatic lesions with known cirrhosis (n = 12), overlap syndrome 
(n = 1), Budd-Chiari syndrome (n = 1), cholangiocarcinoma (n = 2), carcinoid of the ileum (n = 1), rectal 
cancer (n = 3), or sigma carcinoma (n = 1)

�e main reasons for liver cirrhosis were alcoholic steatohepatitis (n = 30), hepatitis B infection (n = 12) and 
hepatitis C infection (n = 13). Only 2 patients su�ered from non-alcoholic steatohepatitis (NASH). Detailed 
insights in underlying disease can be seen in Table 3.

13C-MBT. �e 13C-MBT was performed 24 h before or a�er the MRI scan, according to published recom-
mendations11,13. �e patients fasted for at least 3 hours before the 13C-MBT. Ten minutes before the i.v. injection 
of 13C-methacetin, a breath 13CO2:

12CO2 ratio control was recorded to calculate the delta-over-baseline (DOB). 
�en, 2 mg/kg body weight 13C-methacetin was injected via i.v. bolus and �ushed with 20 mL of 0.9% sodium 
chloride. �e volatile analysis, performed by modi�ed nondispersive isotope-selective infrared spectroscopy 
(FANci2-db16, Fischer Analysen Instrumente, Leipzig, Germany), was started immediately a�er the injection to 
track the hepatocyte-speci�c enzymatic 13CO2 production.

For the statistical analysis, the patients were grouped according to their 13C-MBT readout into 3 categories: 
patients with normal liver function (Category 1): 13C-MBT > 315 [µg/kg/h]; patients with intermediate liver func-
tion (Category 2): 13C-MBT 315–140 [µg/kg/h]; and patients with severely impaired liver function (Category 3): 
13C-MBT < 140 [µg/kg/h]13,16.

MRI. All imaging was performed using a clinical whole-body 3-T system (MAGNETOM Skyra, Siemens 
Healthcare, Erlangen, Germany). T1-weighted VIBE sequences with fat suppression (repetition time (TR), 
3.09 ms; echo time (TE), 1.17 ms, 2.49 ms; �ip angle, 10°; parallel imaging factor, 2; slices, 64; reconstructed voxel 
size, 1.25 × 1.25 × 3.0 mm3; measured voxel size, 1.71 × 1.25 × 4.5 mm3; acquisition time, 14 sec) were acquired 
during breath-holding before and 20 min a�er Gd-EOB-DTPA (Primovist®, Bayer Healthcare, Berlin) adminis-
tration. Every sequence covered the entire liver before Gd-EOB-DTPA administration and in the hepatobiliary 
phase (HBP) a�er 20 min.

patients (n = 110)

HCC
with cirrhosis 62

without cirrhosis 1

liver disease liver cirrhosis 5

autoimmune disease overlap syndrome (AIH and PBC) 1

benign liver lesion
focal nodular hyperplasia (FNH) 1

hemangioma 4

hepatic vein thrombosis Budd-Chiari syndrome 1

secondary liver malignancies

carcinoma of the ileum or duodenum 2

cholangiocarcinoma 10

colon carcinoma 1

mamma carcinoma 2

rectal cancer 12

sigma carcinoma 6

thymoma 1

uveal melanoma 1

Table 3. Underlying diseases for MRI examination and 13C-MBT for each medical case.
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�e patients received a Gd-EOB-DTPA dose (0.025 mmol/kg body weight) adapted to their body weight 
administered via bolus injection at a �ow rate of 1 mL/s, followed by 20 mL of 0.9% sodium chloride.

Image analysis. Operator-de�ned region-of-interest (ROI) measurements were used to obtain the mean 
SI values from the T1-weighted VIBE images (before and a�er Gd-EOB-DTPA injection). ROIs were manually 
placed at identical locations in every sequence, avoiding liver lesions, major branches of the portal and hepatic 
veins, and imaging artifacts. In total, 6 ROIs (3 each in the right and le� lobes) were de�ned in the VIBE images 
(Fig. 4). Each ROI was a circle that was made as large as possible (liver parenchyma: 1.1 cm2–4.6 cm2) and manu-
ally adjusted between sequences if necessary.

�e relative enhancement (RE) of the liver was calculated according to following formula:

=
−

RE
SI post SI pre

SI pre (1)

Statistical analysis. �e di�erent 13C-MBT readout categories were compared as non-parametric independ-
ent samples by the Mann-Whitney-U test. �e predictive power of SI-based indices was determined by simple 
linear regression models, and the optimal curve �t was assessed visually. In all tests, the statistical signi�cance level 
was set to 0.05 (two-sided). All analyses were performed using SPSS so�ware (version 24; IBM, Chicago, IL, USA).

Data availability. All data that support the �ndings of this study are provided in the manuscript. Raw data 
used in this work are available on reasonable request.
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