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Hepatitis B virus (HBV) infection is the main risk factor for hepato-
cellular carcinoma (HCC) development, as suggested by many epide-
miological and molecular studies (1–13) and as dramatically
confirmed by data from Taiwan where the universal childhood vacci-
nation program against HBV determined a striking reduction of new
infections in infancy and a parallel decrease of liver cancer incidence
in childhood (14). Despite the availability of a very efficacious vac-
cine, however, HBV infection is still a major health problem world-
wide, with an estimate of �400 million chronic carriers of the HBV
surface antigen (HBsAg), many of whom suffer from progressive
forms of liver disease and show a high propensity to develop HCC.
Furthermore, when other risk factors for HCC development—such as
hepatitis C virus (HCV) infection, Aflatoxin B1 exposure, alcohol
abuse and metabolic factors as obesity and diabetes—coexist with
HBV infection, a considerable increase of the relative risk for cancer
development occurs, probably due to a synergic pro-oncogenic effect of
the different factors (13,15–19). Consequently, the World Health Orga-
nization includes HBV in ‘group 1’ human carcinogens classifying it
among the most important oncogenic agents after tobacco smoking.

HCC development underlies complex and multifactorial pathoge-
netic mechanisms. Much evidence indicates that HBV exerts its pro-
oncogenic properties playing a role in many of these mechanisms.
Moreover, this virus seems to maintain its pro-oncogenic role also in
cases with persistence of viral genomes in the liver of individuals who
are negative for circulating HBsAg (namely, ‘occult’ HBV infection)
(20). Here, we review the different aspects of HBV involvement in
heapatocarcinogenesis.

Virological aspects

HBV belongs to the Hepadnaviridae family, comprising hepatotropic
DNA viruses able to infect mammalian (orthohepadnaviruses) and
avian (avihepadnaviruses) hosts and sharing with HBV most of the
genetic structure and replicative characteristics (Table I) (21–24).
HBV is one of the smallest viruses in nature and its genome presents
a highly compact genetic organization. It consists of a partially
double-stranded relaxed circular DNA of �3200 nucleotides in length
and contains four partially overlapping open-reading frames (ORF):
preS/S, preC/C, P and X. The preS/S ORF encodes the three viral
surface proteins: the preS1 (or Large), the preS2 (or Middle) and
the S (or small) that corresponds to HBsAg. The preC/C ORF encodes
the core antigen (HBcAg) and the soluble antigen ‘e’ (HBeAg). The P
ORF encodes the terminal protein and the viral polymerase that
possesses DNA polymerase, reverse transcriptase and RNaseH activ-
ities. The X ORF encodes the regulatory X protein, which is essential
for virus replication and is capable of trans-activating the expression
of numerous cellular and viral genes (25) (Figure 1).

The replication cycle of HBV presents very peculiar characteristics
that are schematically summarized in the Figure 2 (26). HBV—as well
as some plant viruses like Cauliflower mosaic virus—has been classi-
fied as a pararetrovirus because of some similarity with retroviruses. In
fact, HBV—although a DNAvirus—replicates through the reverse tran-
scription of a pregenomic RNA representing its intermediate replicative
form (27,28). Similarly to retroviruses, HBV DNA can integrate in the
genome of the host hepatic cells, an event considered to have a primary
role in the pro-oncogenic activity of the virus (29–31). However, unlike
what happens for retroviruses, integration has no role in the replicative
cycle of HBV, which does not produce any protein with integrase en-
zymatic activity, the integrative process being most probably mediated
by the activity of the cellular topoisomerase I (32).

The complex and peculiar HBV life cycle, its strong replication
activity (up to 100 billions virions per day) and the lack of proofread-
ing properties of the viral polymerase lead to the higher genomic
variability of HBV compared with other DNA viruses (33) Further-
more, since HBV—and particularly, its covalently closed circular
DNA—can persist for decades (perhaps indefinitely) in an infected
individual, it is clear that a considerable amount of genetic mutations,
either spontaneously occurring during viral replication, selected under
the host’s immune pressure or therapeutically induced by immuno-
prophylaxes (vaccine, anti-HBs immunoglobulins) or by specific
antiviral therapies, may accumulate in the HBV genome, determining
the emergence of viral strains with new biological characteristics and
different replicative and pathogenetic abilities (34).

HBV variability and HCC

Eight different HBV genotypes have been recognized so far (named
with capital letters from A to H) on the basis of a divergence of .8%
in the nucleotide sequence of the whole genome (34). HBV genotypes
have a different geographic distribution with a predominance of ge-
notype A in North-Western Europe, North America and South Africa,
genotypes B and C in highly endemic Asiatic areas and genotype D in
the Mediterranean basin and Eastern Europe (35). The remaining
genotypes are less widespread in more restricted geographic areas:
genotype E is found in West and South Africa, genotypes F and H in
Central and South America and genotype G has been detected in
France and the USA (35).

Interest in the possible influence of HBV genotypes on the clinical
evolution of the infection and particularly on the risk of HCC
development has grown in the last few years (35–37). Most of the
studies in this field have been conducted in the Far East, thus on
patients infected with genotypes B and C, showing that genotype C
is associated with a more aggressive disease and a greater progression
towards cirrhosis than genotype B (38,39). On the contrary, investi-
gations into the relationship between these two genotypes and HCC
have provided conflicting results. Studies in Japan, Taiwan and Hong
Kong support the theory of a higher risk of HCC development with
genotype C rather than genotype B (40–43), whereas cohort studies in
the same geographic areas failed to demonstrate differences in HCC
prevalence with respect to these two genotypes (44,45). Furthermore,
a case–control study in Taiwan suggests that genotype B is associated
with HCC when it develops in young patients, whereas genotype C is
associated with HCC in older patients (46). Considering the discrep-
ancies among the available data and the very little information con-
cerning other HBV genotypes and HCC, it appears evident that the
problem of the hypothetic influence of genotypes on HCC development
is still far from being solved.

Even more intriguing are the studies concerning a possible pro-
oncogenic role played by peculiar HBV variants. In fact, the genetic
variability of viral isolates from tumour tissues of patients with HCC
has been extensively investigated (47–55). Although definitive
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evidence has not been obtained, the available data on the correlation
of HBV variants carrying mutations at the level of the basal core
promoter (BCP) and/or of the X and preS viral genomic regions
and HCC development are of great interest and worthy of discussion.

BCP mutations determining the substitution of a thymine with an
adenine at position 1762 (T1762A) and of a guanine with an adenine
at nucleotide 1764 (G1764A) appear to be the most frequently
detected in HCC patients. These HBV mutants show a more efficient
replicative activity than the wild-type viral strain in experimental
conditions (56–62). However, clinical investigations failed to find
any difference in serum HBV DNA levels between patients infected
with HBV carrying BCP mutations and patients infected with the

wild-type viruses (63–68). The only effect of BCP mutations con-
firmed in clinical studies is the ‘down-regulation’ of HBeAg produc-
tion, an event that usually anticipates the seroconversion to anti-HBe
(69–72). Many reports from different geographic areas reveal a strong
association between HCC and infection sustained by BCP-mutated
HBV (41,55,73–77). However, a certain number of studies have ques-
tioned this association because of the highly frequent occurrence of
BCP mutations in HBV chronic carriers with different clinical
pictures (54,66). Moreover, no in vitro study has yet provided any
evidence concerning the possible tumorigenic effects of BCP-mutated
HBV strains. However, it must be remembered that BCP completely
overlaps the X gene and that the T1762A and G1764A mutations are
the cause of the K130M and V131I amino acid substitutions in the X
protein (Figure 1), which is strongly suspected to play a key role in the
oncogenic property of HBV (see below). Therefore, it is possible that
involvement of such mutations in cellular transformation is related to
the modification of biological characteristics of the X protein more
than to the effect exerted on the core promoter activity. In this context,
there is evidence that mutated HBx of viruses isolated from patients
with HCC are able to stimulate cell proliferation and determine
neoplastic transformation when expressed in vitro (78,79). It has been
shown that specific HBX mutations are able to abrogate the pro-
apoptotic and antiproliferative effect of the ‘wild-type’ protein,
suggesting an important role of these HBX mutants in the first steps
of the hepatocarcinogenic process (80). Of particular interest are the
data from a recent study showing that the expression of a C-terminal
deleted HBX is associated with the up-regulation of Wnt-5a gene
expression in Huh7-transfected cells as well as in human HCC tissues
but not in the corresponding non-cancerous liver tissues (81).

The first studies on the clinical meaning of HBV genetic variants
already provided evidence on the association between infection with
preS1- and/or preS2-mutated HBV strains and HCC (78,82–91).
These HBV variants are more frequently preS2 defective because of
mutations at the level of the preS2 start codon and/or large in frame
nucleotide deletions or—less frequently—preS1 defective because of
large in frame nucleotide deletions in the preS1 genomic region
(Figure 3). There is evidence showing that infections with preS1/
preS2 HBV variants lead to the retention of surface viral proteins in
the endoplasmic reticulum (ER) of hepatocytes and to the induction of
ER stress (92,93), oxidative stress and DNA damage, events that are
responsible for severe liver injury and that predispose to hepatocyte
transformation, as recently confirmed in experimental studies using
a transgenic mice model (94).

The clinical relevance of these HBV variants has been recently
confirmed by an observational cohort study showing that patients
infected with preS-defective viruses have a significantly higher risk
of HCC development than patients infected with the wild-type virus,
during a 10-year follow-up (95).

Additional aspects of the pro-oncogenic role of X and preS-
defective variants will be further discussed below. Regarding HBV
genetic heterogeneity and HCC in general, however, it has to be
underlined that very few studies have dealt with the clinical impact
of ‘complex HBV variants’ carrying various combined mutations in
different genomic regions (96–99); the functional and biological char-
acteristics, together with the pathogenetic and pro-oncogenic capabil-
ities of these complex HBV variants, remain totally unexplored.

Table I. Hepadnaviridae family

Virus Natural host Infection/disease

Genus Ortohepadnavirus
Hepatitis B Virus (HBV) Man, chimpanzee, gibbon, woolly monkey Inactive infection, hepatitis, chirrosis, HCC
Ground squirrel hepatitis B virus (GSHV) Californian squirrel, Pennsylvania’s woodchuck,

chipmunk
Inactive infection, hepatitis, HCC

Woodchuck hepatitis virus (WHV) Pennsylvania’s woodchuck Inactive infection, hepatitis, HCC
Genus Avihepadnavirus

Duck hepatitis B virus (DHBV) Pekinese duck, goose Inactive infection, hepatitis
Heron hepatitis B virus (HHBV) Heron Inactive infection, hepatitis

Fig. 1. Schematic representation of the HBV genome structure. In the
bottom, overlap between BCP region and X gene is highlighted.
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HBV replicative activity and HCC

Chronic HBV infection can show very different—and variable over-
time—virological and clinical profiles. Very schematically, we can
find conditions of intense viral replication and high serum HBV
DNA levels that usually occur in HBeAg-positive individuals, less
frequently in subjects positive for the corresponding antibody (anti-
HBe). Anti-HBe positive status is more often characterized by
suppression of viral replication and low serum HBV DNA levels.
This suppression may be persistent overtime (‘inactive’ infection) or
may present periodic viral reactivation with a pattern of fluctuating
levels of HBV DNA and aminotransferases and active hepatitis
(100). HBV infection may occur also in HBsAg-negative subjects,
who generally have low amounts of viral DNA frequently detectable
only in the liver, HBV covalently closed circular DNA being a rep-
licative intermediate persisting indefinitely in the nuclei of hepato-
cytes also in cases with strong suppression of viral replication
(‘occult’ infection, see below) (20). HBV seems to maintain its

pro-oncogenic role in all clinical/virological situations, although
literature data strongly support the presence of an out-and-out risk
‘gradient’ correlating HCC development with the replicative activity
of the virus (101,102). In fact, several studies on large cohorts of
patients demonstrated that HBeAg-positive individuals with higher
serum HBV DNA levels have a significantly higher relative risk of
HCC development than HBeAg-negative subjects with lower virae-
mia levels (103). Furthermore, there is evidence showing that serum
HBV DNA levels persistently .2000 IU/ml represent an important
predictive factor for HCC development also in HBeAg-negative
subjects (43,102), whereas carriers of inactive HBV infection do
not seem to be at risk of HCC development in the absence of other
co-factors of hepatic damage (102,104–106). The pro-oncogenic
relevance of the intense replicative activity of HBV raises the
hypothesis that antiviral treatment inducing a persistent inhibition
of viral activity may determine a significant reduction of HCC risk,
especially if such therapy is started in the pre-cirrhotic phase.
Although this hypothesis has not yet been confirmed by prospective
clinical studies, it must be underlined that prolonged follow-up of
patients treated with Interferon-alfa showed that subjects achieving
a sustained viral response (persistent suppression of viral replicative
activity) had a significant reduction of HCC development risk com-
pared with non-responders (107,108). Analogously, there are data
showing that patients successfully treated with Lamivudine have
a lower risk of HCC development than non-treated or non-responder
patients (109). All these data are strengthened by a certain amount of
evidence showing that HBV does not seem able to induce cancer per
se, either in inactive carriers or in occult HBV infection. The pro-
oncogenic activity of HBV seems to be multifactorial and it might
act through direct and indirect mechanisms, the latter represented by
hepatic necroinflammation that is mild or absent in cases of persis-
tently low viral replication. Probably, in most cases, both these
mechanisms are needed to induce cancer. In inactive or occult in-
fection, HBV can probably act as a co-factor of HCC development
when a concomitant cause of liver injury is present, such as HCV
infection or alcohol abuse (Table II).

Occult HBV infection and HCC

Occult HBV infection deserves particular mention since its potential
pro-oncogenic role further emphasizes the strong connection between
HBV and HCC worldwide.

Interaction of the virus with (still unidentified) cell-surface receptors

Release of the core nucleocapsid into the cytoplasm and its transport to the nuclear membrane

Discharge of HBV genome into the nucleus and its conversion in cccDNA

Transcription of cccDNA by the host RNA polymerase II into all viral mRNA, including pgRNA

Translocation of HBV transcripts into the cytoplasm, where their translation yields the viral 
envelope, core, “e”, polymerase and X proteins

Assembly of nucleocapsids and synthesis of new viral DNA from pgRNA by viral 
reverse transcriptase

Recycling of a small portion of nucleocapsids into the nucleus to maintain a stable  
reservoir of cccDNA

Coating of most nucleocapsids with viral surface proteins in the endoplasmic reticulum and 
subsequent release of mature virions

Fig. 2. Schematic representation of the HBV life cycle main steps.

Fig. 3. Schematic representation of the genomic region encoding the preS/S
proteins. (A) Wild-type sequence. (B) Frequent in frame preS1 deletion
responsible for the production of a shorter preS1 protein. (C) Frequent in
frame preS2 deletion responsible for the production of a shorter preS2
protein. (D) PreS2 start codon mutation preventing the synthesis of the
corresponding protein.
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Molecular epidemiological studies conducted since the early 80s
showed almost unanimously that HBV persistence can play a critical
role in HCC development also in occult HBV carriers (110–122).
These data have been widely confirmed in animal models prone to
infection by other hepadnaviruses. In fact, both woodchuck and
ground squirrel, when infected with the corresponding Hepadnavirus
(WHVand GSHV, respectively), are at high risk of HCC development
even after apparent recovery from the infection with seroconversion
from HBsAg to anti-HBs (123,124). Occult HBV in humans can
probably represent a risk factor for HCC development only in case
of concomitant other causes of hepatic diseases (122,125). These data
are of great importance if one takes into account that HBV prevalence
in the Caucasian American population is one of the lowest in the
world. The strong association between occult infection and HCC
development was confirmed by an observational cohort study evalu-
ating a large number of HBsAg-negative patients (most of whom
HCV infected) with chronic liver disease who had been tested for
occult HBV and then followed up for .4 years (126). Occult HBV
can persist in the hepatocytes both integrated into the host genome and
as free episome, maintaining its transcriptional activity and ability to
synthesize proteins, albeit at very low levels (121). In addition, there
is evidence suggesting that occult infection may determine a mild but
continuous status of chronic necroinflammation (110,127). Thus, it is
believed that occult HBV infection can contribute to hepatocellular
transformation through the same direct and indirect mechanisms
usually attributed to the overt infection.

Pathogenesis

Necroinflammation and cirrhosis

HBV is not directly cytopathic and the induced liver injury essentially
has an immune-mediated pathogenesis, related to the cytotoxic
T lymphocytes response specifically directed against the viral anti-
gens displayed on infected hepatocytes (26). However, there is evi-
dence that an important role in determining hepatocellular damage is
also played by the innate immunity, through the action of the natural
killer cells, neutrophils and activated lymphocytes recruited by non-
specific chemokines in the inflamed areas. These inflammatory cells
release cytokines and chemokines capable of favouring cellular trans-
formation and tumour growth (32,128).

Experiments on HBV-transgenic mice demonstrated that the
immune-mediated hepatic damage is sufficient to determine HCC
and that its development is avoided by the inhibition of both apoptosis
and cytotoxic T lymphocytes-induced chronic inflammation, through
Fas ligand (FasL) neutralization (18).

An additional factor that may play a role in HBV-related hepato-
carcinogenesis is the peculiar natural history of chronic hepatitis B. In
fact, the clinical–virological course of chronic hepatitis B is often
characterized by alternation of phases of reduction of viral replication
and gene expression with phases of re-exacerbation of viral activities
and recurrence of immune-mediated hepatic injury. These flares trig-
ger stimuli able to induce cell death and proliferation which, reiterated
overtime, may cause the appearance of genetic alterations predispos-
ing to cellular transformation (129–133). In fact, it is known that
a high cellular proliferation index may be a risk factor for HCC
development, particularly in cirrhotic livers (32,36) (Figure 4).

Cirrhosis appears to be an essential step for HCC development in
patients with HCV or alcoholic liver disease (18). Although it is an

important predisposing factor to HCC also in cases with HBV infec-
tion, literature data indicate that �20% of all HBV-related HCC
develop in livers without cirrhosis and, in some cases, even without
signs of chronic hepatitis (78,79). Although an uncommon event, the
chance of tumour development in a normal or mildly damaged liver is
considered further proof of the direct pro-oncogenic properties of
HBV (Figure 4).

Furthermore, chronic hepatitis B is much more frequent in men
than women and males are about three to five times more prone to
develop HCC than females (134,135); this trend is even more pro-
nounced in rodent HCC models (136,137). A recent study showed
increased HBV transcriptional activity in the liver of male transgenic
mice. In these animals, the enhancer I region of HBV is responsive to
ligation-stimulated androgen receptor and this binding determines an
increased transcriptional activity of HBV that might explain the high-
er viral DNA levels found in male HBV carriers and the consequent
increased risk of HCC development (138). Of note, a recent popula-
tion-based cohort study on Taiwanese mothers screened for HBV
infection at each delivery from 1984 to 2008 demonstrated that the
risk of HCC development was significantly higher in women with
persistent HBsAg-positive status, but among the HBsAg-negative
mothers those who underwent HBsAg sero-clearance during follow-
up had a significantly higher risk of HCC development compared with
HBV-unexposed women, indirectly confirming once more HBV’s
maintenance of its pro-oncogenic role also in the occult status
(139). Also metabolic changes might contribute to liver damage and
favour hepatocarcinogenesis in case of HBV infection. In particular,
a deregulation of the insulin-like growth factor (IGF) axis—including
the autocrine production of IGFs, IGF-binding proteins, IGF-binding
protein proteases and the expression of the IGF receptors—has been
described in hepatoma cell lines and during hepatocarcinogenesis due
to various oncogenic agents, including Hepadnaviridae in transgenic
mice and woodchucks (140–147). These data are consistent with an
interplay between IGF axis and HBV infection, but this hypothesis
needs further validation by in vivo studies.

HBV DNA integration

The ability of HBV to integrate into the genome of the infected host
hepatocytes is considered one of the most important confirmations of
its direct pro-oncogenic role. Integrated viral DNA has been found in
85–90% of HBV-related HCCs and its presence in tumours developed
in non-cirrhotic livers of children or young adults appears to further
support the role of viral DNA integration in the hepatocarcinogenesis
process (148,149). However, unlike the woodchuck model where the
WHV insertional activity in the myc family oncogenes is a crucial
event for HCC development (150–154), HBV DNA integration occurs
randomly in the context of human genomes and may involve multiple
sites of different chromosomes (155). Thus, HBV seems to behave
like an insertional, non-selective mutagenic agent and the important
rearrangements of the host genome associated with viral integration
suggest that its main oncogenic effect is the induction of a higher
genomic instability (156). In fact, most of the integration events

Table II. Impact of the different phases of HBV infection on the oncogenic
activity of the virus

Phases of infection Pro-oncogenic role

Active (HBeAg positive) Primary
Active (anti-HBe positive) Primary
Inactive Co-factor
Occult Co-factor

• VViral integration in host genome
• CCellular DNA damage and chromosomal 

i t bilit

Chronic Infection

instability
• SSelection of pro-oncogenic viral mutants
• XX protein pro-oncogenic activities
• EEpigenetic modifications

Chronic hepatitis

Cirrhosis

C o c epat t s

Continous necro-inflammation and
hepatocyte regeneration

Hyperplastic hepatocyte nodules

Fig. 4. Schematic representation of the molecular events associated with
HBV hepatocarcinogenesis according to infection and liver disease status.
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reported in the literature occur near or within fragile sites or other
repetitive regions of the human genome as Alu sequences and micro-
satellites that are prone to instability in tumour development and
progression (157).

Recent studies on duck and woodchuck models infected with the
corresponding Hepadnavirus allowed identification of the peculiar
biological conditions and molecular factors possibly involved in the
viral integration process (158,159). Summarizing, the available data
suggest that during HBV infection, long-term chronic inflammation
associated with continuous cycles of cell death and proliferation
induces an increment in the amounts of DNA ends in host genomic
DNA, thus favouring the process of viral integration. In this process,
cellular topoisomerase I acting as endonuclease and transferase seems
to play an important role in the linearization and integration of viral
replicative intermediates (159,160). Furthermore, there is evidence
demonstrating that some conditions modifying cellular homoeostasis
may increase the frequency of insertional events. In particular, it has
been shown that exposure to oxidative stress or mutagens and coin-
fection with other viruses may favour HBV DNA integration (159).

The integration of HBV genome into the DNA of the infected cells
can be responsible, besides cellular genome alterations, also for
ruptures and/or rearrangements of the viral DNA (52,79,159,160).
Indeed, the integration of complete and structurally unaltered viral
genomes have never been found in the genome of infected hepato-
cytes and the integrated viral sequences, showing deletions of large
genomic portions, are replication incompetent and differ from each
other in size and structure. However, it must be stressed that integrated
HBV DNA might contribute to hepatocellular malignant transforma-
tion through the production of mutated viral proteins such as truncated
X proteins or preS/S proteins which may activate signalling pathways
implicated in tumorigenesis (trans-activation) (161–165). The insertion
of viral DNA into cellular genomic regulatory regions or coding regions
with consequent modification of gene expression (cis-activation) or
structural and functional alteration of the produced cellular proteins
is another possible consequence of HBV DNA integration
(79,149,156,166–169). One study identified the cyclin A gene as the
viral integration site (170). The product of such genomic recombination
was the ‘HBV-cyclin A’ fusion protein, in which 152 amino acids at the
N-terminal end of cyclin A were substituted by 156 amino acids of the
Middle HBV protein. This fusion protein had strong tumorigenic prop-
erties (78,79,159,169,171,172). Another study described an HCC
showing the insertion of viral DNA into the gene coding for the b
retinoic acid receptor (173). In this tumour, the retinoic acid receptor
b gene was mutated because of the integration of an HBV sequence
comprising the cohesive region DR2, the core gene and the preS1
genomic region. The fusion protein resulting from this genomic
recombination was overexpressed since it was synthesized under the
control of the integrated preS1 viral promoter and showed carcinogenic
potential (159,174). Among the numerous viral integration sites
described one may also mention the tyrosine-protein-kinase domain
of the epidermal growth factor receptor gene (175), the mevalonate
kinase (176,177), the carboxypeptidase (178), the platelet growth
factor receptor genes (31) and the telomerase reverse transcriptase
gene (hTERT), which encodes the enzyme responsible for telomeres
reconstitution in cellular immortalization process and that represents
the first gene where HBV DNA integration was described in more
than one case (30,79,159,179–181). In this context, a large scale
study showed that the genes involved in signalling and control of
cellular death and proliferation are frequent targets of HBV integra-
tion (31), although it has to be considered that for many HBV in-
tegrations, there are no experimental data able to definitively prove
their role in hepatocellular transformation.

HBV proteins with pro-oncogenic activities

X protein. Most HBV-related HCCs show the integration of viral
genomic sequences including the HBV X gene (HBx). The integrated
forms of HBx are frequently rearranged and may show numerous
point mutations, deletions or truncation with fusion to cellular
DNA; but despite this integrated HBx might encode functionally

active proteins with trans-activating ability (78,79,161). Although char-
acterization of HBx expression in malignant hepatocytes and infected
liver tissues has been often hampered by the difficulty in obtaining valid
high-affinity anti-HBX antibodies for immunodetection (182), there is
strong evidence demonstrating that the expression of HBx is main-
tained through the multistage process of hepatocarcinogenesis from
preneoplastic nodules or foci of transformed hepatocytes to HCC
(182–185).

Through the use of hepatic laser microdissection, it has been shown
that HBx sequences deleted in the C-terminal portion are frequently
and specifically detectable in HCC tumoral cells (54) and in vitro
analysis has demonstrated that these HBX mutants are able to induce
hepatocellular transformation. Other HBX genetic variants frequently
isolated from HCCs are those showing the amino acid substitutions at
positions 130 and 131 of the protein (54,186,187) and a recent study
has indicated that the selection of these mutations precedes HCC
development (55). However, the possible HBX functional modifica-
tions induced by the 130 and 131 amino acidic substitutions have not
yet been investigated.

The potential hepatocarcinogenic effects of the integrated X gene
have been largely analysed in HBx transgenic mouse models. Most
studies demonstrate that the liver of these animals shows the typical
features of the multistep neoplastic transformation process (188,189),
although much evidence indicates that HBX must be expressed at high
levels or the animals have to be exposed to additional hepatocarcino-
genic agents, (i.e. diethylnitrosamine) to obtain the neoplastic trans-
formation of the hepatocytes (158,190–194). Indeed, HBX does not
act as a dominant oncogene and several different mechanisms have
been implicated in HBX-induced hepatocarcinogenesis.

HBX is mainly detectable in the cell cytoplasm (182) and does not
bind directly to DNA but functions by protein–protein interaction
causing the transcriptional activation of several viral and cellular
promoters and enhancers. It may deregulate the expression of onco-
genes (c-Myc and c-Jun), cytokines (tumor necrosis factor-a and
transforming growth factor-b) and transcription factors (nuclear
factor-kappaB, activator proteins 1 and 2, RPB5 subunit of RNA
polymerase II, the TATA-binding protein and activating transcription
factor/cyclic adenosine 3#,5#-monophosphate-response element-
binding protein) (161–163,195–199) and may modulate cytoplasmic
signal transduction pathways (ras-raf-MAP kinase, Src kinase, jun-N-
terminal kinase, Jak1/STAT, protein kinase C and Polo-like kinase 1)
(200–204) involved in oncogenesis, cell proliferation, senescence and
apoptosis, inflammation and immune response (205,206). It has been
shown that HBX may interact with p53 protein causing its cytoplas-
mic delocalization and the inactivation of several important p53-de-
pendent activities including p53-mediated transcriptional activation,
p53 sequence-specific DNA-binding activity, cell cycle check point
controls and p53-mediated apoptosis (207–214). However, the inter-
action between HBX and p53 has been questioned by two different
studies showing the lack of their coimmunoprecipitation (185,215).

One of more extensively investigated mechanisms by which HBX
may contribute to the development of HCC is its role in cell death
pathways. To address the effects of HBX on apoptosis, several differ-
ent experimental systems have been utilized, and contradictory results
have been reported, most probably dependant upon the cell setting
utilized and the levels of X gene expression induced. Indeed, it has
been shown that HBX may inhibit apoptosis in a p53-indipendent
manner through multiple mechanisms including the inhibition of
caspase-3 and anti-Fas antibody-dependent apoptosis (216,217) or
the modulation of activities of the serine protease hepsin (218) and
up-regulation of survivin (219). However, in other experimental con-
ditions, it has been demonstrated that HBX may also induce apoptosis
through the regulation of the expression of Fas/FasL (220–223),
caspase-8, cFLICE and Bax/Bcl-2 (224,225).

HBX also seems to contribute to carcinogenesis through the mod-
ulation of angiogenic pathways. In fact, HBX is able to induce both
overexpression of vascular endothelial growth factor (VEGF) gene
and stabilization of hypoxia-inducible factor-1, an important angio-
genic factor induced in hypoxic conditions (79,226–228). More
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recently, it has been shown that HBX may also exert an important role
in modulating the epigenetic control of viral (229) and cellular genes,
including a number of tumour suppressor genes (230–235).

Surface proteins. The preS1/preS2 sequence, encoding the Large
hepatitis B (LHBs) and Middle hepatitis B (MHBs) virus sur-
face proteins, is another region of the viral genome able to produce
a transcriptional transactivator with transforming potentials. The
trans-activating properties are acquired by LHBs or MHB only after
C-terminal truncation (78,86). Of particular interest, studies on
human tumoral tissues as well as experimental data from transgenic
mice or hepatoma cell cultures showed that HBV preS/S genes
truncated at the 3# end and integrated into the host genome encode
for C-terminally truncated surface proteins (MHBst) that progres-
sively accumulate in the ER and display regulatory functions, such
as the trans-activation of cellular genes including c-myc, c-fos and c-
Ha-ras oncogenes and the specific activation of the c-Raf-1/MEK/
Erk2 signal transduction cascade, resulting in the induction of an
enhanced hepatocellular proliferative activity (14,32,87,164,236).

The most typical histological picture of HBV infection is the
presence of ‘ground-glass’ hepatocytes (GGH) that is due to the
accumulation of viral surface proteins in the cellular cytoplasm
and more precisely in the ER, as highlighted since the 70s (237–
239). At least two different types of GGH have been recognized and
associated with different stages of chronic liver disease: the type
I GGH, which is the classic GGH characterized by an ‘inclusion-
like’ accumulation of HBsAg, and the type II GGH—also defined
‘marginal type GGH’—that is characterized by the accumulation
HBsAg at the cell margin or periphery of hepatocytes and that
appears to be highly prevalent in the advanced stages of chronic
HBV infection. Of note, it has been shown that the different pattern
of HBsAg distribution in type I and type II GGH is linked to the
accumulation of different mutated forms of LHBs due to relevant
mutations occurring either in the preS1 or in the preS2 genomic
region, respectively (95). Moreover, type II GGH associated with
preS2-deleted LHBs may cluster in nodules, thus suggesting their
higher proliferative activity and potential clonal expansion (95,240).
These data are in accordance with the previously mentioned studies
showing that infection with preS2-defective HBV mutants signifi-
cantly correlates with HCC development (96,241). Furthermore,
both studies in transgenic mice and cell cultures have provided
evidence on the pro-oncogenic role of preS-mutant LHBs. It has
been shown that the accumulation of these proteins in the ER de-
termines the activation of stress-signalling pathways with induction
of oxidative DNA damage and genomic instability (83,89,242).
Moreover, preS-mutant proteins may induce the overexpression of
both cyclooxygenase 2 and cyclin A, thus causing cell cycle pro-
gression and proliferation of the hepatocytes which in the presence
of DNA damage and genomic instability may progress towards
transformation and tumour development (95,243).

Genetic and epigenetic alterations

Numerous genetic abnormalities have been described in HCC, includ-
ing chromosomal deletions and rearrangements, gain and loss of
alleles with loss of heterozygosity, gene amplifications and mutations
frequently involving oncogenes and tumour suppressor genes, aneu-
ploidy as well as epigenetic alterations. HBV-related HCCs com-
monly exhibit a higher rate of chromosomal abnormalities than
liver tumours linked to other risk factors (244,245) and it has been
suggested that HBV might generate genomic instability, either
through viral DNA integration or through the activity of its proteins.
Moreover, HBV-related HCCs show gain or loss of chromosomal
segments at similar sites including 1p, 2q, 4q, 5q, 6q, 8p, 10q, 11p,
16p, 16q, 17p and 22q chromosomal arms (246–253). Of interest, the
results of microarray-based gene expression profiles have demon-
strated that specific regulatory pathways, such as the ones related to
cell death, DNA damage, signal transduction and metastasis are acti-
vated in HBV-associated HCC (254,255) and that chronic HBV

infection is significantly associated with poor differentiated tumours,
showing early recurrence and unfavourable prognosis (256,257).
Besides genomic alterations, epigenetic factors like methylation-
associated gene silencing and altered expression of microRNAs
(miR) have been shown to be frequently involved in the deregulation
of cellular functions in HCC. The expression of DNA methyltrans-
ferases (DNMTs), which catalyze the methylation of CpG groups, is
often increased in livers affected with chronic hepatitis and cirrhosis
as well as in HCC (258–260). Considerable evidence indicates that the
presence of HBV in HCC significantly associates with aberrant DNA
methylation of the host genome (231,261–263). It has been demon-
strated that both HBV-infected cells and HCC show elevated
expression of DNMT1, DNMT3A and DNMT3B compared with
non-infected cells and matched normal tissues, respectively (264).
Moreover, it has been shown that overexpression of HBx can induce
DNMT1 and DNMT3A (232,234), thus suggesting that this viral pro-
tein may be responsible for what has been defined as a ‘methylator
phenotype’ in HBV-related HCC. In accordance with this hypothesis,
HBX may repress transcription of E-cadherin, IGF-3, glutathione
S-transferase P1 and p16INK4A through CpG methylation of the
respective regulatory elements (230–233). In all these cases, the
repression seems to be a consequence of HBx-mediated up-regulation
of DNMT1 and DNMT3A gene expression. In this context, it has very
recently been shown that HBx can induce DNMT1 expression by
inhibiting miR-152. In fact, miR-152 can target the 3# untranslated
region of DNMT1 RNA, causing a marked reduction of the messenger
RNA and protein levels. Of particular interest, the expression of miR-
152 appears to be down-regulated in HCC tissues compared with
paired non-tumour liver tissues and inversely correlated to DNMT1
in HBV patients (235).

Conclusions and perspectives

Technology progress is providing new and important insights into
the comprehension of the pathogenetic mechanisms at the basis of
HCC development in which the prominent etiopathogenetic role of
HBV infection is widely confirmed. As highlighted by several
authors, the prevalence studies based only on HBsAg evaluation
determine an underestimation of the real impact of HBV on HCC
development and any future study investigating the relationship
between HBV and cancer cannot ignore the use of the most sensitive
biomolecular techniques for viral DNA research which are able to
identify the numerous cases of occult HBV infection. It is estab-
lished that HBV genome does not encode a dominant oncogene
but multifactorial pathogenetic mechanisms subtend HBV-related
HCC development. In addition to indirect mechanisms (i.e. necroin-
flammation and host’s immune response processes), HBV may also
exert its oncogenic role through direct pathogenetic mechanisms
mainly represented by the propensity of its DNA to integrate into
the host’s genome and by the production of proteins with transform-
ing properties. Important contributions for discerning these direct
mechanisms will likely be provided by analysing tumour tissues
from patients under specific anti-HBV antiviral treatment in which
the necroinflammatory injury is abolished or strongly reduced by the
suppression of viral replication. In analogy, the direct oncogenic
mechanisms potentially implied in the HCC development should
also be more extensively investigated in tumours from patients with
occult HBV infection.

The vaccination programs extended to the general population are
showing significant efficacy in reducing incidence of HCC, thus dem-
onstrating that the prevention of HBV infection is the best weapon to
defeat this dangerous enemy of human health. The recent availability
of specific antiviral drugs gives new hopes to patients with chronic
infection, hypothesizing that their use in the pre-cirrhotic phase can
reduce the risk of cancer development by stopping the necroinflam-
matory processes and reducing the chance of integration and produc-
tion of proteins with pro-oncogenic activity. Prospective studies
prolonged overtime are obviously needed to confirm the strength of
this hypothesis.
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