Hepatoprotective activity of ellagic acid against carbon tetrachloride induced hepatotoxicity in rats^{*}

Kavita Singh, A K Khanna & Ramesh Chander[‡]

Biochemistry Division, Central Drug Research Institute, Lucknow 226 001, India

Received 10 June 1998; revised 28 May 1999

Administration of CCl₄ to normal rats and consequent oral feeding with ellagic acid (50 mg/kg) provided a significant protection against the biochemical alterations in serum and liver produced by CCl₄. *In vitro* experiments showed that liver microsomes from animals treated with ellagic acid and CCl₄, decreased lipid peroxidation compared to microsome prepared from rats exposed to CCl₄ alone.

Ellagic acid (EA), a naturally occurring polyphenol found in many plant products, is known to effectively protect against oxidative stress¹. Carbon tetrachloride (CCl₄) has been extensively studied as a liver toxicant and its metabolites such as trichloromethyl radical (CCl₃⁻) and trichloromethyl peroxy radical (CCl₃O₂⁻) are involved in the pathogenesis of liver damage². Feeding of EA increased the levels of reduced glutathione (GSH) and glutachione reductase (GSSGreductase) in the liver of normal mice³. Present study has been undertaken to investigate the effect of oral administration of ellagic acid on CCl₄ induced lipid peroxidation in rats.

Adult male rats of Charles Foster strain weighing about 200 g, were maintained on pellet diet. The rats were divided into 3 groups namely Control, CCl4 treated and CCl₄ + drug treated containing six animals in each. Two groups of rat were injected (ip) CCl4 without any vehicle (0.7ml/kg) thrice a week for two weeks4. Of these two, one group received ellagic acid macerated with 2% aqueous gum acacia suspension and given orally by feeding canula once daily at a dose of 50 mg/kg for 15 days. Normal healthy rats, fed with same amount of gum acacia served as control. After completion of experimental regimen the rats were fasted overnight and samples of blood collected from retro-orbital plexus. The animals were sacrificed, and liver excised immediately. The blood was centrifuged and serum was assayed for alkaline phosphatase⁵, glutamate oxaloacetate transminase (GOT)⁶, and glutamate pyruvate transminase (GPT)⁶. and bilirubin⁷ by standard spectrophotometric

methods. Liver was homogenized in Potter-Elvenhjem type homogenizer to a concentration of 10% with ice cold KCI (0.15 M) and centrifuged in cold for separation of mitochondrial, microsomal and cytosolic fraction⁸. The enzyme activities of glutathione-S-transferase (GST)". glutathione reductase $(GSSG-reductase)^{10}$, glutathione peroxidase $(GSHP_x)^{11}$ and the levels of reduced glutathione (GSH)¹² and oxidised glutathione (GSSG)¹² were assayed in cytosolic fraction. Microsomes were used for the assay of nonenzymic and enzymic lipid peroxidation *in vitro* as described earlier¹³. Superoxide dismutase (SOD)¹⁴ activity was assayed in post mitochondrial supernatant while lipid peroxide15 and glycogen¹⁶ were estimated in total homogenate.

Student's t test was used for the statistical evaluation of results. The difference between mean was considered significant when P < 0.05.

The changes in the level of serum and liver biochemical markers of hepatic damage induced by CCl4 administration in rats and their recovery by the treatment with EA are shown in Table 1. Increased activity of serum enzymes such as alkaline phosphatase, GOT, GPT and the level of bilirubin followed by depletion of hepatic GSH indicated a damage to liver cell membrane due to CCl₄ treatment. Administration of EA promoted the conversion of GSSG into GSH by the reactivation of hepatic GSSGreductase enzyme in CCL treated animals. The availability of a sufficient amount of GSH thus increased the detoxification of active metabolites of CCl4 through the involvement of GST and GSHP. Treatment with EA is reported to increase the total hepatic GST activity via induction of GST-Ya gene and inhibit the xenobiotic metabolizing enzymes ¹⁷¹⁸.

CDRI Communication No. 5825(B)

^{*}Correspondent author

	[Values are mean	t ± SD of 6 rats]	
Parameters	Control	CCl ₄ Treated	CCl ₄ +ellagic acid treated
Serum			
Alkaline-phosphatase*	42.09±4.57	59.91 ±3.92***	49.67 ±1.69"**
GOT ^h	67.74± 5.08	97.86 ±9.21***	83.05 ± 8.12
GPT ^h	49.23±6.91	122.62±12.97***	99.4±6.63**
Bilirubin ^c	0.59±0.06	1.10±0.08***	0.85±0.67***
Liver			
GSH ^d	4.15±0.30	2.62±0.18**	$3.00 \pm 0.25^{\circ}$
GSSG ^d	0.220±0.06	0.378±0.03***	0.307±0.030***
GST	2054±92.2	1257±57.2***	1667±51.3***
GSSG-reductase ¹	41.18±0.96	32.64±2.19*	39.67±3.82***
GSHP _x	337.16±34.4	223.18±14.2***	272.06±12.4
Lipid peroxide ^g	326.43±30.15	443.84±43.46**	336.28±19.8***
SOD Activityh	2.90±0.25	1.86±0.06***	2.62±0.27***
Glycogen ⁱ	38.70±3.49	25.15±3.17**	28.50±3.17**

Table 1—Serum and liver biochemical parameters in ellagic acid treated rats damaged with CCl₄ [Values are mean ± SD of 6 rats]

Units: "µmole p-nitrophenol/min/dl; "µmole sodium pyruvate/min/L; "mg/dl; "µmole/g; " nmole CDNB Complexed/min/mg/protein; " n mole NADPH oxidised/min/mg/protein; " nmole MDA/g; " unit/mg protein; " mg/g.

P values: < 0.05; < 0.01; < 0.001;

Liver microsomes of CCl_4 treated rats were more prone to peroxidation of their lipids (Table 2). Ellagic acid treatment made them less susceptible against peroxide damage. Ito *et al.*¹⁹ and Cholbi *et al.*²⁰ have reported that hepatoprotective activity of EA and some polyphenols are apparently due to their antioxidative effects and results presented here are further supportive of this conclusion.

References

- Nishigaki I, Oku H, Noguchi M, Itoh G, Nakanishi M & Yaghi K, J Clin Biochem Nutr, 15 (1993) 135.
- 2 Rao S B & Mehendale H M, Indian J Biochem Biophys, 30 (1993) 191.
- 3 Majid S, Khanduja K L, Gandhi R K, Kapur S & Sharma R R, Biochem Pharmacol, 42 (1991) 1441.
- 4 Recknagel R O & Ghoshal A K, Exp. Mol Pathol, 5 (1966) 413.
- 5 Bessey O A, Lowry O H & Brock M J, J Biol Chem, 164 (1946) 321.
- 6 Reiman S & Frankel S, Am J Clin Pathol, 28 (1957) 56.
- 7 Jendrassik L & Grof P, Biochem Z, 297 (1938) 81.
- 8 Schneider W C & Hogeboom G H, J Biol Chem, (1950) 183.
- 9 Habig W H, Pafrt M J & Jakoby W B, J Biol Chem, 249 (1974) 7130.
- Racker E, Methods in enzymology, Vol II (Academic Press, New York) 1955, 722.
- 11 Pagila D E & Valentisu W, J Lab Clin Med, 70 (1976) 158.
- 12 Hissin P J & Helf R A, Analyt Biochem, 74 (1976) 214.
- 13 Devasagayam T P A & Tarachand U, Biochem Biophys Res Commun, 145 (1987) 134.
- 14 Mc Cord J M & Faridovick 1, J Biol Chem, 244 (1969) 6049.

Table 2—Effect of ellagic acid on hepatic microsomal lipid peroxidation in CCI_4 + treated rats [Values are mean \pm SD of 6 rats]

In vitro	Control	CCL	CCL
parameters			ellagic acid
None (without			
prooxidant added)	1.86±0.04	3.17±0.14	2.49±0.14
Fe ⁺² -ascorbate induced system			
(nonenzymic peroxi-			
dation)	3.09±0.18	4.31±0.391	3.38±0.24
NADPH Induced system (enzymic			
peroxidation)	3.29±0,20	5.26±0.24	3.73±0.45
No. of Contract of			

Unit: nmole MDA/mg protein.

P values: * <0.01; all other values in CCl₄ and treated group. *P*< 0.001.

- 15 Ohkawa H, Ohishi N & Yagi K, Amal Biochem, 95 (1979) 351.
- 16 Montgomery R, Arch Biochem Biophys, 67 (1957) 378.
- 17 Barch D H, Rundhaugen L M & Pillay N S, Carcinogenesis, 16 (1995) 665.
- 18 Zhang Z, Hamilton S M, Stewart C, Strother A & Teel R W, Anticancer Res, 13 (1993) 2341.
- 19 Ito M, Simura H, Watanbe N, Tamai M, Handa K, Takahashi A, Tanaka Y, Aral K, Zhang P L & Chang K, Chem Pharma Buil, 38 (1990) 2201.
- 20 Cholbi M R, Paya M & Alcaraz M J, Experientia, 47 (1991) 195.