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ABSTRACT

Aims. We present a new three-dimensional radiation hydrodynamics code called HERACLES that uses an original moment method
to solve the radiative transfer.
Methods. The radiation transfer is modelled using a two-moment model and a closure relation that allows large angular anisotropies in
the radiation field to be preserved and reproduced. The radiative equations thus obtained are solved by a second-order Godunov-type
method and integrated implicitly by using iterative solvers. HERACLES has been parallelized with the MPI library and implemented
in Cartesian, cylindrical, and spherical coordinates. To characterize the accuracy of HERACLES and to compare it with other codes,
we performed a series of tests including purely radiative tests and radiation-hydrodynamics ones.
Results. The results show that the physical model used in HERACLES for the transfer is fairly accurate in both the diffusion and
transport limit, but also for semi-transparent regions.
Conclusions. This makes HERACLES very well-suited to studying many astrophysical problems such as radiative shocks, molecular
jets of young stars, fragmentation and formation of dense cores in the interstellar medium, and protoplanetary discs.
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1. Introduction

Since we receive almost all the information from astrophysical
objects in the form of photons, there has been a long tradition
of radiative transfer in the astrophysical community. However,
most of the time, radiation is used as a probe of the physical sys-
tem under study. For that purpose radiative transfer is treated
in great detail, using complex spectral opacities and without
assuming local thermodynamical equilibrium (Hauschildt et al.
1997; Kurucz 1996). However, in many cases, radiation cannot
be considered as a passive probe of the physical system, but it
has to be considered as an important dynamical constituent.

For this reason, and thanks to the ever-increasing computing
power available, there has been a rise in the interest in radiation-
hydrodynamics, that is, in the dynamical coupling of gas and ra-
diation. However, using the radiative transfer models developed
in the context of spectral analysis for radiation-hydrodynamics is
far out of the reach of present computers. Therefore, in order to
study the dynamics of multi-dimensional systems including ra-
diative transfer, one has to greatly simplify the full transfer equa-
tion, which depends upon six variables in a three-dimensional
problem.

Our objective is to propose a radiative transfer model that
can preserve and reproduce large angular anisotropies in the ra-
diation field, which properly treats the time dependence of the
radiation field and which couples naturally to the modern high-
resolution numerical schemes used for hydrodynamics. All this,
of course, has to be obtained at a reasonable numerical cost.

� Appendices are only available in electronic form at
http://www.aanda.org

Different physical approximations have been developed to
model radiative transfer in particular cases. Within the limit of
large optical thickness, the diffusion approximation can be used
(Mihalas & Mihalas 1984; Dai & Woodward 1998; Turner &
Stone 2001). On the other hand, the transport limit is reached for
transparent media. Particular methods have been implemented to
describe this regime (Dai & Woodward 2000).

In many problems of physical interest, regions of large opac-
ities are found next to transparent regions. One possibility for
treating these problems is to couple two approximate models,
i.e. one for each region. However, this introduces large draw-
backs due to the domain partition, some loss in accuracy in the
transition zone; and most of the time the semi-transparent re-
gions would not be described correctly. Monte-Carlo codes that
directly solve the transfer equation (Mihalas & Mihalas 1984;
Pascucci et al. 2004, and references therein) can describe both
regimes; however, they are difficult to couple to hydrodynamical
codes and are very costly, especially in the diffusion regime.

Other techniques have therefore been developed based on
discretization both in angles and space. One of them consists
in choosing a set of discrete directions and in computing the
integral over solid angle by a weighted sum over these direc-
tions. This technique, called the discrete ordinates method, can
solve radiative transfer problems with relatively good accuracy
and moderate computing cost. Although it has been greatly ex-
tended since Chandrasekhar first introduction, it still has two ma-
jor drawbacks: ray effects and false scattering (Coelho 2002).
False scattering (equivalent to the false diffusion in hydrody-
namics) is due to the spatial discretization and may be reduced
by refining the grid. The ray effect appears in free-streaming
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regions and consists in anomalous distortions of radiation inten-
sity. Moreover, this method cannot properly treat the specularly
reflected beams because of the choice of discrete directions.

To overcome this problem, both the short or the long char-
acteristic methods choose the photons trajectories as privileged
directions (Rukolaine et al. 2002). In these methods, the radiative
transfer equation is integrated over ray propagation. In the long
characteristic algorithm, the ray is projected from each grid point
to the domain boundaries where specific intensity is known via
boundary conditions. This method is unfortunately very time-
consuming and not well-suited to three-dimensional problems.
That is why, in the short characteristic method, the rays are pro-
jected only to the neighboring cells (van Noort et al. 2002).
This is much less time-consuming, but the interpolations needed
along grid lines make it more diffusive than the long character-
istic one.

Instead of trying to solve the full transfer equation as in the
Monte-Carlo, the discrete ordinates, or the characteristic meth-
ods, it is also possible to use another class of methods that con-
sists in solving an approximate simplified model. This class is
dedicated to model situations where radiative transfer is strongly
coupled with other phenomena (fluid motion, chemical reac-
tions, etc.) as is the case in our domain of interest. These meth-
ods consider the moments of the radiative transfer equation and
consist in choosing a closure relation to solve them. The most
common of these methods is the flux-limited diffusion, which
solves the evolution of the first moment (radiative energy) and
uses a closure relation valid in the diffusion limit, which is an
isotropic radiative pressure tensor. In this scheme, the flux is al-
ways colinear and proportional to the gradient of radiative en-
ergy. In addition, the equation is modified with an ad-hoc func-
tion (the flux limiter) in order to ensure that the radiative flux
remains in physically acceptable limits. This method is very use-
ful in diffusive regions because it gives good results at a reason-
able computational cost. Nevertheless, it should be used with
care when dealing with free-streaming regions. Another method
of closing the system is the variable tensor Eddington formal-
ism (VTEF). It solves, in a first step, the moment equations with
a fixed Eddington tensor and then computes the new tensor by
solving the transfer equation locally with a fixed source func-
tion (Gehmeyr & Mihalas 1993; Stone et al. 1992) or with an
approximate time dependence (Hayes & Norman 2003). If this
procedure is iterated until the value of the source converges, one
has a means of solving the transfer equation exactly. The VTEF
methods give better results than the flux-limited diffusion but are
much more complex because they require the local resolution of
the transfer equation at each time step.

We have chosen in this work to use a moment model to de-
scribe radiative transfer but with a more general closure relation
than the flux-limited diffusion, but one that is nevertheless an-
alytical. This model allows treatment of radiative transfer from
the diffusion to the free-streaming regime at, as we will show, a
relatively low cost and with good accuracy. Furthermore, since
we use a moment model, elastic scattering can be taken into ac-
count at almost no extra cost and with a reasonable accuracy,
which is not the case for the other methods described before. In
the next section, we present the moment model and our chosen
closure. Section 3 describe the numerical scheme and its actual
parallel implementation. The next section presents some multi-
dimensional tests to verify our code both on purely radiative
problems and on radiation hydrodynamics, as well as some per-
formance analysis. Finally, the last section presents a summary
and concluding remarks.

2. The physical model

For most problems and for the foreseeable future, solving the full
transfer equation in three dimensions is much too costly both in
time and memory. This problem is even greater if one wants to
couple the radiative transfer with hydrodynamics to study multi-
dimensional time-dependent problems. For this reason, we de-
cided to use a moment model that is much less expensive than the
full transfer equation and couples naturally to hydrodynamics.

The radiative transfer equation for the specific intensity is
(

1
c
∂
∂t + n · ∇

)
I(x, t; n, ν) = σνaB(x, t, ν) − σνI(x, t; n, ν)

+σνs
∫

4π
g(n, n′)I(x, t; n′, ν)dn′

(1)

where c is the speed of light,σνa the absorption coefficient,σνs the
scattering coefficient, σν = σνs + σ

ν
a the total cross section, B

the black body specific intensity, and g the scattering angular
redistribution function. n, r, and t are the angular, spatial, and
temporal variables.

Integrating Eq. (1) and Eq. (1) ×n over solid angle yields
{
∂tEνr + ∇ · Fνr = σνa(4πB − cEνr )
∂t Fνr + c2∇ · Pνr = −(σν − g1σ

ν
s )cFνr

(2)

where g1 is the first moment of the angular redistribution func-
tion. Here, Er, Fr, and Pr are respectively the radiative energy
density, the radiative energy flux, and the radiative pressure,
which are defined in terms of the zeroth, first, and second mo-
ments of the specific intensity as:

Eνr =
1
c

∮
4π

I(x, t; n, ν)dn
Fνr =

∮
4π

n I(x, t; n, ν)dn
P
ν
r =

1
c

∮
4π

nn I(x, t; n, ν)dn.
(3)

In this paper we concentrate on gray moment model, but the
work we present can easily be generalized to multigroup radia-
tive transfer (Turpault 2005). Assuming an isotropic scattering
(g1 = 0) and averaging the system (2) over frequency gives
{
∂tEr + ∇ · Fr = c(σParT 4 − σEEr)
∂t Fr + c2∇ · Pr = −c(σF + σs)Fr

(4)

where σP (respectivelyσE andσF) are the means of σνa weighted
by the Planck function (respectively the radiative energy and
flux) and σs the mean of the σνs weigthed by the radiative flux.
Therefore, if the frequency-dependent opacity coefficients (σνa
and σνs ) are known, as well as the underlying specific intensity
(which is the case in our model, see below), these means can be
computed precisely.

Unfortunately, the previous system is not closed since the
radiative pressure is not known. The pressure is then often ex-
pressed as Pr = DEr where D is the Eddington tensor. There are
many physical approximations that can be used to determine the
Eddington tensor. The simplest one is to use the Eddington ten-
sor given by the diffusion limit: D = I/3, where I is the identity
matrix. This corresponds to an isotropic radiation field. We also
chose an analytical Eddington tensor in order to keep the method
simple and cost competitive. But, as we will see, the underlying
photon distribution function (or equivalently the specific inten-
sity) is not isotropic, which makes the method applicable to a
wide range of conditions.

In order to close system (4), we want to express the
Eddington tensor, and therefore the underlying specific intensity,
only in terms of Er and Fr. It is then natural to suppose that the
direction of the radiative flux is an axis of symmetry of the local
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specific intensity. With this assumption, the Eddington tensor is
given by (Levermore 1984)

D =
1 − χ

2
I +

3χ − 1
2

n⊗ n (5)

where I is the identity matrix, χ is called the Eddington factor,
and n a unit vector aligned with the radiative flux.

We now need to specify the Eddington factor in order to
close the system. For that purpose we assume that the specific
intensity of our radiative transfer model is given by

B(ν, f , T ∗) =

2hν3

c2

⎡⎢⎢⎢⎢⎢⎣exp

⎛⎜⎜⎜⎜⎜⎝ hν
kT ∗

⎛⎜⎜⎜⎜⎜⎝1 − 2 − √4 − 3‖ f‖2
‖ f ‖2 f .Ω

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠ − 1

⎤⎥⎥⎥⎥⎥⎦
−1

(6)

where

T ∗ = 2
‖ f‖
(
−1 +

√
4 − 3‖ f‖2

) 1
4

√
‖ f ‖2 − 2 +

√
4 − 3‖ f‖2

(
Er
ar

) 1
4

and f = Fr
cEr

is the reduced flux. Note that by definition of Er

and Fr, we have ‖ f‖ ≤ 1, which means that radiative energy is
transported at most at the speed of light. This distribution can ei-
ther be obtained by applying a Lorentz transform to an isotropic
one (Levermore 1984) or by minimizing the radiative entropy
(Dubroca & Feugeas 1999). As we shall see, this simple assump-
tion for the specific intensity allows us to compute the Eddington
factor easily and analytically, but one has to keep in mind that
there might be some cases where assuming such a simplified ge-
ometry may be a very poor approximation.

In the M1 model (Dubroca & Feugeas 1999; Ripoll et al.
2001), the previous form of the specific intensity is used to com-
pute the Eddington factor, therefore closing system (4):

χ =
3 + 4‖ f‖2

5 + 2
√

4 − 3‖ f‖2
· (7)

We can see that this closure relation recovers the two asymptotic
regimes of radiative transfer well. In the free-streaming limit (i.e.
transparent media), we have ‖ f ‖ = 1, χ = 1 and D = n ⊗ n. On
the other hand, in the diffusion limit, ‖ f ‖ = 0, χ = 1/3 and
D = 1

3 I, which corresponds to an isotropic radiation pressure.
Equivalently, we can get these two limits directly with the spe-

cific intensity. When ‖ f‖ = 0, T ∗ =
(

Er
ar

) 1
4 and the distribution is

a Planck function, whereas when ‖ f ‖ = 1, it tends to a Dirac in
the direction of f .

3. Radiation transport in a static fluid

We first start by describing the interaction between a static fluid
and radiation. The fluid can only be heated or cooled and its evo-
lution is determined by the classical energy conservation equa-
tion with a source term characterizing the energy exchanges be-
tween the fluid and the radiation.

To ensure a good conservation of energy, we consider the
equation for the total energy (radiation plus matter) instead of
only matter energy. The system to be solved is:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂te + ∂tEr + ∇ · Fr = 0

∂tEr + ∇ · Fr = c(σParT 4 − σEEr)
∂t Fr + c2∇ · Pr = −(σF + σs)cFr

(8)

where e is the internal matter energy.

Fig. 1. Eigenvalues of the Jacobian matrix normalized by c.

3.1. The Riemann solver

To numerically solve the system above, we use a second-order
Godunov type algorithm for the hyperbolic subsystem formed
by the last two equations. The first equation is then integrated
using the flux obtained by the hyperbolic solver.

It is worth noticing that the wave speeds of this subsys-
tem, which mathematically correspond to the eigenvalues of its
Jacobian matrix, depend only on the norm of the reduced flux f
and on the angle θ of this flux with the considered interface.
These wave speeds describe the speed at which the information
is transported in the system, in the same way as the sound speeds
in a fluid at rest. Figure 1 illustrates the behavior of the eigenval-
ues normalized by c for some characteristic values of θ and f .

The left plot corresponds to a flux perpendicular to the inter-
face (θ = 0), which is similar to the mono-dimensional problem
(cf. Fig. 1 of Audit et al. 2002). In particular, for a unit reduced
flux (points A), the four eigenvalues are equal to c so the trans-
port limit is correctly described. The middle plot represents the
case where the flux is parallel to the interface. In that particular
case, two eigenvalues are always equal to zero and the two others
are equal in norms but of opposite sign. We can also notice that,
when the reduced flux is unity (points C), the four eigenvalues
are null. This is particularly interesting because it corresponds
to the physical characteristic speeds of a transverse flux and be-
cause it means that there is no transport perpendicular to the ra-
diative flux (cf. shadow test below). In all cases, we find that
for ‖ f ‖ = 0 (points B), the eigenvalues are {−c/

√
3, 0, 0, c/

√
3},

which are the proper propagation speeds in the diffusion limit.
These eigenvalues are then used in our Riemann solver, which
is an HLLE (Harten-Lax-van Leer-Einfeldt) scheme (Einfeldt
et al. 1991), see Appendix A for details.

3.2. The system solver

Our scheme is of order two in space. It means that all quantities
evaluated at the interfaces are reconstructed by using a linear
reconstruction in each cell. To insure numerical stability, the re-
sults presented in this paper used a minmod limiter, but another
limiter could easily be used instead. HERACLES has been im-
plemented in order to work in either Cartesian, cylindrical, or
spherical geometry (cf. Appendix B for the specific divergence
discretization in these geometries).

Noticing that the time step given by the Courant condition is
much smaller for radiation than for hydrodynamics, and since we
are most often interested in studying system over hydrodynami-
cal time scales, we need to develop an implicit algorithm for the
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radiation. The time step is then given by the explicit Courant
condition for hydrodynamics and by controlling the variation
of the variables for the implicit radiative solver. When doing
radiation-hydrodynamics, the smallest of these two time steps
is taken (see Appendix C for details).

We now have to solve a non-linear set of equations (the non-
linearities come from the Eddington factor and the T 4 terms).
This is done using a Raphson-Newton method, which can even-
tually be restricted to a single iteration if solving the linearized
system is enough. Either way, we have to invert a (2 + d)Nd ×
(2 + d)Nd matrix, where d is the dimensionality of the problem
and N the number of cells along a direction. The typical scale of
a simulation makes a direct inversion out of reach, so we need
to resort to an iterative inversion method. We have implemented
and tested two different methods that are relevant in different
physical situations, each one efficient in one of the two limits of
the transfer equation.

The Gauss-Seidel method (see Press et al. 1986, for further
details) is very efficient in the transport limit. For example, in
one dimension if we know a priori the direction in which the
information propagates, the algorithm converges theoretically in
only one iteration. To take advantage of this feature, we can also
use a sweep method that inverts the cells ordering at each it-
eration. All the tests performed show that this method is very
efficient both in time and in memory requirements. One could
be tempted to use the improved method called successive over-
relaxation (SOR), but it should be taken with care. Indeed, in
some cases, too large extrapolation could lead to a non physical
iterate that does not respect the condition ‖ f ‖ ≤ 1 and that breaks
down the iterations because of the M1 closure.

On the other hand, the generalized minimal residual
(GMRES) method (Saad & Schultz 1986), although more con-
straining in terms of memory requirement, is well-suited to the
diffusion limit in which case the matrix is diagonally dominant.
As each method dumps the residual in a different way, we also
implemented a coupled version for which we switch between
both methods. This version seems to have the best convergence
rate (cf. Fig. D.2 and Appendix D for further details).

For both inversion methods, we need a convergence crite-
rion. After trying various possibilities, we found that using the
residual of the adimensioned equations gave the best results. In
order to adimensionate the equation on the radiative flux, we di-
vide it by the radiative energy times the speed of light and not
by the radiative flux, which can be vanishing. In all the tests pre-
sented in this paper, the convergence is assumed to be achieved
when this residual is less than 10−5.

As our code is parallelized with the MPI library, we also
quantified the scaling of these two methods as the number of
processors increased. We found that both of them show good
scaling; however, the Gauss-Seidel algorithm is nearly per-
fect, whereas GMRES could have a loss in performance reach-
ing 20% (cf. Appendix D).

4. Radiation hydrodynamics in a moving fluid

We now generalize the previous analysis to a moving fluid. The
fluid evolution is determined by the classical conservation equa-
tions (mass, momentum, and energy) with source terms charac-
terizing the momentum and energy exchanges between the fluid
and the radiation.

In order to write the radiation hydrodynamics equations,
one has to choose the frame in which to evaluate the radiative
quantities: laboratory frame or comoving frame (i.e. the frame

moving with the fluid). The laboratory frame is convenient be-
cause the system remains globally conservative, which keeps
the hyperbolic part (i.e. the left-hand side) of the system sim-
ple (Mihalas & Auer 2001). But in this frame, interactions with
matter become complex because of Doppler and aberration ef-
fects that have to be incorporated in the source terms. On the
other hand, using the radiative quantities expressed in the co-
moving frame (Lowrie et al. 2001) adds non-conservative terms
to the equations. But the source terms remain unaffected by the
fluid motions.

In HERACLES, we have chosen to express radiative quanti-
ties in the comoving frame. The equations of radiation hydrody-
namics can then be written (Mihalas & Mihalas 1984) as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂tρ + ∇ · [ρu] = 0
∂t(ρu) + ∇ · [ρu ⊗ u + PI] = σF+σs

c Fr

∂tE + ∇ · [u(E + P)] = −c(σParT 4 − σEEr)
+σF+σs

c Fr · u
(9)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂tEr + ∇ · [uEr] + ∇ · Fr + Pr : ∇u

= c(σParT 4 − σEEr)
∂t Fr + ∇ · [uFr] + c2∇ · Pr + (Fr.∇)u

= −(σF + σs)cFr

(10)

where ρ is the matter density, u the velocity, E the total matter
energy, P and T the pressure, and the temperature of the ma-
terial. The previous equations are all Eulerian, but the radiative
quantities are evaluated in the frame comoving with the fluid.

The resolution of the previous system is split into three steps.
The first one updates the hydrodynamical quantities using a clas-
sical second-order Godunov type method. In the next step, the
radiative quantities are updated implicitly, as described in the
previous section. During this step, we use the velocity given by
the hydro solver. In the third and final step, the (σF + σs)F/c
source term is added to the gas momentum and total energy.
Since in most cases this term is rather small, it is not neces-
sary to treat it in the implicit system. This allows the reduction
of the number of equations to be solved implicitly and makes the
method more efficient:

STEP 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tρ + ∇ · [ρu] = 0
∂t(ρu) + ∇ · [ρu ⊗ u + PI] = 0
∂tE + ∇ · [u(E + P)] = 0

(11)

STEP 2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂te+ ∂tEr + ∇ · [uEr] + ∇ · Fr
+ Pr : ∇u = 0

∂tEr + ∇ · [uEr] + ∇ · Fr

+ Pr : ∇u = c(σParT 4 − σEEr)
∂t Fr + ∇ · [uFr] + c2∇ · Pr

+ (Fr.∇)u = −(σF + σs)cFr

(12)

STEP 3

{
∂t(ρu) = σF+σs

c Fr

∂tE =
σF+σs

c Fr · u. (13)

5. Verification tests

We performed a series of verification tests in order to better char-
acterize the accuracy of HERACLES and to compare it with
other codes. We reproduce here just the three that are particu-
larly relevant to astrophysical conditions. Appendix E compiles
others tests: beam test, pipe flow test, diffusion in a moving
fluid, and a comparison with simple analytical models of matter-
radiation coupling and Marshak wave.
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5.1. Shadow test

We performed a 2D shadow test similar to the one presented
in Hayes & Norman (2003). This test consists in lighting an
oblate spheroid clump in a cylinder L = 1 cm, R = 0.12 cm.
This spheroid is located on the symmetric axis and at the centre
of the box width: (zc, rc) = (0.5, 0). Its extension is (z0, r0) =
(0.1, 0.06).

Initially, the medium is at equilibrium with radiation i.e.
T0 = Tr = 290 K, and the density is homogeneous (ρ0 =
1 g cm−3) except for the clump with density ρ1 one thousand
times greater. The boundary of this region is smoothed, such as
ρ(z, r) = ρ0 +

ρ1−ρ0

1+exp∆ with ∆ = 10
[
( z−zc

z0
)2 + ( r−rc

r0
)2 − 1

]
. The

opacity of the medium is a function of density and temperature
σ = σ0( T

T0
)−3.5( ρρ0

)2 with σ0 = 0.1 cm−1. Initially, the mean

free path is then 10 cm in the cylinder and 10−5 cm in the clump.
At time t = 0, a uniform source is lighted at the left boundary
with Tr = 1740 K. The mean free path of a photon being much
smaller in the clump (by six orders of magnitude), a shadow
develops behind it. Until the light has crossed the clump, the
shadow should remain stable.

Figure 2 shows the radiative temperature for three runs per-
formed on a 280 × 80 grid. The first run (upper panel) was per-
formed solving the diffusion equation. It corresponds to the time
t = 0.1 s, which means 3×109 light crossing times. The other two
runs used the M1 model and differs by the method of computing
the eigenvalues. In the first case (middle panel), we chose not
to compute these eigenvalues and to set them arbitrarily equal
to ±c, whereas in the second run (lower panel), the eigenvalues
were computed. To compare with the results obtained in Hayes
& Norman (2003), we also plotted a radial profile of the radiative
temperature at the outer boundary (cf. Fig. 3).

One can see that there is no longer a shadow in the first case.
This is due to the fact that the diffusion equation is intrinsically
isotropic (P = 1/3EI). Therefore, the photons can go around the
obstacle immediately. In the two other cases, the shadow is bet-
ter preserved even in the simple case without computing eigen-
values. As could be expected, the first method is more diffusive
than the second one. The improvement obtained with the second
method is easy to understand when looking at the real eigenval-
ues (cf. Sect. 3.1). The proper treatment of the propagation speed
in the HLLE scheme is effective enough to inhibit large numeri-
cal diffusion between the shadowed and enlightened regions.

It is also interesting to compare the propagation speed of
the radiation between the diffusion approximation and the M1
model. For the diffusion, the characteristic length scales as the
square root of time: L ∝ √2αt where α is the diffusion coeffi-
cient. In our example, it means that radiation will cross the box
in a few 10−9 s, whereas in reality as radiation propagates in a
transparent medium, it goes at light speed and the crossing time
is 3.33 × 10−11 s. In the two M1 model simulations, we recover
this value.

5.2. Semi-transparent regime

5.2.1. Without scattering

We now present a test of HERACLES in a semi-transparent
regime where the validity of the physical model used to treat
the transfer has to be assessed. The following test can be seen
as a star with solar luminosity illuminating its surrounding disc
of gas at a distance approximately equal to 5 AU (which corre-
sponds to the Sun-Jupiter distance).

Fig. 2. Radiative temperature in the shadow test using the diffusion
equation (upper panel), M1 closure with fixed eigenvalues (middle
panel), and M1 closure with calculated eigenvalues (lower panel).

Fig. 3. Radial profiles of the radiative temperature in the shadow test
using the diffusion equation (dotted line), M1 closure with fixed eigen-
values (dashed line), and M1 closure with calculated eigenvalues (solid
line).

The simulation box, whose dimensions are Lx = 7.48 ×
1012 cm and Ly = 3.74 × 1012 cm, is at equilibrium, and at
t = 0 an incoming horizontal radiative flux equal to 5.44 ×
104 erg s−1 cm−2 is set. The box is filled with matter at den-
sity 10−15 g cm−3, while there is a vacuum on the outside. The
width of the box corresponds to seven mean free paths (the ab-
sorption coefficient is κ = 10−12 cm−1) and is sampled over
50 cells. This box is therefore a semi-transparent region, and
this run will test the accuracy of the M1 closure in this particular
transient regime. Figure 4 shows the isotherms obtained at equi-
librium by HERACLES and by a Monte-Carlo code (Dullemond
& Natta 2003).

The two results agree with good precision. The differences
could be due to the M1 model itself or to the slightly different
treatment of the boundary conditions. It is important to note that
the Monte-Carlo code solves the transfer equation exactly and,
therefore, the agreement between these two approaches is a very
good test to verify our model, both physically and numerically,
in this semi-transparent regime.

5.2.2. With scattering

Scattering is a phenomenon that plays an important role in many
astrophysical problems, such as in the interstellar medium where
light is scattered by dust grains. The radiative model used in
HERACLES allows us to treat scattering at no additional cost
and with reasonable accuracy.

By definition, the importance of scattering compared to ab-
sorption is quantified by the albedo:

ω =
σs

σF + σs
·
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Fig. 4. Left panel: HERACLES temperature map. Right panel:
isotherms for HERACLES (solid lines) and a Monte-Carlo code
(dashed lines).

When ω = 0, the medium is purely absorptive and, when ω = 1,
it is purely scattering. We have already seen (Eq. (4)) that the
scattering only appears in the equation on the flux and not in the
one on the energy. This is understood because elastic scattering
redistributes the photons without changing their frequencies.

We wanted to perform the same test as above but with scat-
tering; but to have results to compare with, we changed the scale
of the problem and borrowed initial conditions from the en-
gineering literature (Crosbie & Schrenker 1984). We consider
a two-dimensional box whose dimensions are Lx = τx0 and
Ly = 2τy0 where τx = (σF + σs)x and τy = (σF + σs)y are
the optical coordinates. This box is lit from left by a source at Ts
and the steady state is achieved.

We reproduce the results of only one test here, but several
others were performed and show good agreement, too. We took
τx0 = 1, τy0 = 5, and each direction is sampled over 100 cells.
We chose this particular test because it reproduces a rectangu-
lar medium for which the influence of albedo is very important.
Figure 5 shows the normalized radiative energy (Tr/Ts)4 isocon-
tours at five values 0.3, 0.4, 0.5, 0.6, and 0.7, for ω = 1 and
ω = 0.9. This figure is very similar to Fig. 12c of Crosbie &
Schrenker (1984). As expected, the isocontours penetrate deeper
in the domain when there is no absorption. Radiative energy is
greater when absorption exists.

The differences in terms of distance covered between our
results and those of Crosbie & Schrenker (1984) remain lower
than 5%. But for HERACLES, contrary to other methods, the
treatment of scattering is nearly free in terms of computational
cost. Indeed, in our case, taking scattering into account implies
slightly modifying the source term in the radiative flux equation,
but it does not change the number of operations needed at each
iteration of the implicit solver. On the other hand, when solving
the transfer equation, treating scattering implies computing an
integral over solid angles of the specific intensity, which is very
costly.

5.3. Radiative shocks

Radiative shocks might be encountered in various astrophysi-
cal systems: stellar accretion shocks, pulsating stars, interaction
of either jets or supernovæ with the interstellar medium, etc.
They are also reproduced in laboratory experiments, in a scaled
manner, in order to better understand their underlying physics
(Bozier et al. 1986; González et al. 2006).

There are two kinds of shocks depending on the initial fluid
speed: subcritical and supercritical (Mihalas & Mihalas 1984).
When the initial fluid speed is low, the matter temperature be-
fore the shock is much lower than the matter temperature be-
hind it and the transition is sharp. The radiative temperature
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τx/τx0
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0.5
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τ y
/τ
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0.6 0.40.7 0.5 0.3

Fig. 5. Normalized radiative energy isocontours for ω = 1 (solid lines)
and ω = 0.9 (dashed lines).

never overshoots the temperature behind the shock. Such shocks
are called subcritical. On the other hand, when the initial fluid
speed is high enough, the temperature on each side of the shock
are equal. The transition is smoother, the radiative precursor
is larger, and a matter temperature peak, which extends over
roughly one mean free path, appears just behind the shock. This
is a supercritical shock. The specific profiles and characteristics
of these shocks are the result of the strong coupling between
matter and radiation.

We consider a 1D homogeneous medium where the fluid
moves uniformly from right to left and the left boundary is a
wall. A shock is therefore generated at this boundary and trav-
els the box from left to right. The initial conditions are such
that Lx = 7 × 1010 cm (divided in 300 cells) and ρ = 7.78 ×
10−10 g cm−3. The gas is perfect with an adiabatic coefficient
of 7/5 and temperature at 10 K in equilibrium with radiation.
The medium is supposed to have a constant extinction coeffi-
cient: σ = 3.1 × 10−10 cm−1.

In all the above figures, we plot the temperatures as func-
tion of xi = x − ut to be able to compare our results with those
obtained in Ensman (1994) and in Hayes & Norman (2003).

5.3.1. Subcritical shocks

We perform a first test with an initial speed u = −6 km s−1 so
as to have a subcritical shock (cf. Fig. 6). As expected, radiation
and matter are not in equilibrium: temperatures differ upstream
and downstream. We perform two series of tests: one with the
M1 model and another one with a constant isotropic Eddington
tensor D = I/3 (also known as the P1 model). We can see that
in both cases the shock is located at the same place and the tem-
peratures behind the shock are very similar. However, some dif-
ferences appear in the precursor that have the greatest effect on
the radiative temperature. The radiative precursor appears larger
in the M1 model due to the M1 ability to deal with large re-
duced flux and anisotropic photon distribution function. In the
precursor, the reduced flux is very large with a value around 0.9.
But, in the P1 model, the reduced flux is limited by 1/

√
3. The

M1 model, in which the reduced flux can go from 0 to 1, is there-
fore more adequate for describing this region.

5.3.2. Supercritical shocks

After setting an initial speed to u = −20 km s−1, we obtain a
supercritical shock (cf. Fig. 7). In that case, the radiative precur-
sor is indeed larger than in the subcritical case. Radiative and
matter temperatures are equal on both sides of the shock, show-
ing that matter and radiation are in equilibrium in a larger zone.
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Fig. 6. Subcritical shock: gas (solid line) and radiative (dashed line)
temperatures at 1.7e4, 2.8e4, and 3.8e4 s obtained with the M1 model
(thick lines) compared to a constant and isotropic Eddington tensor
model (thin lines).

Fig. 7. Supercritical shock: temperatures (thick lines) of gas (solid line)
and radiation (dashed line) at 4.0e3, 7.5e3, and 1.3e4 s and the corre-
sponding reduced fluxes (thin lines).

The peak behind the shock in the matter temperature profile is
sampled over 4−5 cells, which means about three tenths of the
photon mean free path. In the precursor, matter and radiation are
in equilibrium over a large zone, implying a small reduced flux.
It is only at the end of the radiative precursor that the reduced
flux becomes large and that matter and radiation temperature dif-
fer significantly.

The ability of HERACLES to treat these radiative shocks
properly shows that our resolution method divided in three steps
(Eqs. (11)−(13)) does not alter the coupling between matter and
radiation.

6. Summary and discussion

We have presented a new, parallelized, three-dimensional ra-
diation hydrodynamics code called HERACLES. The radiative
transfer is solved using a moment method and the M1 closure re-
lation. We have shown that, even though approximate, this model
gives an accurate solution even when the radiation field presents
large angular anisotropies. The numerical scheme proposed for
integrating the M1 model is implicit and allows us to numerically
keep the correct physical properties of M1.

The tests performed and presented in this paper reveal the ac-
curacy of HERACLES both in the diffusion and transport limit,
and despite all the approximations, it compares well to codes

that solve the exact transfer equation. In particular, and in op-
position to flux limited diffusion, HERACLES can deal with
semi-transparent and free-streaming regions. The possibility of
easily treating scattering with reasonable accuracy is also an ad-
vantage to our method. Finally, it naturally couples to the mod-
ern high-resolution numerical schemes used for hydrodynamics,
and its reasonable numerical cost allows the treatment of three-
dimensional radiation hydrodynamics problems.

The tests presented in this paper show that HERACLES will
be very well-suited to studying various astrophysical problems
from the study of protoplanetary discs to the formation and frag-
mentation of dense cores in the interstellar medium. It has al-
ready been used to study and interpret multidimensional effects
in laboratory astrophysics radiative shocks experiments carried
out at the PALS laser (González et al. 2006). And a study of the
interaction of molecular jets with the interstellar medium is in
preparation (González et al. 2007).

Some further developments of the code are also envisaged.
The most useful for astrophysical applications are implementa-
tion of a multigroup M1 model and coupling to an AMR grid to
obtain a very high resolution while remaining cost competitive.
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Appendix A: The HLLE scheme

We consider the system:{
∂tEr + ∇ · Fr = c(σParT 4 − σEEr)
∂tFr + c2∇ · Pr = −(σF + σs)cFr.

(A.1)

Noting downU the vector of variables and F the corresponding
flux vector, this system can be written as

∂tU + ∂xF (U) + ∂yG(U) + ∂zH(U) = S(U).

First, we have to compute the minimum and maximum eigenval-
ues (respectively λmin and λmax) of the Jacobian matrix J(U) =
∂F (U)
∂U . Then, the intercell fluxes are computed using the HLLE

scheme

Fi+ 1
2
=

λ+
i+ 1

2

Fi − λ−i+ 1
2

Fi+1 + λ
+

i+ 1
2

λ−
i+ 1

2

(Ui+1 −Ui)

λ+
i+ 1

2

− λ−
i+ 1

2

(A.2)

where the index i + 1
2 denotes the interface between cells i and

i + 1, λ+ = max(0, λmax) and λ− = min(0, λmin).
The computation of these eigenvalues is rather time-

consuming because we need them at each iteration in a time step
and at each interface of the mesh. However, since they only de-
pend on two parameters (i.e. ‖ f ‖ and θ), they can be tabulated
easily. We therefore decided to compute them once for a set of θ
and f and to interpolate the value needed. This method performs
well because the eigenvalues have a smooth behavior. The max-
imum difference obtained between the exact eigenvalues and the
interpolated ones never exceeds one percent using a 100×100 in-
terpolation grid.

Appendix B: The geometry

In one Cartesian dimension, noting down the time index n and
n + 1, the cell index i, and the interfaces indexes i ± 1/2, the
discretized equations we must solve are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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i −en

i
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i −En
i

∆t ∆Vn
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(B.1)

But HERACLES is able to work in either Cartesian, cylindrical,
or spherical geometry, and in the two latter cases, the divergence
involves terms due to geometrical effects. These terms are writ-
ten in the Table B.1 where P corresponds to the row vectors of
the tensor P, which is the radiative pressure or the total hydrody-
namical pressure: PI + ρu ⊗ u.

One should take particular care in the discretization of these
terms in order to check three conditions. First, the discrete di-
vergence of a constant must be null. Second, when r tends to
infinity, the geometry effects vanish and one should recover the
Cartesian divergence. Finally, when the resolution increases (i.e.
dr tends to zero), the discrete scheme should not diverge. In
order to verify these three conditions in HERACLES, we
then discretize the “nabla” terms with the classical formula∫

V
∇PdV =

∫
S

PdS = ΣPS S . For the derivative terms, we
use a discretization over the direction considered involving in-
terface values:

∫
V
∂rPdV =

Pi+1/2−Pi−1/2

ri+1/2−ri−1/2
V and

∫
V

1
r ∂θPdV =

Pi+1/2−Pi−1/2

ri(θi+1/2−θi−1/2) V . As for the additional terms, they are cell-centered.

This discretization ensures us that the momentum in the hy-
drodynamics equations is conserved. One can notice that the ad-
ditive centered terms drop naturally when the diffusion limit is
reached, because in such case the tensor of radiative pressure is
isotropic: Prr = Pθθ = Pφφ.

Appendix C: Time step control

The time step in HERACLES is the smallest of the hydrodynam-
ical and the radiative time steps. The hydrodynamical time step
is simply given by a Courant condition using a Courant factor
of 0.8. For the radiation, we compute two time steps. An explicit
one, also given by a Courant condition, and an implicit one con-
trolled by the variation in the variables involved in the implicit
step (gas energy, radiative energy, and radiative flux). We set a
limit on the allowed variation for these variables during a time
step, and the implicit time step is increased (resp. lowered) if the
actual variations are lower (resp. higher) than this limit. The fi-
nal radiative time step is the implicit one if it is at least 10 times
greater than the explicit one. This last condition ensures that im-
plicit integration is done only when it is profitable.

Appendix D: Performances

We present here the performances obtained with HERACLES.
The code is parallelized with the MPI library in order to run
on a large parallel supercomputer. The parallelization scheme
used is a classical domain decomposition. This splitting ensures
a good equilibrium of charge between all the processors. The
communications at the boundary between each domain always
take a negligible time in all the tests we have done.

To test the performances, we ran different simulations over 1,
16, 36, 64, and 121 processors such that each processor worked
on 150×525 cells. In Fig. D.1, we plot the CPU time per proces-
sor and per cell normalized by the Gauss-Seidel CPU time with
one processor. We can clearly see that the Gauss-Seidel method
has a nearly perfect scaling, whereas the GMRES method has
a more complex behavior with a loss of performance that can
reach 20%. This is due to the fact that the GMRES algorithm
has a more complex communication scheme and is therefore
more sensitive to small load unbalances. We can also see that one
GMRES iteration nearly corresponds to three Gauss-Seidel iter-
ations in terms of CPU time. Another drawback of the GMRES
method is that it is very demanding in terms of memory space.
In conclusion, the GMRES method is appropriate if it signifi-
cantly accelerates the convergence (at least by a factor of 3) and
if memory is not a crucial issue.

The convergence rate of the above algorithms can vary sig-
nificantly from one test to the next. Figure D.2 shows the residual
during one time step of a Marshak wave test. We can see that the
Gauss-Seidel method in this particular test is far much efficient
than the GMRES method. We have performed another Marshak
wave test with higher opacities in order to be in a more diffusive
regime. In that case, the results are inverted, with the GMRES
method better than Gauss-Seidel. We recover the characteris-
tics discussed in Sect. 3.2: Gauss-Seidel is more efficient in the
transport limit and GMRES in the diffusion limit. However, we
empirically discovered that coupling the two methods gives the
best results. We first performed a few iterations with one method
and then gave this result as initial guess to the other one. At the
switch the residual drops by about one order of magnitude, due
to the fact that for each method the first iterations are more ef-
ficient than what follows. Pushing this idea further, we tried the



M. González et al.: HERACLES a new RHD code, Online Material p 3

Table B.1. Divergence in the three different geometries handled by HERACLES.

Cartesian Cylindrical Spherical

∇ · Px ∂rPrr + ∇θ,z · Pr +
Prr−Pθθ

r ∂rPrr + ∇θ,φ · Pr +
2Prr−Pθθ−Pφφ

r

∇ · P = ∇ · Py 1
r∇ · (rPθ) 1

r ∂θPθθ +
1
r∇r,φ · (rPθ) + cot θ

Pθθ−Pφφ
r∇ · Pz ∇ · Pz

1
r sin θ∇ · (r sin θPφ)

Fig. D.1. Normalized CPU time as a function of the number of proces-
sors for simulations with a constant cell number per processor.
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Fig. D.2. Residual in a Marshak wave test for the five following meth-
ods: 1. purely Gauss-Seidel (GS) iterations, 2. purely GMRES itera-
tions, 3. 30 iterations of GS before GMRES, 4. 50 iterations of GMRES
before GS, and 5. yoyo with a switch between GS and GMRES every
10 iterations.

“yoyo” method, which consists in switching back and forth be-
tween the two methods every 10 iterations. In all the tests we
have done, this method was the most efficient (if the memory
needed by GMRES can be afforded), even though the optimal
number of iterations between each switch can vary somewhat.

In all our simulations, the CPU time needed for the radia-
tive transfer was between 3 and 10 times the time taken by the
hydrodynamics depending on the variation in the radiative quan-
tities during one hydrodynamical time step and on the conver-
gence criteria used. The memory needed by the radiative trans-
fer is equal to the memory needed by the hydrodynamics if one
uses the GS solver but it is higher when using the GMRES al-
gorithm (depending on the size of the Krylov space used to find
the solution).

Fig. E.1. Radiative energy for the beam test: eigenvalues set to ±c (left)
or calculated (right).

Fig. E.2. Horizontal cut in Fig. E.1 at the middle height. Solid line cor-
responds to calculated eigenvalues and dashed line to fixed ones.

Appendix E: Extra verification tests

E.1. Beam test

In the shadow test, the numerical diffusion is limited because
radiation propagates along mesh axis. In order to quantify this
efect, we performed a test where a narrow beam of radiation
propagates with a certain angle (cf. Richling et al. 2001).

For this test, we computed a 128 × 128 mesh that covers the
domain x = [−1, 1] and y = [−1, 1]. The beam is introduced
at x = −1 between y = [−0.875,−0.750] with an angle of 45◦
and with a unit reduced flux. Initially, the temperature is at T =
Tr = 300 K and the beam is at T = Tr = 1000 K. There is
no scattering, absorption, or emission: σ = 0. The beam should
therefore cross the medium without dispersion.

If we plot a profile of the radiative energy, the beam is ini-
tially a step sampled over 8 cells. In the stationary state, we can
see (cf. Fig. E.2) that, for fixed eigenvalues, the FWHM approx-
imately corresponds to 30 cells. When the eigenvalues are com-
puted, this FWHM falls to only 24 cells. The numerical diffu-
sion has been therefore reduced by 20%. This test shows that
the eigenvalue computation keeps the numerical diffusion under
control even in a direction not along mesh axis.

E.2. Pipe flow test

This test, known as the pipe flow test (Gentile 2001), is not an
astrophysical one, but it treats all the physics underlying the ra-
diative transfer. It is very demanding because it involves at the
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Fig. E.3. Sketch of the geometry for the pipe flow test. The simulation
box extends from r = 0 to r = 2 and from z = 0 to z = 7. The pipe can
be divided in three regions. The first one is a cylinder with a radius of
0.5 which extends from z = 0 to z = 2.5 and from z = 4.5 to z = 7. The
second is a cylinder with a radius of 1.5 extended from z = 2.5 to z = 3
and from z = 4 to z = 4.5. Finally the third one is a cylindrical shell
with inner radius r = 1 and outer radius r = 1.5 which extends from
z = 3 to z = 4. The five characteristic points are A(r = 0 ; z = 0.25),
B(0 ; 2.75), C(1.25 ; 3.5), D(0 ; 4.25), E(0 ; 6.75).

same time regions of free-streaming, of diffusion, shadows, and
the results depend strongly on the description of the heating and
reemission of the walls.

In this problem, a cylindrical section of dense and opaque
material is embedded in less dense and less opaque material (the
pipe), which is itself embedded in a cylinder of the dense and
opaque material. The geometry is sketched in Fig. E.3.

Both materials have a heat capacity cv = 1015 erg g−1 keV−1,
but the densities and opacities differ:
⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ = 10 g cm−3 and σ = 2000 cm−1 outside the pipe

(dashed region in Fig. E.3)
ρ = 0.01 g cm−3 and σ = 0.2 cm−1 inside the pipe.

The time unit is such that c = 300. The end of the simulation is
reached when tend = 100. The simulation box is sampled over
400 × 1400 cells.

Initially, the medium is at equilibrium T = Tr = 0.05 keV
everywhere. At time t = 0, a uniform source with Ts = 0.5 keV
is lighted on at the left side of the pipe.

In Fig. E.4, the problem is analyzed with the matter temper-
ature at the five characteristic points A, B, C, D, and E. Points A
and B are located in the pipe before the obstacle. Their temper-
ature therefore depends on the code’s ability to recover the free-
streaming limit. These two plots show good agreement with the
results published in Gentile (2001). The next three points depend
closely on the physical equations solved. Indeed, in a diffusion
model, photons would go round the obstacle very easily since the
photon distribution function is isotropic, whereas in fact the pho-
tons have to be absorbed by the obstacle, which is heated, and
then reemitted from the heated walls. This allows photons ini-
tially moving horizontally to go upward and then to go round the
obstacle. For these three last points, our results are qualitatively
good, although quantitatively some discrepancies exist: point E
is heated faster, point C is heated a little bit later, etc. Only few
people perform this test, so there are not many results to com-
pare with. Nevertheless, we see that our model, although simple,
compares well to exact codes with Monte-Carlo techniques.

E.3. Diffusion in a moving fluid

This simple radiation hydrodynamics test compares diffusion in
a moving fluid and in a fluid at rest. We use a Cartesian grid
of 100 × 100 cells. At t = 0, we initialize a Gaussian pulse of
energy at the center of the simulation box. First, we perform
a test without radiation. The energy radiation is advected as a
passive scalar in the fluid moving along the diagonal. Secondly,
we look at a static diffusion: we turn on both hydrodynamics and

D EBA C

Fig. E.4. Matter temperature at the five characteristic points.

Fig. E.5. Radiative energy for diffusion test: pure advection, static dif-
fusion, diffusion in a moving fluid.
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Fig. E.6. Radiative energy for pure advection: initial pulse (dashed line)
and pulse after crossing one eighth of the box (solid line). The pulse is
recentered by a factor u∆t.

radiation, but the fluid is at rest u = 0. Finally, we conjugate the
two precedent tests to look at dynamical diffusion: a Gaussian
pulse is initialized in a moving fluid. This test will characterize
the relative importance of advection and diffusion terms and will
verify their coupling.

Figure E.5 shows the radiative energy in these three cases
whereas Figs. E.6 and E.7 show slices with the pulse always re-
centered by a factor u∆t. In the first case, the Gaussian pulse
should be advected without being affected at all. We first ver-
ify that the advection speed is correct because the two peaks are
centered at the same position. Then we can see that the pulse
is slightly diffused (the maximum has decreased by 8% after
crossing over 12 cells). This diffusion could easily be lowered
by using a more aggressive slope limiter. When we turn on hy-
drodynamics, all the pulses are again properly centered, which
means that advection is still done at the right speed. Moreover,
the diffusion of the radiative pulse in the moving and in the static
fluids is very similar (the maximum discrepancy is less than 2%).
Therefore, our treatment of the comoving terms preserves the
good accuracy of the advection scheme and there is no problem
in coupling advection with diffusion terms.
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Radiation with and without advection
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Radiation with and without advection
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Fig. E.7. Radiative energy for: initial pulse (dotted line) and pulse at the
end of the simulation with advection (dashed line) and without (solid
line). Right panel is a zoom. All the pulses are recentered by a fac-
tor u∆t.
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Fig. E.8. Gas energy versus time in the matter-radiation coupling test.
The left (resp. right) subfigure corresponds to an initial matter energy
of 102 (resp. 1010) erg cm−3. The thick solid line corresponds to the an-
alytical solution, and squares (resp. diamonds, stars, triangles, crosses)
to HERACLES simulation with a constant time step equal to 0.1 τ(e)
(resp. 1, 10, 100, 105). Each point corresponds to a time step of the
simulation.

E.4. Matter-radiation coupling

We now present a test of the matter-radiation coupling. If the
radiation energy density is much higher than the gas one, the
matter-radiation coupling can be solved analytically by assum-
ing a constant radiative energy (Turner & Stone 2001). The
matter energy then obeys the following equation where Er is
constant:

∂te = −σc(arT
4 − Er). (E.1)

The previous equation can be integrated by noticing that:
∫ x1

x0

dx
x4−a4 =

1
a3

(
− 1

2

(
tan−1( x1

a ) − tan−1( x0

a )
)

+ 1
4 log( a−x1

a−x0
) − 1

4 log( a+x1
a+x0

)
)
.

(E.2)

We have solved this matter-radiation coupling problem with
HERACLES using various time steps. The time step was kept
constant in units of τ(e) = e

σc(arT 4−Er )
. A time step equal to τ

corresponds to a variation in e of about 100% at each time step.
We did two tests with a radiative energy Er =

1012 erg cm−3 (i.e. Trad = 3.39 × 106 K), an opac-
ity σ = 4 × 10−8 cm−1, and a heat capacity cv =
20.79 erg cm−3 K−1. In the first one, the initial gas en-
ergy was 102 erg cm−3 (i.e. Tgas = 4.81 K < Trad), and in the
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Fig. E.9. Marshak wave test: comparison of Heracles results (radiative
energy with a solid line and gas energy with a dashed line) with the
Su & Olson (1996) solution (radiative energy with stars and gas energy
with crosses) at three different times.

second one 1010 erg cm−3 (i.e. Tgas = 4.81 × 108 K > Trad). The
corresponding results are plotted in Fig. E.8. We can see that if
the variation of the energy is well-sampled (i.e. the time step is
less than τ), then the analytical solution is properly reproduced.
If the time step is large compared to the coupling time, the shape
of the energy variation moves away from the analytical solution
(as could be expected) but the proper value for the equilibrium
is nevertheless found.

E.5. Marshak wave test

A Marshak wave is the propagation of a radiation heating front
in a cold slab (Marshak 1958). An analytical solution of the
Marshak wave problem was proposed by Su & Olson (1996) in
the context of the diffusion equation and assuming that the gas
heat capacity is proportional to T 3 (i.e. cv = αT 3). We compared
the solution obtained by HERACLES to their solution for the
case ε ≡ 4ar/α = 0.1.

Figure E.9 represents the radiative and gas energies (normal-
ized by their boundary values) obtained by HERACLES and by
Su & Olson (1996) at times given by τ ≡ εcσt = (0.1, 1, 10) (cf.
their Fig. 3). At early times and at the foot of the Marshak wave,
we can see large differences between the two methods. This was
to be expected since in this region the radiation is instead in the
transport regime and the diffusion approximation is then differ-
ent from our M1 model. At later times and inside the wave, the
reduce flux is much smaller (i.e. the radiation is almost in the
diffusion regime) and, accordingly, the results given by M1 are
in good agreement with the analytical solution.


