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The idea of signal amplification is ubiquitous
in the control of physical systems, and the ul-
timate performance limit of amplifiers is set by
quantum physics. Increasing the amplitude of
an unknown quantum optical field, or more gen-
erally any harmonic oscillator state, must intro-
duce noise1. This linear amplification noise pre-
vents the perfect copying of the quantum state2,
enforces quantum limits on communications and
metrology3, and is the physical mechanism that
prevents the increase of entanglement via local
operations. It is known that non-deterministic
versions of ideal cloning4 and local entanglement
increase (distillation)5 are allowed, suggesting the
possibility of non-deterministic noiseless linear
amplification. Here we introduce, and experi-
mentally demonstrate, such a noiseless linear am-
plifier for continuous-variables states of the opti-
cal field, and use it to demonstrate entanglement
distillation of field-mode entanglement. This sim-
ple but powerful circuit can form the basis of
practical devices for enhancing quantum tech-
nologies. The idea of noiseless amplification uni-
fies approaches to cloning and distillation, and
will find applications in quantum metrology and
communications.

A quantum-noise-free amplifier, if it could be con-
structed, could aid a wide variety of quantum-enhanced
information protocols, primarily through its ability to
distill and purify continuous-variable entanglement. This
type of entanglement is characterized by nonclassi-
cal correlations between the field quadrature, or posi-
tion and momentum, variables of two or more subsys-
tems. Such correlations represent a nonlocal resource
for quantum information protocols such as continuous-
variable teleportation6, dense coding7,8 and quantum key
distribution9,10. The ability to distill and purify en-
tanglement is essential for increasing the range of these
protocols. Additionally, this type of field-mode entan-
glement is the basis for many approaches to quantum-
enhanced metrology14.

It is known to be impossible to perform deterministic,
noiseless linear amplification. We therefore consider a
device that performs the transformation

|α〉〈α| → ρ(α) = P |gα〉〈gα|+ (1− P )|0〉〈0|. (1)

where g is a real number obeying |g| > 1 and |α〉 is a
coherent state of the field or oscillator with complex am-

plitude α. We assume a heralding signal identifies which
term in the output density operator has been produced
by any particular run of the device. Thus, with proba-
bility P , noiseless amplification of the input is achieved.
Without loss of generality, we assume that when ampli-
fication fails the output state is the vacuum (this can
be achieved with a triggered shutter, for instance). The
linearity of quantum mechanics requires that the distin-
guishability of two quantum states cannot be increased
by any transformation.

Consider the input states |0〉 and |α〉. We require

|〈0|α〉|2 ≤ 〈0|ρ(α)|0〉 = P |〈0|gα〉|2 + 1− P (2)

The values of the overlaps are |〈0|α′〉|2 = e−|α
′|2 , and

thus P ≤ (1−e−|α|2)/(1−e−|gα|2). We conclude that pro-
vided P is bounded in this way, non-deterministic noise-
less linear amplification is physically allowed. We now
present a heralded optical scheme that approximately re-
alizes Equation (1).

The circuit for realizing noiseless linear amplification
(NLA) is shown schematically in Fig. 1a. The optical
mode to be amplified is divided evenly between N paths
using a 2N -port beam splitter. Each path then undergoes
an amplification stage (Fig. 1b), which implements a gen-
eralization of the quantum scissors of Pegg et al.11 using
a single photon ancilla and photon counting. The am-
plification is successful if exactly one photon is counted
at exactly one of the conditioning detectors. The N
paths are then recombined interferometrically with an-
other 2N -port splitter. In the absence of the conditional
amplifier stages “A”, all the input light would emerge
in the original mode. For the amplification scheme, suc-
cessful operation of the device is heralded when photon
counters on the other N − 1 output modes register no
counts, given that each amplifier stage “A” also yielded
a heralding signal.

We first calculate the effect of this device on an in-
put coherent state, |α〉. The 2N -port splitter divides the
coherent state into the product state |α′〉|α′〉|α′〉..., with
α′ = α/

√
N . Hence we can consider the effect of each

amplifier stage separately. The action of the generalized
quantum scissor is to truncate the coherent state to first
order and simultaneously amplify it. Specifically, detec-
tion of a single photon at output port D2 and zero pho-
tons at output port D3, or detection of a single photon
at output port D3 and zero photons at output port D2,
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FIG. 1: Design and realization of the noiseless linear amplifier. a. Schematic of the full amplifier. The 2N -port splitter
evenly divides the input beam into N paths. The second 2N -port splitter coherently recombines the beams, with success if no
light exits through the other ports, as determined by photon counters. The interaction labelled “A” is an amplifier stage. b.
Conceptual diagram of the quantum circuit for testing an amplifier stage, shown in the dashed box marked “A”. The amplifier
stage is embedded in an interferometer (with phase shifter φ) so that its phase noise properties can be tested. The roles of
the various tunable beam splitters (δ, σ, η, τ) are explained in the text. κ is usually set to the 50 : 50 condition, except during
calibration (see Supplementary Information). Inteference of the input with an ancilla photon, and photodetection, produces
the amplification, with success heralded by either a single photon detection at D2 (and none at D3) or vice versa. The dotted
beam splitter (ε) in the ancilla input models loss in that mode (see Supplementary Information) c. Experimental realization
of the circuit in b, using polarization modes. Half wave plates and polarizing beam splitter cubes implement the tunable beam
splitters, and a tilted quarter wave plate implements the phase shifter. The ancilla is a single photon, and the input state is
generated from a single photon.

produces the transformation

|α′〉a′ → e−
|α′|2

2

√
η

2
(1±

√
1− η
η

â†α′)|0〉 (3)

where the plus (minus) sign corresponds to the former
(latter) case. In the latter case, the phase flip can be
corrected by feedforward to a phase shifter. In the origi-
nal quantum scissors, η = 0.5 and the truncated state is
not amplified11. A sucessful coherent recombination of
the modes at the second 2N -port splitter produces

e−
|α|2

2 η
N
2 (1 +

√
1− η
η

â†
α

N
)N |0〉 (4)

In the limit of large N (i.e. N � g|α|),

lim
N→∞

(1 + gâ†
α

N
)N |0〉 = egâ

†α|0〉 (5)

where g =
√

(1− η)/η. We recognize the RHS of Equa-
tion (5) as being proportional to a coherent state with

amplitude |gα|. Thus, in the large N limit, the device of
Fig. 1 effects the transformation

|α〉 → η
N
2 e−

(1−g2)|α|2
2 |g α〉 (6)

For η < 1/2 we have g > 1, and hence we achieve noise-
less linear amplification as per Equation (1). The quan-
tity g is the amplitude gain and g2 is the intensity gain.
The probability of success is given by the norm of the
state, P = ηNe−(1−g2)|α|2 , which is state dependent and
also decreases with increasing N . This indicates that the
cost of a better approximation to the amplified state is
reduced probability of success.

The key component of the noiseless linear amplifier
of Fig. 1a is the single amplifier stage shown schemati-
cally in Fig. 1b, which we experimentally implemented
using linear optics and photon counting. Theoretically,
an amplifier stage is intended to work with an input state
|α′〉, where |gα′| � 1. Any ensemble of coherent states
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with small enough amplitude will also be linearly ampli-
fied, and within this regime this single stage of the NLA
should act as desired for the full device. The amplifi-
cation stage should also work independent of the phase,
that is, for a state of unknown phase. Thus we can test
our device using a uniform incoherent mixture, over all
phases, of an ensemble of coherent states of fixed am-
plitude, where this amplitude can be varied for different
runs of the experiment.

We generated states of the form ρin = (1 − k)|0〉〈0| +
k|1〉〈1|, where the attenuation is chosen such that k =
|α′|2, by attenuating one arm of a weak, polarization-
unentangled spontaneous parametric downconversion
(SPDC) source. Such a state ρin has a theoretical fi-
delity of > 0.9998 with the desired mixed coherent state
when the average photon number is 0.02 in both cases.
We used the other photon from the SPDC pair as the an-
cilla photon that drives the amplifier stage. This photon
plays a dual role of heralding both the presence of the
mixed coherent state input and the success of the NLA.

The experimental setup for an amplifier stage is shown
in Fig. 1c. The beam splitters of Fig. 1b are implemented
with half wave plates (HWPs) and polarizing beam split-
ter cubes, allowing tunablity of η and the other splitting
ratios. We implement an additional splitting on the input
(controlled by the δ HWP setting) to prepare ρin. The
entire amplification stage is embedded in an interferome-
ter, which is implemented using polarization modes, with
a tuneable birefringent phase shifter φ. By altering σ and
τ , the amplifier stage can be operated with interferomet-
ric analysis (with tuneable interferometer beam splitting
ratios) or without it.

In order to verify that amplification has occurred, we
used photon counting (see Methods Summary) to com-
pare the measured average photon number at the input
and output of the amplifier stage. Table 1 shows the mea-
sured intensity gain, g2, as a function of the gain control
reflectivity η, compared with the theoretical values, when
|α′|2 = 0.02.

The values for the gain agree well with the theoreti-
cally expected values. The fact that the gain decreases
slightly—compared with the expected value—as η de-
creases is in accord with a simple theoretical model incor-
porating preparation inefficiency of the single photon an-
cilla (see Supplementary Information). We checked the
linearity of the amplifier’s output, for a gain setting of
g2 = 3, over a range of input sizes |α′|2 spanning two
orders of magnitude, as shown in Fig. 2a. At low pho-
ton numbers, we have confirmed the linearity of the am-
plifier. At larger photon numbers, the gain begins to
decrease. This is a combination of the effect of ancilla
photon preparation efficiency (mentioned earlier) and a
progressive failure of the condition |gα′| � 1. Thus the
amplifier stage amplifies as expected. In contrast, it is
simply impossible for a deterministic amplifier to pro-
duce linear gain for this range of input states, because
of the unknown phase. We emphasize that there is no
pre-existing interferometric phase relation between the

a

b

FIG. 2: Gain and coherence measurements for an am-
plifier stage. a. Linearity of the amplifier stage. For low in-
put photon number |α′|2, the output is linear, as shown by the
flat measured gain values (squares). For larger inputs, there
is progressive failure of the condition |gα′| � 1 on which the
stage design is based. The quantity (1−η)/η = 3 is shown by
the horizontal line. b. High-visibility fringes resulting from
interference of a reference beam with the amplified input state
(|α′|2 = 0.02, g2 ≈ 4). The phase of the fringe depends on
which conditioning detector fires, with a phase difference of
180◦ between the two cases. The squares represent measured
data, and the curves are least-squares fits.

outputs of the SPDC (see Supplementary Information).
In order to verify that the gain process is coherent and

does not add noise, we embedded the amplifier stage in
an interferometer. Although our input state is mixed, we
can derive a phase reference beam by splitting off part
of the state at σ. (This is very similar to a “coherent
state” that is derived from a laser beam—which is actu-
ally a mixture of coherent states of different phases12—
where a local oscillator is usually obtained by splitting
off part of the beam.) We set σ = 1 − η such that the
power in the arms of the interferometer was balanced
when the amplification occurred, but not in the absence
of amplification. If the conditional amplification is per-
fect, then no noise is added and because the two arms are
balanced in power—ideally a fringe visibility of 1 should
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η g2 (exp) g2 (thy) V (exp) V (thy, linear)

1/3 2.05± 0.06 2 0.929± 0.024 0.675

1/4 2.97± 0.08 3 0.910± 0.029 0.514

1/5 3.85± 0.10 4 0.936± 0.022 0.419

TABLE I: Measured gains and interferometric visibilities, for
several settings of η and for |α′|2 = 0.02. The measured inter-
ferometric visibilities are compared with the theoretical values
for a standard linear amplifier with the same gain and in-
put photon number, with the same interferometric configura-
tion. The higher visibility of the experimental demonstration
is evidence of low-noise coherent operation of the amplifica-
tion stage, whereas a standard amplifier would add significant
noise.

be attainable. In contrast, ordinary linear amplification
would introduce phase noise which would decrease the
visibility significantly. Our measured interference visibil-
ities are compared with theoretical values for ordinary
linear amplification Table 1. The fringe corresponding to
η = 1/5 (nominally g2 = 4) is shown in Fig. 2b. Note
that the phase of the amplified light is flipped, depending
on which conditioning detector fires, as predicted theoret-
ically. We also confirmed—by varying the interferometer
splitting ratio τ—that the visibility is indeed optimized
when the appropriate gain is introduced (see Supplemen-
tary Information). This process is a double-check that
effectively tests the amplifier stage’s gain and coherence
in one step.

Our results can also be seen as an in-principle demon-
stration of distillation of field entanglement. We can es-
timate the concurrence of the field entanglement in the
interferometer, with and without the amplification, using
the method of Chou et al.15. As in that experiment, we
restrict ourselves to the {|0〉, |1〉} photon number sub-
space for each arm. Conditional on a heralding signal
the amplifier stage, the form of the state in the interfer-
ometer is ρ = p00|00〉〈00| + p10|10〉〈10| + p01|01〉〈01| +
d|10〉〈01| + d∗|01〉〈10| + p11|11〉〈11|. The concurrence is
given by c = 2 max [|d| − √p00p11, 0] where |d| = V/2 is
given by the visibility of the interferometric fringe.

We compare the measured post-amplification concur-
rence (cout) with the theorectical concurrence (cin) for
the interferometer input configuration—this provides the
most stringent test. Setting p11 = 0 and using the
known values of |α′| and σ = 1 − η = 4/5, we deter-
mine cin = 0.08. Using the number-basis expansion of
coherent states, and Equation (6), it is straightforward
to show that the effect of the NLA (in the large N limit)
on an incident number state is the transformation

|n〉 → η
N
2 gn|n〉 (7)

For a state containing only zero or one photon com-
ponents, this expression is true for a single amplifier
stage (N = 1). We therefore expect p10 ≈ p01 af-
ter the ampifier, with a commensurate increase in |d|.
We estimate the maximum (worst-case) value of p11 =

(2.9± 0.9)× 10−4 from the calculated accidental coinci-
dence rate due to 4-photon SPDC events. Together with
the measured visibility V = 0.936± 0.022 and the value
for |gα′|2, this leads to cout = 0.118 ± 0.006, which is
greater than cin. In fact, the increase in concurrence is
probably larger, as we have overestimated the contribu-
tion of p11 to cout and underestimated its contribution to
cin.

The principle demonstrated here directly transfers to
the distillation of the more general, and widely utilized,
Einstein-Podolsky-Rosen (EPR) field entanglement16.
The transformation produced by the NLA operating on
one arm of an EPR (or two-mode squeezed) state is given
in the number basis by

|EPR〉 = K

∞∑
n=0

χn|n〉|n〉 → K ′
∞∑
n=0

χngn|n〉|n〉 (8)

where the initial strength of the entanglement is given
by the the parameter χ, with χ = 0 corresponding to no
entanglement and χ = 1 corresponding to maximal en-
tangement. We see that the transformed state still has
the form of an EPR state, however the effective value of
the entanglement has changed to χ′ = gχ. For |g| > 1 the
entanglement has been increased, i.e. a more entangled
state has been distilled. Moreover, it can be shown that
the NLA can distill, and purify decohered, EPR entan-
glement that has experienced loss, and that high fidelity
results can be obtained with only N = 2 or 3 (ref.17).
This condition is only modestly more complex than the
device demonstrated here. The ability to perform such
EPR distillation would be of direct benefit to continuous-
variable quantum communication protocols, by increas-
ing the distance over which they can operate.

The concept of non-deterministic noiseless linear
amplification will find applications in many fields of
quantum technology. We emphasize that our demonstra-
tion of low-noise amplification is heralded, producing a
freely-propagating amplified state when successful. Our
device could trivially be turned into a non-deterministic,
high fidelity coherent state cloner by simply dividing the
output of the NLA ( for g2 = 2) on a beam splitter. The
fact that our device has been shown to operate well in
spite of inefficient state production and heralding bodes
well for more sophisticated applications. Indeed, numer-
ical modeling (see Supplementary Information) suggests
only modest improvements in efficiency would be needed
for practical applications such as EPR distillation.

Methods
SPDC source. We use a standard pulsed type-I unentangled
SPDC source as in Ref.13. We moderate the source brightness
to < 2500 coincidences/s in order to limit the generation of
> 1 photon pair events to a negligibly small rate.
Amplitude measurement. In the regime |α′|2 � 1, the
input, ancilla and (heralded) output modes have either 0 or
1 photons per pulse. Thus determining the input or output
average photon number corresponds to determining what pro-
portion of pulses contain a photon, conditional on the herald-
ing signal.
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For input calibration, we set η and κ such that ancilla pho-
tons travel direct to D3 with no mode splitting or interference,
and set δ, σ and τ such that input photons travel direct to D1.
σ is then changed to its desired value (depending on which
experiment we are about to perform) and δ is tuned until
the coincidence efficiency in the input arm, µin, reaches the
desired value of |α′|2 = µin = CD1D3/SD3, equivalent to the
average photon number at D1, whenever D3 fires to herald the
presence of an ancilla. Here, C is the coincidence rate and S
is the single photon count rate at the specified detector(s).

To measure the output photon number, all wave plates are
set to their operational values except τ , which is set such that
no interference occurs between the output and the reference
beam—the latter is not detected. In this configuration, D1
measures the output signal and D3 is the detector whose out-
put heralds successful operation of the amplifier stage. We
determine g2|α′|2 = µout = CD1D3/SD3, equivalent to the av-
erage number of photons detected at D1 whenever D3 fires,
heralding successful amplification. The gain is straightfor-

wardly calculated using g2 = µout/µin.

Error bars here, and in other experimental quantities, are
determined from standard error analysis techniques, and Pois-
sonian counting statistics represent the dominant form of ran-
dom errors.

Interferometry. We use polarization-based interferometry
to measure the induced coherence between the vertically-
polarized output of the amplifier and the horizontally-
polarized reference beam derived from the input. The phase
shifter is implemented by tilting a quarter wave plate set at its
optic axis. The imperfect visibility (V < 1) is attributed to
imperfect operation of the amplifier (for example, the nonclas-
sical interference visibility is approximately 0.96) and small
instabilities of the classical interferometer. Because of small
drifts in the overall circuit, we limited the measurement time
for each fringe data point to 20 seconds.

Additional details on methods are provided in the Supple-
mentary Information.
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Simultaneously verifying the gain and coherence
properties.

In order to simultaneously verify the gain and coher-
ence properties of the amplifier, we measured the fringe
visibility as a function of the interferometer output split-
ting ratio τ . With |α′|2 = 0.02, σ = 0.5 and η = 1/5 (cor-
responding to a nominal intensity gain of 4), we observed
interference fringes for various settings of τ . Firstly, if
the gain is close to the correct value, one expects max-
imum visibility at τ = 1 − η, because in that condition
the final beam splitter undoes the imbalance introduced
by the amplifier stage. Note that the imbalance had to
be introduced by the amplifier, because the input and
reference beams were the same intensity. Secondly, the
presence of high (ideally unit) visibility at τ = 1−η flags
coherent operation.

Fig. 1(supplementary) shows the results of this ex-
periment. From the separately measured value of g2 =
3.85, we would expect a maximum at τ ≈ 0.79. As
expected, we observed maximum visibility at around
τ = 1− η = 0.8. (We did not vary τ in smaller steps be-
cause, due to the size of the error bars and small gradient
of the curve, this would not have provided any additional
significant information.) The visibility at τ = 0.8 was
measured to be > 0.9, significantly higher than the value
predicted for a standard linear amplifier at this gain (see
Table 1 of the main paper).

We also observed the singles counts at the output of
the interferometer, when operating in balanced mode.
This corresponds to the observing the output of the in-
terferometer independent of the amplifier stage’s herald-
ing signal. We observed negligible pre-existing coherence
between the horizontal and vertical modes, as shown in
Fig. 2 (supplementary) . Attempting to fit a sinusoid
to this curve yields a visibility ∼ 0.02. We attribute the
slight deviation from zero to imperfections in the polariz-
ing beam splitter cubes, which allow a very small leakage
of the input mode into the output mode in our arrange-
ment.
Loss in the ancilla mode.

In the discussion of Table 1 of the main paper, we
noted that the decrease in measured gain—relative to
the expected gain—as η decreased was a result of loss
in the ancilla mode. This loss is modelled by a beam

FIG. 3: (supplementary). Measured interference visibility
as a function of τ for the case |α′|2 = 0.02 and η = 1/5. Max-
imum visibility is observed at τ = 0.8, as expected, indicating
that the gain is indeed correct to balance the power in each
arm at the peak visbility condition. For all points, σ = 0.5.

splitter in the ancilla mode, as shown in Fig. 1b of the
main paper. We find that

g2
adj =

1−η
η

1 + |α′|2 1−ε
εη

. (9)

Fitting the data of table 1 to this equation yields ε =
0.8±0.2 for the preparation efficiency of the single photon
(i.e. the probability of having had a photon present in the
ancilla input whenever the amplification heralding event
occurs). Notice that a key feature of this protocol is that,
as long as |α′|2 is small, the gain is suprisingly insensitive
to inefficiency in the ancilla input. The main effect of this
inefficiency is to reduce the success probability.
Additional notes on calculating the gain.

In the Methods Summary, we discussed how the quan-
tities |α′|2 and |gα′|2 could be derived from coincidence
efficiencies. In fact, the actual photon number at the in-
put and output deviates from these values because the
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FIG. 4: (supplementary). Measured singles counts versus
phase at the output of the interferometer. These data repre-
sent the measured interferometer signal without conditioning
on the amplifier stage’s heralding signal. Without heralding,
negligible coherence exists.

detector efficiency of D1 is not unity. The detector effi-
ciency of D1 is a product of the interference filter trans-
mission, fibre coupling efficiency, and quantum efficiency
of the commercial single photon counting module, as the
detection unit is comprised of these parts. We estimate
that the detector efficiency µD1 ≈ 0.29 − 0.4 and we
use the nominal value µD1 = 0.333 in this work. Thus
the actual conditional average input photon number is
|α′|2actual = µin/µD1 ≈ 3µin.

However, this does not lead to a problem in calculating
the gain. Again, the actual number of photons at the
output, prior to detection, is higher than the detected
number, so that (g2|α′|2)actual = µout/µD1. However,
the effect of µD1 cancels out in the calculation of the
actual gain:

(g2)actual =
(g2|α′|2)actual

|α′|2actual

=
µoutµD1

µinµD1
=
µout

µin
= g2.

(10)
This is the reason for using D3 as the heralding detector
and D1 as the signal detector in both calibration of the
input photon number and measurement of the output
photon number.
Effect of inefficient single photon ancilla and de-
tectors.

Finally we consider the effect of finite efficiencies on
the operation of the NLA. It is to be expected that fi-
nite detector and/or photon source efficiency will lead
to mistakes in post-selecting successful operation and
hence mixing in the output state. Here we consider just
source efficiency however, due to the commutabilty of loss
through linear networks, the effect of detector and source

efficiencies will be qualitatively equivalent.
We consider single photon sources with finite efficiency

(1− γ). On the occasions when a particular source fails
to produce a photon, and the event is postselected as
a success, the corresponding mode will contain vacuum.
Taking into account the probability of accepting a misfire
event we find that the resulting density operator for the
output state is

ρ =
N∑
n=0

(Nn )(1− γ)N−nγn
|α|2n

Nn
e−|α|

2
ηN−n

× (1 + gâ†
α

N
)N−n|0〉〈0|(1 + gâ

α∗
N

)N−n (11)

Surprisingly, in the large N limit, all significant terms
of this density operator are equal, i.e. inefficiency of the
photon sources produces negligible mixing. For finite N
this will not be the case and mixing will occur, however
Equation (11) tells us this mixing will be small provided
γ/(1−γ) << η/|α|2. We note that for γ < 0.3 the exam-
ple of EPR purification with N=2,3 discussed in Ref.17
(of the main paper) satisfies this inequality by at least an
order of magnitude and so should still show high fidelity
in the presence of this level of loss.
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