
Auton Robot

DOI 10.1007/s10514-009-9160-9

HERB: a home exploring robotic butler

Siddhartha S. Srinivasa · Dave Ferguson · Casey J. Helfrich · Dmitry Berenson ·

Alvaro Collet · Rosen Diankov · Garratt Gallagher · Geoffrey Hollinger ·

James Kuffner · Michael Vande Weghe

Received: 29 January 2009 / Accepted: 15 October 2009

© Springer Science+Business Media, LLC 2009

Abstract We describe the architecture, algorithms, and ex-

periments with HERB, an autonomous mobile manipulator

that performs useful manipulation tasks in the home. We

present new algorithms for searching for objects, learning

to navigate in cluttered dynamic indoor scenes, recogniz-

ing and registering objects accurately in high clutter using

vision, manipulating doors and other constrained objects us-

ing caging grasps, grasp planning and execution in clutter,

and manipulation on pose and torque constraint manifolds.

We also present numerous severe real-world test results from

S.S. Srinivasa (�) · D. Ferguson · C.J. Helfrich

Intel Research Pittsburgh, 4720 Forbes Avenue, Suite 410,

Pittsburgh, PA 15213, USA

e-mail: siddhartha.srinivasa@intel.com

C.J. Helfrich

e-mail: casey.j.helfrich@intel.com

D. Berenson · A. Collet · R. Diankov · G. Gallagher ·

G. Hollinger · J. Kuffner · M.V. Weghe

The Robotics Institute, Carnegie Mellon University,

5000 Forbes Avenue, Pittsburgh, PA 15213, USA

D. Berenson

e-mail: dberenso@ri.cmu.edu

A. Collet

e-mail: acollet@ri.cmu.edu

R. Diankov

e-mail: rdiankov@ri.cmu.edu

G. Gallagher

e-mail: ggallagh@ri.cmu.edu

G. Hollinger

e-mail: gholling@ri.cmu.edu

J. Kuffner

e-mail: kuffner@ri.cmu.edu

M.V. Weghe

e-mail: vandeweg@ri.cmu.edu

the integration of these algorithms into a single mobile ma-

nipulator.

Keywords Mobile manipulation · Personal robotics ·

Robotic manipulation · Computer vision · Search ·

Navigation

1 Introduction

With our aging population and the rising cost of health care,

the role of assistive agents in the home is becoming more

and more important. There are a variety of solutions in the

market, from living agents like service dogs (Canine Com-

panions 2009) and monkeys (Monkey Helpers 2009), to ro-

botic agents like vacuum cleaners (IRobot 2009) and tele-

operated arms (Exact Dynamics 2009). However, all of these

agents only provide partial solutions. Living agents can only

be trained to perform a few key tasks, and suffer from being

un-anthropomorphic: the home is not structured for a dog

or a monkey. Autonomous robotic agents fail to address any

area of the home above the floor level. A recent survey by

Ray et al. (2001) reveals that when asked what they would

like a robot to do for them, the top answers were cleaning,

dish washing, laundry, ironing, and moving heavy things,

all of which involve the robot manipulating objects in the

world, and none of which achievable by robotic agents in

the market now.

This is primarily because such tasks are no easy feat for

robotic systems. Manipulation in human environments in-

volves performing several challenging subtasks, including

efficient navigation and mapping, robust object recognition

and pose estimation, and sophisticated trajectory planning.

Moreover, these all need to be performed in an environment

that is unstructured and constantly changing. Each of these

mailto:siddhartha.srinivasa@intel.com
mailto:casey.j.helfrich@intel.com
mailto:dberenso@ri.cmu.edu
mailto:acollet@ri.cmu.edu
mailto:rdiankov@ri.cmu.edu
mailto:ggallagh@ri.cmu.edu
mailto:gholling@ri.cmu.edu
mailto:kuffner@ri.cmu.edu
mailto:vandeweg@ri.cmu.edu


Auton Robot

subtasks is itself an active area of research, and yet all must

be accomplished simultaneously to produce a system with

the competence to perform even simple manipulation chores

around the house, such as moving heavy objects or cleaning.

Recently, several research groups have turned their atten-

tion towards this compelling domain. Exciting recent de-

velopments have been improved user interaction with ro-

botic systems through intuitive laser pointer-based interfaces

(Nguyen et al. 2008), learning to grasp novel objects (Sax-

ena et al. 2008), learning the structure of common articu-

lated objects through manipulation (Katz and Brock 2008),

and performing intricate tasks such as setting tables by com-

bining high-level logic with robust perception (Muller et al.

2007).

The focus of our group has been the development of an

autonomous mobile manipulation platform that can perform

sophisticated manipulation tasks in human environments at

human-like speeds. Our goal is to create a robotic system

that can reliably perform routine tasks within the home or

office and perform these tasks quickly enough that the per-

son who requested them is not frustrated.

To this end, we have created HERB, the Home Exploring

Robotic Butler (Fig. 1) that can efficiently map, search, and

navigate through indoor environments, recognize and local-

ize several common household objects, and perform com-

plex manipulation tasks (such as carrying pitchers without

Fig. 1 Herb: a platform for Personal Robotics developed jointly by

Intel Research Pittsburgh and Carnegie Mellon University

spilling them). In this paper, we describe the key compo-

nents of Herb, from its ability to search for objects, differ-

entiate movable and immovable elements in its environment,

recognize and extract the pose of common objects, and grasp

and carry constrained items. We provide a number of results

from component-level analysis, as well as public demonstra-

tions during which Herb operated for several hours on end

and interacted with several hundred people.

2 System architecture

HERB is the union of several onboard and offboard compo-

nents. Onboard components comprise of a Segway RMP200

mobile base, a Barrett WAM arm, several sensors(described

in detail in Sect. 3), and a pair of low-power computers,

all of which are powered by a custom-built power supply.

Onboard components communicate over a wireless network

with offboard off-the-shelf PCs.

2.1 Software modules

HERB implements a set of sensing, planning, and execution

modules (Fig. 2a). A high-level script arbitrates their execu-

tion and error recovery. Almost all of our current demonstra-

tions execute the following sense, plan, and act cycle. First

the robot senses its environment and sends a static snapshot

to the planning system. The planning system uses the geom-

etry and kinematics of the robot to create a global plan that

avoids obstacles and meets task specific constraints. Then

the execution system attempt to follow this global plan while

compensating for dynamics and runtime uncertainties. Error

recovery during any part of the cycle is hand-coded.

Although recent research has concentrated on tighter in-

tegration of these components, we have taken the approach

of keeping the top structure simple and building more pow-

erful primitives within each component. By using a simple

three-stage framework, we can precisely define the assump-

tions and outputs of each stage. For example, each planning

algorithm relies on a static snapshot of the environment and

employs a model of the environment that can be easily sim-

ulated. Such models typically include simulation of kine-

matics, geometry, dynamics models, task constraints, con-

tact constraints, and sensor visibility. Some planners use sta-

tistical models in order to simulate environment and execu-

tion uncertainty. By relying on a snapshot of the environ-

ment and using simple simulations, a planner can isolate it-

self from the uncertainties present in sensing and execution,

thus making the planning problem more manageable. When

finished, each planner should output a global plan that spec-

ifies where the robot should move; time-critical inputs like

control parameters are left to the execution stage.

When designing the system architecture, we followed

two driving principles:



Auton Robot

Fig. 2 (Left) Software architecture, listing the modules used for various demos. Crosses indicate deprecated modules. (Right) Distribution of

computing resources. Each box represents an isolated machine

– Unlimited computational power is available. This al-

lowed us to concentrate on designing more powerful al-

gorithms with scripting languages rather than spending

time on optimization and debugging. The final system in-

volved six multi-core computers running 20–30 distrib-

uted processes communicating with each other.

– Sensing and planning algorithms should require minimal

human input. This enables them to adapt to new environ-

ments, new conditions, or new robot systems. Employing

such algorithms, as described in the later sections, helped

us decrease development time because we could easily

test a multitude of scenarios to find where the system suc-

ceeds and fails.

Following these principles, HERB consists of many dis-

tributed modules. For the communication infrastructure and

process management, we use the Robot Operating System

(Quigley et al. 2009) package. ROS allows us to easily

transfer processes onto different computers as necessary.

When deciding where and how each algorithm should be

computed, we moved as much computation as possible to

dedicated computers off the robot. The onboard computa-

tional power is always limited due to weight and power con-

straints, so it should be used for real-time tight-feedback

processes only. The design space for computation is tricky

because the onboard and offboard computation is separated

by a wireless network and bandwidth/latency become an is-

sue. In HERB, the execution layer lies on-board the com-

puter because the arm movement and segway navigation

require tight feedback loops greater than 10 Hz. The sens-

ing component is divided between onboard real-time obsta-

cle avoidance and offboard perception. The camera data is

compressed and streamed offboard to construct a snapshot

of the environment. The manipulation planning algorithms

producing global plans are strictly offboard since each plan-

ner returns a new trajectory on the order of seconds.

2.2 Software architecture

HERB works across many computers and employs sev-

eral distributed robotics packages to accomplish its tasks.

The entire HERB system consists of a group of separate

processes that communicate with the others through the net-

work Fig. 2b. The lowest level components are the drivers

for the laser range finder, segway, WAM arm, Barrett Hand,

and the two cameras. All drivers run onboard and stream

data and offer services across ROS. The navigation stack

consisting of Adaptive Monte-Carlo Localization (AMCL)

and Wavefront planning has exclusive control of the laser

range finder and segway; its main purpose is to offer ser-

vices like point-to-point movements and localization within

the map.

The vision system is responsible for detecting all ma-

nipulable objects and computing a more accurate localiza-

tion of the robot. In the current system implementation,

we rely on 3D models and a map to predict the location

of non-manipulable obstacles. Altogether the vision system

spans five different computers: one onboard computer for

streaming the camera data, three for recognizing objects

from two cameras, and one for the localization. The main

sets of features we use for object recognition are SIFT fea-

tures (Lowe 2004). Every camera has a dedicated quad-core

computer that computes SIFT features at 6 frames per sec-

ond on a 640 × 480 image using the libsiftfast library (Ze-

rofrog 2008). For vision-based localization, we build a map

of markers using checkerboards. For detection, we use the



Auton Robot

Fig. 3 (Left) Sensors on HERB and the modules that use them. (Mid-

dle) HERB uses automatically generated map of checkerboards for re-

fining its localization. Entire scene is shown at the top, and the camera

views are show at the bottom. (Right) Registering mugs with the arm

camera. Image from the arm camera is inset

OpenCV checkerboard detector (Bradski and Kaehler 2008),

which can run at 5 frames per second on a quad-core ma-

chine while simultaneously recognizing up to four different

types of checkerboards.

Finally all sensing information is combined inside the

OpenRAVE environment (Diankov and Kuffner 2008) to

form the entire world state of the system. OpenRAVE is re-

sponsible for all the manipulation planning algorithms, pro-

viding a scripting server, and sending trajectories to the arm

and hand. In order to reduce development time, we use Oc-

tave (Eaton 2002)/MATLAB to communicate with the Open-

RAVE scripting server and send high-level commands. The

scripting environment is responsible for managing the state

of the robot, its goals, and failure conditions. It also offers a

simple GUI to control the high-level execution of the robot.

3 Sensing

The following three sections describe the sensing modules

on HERB, and our lessons learned from them. Sensors on

HERB are added, removed, and moved based on the require-

ments of the task. The current set, shown in Fig. 3a, com-

prises of a planar laser on the Segway, a pair of cameras on

the shoulder, and a camera on the arm. The SICK LMS laser

on the Segway is used for localization (Sect. 4), mapping

(Sect. 5) and Segway motion planning. It is placed at a fairly

standard location, at ankle height. Cameras on the shoulder

comprise of a Pointgray Flea above a Pointgray Dragonfly.

They were placed to provide limited but accurate 1DOF pan-

ning using the shoulder. The lenses were chosen to provide

a narrower field of view but greater depth of field for the

Flea, and vice versa for the Dragonfly. The choice reflects

their intended purpose: the Flea is used primarily for vision-

based localization (Sect. 4) from variable distances, while

the Dragonfly is used to recognize and register manipulable

objects (Sect. 6) at a close range.

The arm camera comprises of a Logitech 9000 USB we-

bcam in a 3D printed housing we built. We experimented

with various placements of the camera: from the forearm

to the palm. Placing the camera further along the kinematic

chain provided greater dexterity at the cost of accumulating

joint uncertainty, USB cable management, and occlusion by

grasped objects and the arm. Considering all of these fac-

tors, we found the placement in Fig. 3c to be the most suit-

able for providing a vantage point suitable for running our

now-deprecated mug detection algorithm (Sect. 6).

4 Segway localization

Localizing HERB’s base involves registering its pose

(x, y, θ) in the coordinate frame of the environment. Our en-

vironment comprises of two collocated maps: a planar occu-

pancy grid generated by the laser, and 3D models of regions

HERB manipulates in. Presently, the former is much larger

than the latter: HERB wanders around the entire lab (about

3000 sq.ft.) but only manipulates in the kitchen (about

100 sq.ft.). Further details of our planar map representa-

tion and its treatment of dynamic obstacles are presented in

Sect. 5.

We use two localization modes: a coarse mode when

HERB is navigating which uses adaptive Monte Carlo lo-

calization a standard package available in Player/Stage, and

a fine mode in the kitchen when HERB needs to manipu-

late which uses a novel vision-based localization scheme we

have developed. These modes reflect our experimentally de-

rived degrees of precision to guarantee successful navigation

and manipulation in clutter.



Auton Robot

4.1 Checkerboard localization

For an accurate robot localization system, we chose to use

cameras localizing with respect to checkerboards scattered

across the environment. Although we could localize with re-

spect to the laser map used for navigation, the vision sys-

tem gave errors within 5 millimeters, so was much more

accurate that the adaptive Monte Carlo Localization algo-

rithm used for navigation. To create the map of all checker-

boards, we took about 20 snapshots of the kitchen environ-

ment and stitched all the observations together to form a

coherent map. The stitching process involved looking at all

possible permutations of checkerboards and discarding all

inconsistent measurements. If a unique map could not be

found with the current observations, it usually meant there

was not enough constraints for where the individual checker-

boards are with respect to each other; in this case, we added

more images until a unique map was generated. The final

maps we use for demos usually consist of 20+ checker-

boards. Figure 3b shows the robot localizing using a map of

7 checkerboards along with the simulated camera and real

camera views.

4.2 Lessons learned

Checkerboard localization was far more accurate than

AMCL, but took often 10–30 seconds to provide an esti-

mate. This delay was largely due to instabilities in checker-

board detection especially at a distance: the algorithm

wanted until checkerboard pose stabilized before starting

to process it. Furthermore, to provide an accurate estimate,

the algorithm needed to see at least three checkerboards in

a single image. To be able to guarantee this everywhere in

the kitchen, we had to place numerous checkerboards in the

scene. Needless to say, this make the kitchen look rather

unnatural. We attempted to mitigate this by replacing the

checkerboards with children’s drawings and detecting them

with our object recognition algorithm from Sect. 6 but the

drawings did not have enough contrast to be visible from

3–4 m.

We managed to improve the accuracy of AMCL by

adding a small perturbation to the pose, even when the robot

was stationary, forcing AMCL to update its estimate. This

often produced better results, but sometimes produced incor-

rect but extremely confident results. We eventually decided

that failing occasionally to grasp an object or open a door

was preferable to pasting the kitchen with checkerboards,

and waiting for numerous seconds for a better estimate.

5 Navigation and mapping

Maps of indoor environments change constantly due to the

rearrangement of movable objects. While online re-mapping

using a SLAM algorithm might provide a solution for navi-

gation, we envisioned an algorithm for handling changes in

the environment, while maintaining semantic labels. To ac-

complish this, Herb uses GATMO, a Generalized Approach

to Tracking Movable Objects, to maintain hypotheses of

where people and other movable objects are in its environ-

ment (Gallagher et al. 2009).

5.1 Previous work

GATMO builds on several active areas of interest, includ-

ing people tracking, dynamic object detection and recogni-

tion, and dynamic mapping. There has been significant work

done with people tracking (Montemerlo and Thrun 2002),

and Detecting and Tracking Moving Objects (DATMO)

(Mendes et al. 2004; Wang and Thorpe 2002). However,

these approaches either use a static map, or seek to re-

move moving objects from the map (Schulz et al. 2003;

Hahnel et al. 2003). Conversely, recent mapping strategies

(Schulz and Burgard 2001) have been able to detect when an

object has changed position, but use static maps and run of-

fline. GATMO merges work in these areas to allow dynamic

object detection and mapping to be done simultaneously in

an informed and online manner.

5.2 Map representation

HERB’s map consists of two parts: a static (original) map,

and several lists of map objects with locations and orienta-

tions on the map. There are four lists that collectively en-

compass all map objects. The list maintains the position and

orientation of each object, as well as the history of the ob-

jects sightings. These lists are given in Table 1.

When GATMO is first given a new map, it segments the

map based on connectivity to other objects, and adds all the

objects to list U . In addition, objects in U are compared to

each other to determine if they are the same, for example, a

set of identical chairs. Over time, as objects move, the sta-

tus of objects change to movable or absent, depending on

whether the objects are seen in their new positions. If an

object is considered movable, then immediately all match-

ing objects are considered movable. In this way, GATMO

allows the robot to make intelligent predictions about the

environment, even in situations with partial observability.

Table 1 Lists maintained in a GATMO map

List Name Object Description Comment

A Absent Was in the map, but is now absent

B Movable Has moved, currently in the map

U Unclassified Default object state

Γ Never Added Observed, but never added



Auton Robot

Fig. 4 (Color online) Recognizing object movement: This figure show

the process of recognizing the absence of an object and re-assigning it

to a new location. The robot is shown by the circle with a triangle on

it. The red lines extending from the robot show the ray to the laser

scan observations at that time step. The purple blobs are objects in the

environment, and the grey blob is the wall, colored differently for vi-

sualization purposes

Fig. 5 Multiple hypothesis hierarchy of object classification

5.3 Object classification

In GATMO, observations are clustered and classified as ob-

served objects in a multi-level hypothesis hierarchy. At the

root of this hierarchy, the observed object is represented by

a Metaobject. Metaobjects can have two hypotheses, person

or chair. (See Fig. 5.) The person hypothesis represents ob-

jects that actively move, like people, animals, and other ro-

bots. The person hypothesis maintains a Kalman filter that

tracks the position and velocity of the object’s center. The

chair hypothesis represents objects that seldom move. It is

represented by a grid structure, which encodes the past ob-

servations similar to an occupancy grid. The chair hypoth-

esis also maintains several association hypotheses. In addi-

tion to considering itself as a new object on the map, the

chair hypothesis considers the probability that it is an ob-

ject in map lists A, B or Γ . If a chair hypothesis predicts

a match with an object in one of these lists with sufficiently

high probability, it is added to the map in list B .

An example of GATMO identifying a movable object is

presented in Fig. 4. In this figure, HERB sees a new object

and maintains a chair hypothesis (green grid in image one

through five). At the same time, HERB notices that another

object is missing from the map (light purple in images two,

three and four). When it decides that the chair is no longer

present, it is removed from the map (image five). Finally,

the chair hypothesis is matched to the absent object, and the

map is updated (image 6).

5.4 Lessons learned

The interaction between GATMO and localization is mostly

mutually beneficial. GATMO provides the localizer its best

current map of a constantly changing world. The localizer

uses this map to provide GATMO with its best current esti-

mate of HERB’s pose. Sometimes, especially when the lo-

calizer is confidently wrong, the interaction can lead to static

regions being eaten away due to poor localization. This ef-

fect disappears when good localization is regained, and the

mistakenly deleted regions grow back when sensed again,

but it is certainly possible for a determined adversary to foil

GATMO. We are exploring two approaches to mitigate this

effect: decoupling localization from the planar map by us-

ing vision-based localization with ceiling markers for ex-

ample, and adding other sensors, like cameras, to assist in

GATMO’s object classification.

6 Vision

Robust perception is a vital capability for robotic manip-

ulation in unstructured scenes. In this section, we present

an approach for real-time object recognition and full pose

estimation from natural features, as shown in Collet et al.

(2009). For each object, a metric 3D model is built using

local descriptors from several images. Then, for every new

test image, we use a novel combination of RANSAC and

Mean Shift clustering to recognize and register all instances

of each object in the scene. The resulting system provides

markerless 6-DOF pose estimation for complex objects in

cluttered scenes.

Requirements for the vision system were motivated by

HERB’s environment and its abilities. Our scenes were

cluttered, often with multiple instances of the same object

(Fig. 6). Since localization was expensive, we required pose



Auton Robot

Fig. 6 Object grasping in a cluttered scene through pose estima-

tion performed with a single image. (Left) Scene observed by the ro-

bot’s camera, used for object recognition/pose estimation. Coordinate

frames show the pose of each object. (Middle) Virtual environment

reconstructed after running pose estimation algorithm. Each object is

represented using a simple geometry. (Right) Our robot platform in the

process of grasping an object, using only the pose information from

this algorithm

estimates from a single image. We estimated an accuracy

requirement of 1 cm at a distance of 1 m for reliable grasp

success in high clutter. Finally, we set a time limit of 1 sec-

ond for the entire pipeline, from image acquisition to pose

estimation.

Our pipeline consists of image extraction, onboard com-

pression, wireless transfer, decompression, and pose extrac-

tion. Pose estimation accuracy, grasp success, and timing

numbers are detailed in the results.

6.1 Related work

Reliable object recognition, pose estimation and tracking

are critical tasks in robotic manipulation (Taylor and Klee-

man 2003; Ekvall et al. 2005; Zickler and Veloso 2006;

Mittrapiyanuruk et al. 2004) and augmented reality appli-

cations (Vacchetti et al. 2004; Gordon and Lowe 2006). In

robotics research, many approaches try to solve a simplified

pose estimation problem, in which the object is usually as-

sumed to be lying on a planar surface, hence restricting the

search to a position [x y] plus an angular orientation (Walter

and Arnrich 2000; Zhang et al. 1999). Several methods are

available to estimate the 6-DOF pose of objects: Ekvall et al.

(2005), use color co-occurrence histograms and geometric

modeling; Mittrapiyanuruk et al. (2004) use Active Appear-

ance Models (AAMs) for the registration process, among

others.

6.2 Ellipse finder

Our object recognition algorithm was motivated by the fail-

ures of a previous algorithm we had developed to detect

the circular tops of mugs. The ellipse finder made numer-

ous simplifying assumptions: that all mugs were of a known

height, uniform color, standing upright on a uniform back-

ground. Under these assumptions, the tops of mugs appeared

as ellipses in an image which we extracted using a fast sym-

metry detector (Loy and Zelinsky 2003). Orientation of the

handle was detected by searching an annulus around the de-

tected ellipse (Fig. 3c).

Our goal was to go beyond this: to detect textured

freeformed objects in clutter against arbitrary backgrounds.

6.3 Modelling objects using natural features

The first task towards the creation of our automated recog-

nition and registration system is the training stage. Our sys-

tem uses natural features of the object to create a 3D metric

model. Reliable local descriptors are extracted from natural

features (i.e. features present in an object, not artificially

added) using SIFT (Lowe 2004). Matching between SIFT

descriptors is performed using the Best Bin First (Beis and

Lowe 1997) algorithm. Using structure from motion on the

matched SIFT keypoints, we merge the information from

each training image into a sparse 3D model. Finally, proper

alignment and scale for each model are optimized to match

the real object dimensions. Some examples are shown in

Fig. 7.

6.4 Automatic object recognition and pose estimation

The on-line stage of this system is a fully automated object

recognition and pose estimation algorithm from a single im-

age. Using the information from each sparse 3D model, this

algorithm is able to detect several objects and several in-

stances of each object by combining Levenberg-Marquardt

optimization with clustering and robust matching. The out-

put information is the object types and their transformations

Rest, test with respect to the camera frame. If the camera

has been extrinsically calibrated, all objects can be accu-

rately positioned in any virtual environment we wish to use.

Each object type is processed independently in each image

when using this algorithm. For each object type, the recog-

nition/pose estimation algorithm is executed as follows.



Auton Robot

Fig. 7 Learned visual models for soda can, rice box, juice bottle and

notebook. Each box contains an image of the object, a projection of

its corresponding sparse 3D model, and its virtual representation in

HERB’s workspace

1. Cluster SIFT features’ 2D locations p using Mean Shift

algorithm. Each cluster contains a subset of points pk .

2. For each cluster of points pk , choose a subset of n points

and estimate a hypothesis with the best pose according

to those points. If the amount of points consistent with

the hypothesis is higher than a threshold ǫ, create a new

object instance and refine the estimated pose using all

consistent points in the optimization. Keep repeating this

procedure until the amount of unallocated points is lower

than a threshold, or the maximum number of iterations

has been exceeded.

3. Merge all instances from different clusters whose esti-

mated pose is similar. Those instances with the most con-

sistent points survive.

6.5 Results

In order to prove our pose estimation algorithm’s suitability

for robotic manipulation, two sets of experiments have been

conducted, both using the 4 objects depicted in Fig. 7. The

first set evaluates our algorithm’s accuracy in estimating the

position and orientation of objects in images. To evaluate

the position accuracy of our algorithm, each object is placed

alone in an image and moved in 10 cm intervals, from 30

to 90 cm away from the camera and from 0 to 20 cm later-

ally. To evaluate the rotation accuracy, in-plane (i.e. paral-

lel to the image plane) and out-of-plane rotations are exam-

ined independently. Each object is placed alone in an image

at 50 cm away from the camera and rotated from −45 to

45 degrees, in 15-degree intervals along the desired test axis.

Given the randomized nature of our implementation, 10 im-

ages are taken at each test position and their results aver-

aged. The average translation error is 0.67 cm, the average

in-plane rotation error is 1.23 deg and the average out-of-

plane rotation error is 3.81 deg.

The second set uses the full pose estimation algorithm in

the context of our robotic system to grasp objects in cluttered

scenes. 25 grasping attempts were executed for each object.

The grasping tests were performed by placing a single ob-

ject on a table within the robot’s reachable space. Prior to

each grasping attempt, the object is placed in a new arbitrary

position and orientation (standing up, sideways and upside

down). A grasp is considered successful if HERB grasps the

object and is able to lift it 5 cm off the table. The grasping

success rate in this test is 91%, thus confirming the state-

ment that our pose estimation algorithm is accurate enough

to enable robotic manipulation of the detected objects. The

system runs on average at 4 fps, although it depends heavily

on the analyzed scenes (from 1 fps with 12 objects to 6 fps

with one or two objects).

6.6 Lessons learned

Computer vision literature is filled with local descriptors and

object recognition algorithms. Laying out a set of require-

ments early in the process—automatically estimating the

pose of objects in clutter accurately—enabled us to quickly

focus on a select few and, to our surprise, discover inade-

quacies in many current approaches, and provide a robust

solution.

Our algorithm performs extremely well on textured ob-

jects, which are rich in SIFT features. Home environments,

however, contain numerous UN-textured objects. We believe

that the fusion of local geometric descriptors, as well as

other sensing modalities, like stereo and laser data, will be

required to detect and register these objects accurately.

7 Planning

The following two sections describe the planning modules

on HERB and our lessons learned from them. Using our

planners, we are able to robustly execute common house-

hold tasks, like manipulating doors, cabinets and handles,

grasping free-form objects in high clutter, and manipulating

objects with task and weight constraints.

The planners take as input the description of a robot and

parts of the environment we do not want the robot to col-

lide with. The type of description is fairly flexible: we have

used triangular meshes, shape primitives, and voxel grids.

The description of the robot usually includes its kinematics

and joint and torque limits. They also take as input the kine-

matics of the environment. These include the presence and

description of constraints like hinges, as well as the absence

of constraints like between an object and the tabletop. Most

object IDs are populated automatically by the vision system.

Some object IDs, like those of doors are populated manually.

The description of goals for the planners are general, for

example:

– “Open the fridge door > 90 degrees”



Auton Robot

– “Clear all objects from table”

– “Retrieve juice from fridge without tipping”

The planners produce as output kinematically feasible

paths for the robot. Note that the robot description could

include both the arm and the base for a mobile manipulator.

Failure is returned if a path is not found within a time limit.

Kinematically feasible plans are retimed to satisfy velocity

and acceleration constraints, for execution on the robot.

Our planners share the following features:

– Generality: If a robot and an environment fit our input

description, the planners will produce an output.

– No physics: Our planners are purely kinematic. We do not

use any models of dynamics or friction. Our experiments

with physics simulation for manipulation were unsatisfac-

tory: we found them both computationally expensive and

inaccurate.

– Uncertainty: We address kinematic uncertainty by ensur-

ing our plans work in spite of pose error. This is accom-

plished in practice by jittering the plan and ensuring it is

still kinematically feasible.

While these features have enabled us to produce plans in a

few seconds, they are by no means set in stone, merely a list

of what has worked for us. It is easy to find situations where

our planners are not applicable, like underactuated joints,

uncertain environments, dynamic manipulation or pushing,

to name a few.

8 Opening doors by planning with caging grasps

An autonomous home robot needs to open and close doors,

drawers, cabinets, and turn handles with human-level perfor-

mance and speed. Because motions for these objects are con-

strained to one or two degrees of freedom, the free configu-

ration space of robot motions manipulating these objects is

greatly reduced. This coupled with the fact that small execu-

tion errors in the robot can produce large counter forces from

the object means that an autonomous robot has to be able to

reason using compliance strategies with prehensile grasps

(Prats et al. 2008), strategies with non-prehensile grasps like

pushing or hooking (Pereira et al. 2002), and visual servo-

ing strategies combined with force control (Jain and Kemp

2008).

Herb is designed to open and close doors, drawers, cabi-

nets, and turn handles using a formulation of planning using

caging grasps (Diankov et al. 2008) that relaxes the task con-

straints imposed on the robot (Fig. 8). An advantage to con-

sidering caging grasps is that the directions of compliance

are automatically computed using simple contact analysis,

which results in an automated process to build a model of

how a robot can manipulate doors. In contrast to compliance

control research, this method of planning does not require

Fig. 8 (Color online) A robot hand opening a cupboard by caging

the handle. Space of all possible caging grasps (blue) is sampled (red)

along with the contact grasps (green)

any extra human knowledge in specifying which degrees of

freedom are constrained and which the robot can tolerate

execution errors in. Furthermore, relaxing task constraints

through caging grasps can enable low degree-of-freedom ro-

bots to achieve a constrained task that could not be possible

with previous formulations.

8.1 Caging grasp formulation

We formulate the problem using the configuration space of

the robot q ∈ Q , the configuration space of the end-effector

g ∈ G , and the configuration of the constrained target object

ρ ∈ R (Fig. 9). Each of these spaces is endowed with its cor-

responding distance metric d : X × X → R. In the relaxed

task constraint formulation, each target object is endowed

with a task frame which is rigidly attached to it, and a set of

grasps G represented in that task frame.

A transform Tρ relates the task frame at an object con-

figuration ρ to the world reference frame. Because all the

grasps in G are in the task frame, it allows us to compute

and cache G offline, thereby improving the efficiency of the

online search. At any configuration ρ, we denote the grasp

set in the world frame by

TρG = {Tρg | g ∈ G}. (1)

We assume while planning that the end-effector of any

configuration of the robot always lies within the grasp set



Auton Robot

Fig. 9 The configuration spaces used for planning. The task frame Tρ

and the caging grasps G are used to combine the target space R and

robot spaces Q

G with respect to the task frame. Because this couples the

motion of both the object and the robot during manipulation,

their configurations need to be considered simultaneously

when planning. We define the relaxed configuration space C

as

C = {(ρ, q) | ρ ∈ R, q ∈ Q,FK(q) ∈ TρG}. (2)

The free configuration space Cfree ⊆ C contains all states

not in collision with the environment, the robot, or the ob-

ject. In order to plan in this high configuration space, we use

Randomized A* (Diankov and Kuffner 2007), which oper-

ates in a similar fashion to A* except that it generates a ran-

dom set of actions from each state visited instead of using a

fixed set. Randomized A* is well suited to our current prob-

lem because

– The distance of the target configuration to its goal can be

reflected in the A* heuristic.

– There is a guarantee that each state is visited at most once.

– Does not need to generate all the IK solutions for a given

grasp.

– Can return failure after exhausting the entire search space.

8.2 Results

To show the improved caging grasps have in the feasibil-

ity of task, we randomly sampled positions for the robot

and computed the success rate for each position. For exam-

ple, for a 6 degree-of freedom arm, the feasibility regions

increase by %500 (Fig. 10). Furthermore, because the al-

gorithm is extendable to different grasping modalities like

pushing, Herb can open a refrigerator by first hooking it and

then pushing it (Fig. 11).

8.3 Lessons learned

Opening doors and cabinets was, by far, hardest task for

HERB. Admittedly, this is a qualitative statement, but the vi-

sual impact of HERB finding creative ways both to succeed

and to fail to open doors was tremendous. Perhaps it was the

Fig. 10 Comparison of fixed feasibility regions (left) and relaxed fea-

sibility regions (right) for each scene

Fig. 11 Herb autonomously opening the refrigerator door by first

pulling on the handle and then pushing the door from the inside

realization that HERB could no longer treat the world like a

game of pickup sticks, carefully avoiding everything but the

object it had to grasp.

Door opening also challenged our disregard for physics:

HERB’s fat fingers would often jam in the handle trig erring

a stall in the arm controller. We believe that an intelligent

combination of the position freedoms afforded by caging

and force control is required for robust execution.

9 Manipulation planning

Our approach to the manipulation planning problem for

HERB centers around exploiting the freedom allowed by

loose task specifications and, for objects that require it, con-

straining the robot’s motion so that constraints on the object

are met.

9.1 Planning with workspace goal regions

HERB is designed to perform manipulation tasks in the

home. Many such manipulation tasks afford a large amount

of freedom in the choice of grasps, arm configurations, and

object goal locations. For example, when we pick up a cof-

fee mug and place it in the sink, we can choose from a wide

range of hand configurations to grasp the mug securely, as

well as a wide range of goal locations in the sink to place the

mug. However, a manipulation planning algorithm that ex-

ploits this freedom in the task specification must also main-

tain efficiency and desirable completeness properties.

To handle loose task specifications we introduced the

concept of Workspace Goal Regions (WGRs) (Berenson



Auton Robot

Fig. 12 Snapshots from HERB executing a trajectory for lifting a

pitcher (left to right). The pitcher is constrained to not tip forward or

to the side. This constrained trajectory took less than 5 seconds to plan

using the CBiRRT planner. After the trajectory is complete, the robot

turns and waits for the user to pull on the pitcher before releasing it

et al. 2009a), which allows us to specify continuous regions

in the six-dimensional workspace of the robot’s end effector

as goals for a planner. A given task can entail any number

of WGRs, each of which encompass a subspace of any di-

mension less than or equal to six. These volumes are par-

ticularly useful for manipulation tasks such as reaching to

grasp an object or placing an object onto some 2D surface

or into some 3D volume. WGRs are also intuitive to spec-

ify, can be efficiently sampled, and the distance to a WGR

can be evaluated very quickly. WGRs can be integrated into

most sampling-based planners by trading off exploitation of

the WGRs and exploration of the configuration space. In the

case of an RRT, we trade off sampling from the WGRs to

get goal configurations and growing the search tree. WGRs

enable our RRT-based planner to quickly reach and grasp

simple objects such as cans, bottles, and boxes for which

we can easily define regions of acceptable grasping poses.

To grasp complex objects we use the methods described in

Berenson et al. (2007) and Berenson and Srinivasa (2008).

Once an object is grasped, its goal pose can easily be de-

fined as a WGR for many tasks such as throwing the object

away or handing it to a person. Several examples of HERB

executing trajectories planned by using WGRs are shown in

Fig. 13.

9.2 Planning with constraints

Though the start and goal locations of objects afford a large

degree of freedom in robot configuration, many objects can-

not be moved arbitrarily. For instance, if a mug is full of

coffee, we should not tilt the mug while moving it. Such

constraints on object pose limit the allowable configurations

of the robot while moving and thus complicate the path-

planning problem.

Creating manipulation planning algorithms to perform

constrained tasks also involves computing motions that are

subject to multiple simultaneous task constraints. For exam-

ple, a robotic manipulator lifting a heavy milk jug while

keeping it upright involves a constraint on the pose of the

Fig. 13 Snapshots from three runs of the planner on the WAM arm.

Top Row: Grasping and throwing a way a box of rice. Middle Row:

Grasping and throwing away a juice bottle. Bottom Row: Grasping and

throwing away a soda can

jug as well as constraints on the arm configuration due to

the weight of the jug. In general, a robot cannot assume

arbitrary joint configurations when performing constrained

motions. Instead, the robot must move within some mani-

fold embedded in its configuration space that satisfies both

the constraints of the task and the limits of the mecha-

nism. To create plans for such constrained tasks, we have

developed the Constrained BiDirectional Rapidly-exploring

Random Tree (CBiRRT) (Berenson et al. 2009b) motion

planning algorithm, which uses Jacobian-based projection

methods as well as efficient constraint-checking to explore

constraint manifolds in the robots configuration space. The

CBiRRT can solve many problems that standard sampling-

based planners, such as RRT or Probabilistic Roadmaps

(PRM), cannot. Our framework for handling constraints al-

lows us to plan for manipulation tasks such as sliding and

lifting heavy objects, and maintaining pose constraints while

moving objects (see Fig. 12).



Auton Robot

9.3 Lessons learned

Fast, feasible manipulation planning in high clutter is

HERB’s strength. HERB is extremely good at snaking into

a cluttered environment and retrieving the desired object.

There are, however, numerous possible improvements: pro-

ducing plans that provide worst-case guarantees under pose

uncertainty, incorporating simple physics like planar push-

ing during manipulation, and legible, repeatable arm motion.

10 Demonstrations

In addition to testing the accuracy of each of our system

components, we are strong advocates of running live, public

demonstrations. These demos involve real objects, user in-

teraction, and often uncontrolled lighting and dynamic ob-

stacles. As our system capabilities have improved, we have

also increase the complexity of our demonstration tasks. The

following sections describe four of our demos, their goals,

software modules used, and our lessons learned.

10.1 R@I: Moving coffee mugs

In June 2008, our robot performed a day-long public demon-

stration of recognizing and registering coffee mugs and

loading them into a dishwasher rack at the Research at Intel

Day event (Fig. 15a). The arm was mounted on a fixed waist-

high platform, and flanked by three circular white pedestals.

The audience placed black plastic mugs upright in random

locations on either of the two side pedestals. HERB searched

for a mug on either pedestal and placed it in a dishwasher

rack located on the central pedestal.

The software modules used were the ellipse finder, grasp

planning with sets, and the arm and hand controllers. The

Segway was not used for this demonstration due to space

limitations on our booth imposed by the demo staff.

Error recovery comprised of grasp failure detection if the

mug was pulled away before the hand closed and compli-

ance if the arm collided with an unmodeled obstacle. In both

these cases, the arm returned to its prespecified home posi-

tion and retried. HERB also requested for the dish rack to be

emptied if it was no longer able to place a mug in it.

During the course of the day the system loaded over 400

mugs into the rack. Multiple mugs were placed by visitors

in whatever upright position and rotation they chose, on ei-

ther pedestal. Planning and execution for locating, grasping

and loading a single mug in a cluttered scene took 15 sec-

onds, on average. Only 6 times during the day did the robot

fail to successfully load the intended mug. All of the fail-

ures occurred during grasping when the mug slipped out of

the robot’s hands. We believe that this is due to errors in ex-

trinsic calibration of the camera due to inaccuracies in the

robot’s cable-driven joints which, albeit small, can produce

large ±3 cm. errors in estimating the pose of a mug located

about 1 m. away from the camera.

10.2 IDF: Collecting coffee mugs

In August 2008, we demonstrated HERB during a brief on-

stage performance at the Keynote of Justin Rattner, CTO

Intel, at the Intel Developer’s Forum, during which we in-

structed the robot to autonomously drive out on-stage, use

an arm-mounted webcam to locate a pair of plastic coffee

mugs placed on a pedestal, pick them up and load them one

at a time into an onboard storage bin, and retreat offstage

(Fig. 15b).

We added Segway localization and Wavefront navigation

to the software modules. A speech synthesis module was

added to interact with users. Additional error recovery in the

form of a joystick override for the Segway was mandated by

the demo staff.

The only shortcoming during execution was an inability

for the Segway to reach its goal in front of the pedestal with

enough precision for the vision and arm systems to work,

thus requiring a brief human intervention to joystick the Seg-

way a little closer to the pedestal. The entire sequence of

driving out, interacting, recognizing, picking up and storing

two mugs, and driving back took approximately 3 minutes.

The demonstration was at the Moscone Center in San Fran-

cisco, with over 5000 people in the audience.

10.3 Search: combining search and action

In August 2008, we examined the task of searching for an

object and then performing some action with that object.

This is of particular interest because it lays the groundwork

for worthwhile tasks around the home and office (e.g., fetch-

ing coffee, washing dirty dishes, etc.). A complete descrip-

tion of this work, with detailed theoretical and implementa-

tion results, is available in Hollinger et al. (2009).

Figure 14 shows images of Herb searching for a coffee

mug and returning it to the sink. In this demo, Herb utilizes

the Adaptive Monte Carlo Localization system with a laser

scanner to localize itself while it moves between possible

mug locations. Upon reaching a possible mug location, it

uses the vision system to identify the mug and the grasp ta-

bles to pick it up.

We are interested in extending our search/action frame-

work for ordering and solving multiple queries. For instance,

a robot assistant may need to divide its time across a range

of tasks. This would require constant management of search

and action. Solving this problem would enable Herb to pro-

vide continuous assistance for daily living.



Auton Robot

Fig. 14 (Color online) Map of the kitchen environment used for fetch

tasks (left). Herb starts at the green circle and generates a path to look

for a coffee mug at the locations marked by red squares. After finding

the mug, Herb takes the mug back to the kitchen sink (purple triangle).

Snapshots of Herb looking for the mug and performing the fetch task

are also shown from left to right

Fig. 15 Public demonstrations of Herb

10.4 IOH: retrieval in a kitchen

In October 2008 we demonstrated HERB performing sim-

ple retrieval tasks in its own domestic kitchen at the In-

tel Research Pittsburgh Open House (Fig. 15c). During the

day-long event visitors used a GUI to instruct HERB to

autonomously move around the kitchen, open a cabinet or

refrigerator door, pick up user-selected objects, and either

bring the objects to the user or place them in a nearby re-

cycling bin. The objects were previously known to the ro-

bot, and included a water pitcher, a juice bottle, a box of

rice, and a prepackaged soup bowl. When handing the re-

quested object to the user, the robot waited until it sensed an

externally-applied force on the arm joints before releasing

its grip, creating an intuitive robot-human handoff.

This demonstration showcased all of our latest modules:

object recognition, caging grasps, task-constrained plan-

ning, and workspace goal regions.

The grasping portion of the kitchen task differed little

from previous work, and was the most reliable part of the

system. The system struggled with opening both the cabinet

and refrigerator doors, frequently failing due to contention

between the calculated arm trajectory and the natural trajec-

tory of the door handle. The navigation module managed to

move the Segway with very few collisions, but often stopped

a little short of the ultimate goal. And while the object recog-

nition and localization system was very successful at cor-

rectly identifying objects, it occasionally made small errors

in estimating the pose of objects in high clutter, resulting in

the arm bumping into surrounding objects.

On a typical run, the robot would spend 25 seconds

driving from point to point in the kitchen, 15–30 seconds to

relocalize itself, 45 seconds to open a door, and 30 seconds

to pick up an object.

10.5 Lessons learned

Although we are often surprised at the new ways the system

can fail to do what we expect, most of the failures can be

traced to one of a few root causes, including:

1. Inaccuracy in the robot joints: The cable-driven WAM

arm has the benefit of being naturally compliant and pro-

prioceptive. Unfortunately, the price paid is accuracy: the

joints are limited to an accuracy of ±0.5 degrees. This

error effects not only the positioning of the hand dur-

ing grasping, but also any of our object localization al-

gorithms which rely on robot-mounted cameras.

2. Robot localization errors: Since the camera-based local-

ization used to calculate the robot’s pose is subject to er-

ror, the arm will occasionally bump into obstacles which

the planner believed were further away.

3. Segway positioning accuracy: Because our Segway mo-

tion planner requires a generous goal region, the Segway

occasionally ends up in a position that leaves the arm tra-

jectory planner unable to find a solution for reaching the

desired object.



Auton Robot

Fig. 16 A typical unexpected collision

11 Conclusions and future work

Building an end-to-end system of Herb’s complexity has

been a great learning experience. We have learned the most

from repeated and severe testing, not just of each compo-

nent in isolation, but all of the components together. In spite

of building robust algorithms, errors do occur. In our expe-

rience with a live audience, we have observed that detect-

ing that an error has occurred, and not repeating it is often

as important as error recovery: the worst errors are those

where the robot hits an obstacle, backs up, and then hits it

again.

Making sense of unexpected collisions, which constitute

a majority of our errors as Herb operates in tight cluttered

spaces, is surprisingly hard. A typical such case is illus-

trated in Fig. 16. Here, the arm controller has just returned

a stall because of an unexpected collision with the real cup-

board handle. The planner, however, thinks there is no col-

lision. How does it plan its next move? The cause of the

collision could be poor localization, poor arm calibration, or

an unmodeled or poorly modeled obstacle. We believe that

collision recovery is a relevant and exciting area for future

work.

We are also interested in building environment and ob-

ject models online, something that we do not do with

Herb. To that end, we are outfitting Herb with a spinning

Hokuyo TOP-URG laser on the camera mast on the shoul-

der. We are excited about the prospects of entering a com-

pletely unmodeled kitchen and performing useful tasks in

it.

Our manipulation planning algorithms are designed to be

general, as described earlier. We believe that they could as

well work on El-E (Nguyen et al. 2008), PRII (PRI 2008),

STAIR (Saxena et al. 2008), or any other mobile manipu-

lator. In the future, we are looking forward to sharing our

algorithms with other groups to help build a Personal Ro-

botics ecosystem.

Acknowledgements This material is based upon work partially sup-

ported by the National Science Foundation under Grant No. EEC-

0540865. Berenson, Collet, Diankov, Gallagher, and Hollinger were

partially supported by the Intel Summer Fellowship 2008 awarded

by Intel Research Pittsburgh. Vande Weghe is supported by Intel Re-

search Pittsburgh. Collet is partially supported by the La Caixa Fellow-

ship. Gallagher is partially supported by a National Science Foundation

Graduate Research Fellowship.

References

Beis, J. S., & Lowe, D. G. (1997). Shape indexing using approximate

nearest-neighbour search in high-dimensional spaces. In Proc.

IEEE conf. comp. vision patt. recog. (pp. 1000–1006).

Berenson, D., & Srinivasa, S. (2008). Grasp synthesis in cluttered en-

vironments for dexterous hands. In IEEE-RAS international con-

ference on humanoid robots.

Berenson, D., Diankov, R., Nishiwaki, K., Kagami, S., & Kuffner, J.

(2007). Grasp planning in complex scenes. In IEEE-RAS interna-

tional conference on humanoid robots (Humanoids07).

Berenson, D., Srinivasa, S., Ferguson, D., Collet, A., & Kuffner, J.

(2009a). Manipulation planning with workspace goal regions. In

IEEE international conference on robotics and automation.

Berenson, D., Srinivasa, S., Ferguson, D., & Kuffner, J. (2009b). Ma-

nipulation planning on constraint manifolds. In IEEE interna-

tional conference on robotics and automation.

Bradski, G., & Kaehler, A. (2008). Learning OpenCV: computer vision

with the OpenCV library. New York: O’Reilly.

Canine Companions (2009). Canine companions for independence.

http://www.cci.org.

Collet, A., Berenson, D., Srinivasa, S. S., & Ferguson, D. (2009). Ob-

ject recognition and full pose registration from a single image for

robotic manipulation. In IEEE international conference on robot-

ics and automation.

Diankov, R., & Kuffner, J. (2007). Randomized statistical path plan-

ning. In IEEE/RSJ international conference on intelligent robots

and systems.

Diankov, R., & Kuffner, J. (2008). Openrave: A planning architecture

for autonomous robotics. Tech. Rep. CMU-RI-TR-08-34, Robot-

ics Institute, Carnegie Mellon University.

Diankov, R., Srinivasa, S., Ferguson, D., & Kuffner, J. (2008). Manip-

ulation planning with caging grasps. In IEEE-RAS international

conference on humanoid robots.

Eaton, J. W. (2002). GNU Octave Manual. Network Theory Limited.

Ekvall, S., Kragic, D., & Hoffmann, F. (2005). Object recognition and

pose estimation using color cooccurrence histograms and geomet-

ric modeling. Image Vision Comput, 23(11), 943–955.

Exact Dynamics (2009). Arm: Assistive robotic manipulator. http://

www.exactdynamics.nl.

Gallagher, G., Srinivasa, S., Bagnell, D., & Ferguson, D. (2009).

An online approach to object detection, modeling and mapping

for mobile robots. In Proc. int’l conf. robotics and automation.

Gordon, I., & Lowe, D. G. (2006). What and where: 3d object recog-

nition with accurate pose. In Toward category-level object recog-

nition (pp. 67–82).

Hahnel, D., Triebel, R., Burgard, W., & Thrun, S. (2003). Map building

with mobile robots in dynamic environments. In Proc. int’l conf.

robotics and automation.

Hollinger, G., Ferguson, D., Srinivasa, S., & Singh, S. (2009). Com-

bining search and action for mobile robots. In Proc. int’l conf.

robotics and automation.

IRobot (2009). Roomba. http://www.irobot.com.

Jain, A., & Kemp, C. C. (2008). Behaviors for robust door opening

and doorway traversal with a force-sensing mobile manipulator.

In Proceedings of the manipulation workshop in robotics science

and systems.

Katz, D., & Brock, O. (2008). Manipulating articulated objects with in-

teractive perception. In IEEE international conference on robotics

and automation.

http://www.cci.org
http://www.exactdynamics.nl
http://www.exactdynamics.nl
http://www.irobot.com


Auton Robot

Lowe, D. G. (2004). Distinctive image features from scale-invariant

keypoints. International Journal of Computer Vision, 60, 91–110.
Loy, G., & Zelinsky, A. (2003). Fast radial symmetry for detecting

points of interest. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 25(8), 959–973.
Mendes, A., Bento, X., & Nunes, L. (2004). Multi-target detection and

tracking with a laser scanner. In Intelligent vehicles symposium.
Mittrapiyanuruk, P., DeSouza, G. N., & Kak, A. C. (2004). Calcu-

lating the 3d-pose of rigid-objects using active appearance mod-

els. In IEEE international conference on robotics and automation

(pp. 5147–5152). New York: IEEE.
Monkey Helpers (2009). Helping hands: Monkey helpers for the dis-

abled. http://www.monkeyhelpers.org.
Montemerlo, M., & Thrun, S. (2002). Conditional particle filters for si-

multaneous mobile robot localization and people-tracking (slap).

In Proc. int’l conf. robotics and automation.
Muller, A., Kirsch, A., & Beetz, M. (2007). Transformational planning

for everyday activity. In 17th international conference on auto-

mated planning and scheduling (pp. 248–255).
Nguyen, H., Anderson, C., Trevor, A., Jain, A., Xu, Z., & Kemp,

C. (2008). El-e: an assistive robot that fetches objects from flat

surfaces. In Proc. human robot interaction, the robotics helpers

workshop.
Pereira, G. A. S., Kumar, V., & Campos, M. F. M. (2002). Decentral-

ized algorithms for multirobot manipulation via caging. In Pro-

ceedings of the workshop on the algorithmic foundations of ro-

botics.
Prats, M., Sanz, P. J., & del Pobil, A. P. (2008). A sensor-based ap-

proach for physical interaction based on hand, grasp and task

frames. In Proceedings of the manipulation workshop in robotics

science and systems.
Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J.,

Berger, E., Wheeler, R., & Ng, A. (2009). (ros): an open-source

robot operating system. In ICRA workshop on open source soft-

ware in robotics.
Ray, C., Mondada, F., & Siegwart, R. (2001). What do people expect

from robots? In Intelligent robots and systems, 2008 proceedings

2008 IEEE/RSJ international conference (pp. 3816–3821).
Saxena, A., Driemeyer, J., & Ng, A. (2008). Robotic grasping of novel

objects using vision. The International Journal of Robotics Re-

search, 27(2), 157–173.
Schulz, D., & Burgard, W. (2001). People tracking with a mobile ro-

bot using sample-based joint probabilistic data association filters.

Robotics and Autonomous Systems, 34(2–3), 107–115.
Schulz, D., Burgard, W., Fox, D., & Cremers, A. (2003). People track-

ing with a mobile robot using sample-based joint probabilistic

data association filters. The International Journal of Robotics Re-

search, 22(2), 99–116.
Taylor, G., & Kleeman, L. (2003). Fusion of multimodal visual cues

for modelbased object tracking. In Australasian conference on ro-

botics and automation (ACRA2003), Brisbane, Australia.
The personal robotics project (2008). http://pr.willowgarage.com.
Vacchetti, L., Lepetit, V., & Fua, P. (2004). Stable real-time 3d track-

ing using online and offline information. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 26(10), 1385–1391.

doi:10.1109/TPAMI.2004.92.
Walter, J., & Arnrich, B. (2000). Gabor filters for object localization

and robot grasping. In IEEE proceedings of the international con-

ference on pattern recognition (p. 4124). Washington: IEEE Com-

puter Society.
Wang, C. C., & Thorpe, C. (2002). Simultaneous localization and map-

ping with detection and tracking of moving objects. In Proc. int’l

conf. robotics and automation.
Zerofrog (2008). Libsiftfast. http://sourceforge.net/projects/libsift.
Zhang, J., Schmidt, R., & Knoll, A. (1999). Appearance-based visual

learning in a neuro-fuzzy model for fine-positioning of manipu-

lators. In IEEE international conference on robotics and automa-

tion (p. 1164).

Zickler, S., & Veloso, M. (2006). Detection and localization of multiple

objects. In Humanoid robots, 2006 6th IEEE-RAS international

conference (pp. 20–25). doi:10.1109/ICHR.2006.321358.

Siddhartha S. Srinivasa is a Re-

search Scientist with Intel Research

Pittsburgh. He also holds an Ad-

junct Faculty position at the Ro-

botics Institute at Carnegie Mellon

University. He is a co-PI of the Per-

sonal Robotics project, in which an

anthropomorphic robotic arm and

a mobile robot coordinate to ac-

complish useful manipulation tasks

in populated indoor environments.

His research focuses on enabling ro-

bots to interact faster, better, and

smoother with the real world. He re-

ceived his Ph.D. from the Robotics

Institute at Carnegie Mellon University where he developed robust con-

trollers for robotic manipulation. He also has a B. Tech in Mechanical

Engineering from the Indian Institute of Technology Madras.

Dave Ferguson is a Researcher

at Two Sigma Investments. He re-

ceived his Ph.D. in Robotics from

the Robotics Institute at Carnegie

Mellon University in 2006. His ro-

botics research focused on planning

and coordination for single agents

and multi-agent teams. His algo-

rithms have been used on a num-

ber of real-world autonomous sys-

tems including the Mars Explo-

ration Rovers, subterranean mine

mapping robots, and Tartan Rac-

ing’s Urban Challenge winning ve-

hicle “Boss”. Most recently, he was the co-lead of the Personal Ro-

botics project at Intel Research, where he helped lead the development

of “Herb”, an autonomous mobile manipulation robot for indoor assis-

tance.

Casey J. Helfrich is a Research

Engineer at the Intel Research Lab

in Pittsburgh. He received a Bach-

elor’s degree in Physics from

Carnegie Mellon Univeristy in 2001

and an additional B.S. in Computer

Science from Carnegie Mellon Uni-

versity in 2002. He joined the Pitts-

burgh lab in November 2001 when

the walls were still being put up,

and helped design and build the

IT infrastructure for Intel Research.

Casey has contributed to several In-

tel Research Pittsburgh Projects in-

cluding Internet Suspend Resume, Diamond, Dynamic Physical Ren-

dering and Personal Robotics.

http://www.monkeyhelpers.org
http://pr.willowgarage.com
http://dx.doi.org/10.1109/TPAMI.2004.92
http://sourceforge.net/projects/libsift
http://dx.doi.org/10.1109/ICHR.2006.321358


Auton Robot

Dmitry Berenson is currently a

Ph.D. student at the Robotics In-

stitute at Carnegie Mellon Univer-

sity working on the Intel Personal

Robotics project sponsored by the

Quality of Life Technology Insti-

tute. He graduated from Cornell

University in 2005 with a B.S. in

Electrical and Computer Engineer-

ing. His interests include manipula-

tion, planning algorithms, grasping,

mobile manipulation, and humanoid

robotics.

Alvaro Collet is a M.Sc. student in

The Robotics Institute at Carnegie

Mellon University. He is the pri-

mary computer vision researcher on

the Personal Robotics project at In-

tel Research Pittsburgh. His inter-

ests include vision for manipulation,

active sensing, object recognition,

and sensor fusion. Alvaro gradu-

ated from Universitat Ramon Llull

in 2005 with a B.S. and M.S. in

Electrical and Computer Engineer-

ing.

Rosen Diankov graduated from

University of California Berkeley

in 2006 with Electrical Engineering

and Computer Science, and Applied

Math degrees. At the moment he is

a Ph.D. graduate student at the Ro-

botics Institute at Carnegie Melon

University. Rosen’s main research

focus is to solve the robotics prob-

lem: perception, planning, visual-

ization, and control into one coher-

ent framework. Up until now he has

worked on several vision and plan-

ning systems involving autonomous

robots in everyday scenarios. One

of his contributions to the robotics field is an open-source planning

framework called OpenRAVE, which is helping to serve as a reposi-

tory for planning algorithms. At the moment Rosen is working on the

Personal Robotics project at Intel Research Pittsburgh.

Garratt Gallagher is currently pur-

suing a Masters of Robotics at

Carnegie Mellon University. His re-

search at CMU has focused on per-

ception, mapping and planning in

dynamic indoor environments. His

research goal is to develop an indoor

helper robot that can assist people in

their everyday lives. He works with

the Personal Robotics group at In-

tel Research Pittsburgh, where he

helped create HERB, a robot that

is designed to help people perform

household tasks. In addition, he is

part of the Quality of Life Technol-

ogy center, a NSF funded project to develop technology that can aid

the elderly and disabled.

Geoffrey Hollinger is a Ph.D. stu-

dent at Carnegie Mellon Univer-

sity in the Robotics Institute. He

is actively involved in the EMBER

project to develop autonomous ro-

bots that assist first responders in

disaster scenarios. His work focuses

on designing scalable, near-optimal

algorithms for searching unstruc-

tured environments with teams of

agents. The applications of his work

also include urban search and res-

cue, aged care, and personal robot-

ics. He received his M.S. in Robot-

ics from Carnegie Mellon Univer-

sity, and he holds a B.S. in General Engineering and a B.A. in Philos-

ophy from Swarthmore College.

James Kuffner is an Associate

Professor at the Robotics Institute,

Carnegie Mellon University. He re-

ceived a B.S. and M.S. in Computer

Science from Stanford University in

1993 and 1995, and a Ph.D. from

the Stanford University Dept. of

Computer Science Robotics Labo-

ratory in 1999. He spent two years

as a Japan Society for the Promo-

tion of Science (JSPS) Postdoc-

toral Research Fellow at the Uni-

versity of Tokyo working on soft-

ware and planning algorithms for

humanoid robots. He joined the fac-

ulty at Carnegie Mellon University’s Robotics Institute in 2002. He has

published over 100 technical papers and received the Okawa Founda-

tion Award for Young Researchers in 2007.

Michael Vande Weghe has worked

for the past ten years in mechani-

cal, electrical, and software devel-

opment at Carnegie Mellon Univer-

sity, where he is presently a Se-

nior Research Engineer at the Ro-

botics Institute. Mike is responsible

for hardware development and robot

control on the Intel Research Per-

sonal Robotics project. Before com-

ing to CMU, Mike worked for Par-

lance Corporation and BBN on real-

time computer speech recognition,

and for Lutron Electronics on high-

frequency switching power systems. Mike has an S.B. in Electrical En-

gineering from MIT, and a M.S. in Robotics from CMU.


	HERB: a home exploring robotic butler
	Abstract
	Introduction
	System architecture
	Software modules
	Software architecture

	Sensing
	Segway localization
	Checkerboard localization
	Lessons learned

	Navigation and mapping
	Previous work
	Map representation
	Object classification
	Lessons learned

	Vision
	Related work
	Ellipse finder
	Modelling objects using natural features
	Automatic object recognition and pose estimation
	Results
	Lessons learned

	Planning
	Opening doors by planning with caging grasps
	Caging grasp formulation
	Results
	Lessons learned

	Manipulation planning
	Planning with workspace goal regions
	Planning with constraints
	Lessons learned

	Demonstrations
	R@I: Moving coffee mugs
	IDF: Collecting coffee mugs
	Search: combining search and action
	IOH: retrieval in a kitchen
	Lessons learned

	Conclusions and future work
	Acknowledgements
	References


