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Herbicides do not ensure for higher 
wheat yield, but eliminate rare 
plant species
Sabrina Gaba1,2, Edith Gabriel3, Joël Chadœuf4, Florent Bonneu3 & Vincent Bretagnolle2,5

Weed control is generally considered to be essential for crop production and herbicides have become 

the main method used for weed control in developed countries. However, concerns about harmful 

environmental consequences have led to strong pressure on farmers to reduce the use of herbicides. 

As food demand is forecast to increase by 50% over the next century, an in-depth quantitative analysis 
of crop yields, weeds and herbicides is required to balance economic and environmental issues. This 

study analysed the relationship between weeds, herbicides and winter wheat yields using data from 

150 winter wheat fields in western France. A Bayesian hierarchical model was built to take account 
of farmers’ behaviour, including implicitly their perception of weeds and weed control practices, on 

the effectiveness of treatment. No relationship was detected between crop yields and herbicide use. 
Herbicides were found to be more effective at controlling rare plant species than abundant weed 
species. These results suggest that reducing the use of herbicides by up to 50% could maintain crop 
production, a result confirmed by previous studies, while encouraging weed biodiversity. Food security 
and biodiversity conservation may, therefore, be achieved simultaneously in intensive agriculture 

simply by reducing the use of herbicides.

Human food sources depend, directly or indirectly, on four main annual crops: wheat, barley, corn and rice1. 
Indeed the total economic value of annual crop production for human food has been estimated worldwide at 
around 1600 billion euros per year2, from 2005 FAO statistics. For centuries, weed control has been considered to 
be a critical issue and a limiting factor in crop production (review in3). Herbicides alone account for 37% pesticide 
active ingredients used worldwide4, and pesticides cost around 40 billion USD worldwide per year5, being said to 
save around 10% of losses to pests6, about 180 billion USD per year. Signi�cant e�orts have been made to increase 
the number of herbicides and their e�ectiveness7, review in ref. 8. However, as they generate large environmental 
costs, the use of herbicides, and more generally pesticides, has raised considerable concern with regard to their 
harmful consequences on ground and surface waters9, biodiversity10 and health11. Moreover, as many weed spe-
cies are developing resistance to herbicides12,13 these species are becoming more di�cult and expensive to control. 
Finally, it has recently been acknowledged that weeds in agro-ecosystems play an important role in maintaining 
ecosystem services (e.g., pollination: review in14; biological control15). Maintaining a balance between herbicide 
costs, weeds and crop production is, therefore, seen as the major challenge for agriculture in the future, from both 
economic and environmental viewpoints4.

�ere has recently been a general call to limit the use of herbicides at European and national levels16, either 
by reducing application rates, restricting the range of products (especially the most environmentally harmful) 
or using alternative management methods such as incorporating alfalfa in annual crop succession17 or sowing 
mixed crops18. However, farmers and scientists have expressed strong concern with regard to the potential neg-
ative indirect e�ects of a partial herbicide ban, since this may hamper food production19,20; see review in ref. 21.  
Despite many government incentives, the use of pesticides has not decreased signi�cantly over the last ten years, 
either in Europe or in the US (see ref. 22). �rough their expected e�ect on weeds (i.e., a major reduction in 
weed biomass), herbicides are implicitly thought to improve crop yields and so reducing the use of herbicides 
would indirectly reduce crop production. A strong relationship between herbicide use and crop yield is thus a 
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critical expectation, although paradoxically, there is, at best, very little evidence to con�rm such a relationship. 
Weeds may reduce the winter wheat yield by up to 23% on average worldwide, but actual loss due to weeds is less 
than 8% (Table 1 in ref. 3) and the adverse e�ect of weeds on crop yields is best established on organic farms23. 
Furthermore, although many studies of the e�ects of herbicides on weed populations are available, most were 
conducted many years ago (review in ref. 24), as most herbicides and active ingredients came onto the market 
prior to the eighties8. Moreover, almost all these studies were conducted on single species and in experimental 
conditions24,25; but see ref. 26). �erefore, the negative e�ect of weeds on crop yields has been modelled rather 
than tested empirically27–29.

Experimental and modelling studies usually ignore one further aspect: the farmers’ decisions and prac-
tices30,31. Although the application rate is usually recommended by agrochemical �rms, the e�ectiveness of her-
bicides depends on the application mode (i.e. timing, dose), environmental conditions (the relative humidity can 
increase herbicide e�cacy), the choice of active ingredient, depending on the observed or expected weed species, 
and the agricultural techniques used in combination. �ere is strong evidence that farmers behave in di�erent 
ways in response to strong weed pressure32, although this has not been accurately quanti�ed (but see ref. 33,34). 
�ere may be di�erences in the appreciation of the risk encountered for a given level of weed abundance31, in 
the technique to be used to deal with the situation (typically, between tillage and use of herbicide) and in the 
herbicide treatment (type of active ingredient, frequency and dose30). Although this has been studied for organic 
farming23,30,31, there is considerable uncertainty about the interaction between weed abundance in conventional 
�elds, a farmer’s behaviour and decisions and the e�ectiveness of weed control by the herbicides35.

�is study used empirical data on weeds, herbicide practices and winter wheat yields from 150 �elds belonging  
to 30 farmers, to determine whether the use of herbicides improved yields and/or decreased weed abundance. As 
no clear relationships between herbicide use and weeds nor between yields and weeds were detected using standard 
statistical models, we modelled these relationships taking into account implicitly the e�ects of farmers’ behaviour  
and of environmental conditions on the e�ectiveness of weed management. Although farmers’ behaviour is usually  
taken into account in decision support systems31,33 and in mental models30,32,36 using data obtained from surveys 
of farmers, for this study a hierarchical Bayesian framework was developed37 which modelled farmers’ behaviour 
(sensu lato) as a parameter in�uencing the latent variable, λ, of the expected number of weeds per unit area. �is 
parameter quanti�es the farmers’ impact on the pairwise ‘crop yield-herbicides-weeds’ relationships. �is method 
di�ered from the conventional statistical approach by assuming that a farmer’s behaviour (denoted ηR

F and ηA
F 

for weed richness and abundance, respectively) a�ect the crop yield-herbicide relationship through his own per-
ception of weeds and weed control management strategies (e.g. timing of treatment). To include more realistic 
conditions in the model, a framework was developed to take account of the adaptive management by a given 
farmer to deal with the speci�c conditions encountered in his �elds, by allowing a nested e�ect of �eld within 
farmer (ηR

Ff and ηA
Ff for weed richness and abundance, respectively) and also taking account of the di�erential 

e�ectiveness of herbicide treatments depending on the weed species, ηR
Ffs (η

A
Ffs). We then analysed the interac-

tive e�ects of farmers’s behaviour, for both ηF (ηA
F) and ηFf (η

A
Ff), and the herbicide application rate on weeds, 

testing the hypothesis that herbicide treatment a�ected the abundance of weeds rather than species richness and 
targeted species (those thought to reduce the yields) rather than non-targeted species, using estimated values of 
ηR

Ffs (η
A

Ffs).

Results
Herbicide application rate did not affect weeds or crop yields. 108 species were found over the 
150 �elds with an average of 9.46 species per �eld (range 0–25). All but one species of the six most commonly 
found were annual dicotyledons, i.e. Polygonum aviculare L., Veronica persica Poir., Mercurialis annua L., Fallopia 
convolvulus L. and Galium aparine L., with the exception of Poa sp. (annual monocotyledon). We �rst attempted 
to determine a positive relationship between the crop yield and the herbicide application rates, expressed as the 
total application rate over the cultivation period, using linear mixed models (with �eld nested within farmer as a 
random e�ect). �e relationship between the crop yield and the herbicide application rate was actually negative  
(LMM: estimate = −0.0034 (SE = 0.0016), F1,103.86 = 4.933, P = 0.028; Fig. 1a; see Supplementary Material). 
Adding nitrogen as a covariate to control for the intensiveness of the crop production in the model did not change 

Identical e�ect of herbicides on weed species
�e e�ectiveness of herbicide varies 

with species identity

No farmer’s behaviour
E�ect of farmer’s 

behaviour at the farm scale E�ect of farmer’s behaviour at the �eld scale

Weed richness
Rich_base Rich_farm Rich_�eld

λ = µ/(1 + aD)b λ  = µ/(1 + aηFD)b λ = µ/(1 + aηFfD)b

Weed abundance
Ab_base Ab_farm Ab_�eld Ab_spec

λS = µS/(1 + aD)b λS = µS/(1 + aηFD)b λS = µS/(1 + aηFfD)b λS = µS/(1 + aSηFfsD)bS

Table 1.  Description of the Hierarchical Bayesian models. “Rich” and “Ab” indicate the models used with 
weed richness and estimated abundance, respectively. λ is the species richness (abundance) among �elds and 
follows a Poisson distribution with mean µ. a is the scaling factor, b is the shape factor describing the concavity 
of the reduction curve, D is the herbicide application rate and ηR. (ηA.) is a parameter quantifying farmer’s e�ect 
on the e�ectiveness of the treatment in his farm (ηR

F or ηA
F) or in each of his �eld (ηR

Ff or ηA
Ff). In the “Ab_spec” 

model, the e�ectiveness of the herbicides varies with species identity. Except for D, all parameters and latent 
variables were estimated from the observed data.
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the result (∆AIC <2 compared to the model without nitrogen input) and so nitrogen input was removed from 
the model. Furthermore, contrary to expectation, no signi�cant relationships were observed between the her-
bicide application rate and either the weed frequency or the weed species richness (respectively F1,116.66 = 0.889, 
P = 0.347; Fig. 1b and F1,131.62 = 0.0006, P = 0.939; Fig. 1d) or between crop yield and species richness (Fig. 1c;  
F 1,132.31 = 0.112, P = 0.738). �ere was a slight negative relationship between crop yield and weed frequency for 
the highest weed frequency, but the relationship was far from signi�cant (Fig. 1e; F1,118.62 = 1.360, P = 0.246). 
Similar results (Fig. S2) were found when the level of herbicide application was described by a synthetic indicator: 
the Treatment Frequency Indicator (TFI, see Supplementary Material).

No evidence was found for any relationship between weeds, herbicide application rates and crop yield. One 
reason could be that farmers adapt their treatment strategy in order to keep the weed risk below a given threshold 
and guarantee a minimum yield33. However, the very high variances found in all pairwise relationships (Fig. 1) 
suggested testing an alternative scenario in which the variability in the farmer’s behaviour was so high that it 
masked any possible relationship. Farmer’s behaviour aggregates here what the farmer actually does (choice of 
active ingredients and number and timing of applications), interacting with the environmental conditions at the 
time of herbicide applications and the agricultural techniques used in combination with herbicides.

Farmers’ behaviour affected the herbicide-weed relationship. Hierarchical Bayesian models were 
used to model the e�ect of herbicides on weed richness and abundance (Fig. 2; Table 1) taking into account 
the variability in the farmer’s behaviour. Such variability was introduced to model either a simple farmer e�ect  
(ηR

F and ηA
F) assuming a similar e�ect across the �ve �elds farmed by the farmer, or with variability between 

�elds for a given farmer, which was modelled as a nested e�ect at �eld scale within a farm (ηR
Ff and ηA

Ff) (Table 1). 
�e �rst set of models (Table 1) assumed that the e�ectiveness of herbicides did not vary with weed species 
(although all species abundances were modelled separately). �e model �t was tuned by comparing weed richness 
or abundance as estimated by the model output with the observed values. �e model with the nested e�ect at �eld 
scale within a farm (ηFf) explained the variability in weed species richness much better (Rich_�eld: DIC = 31600; 
Fig. S3) than the model with only the farmer e�ect (ηF; Rich_farm DIC = 32590). �is model also explained the 
weed species richness much better than the model without any farmer e�ect (Rich_base: DIC = 34200). Similar 
results were found for weed estimated abundance (Ab_�eld: DIC of the model with ηA

Ff = 7069, Ab_farm: DIC of 
the model with ηA

F = 6142 and Ab_base: DIC of the model without any e�ect = 5508; Fig. 3a). Estimated param-
eters are given in Table S3.
ηR

F (ηA
F) and ηR

Ff (η
A

Ff) are surrogates for the e�ectiveness of treatment and vary between 0 and 1, a value 
of 1 being the e�ectiveness expected if weed control were complete. �ere was a strong farmer identity e�ect 
on the e�ectiveness of the weed control treatment (Fig. 3b): the farmers’ e�ect appeared to depend on the �eld 
(see variation of ηA

Ff over the �ve �elds farmed by each farmer in Fig. 3d), as already shown based on surveys 
of farmers32,34. �is suggests that farmers either adapted their management at �eld level, or possibly that the 

Figure 1. Pairwise relationships between crop yield (q.ha−1), weed richness (or weed abundance) and 
herbicide application rates. (a) Negative relationship between crop yield (q.ha−1) and herbicide applied (dose 
in kg.ha−1). �e weed richness (b) and frequency (d) were not a�ected by herbicides. �e crop yield was not 
signi�cantly reduced by (c) weed richness or (d) frequency. �e weed frequency is the sum of the weed presence 
in each quadrat. On each graph, the line and the smooth line represent the predictions of the linear mixed 
models and 95% con�dence interval, respectively.
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e�ectiveness di�ered between �elds because of exogenous factors (e.g. meteorological conditions are known to 
a�ect the e�ectiveness of herbicides38). Herbicide management options varied for 19 farmers out of the 30 (63.3%) 
in our dataset suggesting that farmers changed their management practices to some extent depending on the �eld. 
Only one third of the 30 farmers applied exactly the same herbicide treatment to each of their �ve �elds and so the 
di�erences between �elds is likely to have been due to the e�ectiveness of the treatment rather than the herbicide 
used. Furthermore, there was only weak and non-signi�cant correlation between ηR

Ff (η
A

Ff) and the farmers’ 
weeding strategies, described by the diversity and date of introduction of products applied as well as the number 
of tank-mixed commercial herbicides (SM, Fig. S5 and Table S5).

Most ηR
Ff values in the weed richness model were close to 0 with a maximum of 0.65 (Fig. 3b), indicating 

signi�cant discrepancies between the expected e�ect of the herbicide treatment at a given strength and the e�ect 
observed on weed richness. �e asymmetric distribution (Fig. 3b) of ηR

Ff suggested that most herbicide treat-
ments had almost no e�ect and that, for almost all the farmers, the treatment did not reduce either weed richness 
or weed abundance, i.e. ηA

Ff was close to 0, in at least one of their �elds (Fig. 3d). 64.5% of ηR
Ff estimates for the 

richness model and 60% of ηA
Ff estimates for the abundance model were below 0.2 (Fig. S3C). In addition, ηR

Ff 
estimates for the richness model (Rich_�eld) were generally lower than ηA

Ff estimates for the abundance model 
(Ab_�eld, Fig. 3c), suggesting that herbicides tended to be generally more e�cient at controlling total weed rich-
ness than weed estimated abundance.

Herbicides were effective for controlling rare species but did not control abundant species. To 
give more realistic conditions and models, we then relaxed the assumption of identical e�ect of herbicides on 
weed species, and assumed that the e�ectiveness of herbicide varied with species identity, i.e. ηA

Ffs estimates the 
e�ectiveness of herbicide treatment on a given weed species in each �eld for each farmer (model Ab_spec in 
Table 1). Determining the probability of weed species survival in relation to the amount of herbicide applied, and 
depending on the relative weed abundance, showed that herbicides were very e�ective at suppressing rare weeds 
(i.e. the less abundant species in absence of herbicides) but less e�ective at suppressing the most abundant weeds 
(Figs 4a and S5). In a small number of cases, herbicides reduced the survival of abundant species (upper part of 
Fig. 4a) but only when high doses were applied (i.e., upper 90% quartile). �e survival probability pro�les of the 
most abundant species di�ered from species with lower abundance, again indicating that herbicide was not a pri-
mary factor in controlling the most abundant weed species (top part of Fig. 4a). Herbicides also failed to control 
four of the most noxious weed species identi�ed by farmers in the study site (see methods section, and ref. 39). 
Although herbicides failed to control abundant, targeted noxious weeds, we tested whether �elds where treatment 
was the most e�ective had the highest wheat yields. �is was not the case, since there was no relationship between 
the e�ectiveness of herbicide treatment (ηR

Ff) and wheat yield (Fig. 4b).

Figure 2. (a) Photographs of weeds in a winter wheat �eld (Sabrina Gaba photo credits). (b) Schematic 
representation of the Bayesian hierarchical model (Rich_�eld). It was assumed that, when no herbicide was 
applied, species richness among �elds followed a Poisson distribution with mean µ. Herbicides reduced 
the species richness to an observed species richness λ (the number of species that survived treatment). �e 
reduction was a function of three parameters: a was the scaling factor, b was the shape factor describing 
the concavity of the reduction curve and De�ective was the e�ectiveness of the herbicide depending on D and 
ηR

Ff. D was the observed herbicide application rate and ηR
Ff was a parameter quantifying farmer’s e�ect on 

the e�ectiveness of the treatment in each of his �eld. Except for D, all parameters and latent variables were 
estimated from the observed data.
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Discussion
�e main purpose of this study was to determine whether decreasing the amount of herbicide used would signif-
icantly reduce yield owing to an increase in weed richness and/or abundance, as has frequently been suggested20; 
see review in ref. 21. However, using a dataset of 150 �elds, there was no correlation between weed richness or 
frequency and winter wheat yields. Furthermore, no correlation was found to indicate that the herbicide appli-
cation rate had an e�ect on weeds or on yield. Taking account of the possible role of farmers and environmental 
conditions in the e�ectiveness of treatment, the results suggested that many treatments were ine�ective (Fig. 3c), 
probably accounting for the lack of e�ects. Even where treatment was e�ective, however, there was no correla-
tion between the e�ectiveness of treatment and yield (Fig. 4b). Even though herbicide application rates had no 
e�ect on weed estimated abundance, including targeted species, or on yield, the results suggested that the only 
tangible e�ect of herbicides was on less abundant weed species, which were not targeted by farmers. �e validity 
and robustness of this approach is discussed below. �e �ndings are compared with available literature and some 
consequences of the study with regard to pesticide use and biodiversity management in farmlands are described.

�e crop yield losses resulting from a reduction in pesticide use is generally quanti�ed without taking account 
of the e�ect of farmers’ decisions (e.g. ref. 40). Our study used Bayesian Hierarchical Models with a latent variable 
which models the farmer’s behaviour (including, e.g., application mode, choice of active ingredient, cropping 
systems, farmer’ belief and perception) interacting with environmental conditions. Bayesian and Markov hierar-
chical models with hidden state variables to allow for human behaviour have commonly been used41 for decision 
models42 and for policy-making because they can realistically predict human behaviour43 or easily accommodate 
underlying environmental attitudes44. In this study, the modelling approach relied on several strong assumptions. 
Firstly, it was assumed that weed species were randomly distributed in a given area, with a Poisson distribution. 

Figure 3. (a) Weed abundance estimated during the parameter estimation procedure and weed frequency (sum 
of weed presence in each quadrat) show a good �t. (b) ηR

Ff estimated in the weed richness model (Rich_�eld) 
was plotted against the ηA

Ff estimated in the weed estimated abundance model (Ab_�eld). If the e�ectiveness of 
the herbicide on weed richness and abundance was similar, the dots should fall on the y = x line. (c) Dispersion 
of ηR

Ff across �elds (Rich_�eld). A zero value indicates that the herbicide treatment did not have an e�ect.  
(d) Representation of the high variability of the e�ectiveness of treatment between farms and between �elds 
farmed by the same farmer. �e dots show the e�ectiveness of the treatment ηA

Ff per farmer which are classi�ed 
by increasing ηA

F.
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�is assumption was used to estimate the average number of species to be expected in a �eld where herbicide had 
been applied and compare this estimated value with the observed value. �ere is some evidence that weed species 
are distributed randomly in farmland areas or at least that random assemblage of weeds (sensu neutral model45) 
cannot be disregarded. For instance, in the same study site46 found that weed communities in organic farms were 
best explained by mass e�ect metacommunity models, and ref. 47, also in the same study site, found that weed 
functional diversity di�ered very little from random assemblage, in particular in winter wheat. We also assumed 
that the abundance of each species also had a Poisson distribution, although this is a much more conventional, 
less controversial assumption48,49, and was a good predictor of its cover. Indeed farmers could respond to cover, 
and not to abundance which could also explained the lack of relationship between herbicides and weed estimated 
abundance. Secondly, the e�ect of the herbicide application rate on weed richness (abundance) was expressed 
using a non-linear function. We made this assumption in the model structure to ensure that the estimated value 
of weed richness (abundance) decreased with decreasing herbicide application rates and remained positive (or 
null). A reduction factor (Fig. 2c) was used to describe how farmers’ management decisions a�ected the e�ec-
tiveness of herbicides, i.e. it was assumed that herbicides were not fully e�ective with a di�erence between the 
observed richness (or abundance) and the expected richness (or abundance) for perfect e�ectiveness of the herbi-
cide treatment. �irdly, the herbicide application rate was described using two di�erent indicators, the total dose 
of herbicides and the TFI, which describe complementary aspects of weed control treatments. �e results were 
similar for either indicator (details are given in SM). Finally, although in previous studies of weeds, herbicides and 
yields the sample size was o�en limited (e.g. 15 farms in ref. 34; 16 farms in ref. 30; 10 trials in ref. 50), our sample 
size was reasonably large (30 farms and 150 �elds), although it was limited to a single geographical area and a 
single year. Investigating the weed-crop yield relationship over several years would allow quantifying the e�ect of 
climate on weeds a well as crop biomass production, and the output of their interactive relationship. In addition, 
this study considered only conventional farming. Despite it is the most common farming system in developed 
countries, it would be of great interest to include alternative farming systems such as organic farming in this anal-
ysis to explore the e�ect of mechanical weeding on the weed-crop yield relationship (e.g., organic farming and 
Agri-Environmental Schemes in ref. 9, which used the same data set for France). �is obviously requires further 
analyses carried out in di�erent areas, for di�erent farming systems and over several years.

Despite repeated claims that weed density lowers yields (e.g. review in ref. 24), the evidence is less conclusive 
than usually claimed51. In an extensive review24 established that at least 30 species of weeds reduce wheat yield 
to varying degrees (ranging from a few % up to 75%) and at a highly variable threshold of number of seeds or 
plants/m2. However, extremely few studies have investigated this e�ect at community level (none in ref. 24 for 
instance)52 studied the long-term e�ects of applying full and half doses of herbicide on 10 �elds: compared to a 
control, full and half doses increased the proportion of di�cult-to-control weed species signi�cantly in half of the 
sites, while crop yields were actually higher in some sites when using half doses. Many other studies have demon-
strated that doses can be reduced by 50% or even more compared to the recommended dose without detectable 
loss of yield52,53, increase in weeds54 or both (review in ref. 21). Indeed, without crop being present, weed control 
was at least 70% e�ective in 50% of the studies, even when the herbicide application rate was only 20% of the 
recommended rate, whereas in conjunction with crop cultivation, no detectable e�ect was found with up to 50% 

Figure 4. (a) Weed species survival rate depending on the herbicide application rate. On the y-axis, the weed 
species are classi�ed from low to high abundant species, the abundance being estimated in absence of herbicide 
applications. Weed Red values indicate high mortality rate (survival rate close to 0) and high survival rates 
are indicated by light yellow or white values. �e higher mortality rates (red values) are observed for the rare 
species. Four of the most noxious species are: Veronica persica, Galium aparine, Alopecurus myosuroides and 
Avena fatua. (b) Relationship between crop yield (q.ha−1) and the e�ectiveness of the treatment ηA

Ff. �e LOESS 
regression is shown by a line.
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reduction in herbicide use compared to the recommended doses21. Furthermore, using experimental data from 
the literature55 found that wheat has the highest competitive ability among 26 crops against weeds. Consequently, 
weed competition may have little e�ect on winter wheat (certainly lower than on other crop species), which ques-
tions the use of large amounts of herbicide in winter wheat cropping systems.

Since the introduction of herbicides (in the 50s8), weeds have become a secondary problem for farmers and 
were no longer considered a decisive factor in the design of farming systems34. For decades, herbicides allowed 
farmers to hope for totally weed-free �elds. Nowadays, maximum weed control has been shown to be unneces-
sary, even to achieve high yields or income53,55,56. Besides providing new evidence, this study suggested that her-
bicide use did not increase yields and a�ected rare species (i.e. species at low abundance in absence of herbicide 
application) rather than common weed species and non-targeted species rather than noxious species. �e analysis 
focused solely on wheat, which is the most important crop in the world (in terms of area cultivated), and weeds 
are the most important pest group in wheat production worldwide3. We believe, therefore, that the results suggest 
that a reappraisal of how herbicides a�ect yields of major crops is needed.

If reducing herbicides by more than 50% would increase biodiversity and reduce contamination of water and 
risk to health, with an undetectable e�ect on yield, it would further increase farmer’s income (i.e. lower costs for 
farmers for equivalent crop yields). Despite these clear advantages, farmers are reluctant to reduce herbicide use: 
for instance, integrated pest management (IPM) has long been promoted by experts22,57 for economic and envi-
ronmental reasons but is still seldom used. It has been suggested that farmers continue to use herbicides despite 
their e�ects on environmental sustainability, as well as farmers’ health, because of their awareness of the delayed 
risks of lower weed control, with increasing seedbank density32. Alternatively, farmers’ use of herbicides may be 
rooted in a market system that encourages the adoption of biophysically unsustainable techniques11: these may 
lower current costs and boost yields in the short term but eventually lower yields and raise production costs in the 
longer term58. Agricultural practices tend to continue to apply such systems once they have been adopted even 
though they are unsustainable58,59. All the possible explanations of our results call for mid-term (>4 to 6 years) 
experimental studies that explicitly incorporate the farmer’s behaviour (weeding practices, perceptions, attitudes 
to weeds) thus requiring interdisciplinary research (socio-economic, agricultural and ecology sciences). �ese 
experiments could be implemented in di�erent countries where wheat is an important crop.

To ensure food security while conserving biodiversity in intensive agriculture, government policies have o�en 
targeted a combination of changes in herbicide use with increased diversi�cation in crop rotations, as well as 
the use of IPM or organic farming13,22. We argue here that it is perhaps far easier merely to reduce the use of 
herbicides.

Materials and Methods
Study area and sampling design. In 2007, 30 farms were selected in the LTER “Zone Atelier Plaine & Val 
de Sèvre” (Supplementary Material), with no particular spatial or agronomic design, except that organic farms 
or farms engaged in agri-environmental schemes (AES) were a priori excluded (but see details in ref. 10). None 
of the 30 farmers used mechanical weeding methods for weed control. �e general characteristics of the farms 
are presented in Table S1. For each farm, �ve winter wheat �elds were selected in consultation with the farmer, 
with no a priori selection. �e �elds were distributed throughout the study site (Fig. S1). All �elds sampled from 
di�erent farms were at least 1 km apart.

Survey of farmers and herbicide treatments. Information about crop yields and farming practices 
(pesticide and fertilizer use, ploughing and mechanical weed control system) and general information about the 
farm (number of crops, proportion of land covered by AES, �eld size) was collected by means of a questionnaire 
sent out to all participating farmers. �e response was 98% representing 30 farms. Herbicide use was described 
by the name and the concentration of each of the active ingredient and the day or week of application. Herbicides 
were further classi�ed as monocotyledon speci�c, dicotyledon speci�c or broad spectrum. Crop yields were not 
available for 3 of the 30 farms.

Weed surveys. Botanical surveys were carried out once during the �owering to milk-ripening stage of winter  
wheat, in spring/summer 200710. For each of the 150 �elds, surveys were carried out in ten quadrats (4 m2) at 
10 m intervals in line from the border of the �eld toward the centre, perpendicular to the tracks made by farm 
machinery within the �eld. �e �rst quadrat was 20 meters from the edge of the �eld. For each quadrat, weed 
species were recorded as either present or absent, irrespective of the number of individual plants, giving a list of 
species present in each quadrat.

Statistical analysis of the relationships between crop yield–herbicides and crop yield–
weeds. �e relationship between crop yield and herbicides was analysed using a linear mixed model (LMM) 
with the farmer as random e�ect and with and without nitrogen input as a co-variable. Two indicators were used 
for the amount of herbicide applied: the total application rate and the treatment frequency index (SM Materials 
and Methods). LMM were analysed with a type III analysis of variance with Satterthwaite approximation for 
degrees of freedom. A model selection procedure based on Akaïke Criterion (AIC60) was performed to determine 
the e�ect of nitrogen input. �e same procedure was applied to analyse the relationships between crop yield and 
weed richness (abundance). All analyses were performed using the R “LmerTest package”60,61

Modelling farmers’ behaviour in the herbicide-weed relationships-Herbicide-Weed species rich-
ness model. In order to account for the high variability in the herbicide-weed richness relationship (LMM 
described above)62, hierarchical Bayesian models were used (Fig. 2c). It was assumed that the number of weed 
species in a given area, i.e. species richness, followed a Poisson distribution with mean µ when no treatment was 
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applied. It was also assumed that herbicide treatment reduced the mean number of species and, therefore, λ, the 
species richness expected in a given area when a treatment was applied, was modelled as a Poisson distribution of 
mean µ/(1 + aD)b where D is the amount of herbicide applied, a is a scale factor and b is a shape factor describing 
the concavity of the reduction a�er the application of the herbicide. �e non-linear function of D allows the spe-
cies richness to tend to zero as D becomes large, and to equal µ when no herbicide is applied (D = 0). A second 
model took account of farmers’ behaviour on the e�ectiveness of chemical weed control. A parameter ηR

F was 
used to describe the e�ectiveness of the treatment as a function of the farmer, λ being modelled as a Poisson 
distribution with mean µ/(1 + aηR

FD)b. All �elds of a given farm, F, shared a common farmer e�ect, ηR
F. A third 

model included the farmer e�ect at �eld scale with a factor ηR
Ff for �eld f belonging to a farm F as ηR

Ff = ηR
F ηR

f. 
�e best of the three models (without ηR

F, with ηR
F and with ηR

Ff) was selected based on the deviance information 
criterion (DIC) which is a hierarchical modelling generalization of the AIC63.

Herbicide-Weed abundance model. No relationship was observed between herbicide use and abundance 
using LMM. Consequently, hierarchical models similar to those for the herbicide-weed species richness were 
built but, at the last step the species abundance was estimated using the presence-absence data (see details in 
Estimating weed abundance). �e initial model assumed that herbicides had a similar e�ect on all weed species 
in the �eld and two models were built: one considered the same e�ect of the farmer’s decision in all his �elds  
λs = µs/(1 + aηA

FD)b and the other modelled the e�ect of the farmer’s behaviour at �eld scale λs = µs/(1 + aηA
FfD)b. 

In both models, λs was the average number of plants of a given weed species s in a given area. �e second step was 
to build a more realistic model, λs = µs/(1 + asη

A
FfsD)bs, which considered that the e�ect of the herbicide depended 

on the weed species s.

Estimating weed species abundance and survival rate. �e weed abundance at �eld scale was esti-
mated by assuming that weed abundance follows a Poisson distribution and that the probability of �nding at 
least one plant in an area W(4000 m2) was: 1 − exp(µsW/(1 + aηA

FD)b) (see SI Materials and Methods for further 
details). We measured the survival of a species as the probability to observed one individual in W. For a species s 
with abundance intensity λs, its survival rate was therefore e−Wλs under the assumption of Poisson distribution of 
the individuals of this species.

Estimating the model parameters. �e Bayesian posterior distributions for each of the model parame-
ters, including uncertainty due to variability in the data and the uncertainty of prior information, were approx-
imated using Monte Carlo–Markov chain (MCMC) methods with prior information for the parameters (µ, a, b 
and ηR

F/ηR
Ff/η

R
Ffs (η

A
F/ηA

Ff/η
A

Ffs)). �e following priors were used: a Gaussian distribution N(0, 10) for log(µ), 
log(a) and log(b), so that a, b and µ follow log-Gaussian distributions, ensuring that µ, a and b were strictly posi-
tive and a non-informative uniform distribution U(0, 1) for ηR

F (ηA
F), ηR

Ff(η
A

Ff) and ηR
Ffs(η

A
Ffs). 20,000 iterations 

were run with three independent chains in the MCMC procedure. For each chain, the �rst 10,000 iterations were 
discarded. A�er this “burn-in” period, inferences were derived from a sample of 20,000 iterations. Modelling was 
performed using Winbugs63 under R with the BRugs package64. Both the convergence of MCMC chains using 
Gelman-Rubin convergence statistic65 and the performance of the estimate (ESM Fig. S5A,B) were assessed66.

References
1. Tilman, D. �e ecological consequences of changes in biodiversity: a search for general principles. Ecology 80(5), 1455–1474 (1999).
2. Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture with pollinator 

decline. Ecol Econ 68(3), 810–821 (2009).
3. Oerke, E. C. Crop losses to pests. J Agric Sci 144(1), 31–43 (2006).
4. Pretty, J. Agricultural sustainability: concepts, principles and evidence. Phil Trans R Soc B 363, 447–465 (2008).
5. Pimentel, D. Environmental and economic costs of the application of pesticides primarily in the United States. Environment, 

Development and Sustainability 7, 229–252 (2005).
6. Pimentel, D., Acquay, H., Biltonen, M., Rice, P., Silva, M., Nelson, J., Lipner, V., Giordano, S., Horowitz, A. & D’Amore, M. 

Environmental and economic costs of pesticide use. Bioscience 42(10), 750–760 (1992).
7. Rüegg, W. T., Quadranti, M. & Zoschke, A. Herbicide research and development: challenges and opportunities. Weed Res 47, 

271–275 (2007).
8. Kraehmer, H., Laber, B., Rosinger, C. & Schulz, A. Herbicides as Weed Control Agents: State of the Art: I. Weed Control Research 

and Safener Technology: �e Path to Modern Agriculture. Plant Physiol 166(3), 1120–1131 (2014a).
9. Pretty, J. N. et al. An assessment of the total external costs of UK agriculture. Agri Syst 65, 113–136 (2000).

10. Geiger, F. et al. Persistent negative e�ects of pesticides on biodiversity and biological control potential on European farmland. Basic 
Appl Ecol 11(2), 97–105 (2010).

11. Wilson, C. & Tisdell, C. Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecol Econ 39, 
449–462 (2001).

12. Powles, S. B. & Yu, Q. Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol 61, 317–347 (2010).
13. Kraehmer, H., van Almsick, A., Be�a, R., Dietrich, H., Eckes, P., Hacker, E., Hain, R., Strek, H. J., Stuebler, H. & Willms, L. Herbicides 

as weed control agents: state of the art. II. Recent achievements. Plant Physiol 166, 1132–1148 (2014b).
14. Bretagnolle, V. & Gaba, S. Weeds for bees? Agron Sustain Dev 35(3), 891–909 (2015).
15. Poveda, K., Gómez, M. I. & Martínez, E. Diversi�cation practices: their e�ect on pest regulation and production. Rev Colomb 

Entomol 34, 131–144 (2008).
16. Barzman, M. S. & Dachbrodt-Saaydeh, S. Comparative analysis of pesticide action plans in �ve European countries. Pest Manag Sci 

67(12), 1481–1485 (2011).
17. Meiss, H. et al. Perennial lucerne a�ects weed community trajectories in grain crop rotations. Weed Res 50, 331–340 (2010).
18. Gaba, S. et al. Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design. Agron 

Sustain Dev 35(2), 607–623 (2015).
19. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
20. Wilson, C. & Tisdell, C. Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecol Econ 

39(3), 449–462 (2001).



www.nature.com/scientificreports/

9Scientific RepoRts | 6:30112 | DOI: 10.1038/srep30112

21. Zhang, Z. H., Weaver, S. E. & Hamill, A. S. Risks and reliability of using herbicides at below-labeled rates. Weed Technol 14, 106–111 
(2000).

22. Lechenet, M. et al. Reconciling Pesticide Reduction with Economic and Environmental Sustainability in Arable Farming. PLoS ONE 
9(6), e97922 (2014).

23. Barberi, P. Weed management in organic agriculture: are we addressing the right issues? Weed Res 42(3), 177–193 (2002).
24. Zimdahl, R. Weed-Crop Competition: A Review. Blackwell Publishing, Oxford (2004)
25. Van Acker, R. C., Lutman, P. J. W. & Froud-Williams, R. J. (1997) Predicting yield loss due to interference from two weed species 

using early observations of relative weed leaf area. Weed Res 37, 287–299s (1997).
26. Hume, L. Yield losses in wheat due to communities dominated by green foxtail [Setaria viridis (L.) Beauv.]: A multi-species 

approach. Can J Plant Sci 69, 521–529 (1989).
27. Benjamin, L. R., Milne, A. E., Parsons, D. J. & Lutman, P. J. W. A model to simulate yield losses in winter wheat caused by weeds, for 

use in a weed management decision support system. Crop Prot 29, 1264–1273 (2010).
28. Willocquet, L. et al. Simulating multiple pest damage in varying winter wheat production situations. Field Crop Res, 107(1), 12–28 

(2008).
29. Storkey, J., Cussans, J. W., Lutman, P. J. W. & Blair, A. M. �e combination of a simulation and an empirical model of crop/weed 

competition to estimate yield loss from Alopecurus myosuroides in winter wheat. Field Crop Res 84, 291–301 (2003).
30. Riemens, M. M. et al. Linking farmer weed management behavior with weed pressure: more than just technology. Weed Sci 58, 

490–496 (2010)
31. Casagrande, M. et al. Evidence for weed quantity as the major information gathered by organic farmers for weed management. 

Agron Sustain Dev 32(3), 715–726 (2012).
32. Jabbour, R., Gallandt, E. R., Zwickle, S., Wilson, R. S. & Doohan, D. Organic Farmer Knowledge and Perceptions are Associated with 

On-Farm Weed Seedbank Densities in Northern New England. Weed Sci 62(2), 338–349 (2014).
33. Wossink, A., de Buck, A. J., van Niejenhuis, J. H. & Harverkamp, H. C. M. Farmer perceptions of weed control techniques in 

sugarbeet. Agri Syst 55(3), 409–423 (1997).
34. Macé, K., Munier-Jolain, N. & Quere, L. Time scales as a factor in decision-making by French farmers on weed management in 

annual crops. Agric Sys 93, 115–142 (2007).
35. Boström, U. & Fogelfors, H. Long-term e�ects of herbicide-application strategies on weeds and yields in spring-sown cereals. Weed 

Sci 50, 196–203 (2002).
36. Wilson, R. S., Tucker, M. A., Hooker, N. H., Lejeune, J. T. & Doohan, D. Perceptions and Beliefs about weed management: 

perspectives of Ohio grain and produce farmers. Weed Techn 22(2), 339–350 (2008).
37. Cressie, N., Calder, C. A., Clark, J. S., Ver Hoef, J. M. & Wikle, C. K. Accounting for uncertainty in ecological analysis: the strengths 

and limitations of hierarchical statistical modeling. Ecol Appl 19, 553–570 (2009).
38. Kudsk, P. O., Lesen, T. & Honke, K. E. The influence of temperature, humidity and simulated rain on the performance of 

thiameturon-methyl. Weed Res 30, 261–269 (1990).
39. Mézière, D. Compromis biodiversité-nuisibilité des communautés adventices dans les systèmes de culture. Développement d’une 

méthode de diagnostic combinant simulations et indicateurs. PhD �esis 13 June 2013, University of Burgundy, France. (2013).
40. Hossard, L. et al. E�ects of halving pesticide use on wheat production. Sci Rep 4, 4405 (2014).
41. Pentland, A. & Liu, A. Modeling and prediction of human behavior. Neural Comput 11, 229–242 (1999).
42. Friedman, N., Murphy, K. & Russell, S. “Learning the Structure of Dynamic Probabilistic Networks.” In Proc. Conference on 

Automated Learning and Discovery, Pittsburgh, June 1998 (1998).
43. Tsirimpa, A., Polydoropoulou, A. & Antoniou, C. Development of a Latent Variable Model to Capture the Impact of Risk Aversion 

on Travelers’ Switching Behavior. J Choice Model 3(1), 127–148 (2009).
44. Hoyos, D., Mariel, P. & Hess, S. Incorporating environmental attitudes in discrete choice models: An exploration of the utility of the 

awareness of consequences scale. Sci Total Environ 505, 1100–1111 (2015).
45. Hubbell, S. P. �e uni�ed neutral theory of biodiversity and biogeography. Princeton University Press. (2001).
46. Henckel, L., Börger, L., Meiss, H., Gaba, S. & Bretagnolle, V. Organic �elds sustain weed metacommunity dynamics in farmland 

landscapes. Proc Biol Sci 282, 20150002 (2015).
47. Perronne, R., Le Corre, V., Bretagnolle, V. & Gaba, S. Stochastic processes and crop types shape weed community assembly in arable 

�elds. J Veg Sci. 26, 348–359 (2015).
48. Dornelas, M., Moonen, A. C., Magurran, A. E. & Bàrberi, P. Species abundance distributions reveal environmental heterogeneity in 

modi�ed landscapes. J Appl Ecol 46, 666–672 (2009).
49. Holzner, W. & Numata, M. Biology and ecology of weeds. (eds. Holzner, W. & Numata, M.) Springer Netherlands p461 (1982).
50. Boström, U. & Fogelfors, H. Response of weeds and crop yield to herbicide dose decision-support guidelines. Weed Sci 50(2), 

186–195 (2002).
51. Cousens, R. An empirical model relating crop yield to weed and crop density and a statistical comparison with other models. J Agric 

Sci. 105, 513–521 (1985).
52. Hamill, A. S. & Zhang, J. Herbicide reduction in metribuzin based weed control programs in corn. Can J Plant Sci 75, 927–933 

(1995).
53. Salonen, J. Yield responses of spring cereals to reduced herbicide doses. Weed Res 32, 493–499 (1992).
54. van Heemst, H. D. J. (1985). �e in�uence of weed competition on crop yield. Agric Syst 18, 81–89 (1989).
55. DeFelice, M. S. et al. Weed Control in Soybeans (Glycine max) with Reduced Rates of Post emergence Herbicides. Weed Sci 37(3), 

365–374 (1989).
56. Hagood, E. S. Jr., Bauman, T. T., Williams, J. L. Jr. & Schreiber, M. M. Growth Analysis of Soybeans (Glycine max) in Competition 

with Velvetleaf (Abutilon theophrasti). Weed Sci, 28(6), 729–734 (1980).
57. Hammond, C. L., Luschei, E. C., Boerboom, C. M. & Nowak, P. J. Adoption of integrated pest management tactics by Wisconsin 

farmers. Weed Technol. 20, 756–767 (2006)
58. Tisdell, C. A. Economics of Environmental Conservation. Elsevier Science Publishers, Amsterdam, Netherlands (1991).
59. Tisdell, C. A. Environmental Economics. Policies for Environmental Management and Sustainable Development. Edward Elgar 

Press Hants, England, p259 (1993).
60. Burham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-�eoretic Approach (eds 

Burham, K. P. & Anderson, D. R.) Springer-Verlag New York p488 (2002)
61. Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-e�ects models using Eigen and S4. R package version 1.0-6. 

http://CRAN.R-project.org/package=lme4. (2014).
62. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 

URL: http://www.R-project.org/ (2013).
63. Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & van der Linde, A. Bayesian measures of model complexity and �t (with discussion). J 

R Stat Soc Series B Stat Methodol 64, 583–639 (2002).
64. Lunn, D. J., Thomas, A., Best, N. & Spiegelhalter, D. WinBUGS–a Bayesian modelling framework: concepts, structure, and 

extensibility. Stat Comput, 10, 325–337 (2000).
65. �omas, A., O’Hara, B., Ligges, U. & Sturtz, S. Making BUGS Open. R News 6(1), 12–17 (2006).

http://CRAN.R-project.org/package=lme4
http://www.R-project.org/


www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:30112 | DOI: 10.1038/srep30112

66. Brooks, S. & Gelman, A. General Methods for Monitoring Convergence of Iterative Simulations J Comput Graph Stat 7, 434–455 
(1998).

Acknowledgements
The data set analysed came from the Agripopes ESF research program (led by Jan Bengtsson and Pablo 
Inchausti) which was funded by European Science Foundation and CNRS. P. Inchausti selected and sought 
authorization from the farmers and carried out the survey of the farmers. Botanical surveys were performed 
by D. Charbonnier. We are very grateful to C. Gauvrit for giving us useful insights on herbicides, and the two 
reviewers for constructive comments on an earlier version of the manuscript. We should like to thank the 30 
farmers who participated in this study. �is research project was supported by INRA (SG, JC), CNRS (VB) and 
Avignon University (EG, FB) and partly funded by ANR AGROBIOSPHERE AGROBIOSE (AGRO-2013-001).

Author Contributions
Analysis design: S.G. and V.B.; Analyses: S.G., V.B., E.G., J.C. and F.B.; Provision of analytical tools: S.G., V.B., 
E.G., J.C. and F.B.; Data analysis: E.G., J.C., F.B. and S.G.; Dra�ing the paper: S.G., V.B., E.G. and J.C.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing �nancial interests: �e authors declare no competing �nancial interests.

How to cite this article: Gaba, S. et al. Herbicides do not ensure for higher wheat yield, but eliminate rare plant 
species. Sci. Rep. 6, 30112; doi: 10.1038/srep30112 (2016).

�is work is licensed under a Creative Commons Attribution 4.0 International License. �e images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Herbicides do not ensure for higher wheat yield, but eliminate rare plant species
	Introduction
	Results
	Herbicide application rate did not affect weeds or crop yields
	Farmers’ behaviour affected the herbicide-weed relationship
	Herbicides were effective for controlling rare species but did not control abundant species

	Discussion
	Materials and Methods
	Study area and sampling design
	Survey of farmers and herbicide treatments
	Weed surveys
	Statistical analysis of the relationships between crop yield–herbicides and crop yield–weeds
	Modelling farmers’ behaviour in the herbicide-weed relationships-Herbicide-Weed species richness model
	Herbicide-Weed abundance model
	Estimating weed species abundance and survival rate
	Estimating the model parameters

	Additional Information
	Acknowledgements
	References


