
Manuscript.

Herding Hash Functions and the Nostradamus Attack

John Kelsey
∗

Tadayoshi Kohno
†

January 20, 2006

Abstract

In this paper, we develop a new attack on Damg̊ard-Merkle hash functions, called the herding

attack, in which an attacker who can find many collisions on the hash function by brute force
can first provide the hash of a message, and later “herd” any given starting part of a message
to that hash value by the choice of an appropriate suffix. We introduce a new property which
hash functions should have–Chosen Target Forced Prefix (CTFP) preimage resistance–and show
the distinction between Damg̊ard-Merkle construction hashes and random oracles with respect
to this property. We describe a number of ways that violation of this property can be used in
arguably practical attacks on real-world applications of hash functions. An important lesson
from these results is that hash functions susceptible to collision-finding attacks, especially brute-
force collision-finding attacks, cannot in general be used to prove knowledge of a secret value.

Keywords: Hash functions, Damg̊ard-Merkle construction, random oracles.

∗National Institute of Standards and Technology. E-Mail: john.kelsey@nist.gov.
†Department of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive,

La Jolla, CA 92093-0404, USA. E-mail: tkohno@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/tkohno.
Support by NSF CCR-0208842, NSF ANR-0129617, and NSF CCR-0093337. Part of this research was performed
while visiting the University of California at Berkeley.

1 Introduction

Cryptographic hash functions are usually assumed to have three properties: Collision resistance,
preimage resistance, and second preimage resistance. And yet many additional properties, related
to the above in unclear ways, are also required of hash function in practical applications. For
example, hash functions are sometimes used in “commitment” schemes, to prove prior knowledge
of some information, priority on an invention, etc. When the information takes on more than a small
number of possible values, there does not appear to be an obvious way to extend a collision finding
attack to break the the commitment scheme; therefore, collision resistance does not seem to be
necessary to use the hash function in this way. This appears fortunate in light of the many recent
attacks on collision resistance of existing hash functions[BC04, RO05, Kli05, WLF+05, WY05,
BCJ+05, WYY05b, WYY05a] and the widespread use of hash functions short enough to fall to
brute-force collision attacks[vOW99].

We show that the natural intuition above is incorrect. Namely, we uncover (what we believe
to be) subtle ways of exploiting the iterative property of Damg̊ard-Merkle[Dam89, Mer89] hash
functions to extend certain classes of collision-finding attacks against the compression function to
attack commitment schemes and other uses of hash function that do not initially appear to be
related to collision resistance.

1.1 Example: Proving Prior Knowledge with a Hash Function

Consider the following example. One day in early 2006, the following ad appears in the New York

Times:

I, Nostradamus, hereby provide the MD5 hash H of many important predictions
about the future, including most importantly, the closing prices of all stocks in the
S&P500 as of the last business day of 2006.

A few weeks after the close of business in 2006, Nostradamus publishes a message. Its first few blocks
contain the precise closing prices of the S&P500 stocks. It then continues with many rambling and
vague pronouncements and prophecies which haven’t come true yet. The whole message hashes to
H.

The main question we address in this paper is whether this should be taken as evidence that
Nostradamus really knew the closing prices of the S&P500 many months in advance. MD5 has
been the subject of collision attacks, and indeed is susceptible to brute force collision attacks, but
there are no known preimage attacks. And yet, it seems that a preimage attack on MD5 would be
necessary to allow Nostradamus to first commit to a hash, and then produce a message which so
precisely describes the future after the fact.

1.2 Chosen Target Forced Prefix (CTFP) Preimage Resistance

The first question to address when considering the situation outlined above is to ask exactly what
property of a hash function would have to be violated by Nostradamus in order to falsely “prove”
prior knowledge of these closing prices. The property is not directly one of the commonly discussed
properties of hash functions (collision resistance1, preimage resistance, and second preimage resis-
tance). Instead, we need a new property, which we will call “chosen target forced prefix” (CTFP)
preimage resistance.

1Collision resistance would preclude the attack, but does not appear to be necessary for the attack to fail.

1

In order to falsely prove his knowledge of the closing prices of the S&P500, Nostradamus would
first have to choose a target hash value, H. He then would have to wait until the closing values
of the S&P500 stocks for 2006 were available. Finally, he would have to find some way to form a
message that started with a description of those closing values, P , and ended up with the originally
committed-to hash H.

Following this example, we can define CTFP preimage resistance as follows: In the first phase of
his attack Nostradamus performs some precomputation and then outputs an n-bit hash value H; H
is his “chosen target”. The challenger then selects some prefix P and supplies it to Nostradamus; P
is the “forced prefix”. In our security definition we place no restriction on how the challenger picks
P , but for simplicity we may assume that the challenger picks P uniformly at random from some
large but finite set of strings. In the second phase of his attack, Nostradamus computes and outputs
some string S. Nostradamus compromises the CTFP preimage resistance of the hash function if
hash(P‖S) = H. If we model the hash function as a random oracle, then unless Nostradamus is
lucky and guesses P in the first phase of his attack, we would expect him to have to try O(2n)
values for S in the second phase before finding one such that hash(P‖S) = H. Consequently, it
might seem reasonable to expect that Nostradamus would have to perform O(2n) hash function
computations to compromise the CTFP preimage resistance of a real hash function.

As described in detail below, the ability to violate the CTFP preimage resistance property allows
an attacker to carry out a number of surprising attacks on applications of a hash function. Almost
any use of a hash function to prove knowledge of some information can be attacked by someone
who can violate this property. Many applications of hashing for signatures or for fingerprinting
some information which are not vulnerable to attack by straightforward collision-finding techniques
are broken by an attacker who can violate CTFP preimage resistance.

Further, when the CTFP definition is relaxed somewhat (for example, by allowing Nostradamus
some prior limited knowledge or control over the format of P , giving him prior knowledge of the
full (large) set of possible P strings that might be presented, or allowing him to use any of a large
number of encodings of P with the same meaning), the attacks become still cheaper and more
practical.

1.3 Herding Attacks

The major result of this paper is as follows: For Damg̊ard-Merkle[Dam89, Mer89] construction
hash functions, CTFP preimage resistance can always be violated by repeated application of brute-
force collision-finding attacks. More efficient collision-finding algorithms for the hash function
being attacked may be used to make the attack more efficient, if the details of the collision-finding
algorithms support this. An attack that violates this property effectively “herds” a given prefix
to the desired hash value; we thus call any such attack violating the CTFP preimage resistance
property a “herding attack.”

The herding attack shows that the CTFP preimage resistance of a hash function like MD5 or
SHA1 is ultimately limited by the collision resistance of the hash function. At a high level, and in its
basic variant, the attack is parameterized by some positive integer k, e.g., k = 50, and by the output
size n of the hash function. In the first phase of a herding attack, the attacker, Alice, repeatedly
applies a collision-finding attack against a hash function to build a diamond structure, which is
a data structure reminiscent of a binary tree. With high probability it takes at most 2k/2+n/2+2

applications of the hash compression function (and possibly fewer, depending on details of more
efficient collision-finding attacks2) to create a diamond structure with 2k+1 − 2 intermediate hash

2The collision finding attacks needed for constructing the diamond structure are somewhat different than those in
recent results on MD5, SHA0, and SHA1[WY05, WYY05a]. We are uncertain whether these attacks can be adapted

2

Table 1: Herding with Short Suffixes

output example diamond suffix length work
size width(k) (blocks)
128 MD5 41 48 287

160 SHA1 52 59 2108

192 Tiger 63 70 2129

256 SHA256 84 92 2172

512 Whirlpool 169 178 2343

n (n − 5)/3 k + lg(k) + 1 2n−k

Table 2: Herding with Impractically Long Suffixes

output example diamond suffix length work
size width(k) (blocks)
128 MD5 5 255 269

160 SHA1 16 255 290

192 Tiger 27 255 2111

256 SHA256 48 255 2154

512 Whirlpool 133 255 2325

512 Whirlpool 6 2246 2261

n (n − 2r − 3)/3 2r 2n−k−r+1

states, of which 2k are used in the basic form of the attack. In the second phase of the attack, Alice
exhaustively searches for a string S′ such that P‖S′ collides with one of the diamond structure’s
intermediate states; this step requires trying O(2n−k) possibilities for S′. Having found such a
string S′, Alice can construct a sequence of message blocks Q from the diamond structure, and
thus build a suffix S = S′‖Q such that hash(P‖S) = H; this step requires a negligible amount of
work, and the resulting suffix S will be k + 1-blocks long. We stress that Alice can have significant
control over the contents of S, which means that S may not be “random looking” but may instead
contain structured data suitable for the application that Alice is trying to attack. Tables 1 and 2
present some parameters for two versions of our attack.

1.4 Practical Impact

Our techniques for carrying out herding attacks have much in common with the long message
second preimage attacks of [KS05]. However, those attacks required implausibly long messages,
and so probably could never be applied in practice. By contrast, our herding attacks require quite
short suffixes, and appear to be practical in many situations. Similarly, many recent cryptanalytic
results on hash functions, such as [WY05, WYY05a], require very careful control over the format of
the messages to be attacked. This is not generally true of our herding attacks, though more efficient
variants that make use of cryptanalytic results on the underlying hash functions will naturally have
to follow the same restrictions as those attacks.

to the requirements of constructing the diamond structure, though it seems plausible that it might work. For the
diamond structure we need collisions between two messages starting with different IVs.

3

Near the end of this paper, we describe a number of ways in which our herding attacks and
variations on them can be exploited. In developing the herding attack, we also describe a new
method of building multicollisions for Damg̊ard-Merkle hash functions which we believe to be of
independent interest, and which may be useful in many other hash function attacks.

1.5 Related Work

The herding attack is closely related to the long message second preimage attacks in [KS05] and
[Dea99], and is ultimately built upon the multicollision-finding technique of [Jou04]. Our results
complement Coron, Dodis, Malinaud, and Puniya’s work[CDMP05], which does not present attacks
like the ones we present, but which shows that iterative hash functions like MD5 and SHA1 are not
random oracles, even when their compression functions are. Variants of our attacks works against
Coron, et al’s fixes but do not violate their provable security bounds.

More broadly, our result re-enforces the lessons that might sensibly be taken from [Jou04,
KS05, Kam04, LWdW05, DL05] on the many ways in which seemingly impractical hash function
collisions may be applied in practice. The security properties of Damg̊ard-Merkle hash functions
against attackers who can find collisions are currently not well understood.

1.6 Guide to the Paper

The remainder of this paper is organized as follows: First, we describe the herding attack, and how
it may be implemented. Next, we describe some techniques for enhancing the herding attack in
plausible attack scenarios. We then discuss a number of arguably practical attacks which can be
carried out using herding attacks, as well as some curiosities made possible by them. We conclude
with lessons from the analysis and some open questions.

2 The Diamond Structure: A Building Block for Herding

In this section we introduce the diamond structure. This is a structure of messages constructed to
produce a large multicollision of a quite different format than that of Joux[Jou04]. The multicolli-
sion is more expensive, and the same length. For example, a 2k diamond-structure multicollision
costs about 2n/2+k/2+2 work, relative to Joux’ k × 2n/2 work. There are two reasons why the dia-
mond structure lets an attacker do things which are not possible with only a Joux multicollision:

1. The diamond structure allows 2k choices for the first block of a 2k multicollision, whereas
Joux multicollisions involve a sequence of pairs of choices for each part of the message.

2. The diamond structure contains 2k+1−2 intermediate hash values, making the herding attack
possible with short suffixes.

A diamond structure is essentially a Merkle tree built by brute force.
Figure 1 describes the basic idea, where edges represent messages and values like h[i, j] represent

intermediate hash states. In the diagram, the attacker starts with eight different first message
blocks, each leading to a different hash value; he then searches for collisions between pairs of these
hash values, yielding four resulting intermediate hash values (at the cost of about 8 × 2n/2 work
using a naive algorithm). He repeats the process with the four remaining values, then the two
remaining ones. The result is a diamond structure which is 2k states wide, and contains 2k+1 − 1
states total.

4

Figure 1: The Basic Diamond Structure

2.1 Producing a Suffix from an Intermediate Hash Value

Consider any of the starting hash values. A suffix which maps that hash value to the final hash H
is constructed by walking down the tree from the leaves to the root, appending the message blocks
from each edge in the tree to produce a suffix.

Consider any intermediate hash value. Similarly, walking from that node down to the root of
the tree yields a suffix which maps the intermediate hash value to the final hash H. Section 2.3
discusses how to augment the suffix if the hash function includes the length of the message in its
last block.

2.2 Building the Structure

Building the structure is more efficient than a naive approach suggests. Instead of fixing the
position of each node within the tree and then searching for collisions, the attacker dynamically
builds the tree structure during the collision search. To map 2k hash values down to 2k−1, she
generates about 2n/2+1/2−k/2 candidate message blocks from each starting hash value in a single
level of the structure, and then finds collisions between the different starting values dynamically.
The total work done to reduce 2k hash values to 2k−1 is about 2n/2+k/2+1/2, and thus the work done
to construct a full diamond structure with 2k hash values at its widest point is about 2n/2+k/2+2.

The work done to build the diamond structure is based on how many messages must be tried
from each of 2k starting values, before each has collided with at least one other line. Intuitively, we
can make the following argument, which matches experimental data for small parameters: When
we try 2n/2+k/2+1/2 messages spread out over 2k lines, we get 2n/2+k/2+1/2−k messages per line, and
thus between any pair of lines, we expect about (2n/2+k/2+1/2−k)2 × 2−n = 2n+k+1−2k−n = 2−k+1

collisions. We thus expect about 2−k+k+1 = 21 = 2 lines to collide with each line.

2.2.1 Parallelizeability

It is easy to adapt the parallel collision search algorithm of [vOW99] to the construction of a
diamond structure. The result of each iteration of the search algorithm yields both a seed for the
next message block to try, and also a choice of which of the 2k starting chaining values will be used.

2.2.2 Employing Cryptanalytic Attacks

The above discussion has focused on brute-force search as a way to build the diamond structure.
An alternative is to use some cryptanalytic results on the hash function. Whether this will work
depends on details of the cryptanalysis:

5

1. A collision-finding algorithm which produces a pair of messages from the same initial value
is not useful in constructing the diamond structure. Similarly, an algorithm that can find
collisions only from initial chaining values with a single difference is not useful.

2. An algorithm which works for any known IV difference can be directly applied to build
the diamond structure, though one must fix the positions of the nodes within the diamond
structure in advance. If the work to find a collision pair is 2w, then this algorithm should be
used to reduce 2k lines of hash values to 2k−1 lines so long as w + k − 1 < n/2 + k/2 + 1/2.

3. An algorithm which works for a subset 2−p of all pairs of IVs can be used to construct the
diamond structure if the pairs can be recognized efficiently. This is done by inserting one
extra message block at each layer of the diamond structure, and using this to force selected
pairs of lines to initial values from which the collision-search algorithm will work. The work
necessary to find one collision between lines is now 2p/2+1 + 2w. This algorithm should be
used to reduce 2k lines to 2k+1 so long as lg(2p/2+1 + 2w) + k − 1 < n/2 + k/2 + 1/2.

2.3 Expandable Messages

Using the notation from [KS05], an (a, b)-expandable message is a set of messages of varying lengths,
between a and b inclusive, all of which yield the same intermediate hash. Expandable messages
may be found from any initial hash value using the techniques found in [KS05], and more efficiently
found for some hash functions, including MD5 an SHA1, using techniques from [Dea99]; in the
latter case, the cost is around twice that of a brute-force collision finding attack.

If all 2k+1 − 2 intermediate hash values from the diamond structure are used in the later steps
of herding, then a (1, k + 1)-expandable message must be produced at the end of the diamond
structure, to ensure that the final herded message is always a fixed length. This is necessary since
we assume that the length of the message will be included in the last block. If only the widest layer
of 2k hash values is used, no expandable message is required.

2.4 Precomputation of the Prefix

If the full set of prefixes are known and small enough, the diamond structure can be computed
from their resulting intermediate hashes. This follows from the fact that the starting hash values
are arbitrary. This is discussed at more depth in Sections 3.4.2 and 4.1.

2.5 Variant: The Elongated Diamond Structure

Using ideas from [KS05], long messages offer a naive way to mount the attack; the diamond structure
offers much shorter suffixes. However, the attacker can make build a diamond structure with
many intermediate hashes more cheaply than above, if she is willing to tolerate unreasonably long
messages.

Figure 2 shows the elongated diamond structure. The widest layer of the diamond structure
is chosen, with 2k hash values. Then, the attacker computes 2r message blocks for each of the 2k

hash values, thus producing a total of 2k+r reachable intermediate states. He then constructs the
collision tree as described above.

The total work done to build a 2r-long elongated diamond structure with 2k values at its widest
point is about 2r+k + 2k/2+n/2+2; this structure contains 2k+r intermediate hash values, and yields
suffixes of about 2r−1 message blocks on average. In general, for reasonable suffix lengths, the
elongated diamond structure has only a small advantage over regular diamond structures. An
elongated diamond structure must have an (r, 2r + r)-expandable message appended to its end, to

6

Figure 2: The Elongated Diamond Structure

ensure that the final herded messages are always the same length, and so always have the same
final hash value.

It is possible to parallelize much of the production of an elongated diamond structure. If the
width is 2k hash values at the beginning, then the construction of the structure can be parallelized
up to 2k ways.

3 How to Herd a Hash Function

The herding attack allows an attacker to commit to the hash of a message she doesn’t yet fully
know, at the cost of a large computation. This attack is closely related to the long message second-
preimage attacks of [Dea99, KS05] and the multicollision-finding techniques of [Jou04].

At a high level, the attack works as follows:

1. Build the Diamond Structure: Alice produces a search structure which contains many inter-
mediate hash values. From any of these intermediate hash values, a message can be produced
which will lead to the same final hash H. Alice may commit to H at this point.

2. Determine the Prefix: Later, Alice gains knowledge of P .

3. Find a Linking Message: Alice now searches for a single-block which, if appended to P , would
yield an intermediate hash value which appears in her search structure.

4. Producing the Message: Finally, Alice produces a sequence of message blocks from her struc-
ture to link this intermediate hash value back to the previously sent H.

At the end of this process, Alice has first committed to a hash H, then decided what message she
will provide which hashes to H and which begins with the prefix P .

3.1 Building the Diamond Structure

This is described in Section 2.

3.2 Finding a Linking Message

Once a diamond structure is constructed and its hash H is committed to, the attacker learns the
prefix P . She must then find a linking message–a message which allows her to link the prefix P into
the diamond structure. See Figure 3. When there are 2k intermediate hash values in the diamond
structure, the attacker expects to try about 2n−k trial messages in order to find a linking message.

The starting chaining values for the diamond structure can be chosen arbitrarily. This makes
it easy to parallelize the search for linking messages when herding a prefix into the first (widest)

7

Figure 3: Finding a Linking Message and Producing the Suffix

layer of the diamond structure. For example, the starting chaining values may be chosen to have
their low 64 bits all zeros[Pre05]; then each processor searching for a linking message need only
check the list of starting hash values about once per 264 trials.

3.3 Producing the Message

Once a linking message from P , Mlink, is found, the suffix is produced as described above–basically,
the attacker walks up the tree from the linked-to hash value to the root, producing another message
block on each step. See Figure 3. If all 2k+1−2 intermediate hash values from the diamond structure
are used when finding Mlink, then the pre-determined expandable message must be appended to
the end of the suffix.

3.4 Work Done for Herding Attacks

A maximally short suffix for the herding attack is found by producing a 2k hash value wide diamond
structure, and only searching for linking messages to the outermost (widest) level of hash values
in the diamond structure, so that no expandable message is needed. In this case, the length of the
suffix is k + 1 message blocks, and the work done for the herding attack is approximately

2n−k + 2n/2+k/2+2 . (1)

Searching for linking messages to all 2k+1−2 intermediate hashes in the structure requires adding an
additional lg(k)+1 message blocks for a (lg(k), k+ lg(k))-expandable message[KS05], and decreases
the work required to

2n−k−1 + 2n/2+k/2+2 + k × 2n/2+1 , (2)

the k × 2n/2+1 term arising from the search for an expandable message[KS05].
The cheapest herding attack with a reasonably short suffixes can be determined by setting the

work done for constructing the diamond structure and finding the linking message equal. We thus
get a diamond structure of width 2k, suffix length L, and total work W , where:

k =
n − 5

3
(3)

L = lg(k) + k + 1 (4)

W = 2n−k−1 + 2n/2+k/2+2 + k × 2n/2+1 ≈ 2n−k . (5)

Thus, using a 160-bit hash function, the cheapest attack with a reasonably short suffix involves a
diamond structure with about 252 messages at its widest point, producing a 59-block suffix, and
with a total work for the attack of about 2108 compression function calls. See Table 1 for additional
examples.

8

3.4.1 Work for Herding Attacks with the Elongated Diamond Structure

The cheapest herding attack with a suffix of slightly more than 2r blocks can be determined by
once again setting the work done for constructing the diamond structure and finding the linking
message equal, so long as k + r < k/2+n/2. We thus get an elongated diamond structure of width
2k, suffix length L, and total work W , where:

k =
n − 2r − 3

3
(6)

L = lg(k + 2r) + k + 1 + 2r (7)

W = 2n−k−r + 2n/2+k/2+2 + k × 2n/2+1 + 2k+r ≈ 2n−k−r+1 . (8)

Thus, with a 160-bit hash function and a 255 block suffix (about as long as is allowed for SHA1 or
RIPEMD-160), an attacker would end up doing about 290 work total to herd any prefix into the
previously published hash value. See Table 2.

3.4.2 Work for Herding from Precomputed Prefixes

If the set of possible prefixes contains 2k possible messages, the diamond structure can be built
from the resulting 2k intermediate hashes. In this case, there is no search for a linking message,
and the total work for the attack is done in building the diamond structure.

3.5 Making Messages Meaningful

These attacks all involve producing a suffix to some forced prefix, which forces the complete message
to have a specific hash value H. In order to use herding in a real deception, however, the attacker
probably cannot just append a bunch of random blocks to the end of her predictions or other
messages. Instead, she needs to produce a suffix which is at least somewhat meaningful or plausible.
There are a number of tricks for doing this.

Using Gideon Yuval’s Trick. Using Yuval’s clever trick[Yuv79], the attacker can prepare a basic
long document appropriate to her intended deception, and produce many independent variation
points in the document. This allows the use of meaningful-looking messages for most contexts.
For example, each message block in layer i of the diamond structure could be a variation on the
same theme, using about n/2 possible variation points. In practice, this likely will make the suffix
longer, since it is hard to put 80 variation points in a 64-character message. However, this has
almost no effect on the herding attack. If the attacker needs ten message blocks (640 characters)
for each collision, her suffixes will be ten times longer, but no harder to find. The algorithm for
finding them works the same way.

The contents of these suffixes must be pretty general. The natural way to handle this in most
applications of herding is to write some common text discussing how the results are supposed to
have been obtained (“I consulted my crystal ball, and spent many hours poring over the manuscripts
of the ancient prophets....”). These can then be varied at many different points, independently, to
yield many possible bitstrings all having the same meaning.

Committing to Meaning, Not Bits. For many of the attacks for which herding is useful, the
goal is to falsely commit to some actual meaning, not necessarily some specific message string. For
example, an attacker trying to prove her ability to predict the stock market is not really forced to
use any fixed format for the contents of her stock market predictions, so long as anyone reading
them will unambiguously be able to tell whether she got her predictions right.

9

This provides a great deal of extra flexibility for the attacker in using Yuval’s trick, and also
in arranging the different parts of the message to be committed to, in order to maximize her
convenience.

4 Exploiting Prior Knowledge of the Prefix Space

As suggested in Sections 2.4 and 3.4.2, the attack becomes much more efficient if the prefix can be
precomputed. In fact, it is often possible to precompute the message piecemeal in ways that leave
a huge number of possible prefixes available, without requiring a huge amount of work.

Just as with the full herding attack, the precomputed version would not be useful against a
random oracle–we make use of the iterative structure of existing hash functions to make the attack
work.

4.1 Precomputing All Possible Prefixes

In the herding attack, the attacker may reasonably expect to produce a diamond structure with
250 or more possible hash values. For a great many possible applications of the herding attack, this
may be more than the possible number of prefix messages. The attacker may now take advantage
of an interesting feature of the diamond structure: there is no restriction on the choice of starting
hash values for the structure.

Let 2k, the width of the diamond structure, be the number of possible prefix messages that
the attacker may need to herd to her fixed hash value. (If there are fewer prefix messages, the
attacker appends one block to all the possible prefix messages, and varies that block to produce
a set of prefix messages that is exactly the right size.) She computes the intermediate hash after
processing each prefix message, and uses these intermediate hashes as the starting hash values for
the diamond structure.

The initial work to construct the diamond structure in this way is the same as for the more
general herding attack. However, the attacker now has the ability to immediately produce a message
which starts with any possible prefix with the desired hash value. That is, she need not do a second
expensive computation to herd the prefix she is given.

The attacker who has a larger set of possible prefixes than this is not lost; she may precompute
the hashes of the most likely 2k prefixes. Then, if any of those prefixes is presented to her, she can
herd it immediately; otherwise, she must do the large computation, or simply allow her prediction
or other deception to fail with some probability.

4.2 Using Joux Multicollisions

Joux multicollisions are not sufficient for the general herding attack. However, when the set of pos-
sible messages to be committed to is of the right form and can be precomputed, Joux multicollisions
can be used to mount a weaker form of the herding attack.

Consider the case where the attacker wishes to commit to a sequence of “yes” or “no” predic-
tions, without knowing which she will need to reveal later. An example of this would be a list of
famous people who will or will not marry during the year. In the precomputation phase of the
attack, the attacker determines a list of famous people and the order in which she will predict
whether they will marry. Following the Joux multicollision technique, she produces a list of about
2n/2 variations on a “Yes, this person will marry this year” prediction and about 2n/2 variations
on a “No, this person will not marry this year” prediction. Each prediction is independent; the
attacker finds a colliding yes/no prediction for the first famous person, then for the second, and

10

Figure 4: Using Joux Multicollisions to Predict Who Will Get Married

so on. See Figure 4. When finished, she publishes her list of famous people and the hash of her
predictions for the future. At the end of the year, she “reveals” her predictions, choosing for each
pair of colliding blocks the one that reflects what did happen that year.

This variant of the attack is much cheaper than those based on the diamond structure, but is
also much less flexible. It can use existing cryptanalytic techniques on SHA1 and MD5 since, at
each stage, the attacker is looking for two messages that collide starting from the same IV; of course,
the use of existing cryptanalytic techniques might influence the structure of the attacker’s yes/no
predictions. Precomputations of enormous sets of prefixes become possible using this technique.
Most importantly, it can be combined with the diamond structure and variations of the Joux
multicollision to provide even more flexibility to the attacker, as we discuss below.

4.3 Combining Precomputations and Joux Multicollisions

In some cases, some large part of the information to be committed to will fit cleanly into the
Joux multicollision structure, but other parts will not. For example, consider a prediction of the
course and outcome of a national election in the United States3. Before the election is run, the
attacker produces a set of 32 prefixes which describe the course of the election in broad terms, e.g.,
“Smith won a decisive victory,” “Jones narrowly carried the critical swing states and won,” etc.
(The reader who doubts that this can always be done is invited to listen to tomorrow’s weather
forecast.) After this, each state’s outcome is listed, e.g., “Alabama went for Smith, Alaska went
for Jones,” The first part of the message is a precomputed diamond structure; the second part
is a Joux multicollision allowing 250 different outcomes.

4.4 Applying the Joux Multicollision Idea to Diamond Structures

An even more powerful way to structure these predictions is to concatenate precomputed diamond
structures in a kind of super-Joux collision.

Consider the above description, but now suppose we wanted to specify one of 32 possible
descriptions of how the election went in each state, e.g., “In Alabama, Smith won a resounding
victory,” or “In Maryland, Jones narrowly won after a series of vicious attack ads.”

The attacker can string together 51 diamond structures total, one to describe the whole election,
one for each state. This allows the attacker to “commit” to a prediction with 2255 possible values
(requiring 2127.5+n/2+2 work with an n-bit hash function using a straightforward precomputed
diamond structure), while doing much less work (51×22.5+n/2+2). The attacker also gains enormous
flexibility by being able to avoid the strict format of the Joux multicollisions.

3The only detail about US politics needed to understand this example is that all elections ultimately produce
exactly one victor.

11

5 Applying the Attacks: Herding for Fun and Prophets

In this section, we describe how the herding attack can be used in many different contexts to do
(what we believe to be are) surprising things.

5.1 Predicting the Future: The Nostradamus Attack

The “Nostradamus attack” is the use of herding to commit to the hash of a message that the
attacker doesn’t even know. This destroys the ability to use hashes, for which collisions can be
found, to prove prior knowledge of any information.

The Nostradamus attack is carried out in order to convince people that the attacker can tell the
future. This could be based on some claimed psychic power, but also on some claimed improved
understanding in science or economics, allowing detailed prediction of the weather, elections, mar-
kets, etc. This can also be used to “prove” access to some inside information, as with some attacker
attempting to convince a reporter or intelligence agent that she has inside access to a terrorist cell
or secretive government agency.

At a very general level, this attack works as follows:

1. The attacker presents the victim with a hash H, along with a claim about the kind of infor-
mation this represents. She promises to produce the message that yields the hash after the
events predicted have occurred.

2. The attacker waits for the events to unfold, just as the victim does.

3. The attacker herds a description of the events as they did unfold into her hash output, and
provides the resulting message to the victim, thus “proving” her prior knowledge.

There are many variations on this theme; the predictions can be fully precomputed, completely
unpredictable until they come to pass, or some mix of the two.

5.1.1 Committing to an Ordering

The techniques for many of the variants of the Nostradamus attack follow from the discussions in
Sections 3 and 4. Here we suggest another possibility, which uses what we call a “hash router;” see
Figure 5. Alice decides to prove (perhaps in a gambling context) that she can predict the outcome
of a race with 32 entrants. She commits to a sequence of 32 hash outputs, H0,1,...,31. After the race
is over, she produces 32 strings, S0,1,...,31 such that Si describes the entrant in the race who finished
in ith place, and Hi = hash(Si).

Alice builds a precomputed diamond structure starting from the names of the 32 entrants.
When the diamond structure yields a final hash H, she produces 32 new message strings (probably
simply strings like “1st place”, “2nd place”, etc.), and processes them from H to get 32 different
hash outputs. She commits to these hash outputs. When the time comes to reveal her choices, she
produces 32 strings which commit her to the correct ordering of entrants in the race. Note that
Alice can route any of her starting precomputed prefixes to any of the hash outputs.

5.2 Retroactive Collisions

Under normal circumstances, someone creating a hash collision must broadly know to what he is
committing. While some clever attacks have gotten around this by using some bits of the two
colliding messages to change the meaning of later parts of a message[DL05, GIS05], these attacks
are easy to detect by looking at the underlying data.

12

Figure 5: Committing to an Ordering Using a “Hash Router”

The herding attack may be used to “backdate” a collision. That is, the attacker sets up a
collision today, and commits to its hash and perhaps one message with that hash. Later, she
decides what document she wishes collided with the one she committed to, and so she herds that
document to the same hash.

5.2.1 Stealing Credit for Inventions

The attacker can use the same idea to claim to be a brilliant inventor, while actually stealing other
peoples’ work. He submits hashes to a digital timestamping service periodically. After he sees some
new invention he wants to claim, he herds a description of the invention to some old hash value.

To save the attacker from building multiple diamond structures, the attacker could use a “hash
router” structure: a diamond structure with a single additional message block after it. Because
the attacker must send many hashes, but need only herd one message to the right value (the one
which shows the attacker’s prior claim to the invention), the attacker must vary the final message
block after the diamond structure for each hash sent. (A natural thing for the last block to contain
would be the date of submission.) See Figure 5 for the hash router used in Section 5.1.1.

5.2.2 Tweaking a Signed Document

Consider the case where Alice has a very reasonable document which she has signed, making some
sensible predictions about the future or statements of fact or terms of agreement. She wants to
make sure she can later “tweak” this document in some ways. Herding will permit this:

1. Using the precomputed variant with Joux multicollisions, she can produce two alternatives
for each paragraph or section of the document.

2. Using the precomputed diamond with Joux multicollisions, she can produce many variations
for some sections, and pairs of variations for others. She chooses one to produce initially, but
can change to another without changing the hash.

3. Using the full herding attack, she can produce one “herded” document. Any variation in the
“prefix” part of the document she wishes to make later can be made by carrying out another
herding attack.

13

This attack can be used to tweak messages, contracts, news stories, signed/hashed software, etc.

5.2.3 Overcoming Code Review: Herding Messages Created with an Innocent Party

The herding attack is useful (to an attacker, anyway) even when nobody is being fooled about
prior knowledge or commitment to a bitstring. Consider the situation in which a voting system
vendor submits source code to a testing lab, and must go through many rounds of comments and
updates to the source code before finally passing the evaluation. Further suppose that the testing
lab always requires some unpredictable-to-the-programmer changes as a way of making it more
difficult to insert intentional bugs in the system.

The attacker has taken over the voting system company, and now does a large precomputation
to get a diamond structure with output hash H, which she does not publish. She submits her initial
source code with only the certainty that she can alter the final few hundred bytes of some source
code file; perhaps the end of the file is filled with freeform documentation of recent changes. She
goes through the process of submitting the code, getting required changes, etc. Each time, before
she submits the source code file being attacked, she alters the last few hundred bytes to herd the
hash to her chosen value. When the testing lab finally passes her source code, it appends a digital
signature to each source code file, to ensure election officials using the voting system that they are
getting properly reviewed source code.

The attacker now has a source file which she can edit later without changing the hash, despite
the fact that the file was created by an interaction with a trustworthy entity. Thus, she can produce
an altered version with a trapdoor included, and replace it in the signed distribution for the next
election. She can change her trapdoor for each election, while still keeping the same hash so that
she doesn’t have to have the software reviewed again.

Note that the same basic idea could apply to any message being produced, such as object code,
postscript, a text contract, etc.

5.3 Random Number Fixing

Alice and Bob want to agree on a shared random sequence for some game. Alice sends hash(X1),
then Bob responds with X2. Finally, Alice reveals X1, and Alice and Bob each derive random bits
by combining X1 and X2 in some way. The herding attacks and its variations can be used to allow
Alice to exert substantial control over the resulting random bit sequence.

Suppose Alice and Bob each contribute an equal-length message to the protocol, and that
random bits are derived by XORing the two messages together. A conventional use of a collision
attack would give Alice only two choices for X1. A Joux multicollision attack in this case gives Alice
enormous flexibility–she can choose two possibilities for each message block. If random numbers
are derived one message-block-sized chunk at a time, then Alice gets two choices for each random
number generated, while Bob has no power at all over them.

A herding attack would allow Alice to be even more powerful in principle–she could choose any

sequence of message blocks until the last 55 or so, which she would need to herd the X1 she sent
to the committed hash value. However, without some precomputation, Alice would have a very
hard time herding her choices for X1 to the value to which she had committed quickly enough for
Bob to continue the protocol with her. In this attack, the herding attack isn’t used to prove prior
knowledge, but rather to change a value after it has been committed to.

14

6 Finding Multiblock Fixed Points

Attacks on commitment schemes are not the only applications of the diamond structure and herding
attack ideas. We can also find short cycles in hash functions. This is done in a simple way: we
first construct a diamond structure, where each of the starting hash values in the structure are
found by generating a random message block, and computing the compression function result of
that message block from the hash function’s initial value. If the diamond structure is 2k wide, we
then compute 2n−k trial message blocks from the end of the diamond structure. We expect an
intermediate collision, which yields a k-block fixed point for the hash algorithm.

This can be extended; with 2n−k+r work, we expect about 2r different k-block fixed points, all
reachable from a legitimate message. These can be concatenated together; we can choose which
of the 2r k-block chunks of message we wish to append to the message next, without reference
to previous choices. Further, any message can be “herded” to this set of fixed points with about
2n−k work and k appended blocks. For completeness, we recall that [MOI90] show how to find
single-block fixed points in Davies-Meyer constructions and [KS05] show how to find single-block
fixed points in Snefru.

7 Conclusions

In this paper, we have defined a property of a hash function, Chosen Target Forced Prefix (CTFP)
preimage resistance, which is both surprisingly important for real-world applications of hash func-
tions, and also surprisingly dependent on collision resistance of the hash function. We have de-
scribed a variation on the Joux multicollision technique for building tree-like structures of multicol-
lisions called “diamond structures,” and enumerated a number of techniques made possible by these
structures. We have described a number of arguably practical attacks which use these techniques.

At a very basic level, we believe that the most important lesson the reader can take from this
paper is that using hash functions whose collision resistance has been violated is very difficult, even
when the relevant security property does not appear to depend on collision resistance.

A great deal of research remains to be done in this area. The diamond structure seems likely to
us to be about as useful in developing new attacks as the Joux multicollision result, and we hope
to see others building on the work in this paper by finding other surprising things to do to iterated
hash functions using herding attacks and the diamond structure. Additionally, there may be many
other surprising ways in which iterated hash functions built on the Damg̊ard-Merkle construction
may be attacked when the attacker can find intermediate collisions.

8 Acknowledgments

The authors wish to thank Morris Dworkin, Niels Ferguson, Hal Finney, Stuart Haber, Ulrich
Kuehn, Bart Preneel, Christian Rechberger, Bruce Schneier, and many participants of the NIST
hash workshop for helpful comments and discussions on the subject of this paper.

References

[BC04] E. Biham and R. Chen. Near-collisions of SHA-0. In M. Franklin, editor, Advances

in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science,
pages 290–305. Springer-Verlag, Berlin, Germany, 2004.

15

[BCJ+05] E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, and W. Jalby. Collisions of
SHA-0 and Reduced SHA-1. In R. Cramer, editor, Advances in Cryptology – EURO-

CRYPT 2005, volume 3494 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, Germany, 2005.

[CDMP05] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard revisited:
How to construct a hash function. In V. Shoup, editor, Advances in Cryptology –

CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, Germany, 2005.

[Dam89] I. Damg̊ard. A design principle for hash functions. In G. Brassard, editor, Advances

in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages
416–427. Springer-Verlag, Berlin, Germany, 1989.

[Dea99] R. D. Dean. Formal Aspects of Mobile Code Security. PhD thesis, Princeton University,
January 1999.

[DL05] M. Daum and S. Lucks. Attacking hash functions by poisoned messages: The
story of Alice and her boss, 2005. Available online at http://www.cits.rub.de/

MD5Collisions.

[GIS05] M. Gebhardt, G. Illies, and W. Schindler. A note on practical value of sin-
gle hash collisions for special file formats. NIST Cryptographic Hash Workshop,
2005. No published proceedings, available online at http://www.csrc.nist.gov/pki/
HashWorkshop/2005/Oct31 Presentations/Illies NIST 05.pdf.

[Jou04] A. Joux. Multicollisions in iterated hash functions. Application to cascaded construc-
tions. In M. Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume 3152 of
Lecture Notes in Computer Science, pages 306–316. Springer-Verlag, Berlin, Germany,
2004.

[Kam04] D. Kaminsky. MD5 to be considered harmful someday. Cryptology ePrint Archive,
Report 2004/357, 2004. Available online at http://eprint.iacr.org/.

[Kli05] V. Klima. Finding MD5 collisions on a notebook PC using multi-message modi-
fications. Cryptology ePrint Archive, Report 2005/102, 2005. Available online at
http://eprint.iacr.org/.

[KS05] J. Kelsey and B. Schneier. Second preimages on n-bit hash functions for much less
than 2n work. In R. Cramer, editor, Advances in Cryptology – EUROCRYPT 2005,
volume 3494 of Lecture Notes in Computer Science, pages 474–490. Springer-Verlag,
Berlin, Germany, 2005.

[LWdW05] A. Lenstra, X. Wang, and B. de Weger. Colliding X.509 certificates. Cryptology ePrint
Archive, Report 2005/067, 2005. Available online at http://eprint.iacr.org/.

[Mer89] R. C. Merkle. One way hash functions and DES. In G. Brassard, editor, Advances in

Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages
428–446. Springer-Verlag, Berlin, Germany, 1989.

[MOI90] S. Miyaguchi, K. Ohta, and M. Iwata. Confirmation that some hash functions are
not collision free. In I. Damg̊ard, editor, Advances in Cryptology – EUROCRYPT’90,
volume 473 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany,
May 1990.

16

[Pre05] B. Preneel, 2005. Personal communication.

[RO05] V. Rijmen and E. Oswald. Update on SHA-1. In A. Menezes, editor, Topics in Cryptol-

ogy – CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science, pages 58–71.
Springer-Verlag, Berlin, Germany, 2005.

[vOW99] P. van Oorschot and M. Wiener. Parallel collision search with cryptanalytic applica-
tions. Journal of Cryptology, 12(1):1–28, 1999.

[WLF+05] X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the hash functions MD4
and RIPEMD. In R. Cramer, editor, Advances in Cryptology – EUROCRYPT 2005,
volume 3494 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany,
2005.

[WY05] X. Wang and H. Yu. How to break MD5 and other hash functions. In R. Cramer,
editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in

Computer Science, pages 19–35. Springer-Verlag, Berlin, Germany, 2005.

[WYY05a] X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1. In V. Shoup,
editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in

Computer Science. Springer-Verlag, Berlin, Germany, 2005.

[WYY05b] X. Wang, H. Yu, and Y. L. Yin. Efficient collision search attacks on SHA-0. In
V. Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture

Notes in Computer Science. Springer-Verlag, Berlin, Germany, 2005.

[Yuv79] G. Yuval. How to swindle Rabin. Cryptologia, 3(3):187–189, 1979.

17

