
Herding Hash Functions and the Nostradamus
Attack

John Kelsey1 and Tadayoshi Kohno2

1 National Institute of Standards and Technology, john.kelsey@nist.gov
2 CSE Department, UC San Diego, tkohno@cs.ucsd.edu

Abstract. In this paper, we develop a new attack on Damg̊ard-Merkle
hash functions, called the herding attack, in which an attacker who can
find many collisions on the hash function by brute force can first pro-
vide the hash of a message, and later “herd” any given starting part
of a message to that hash value by the choice of an appropriate suffix.
We focus on a property which hash functions should have–Chosen Tar-
get Forced Prefix (CTFP) preimage resistance–and show the distinction
between Damg̊ard-Merkle construction hashes and random oracles with
respect to this property. We describe a number of ways that violation
of this property can be used in arguably practical attacks on real-world
applications of hash functions. An important lesson from these results
is that hash functions susceptible to collision-finding attacks, especially
brute-force collision-finding attacks, cannot in general be used to prove
knowledge of a secret value.

1 Introduction

Cryptographic hash functions are usually assumed to have three properties: Col-
lision resistance, preimage resistance, and second preimage resistance. And yet
many additional properties, related to the above in unclear ways, are also re-
quired of hash function in practical applications. For example, hash functions
are sometimes used in “commitment” schemes, to prove prior knowledge of some
information, priority on an invention, etc. When the information takes on more
than a small number of possible values, there does not appear to be an obvious
way to extend a collision finding attack to break the commitment scheme; there-
fore, collision resistance does not seem to be necessary to use the hash function
in this way. This appears fortunate in light of the many recent attacks on colli-
sion resistance of existing hash functions[2, 3, 13, 19, 21–24] and the widespread
use of hash functions short enough to fall to brute-force collision attacks[20].

We show that the natural intuition above is incorrect. Namely, we uncover
(what we believe to be) subtle ways of exploiting the iterative property of
Damg̊ard-Merkle[6, 16] hash functions to extend certain classes of collision-finding
attacks against the compression function to attack commitment schemes and
other uses of hash function that do not initially appear to be related to collision
resistance.

1.1 Example: Proving Prior Knowledge with a Hash Function

Consider the following example. One day in early 2006, the following ad appears
in the New York Times:

I, Nostradamus, hereby provide the MD5 hash H of many important
predictions about the future, including most importantly, the closing
prices of all stocks in the S&P500 as of the last business day of 2006.

A few weeks after the close of business in 2006, Nostradamus publishes a message.
Its first few blocks contain the precise closing prices of the S&P500 stocks. It
then continues with many rambling and vague pronouncements and prophecies
which haven’t come true yet. The whole message hashes to H.

The main question we address in this paper is whether this should be taken as
evidence that Nostradamus really knew the closing prices of the S&P500 many
months in advance. MD5 has been the subject of collision attacks, and indeed
is susceptible to brute force collision attacks, but there are no known preimage
attacks. And yet, it seems that a preimage attack on MD5 would be necessary
to allow Nostradamus to first commit to a hash, and then produce a message
which so precisely describes the future after the fact.

1.2 Chosen Target Forced Prefix (CTFP) Preimage Resistance

The first question to address when considering the situation outlined above is
to ask exactly what property of a hash function would have to be violated by
Nostradamus in order to falsely “prove” prior knowledge of these closing prices.
The property is not directly one of the commonly discussed properties of hash
functions (collision resistance3, preimage resistance, and second preimage resis-
tance). Instead, we need an atypical property, which we will call “chosen target
forced prefix” (CTFP) preimage resistance4.

In order to falsely prove his knowledge of the closing prices of the S&P500,
Nostradamus would first have to choose a target hash value, H. He then would
have to wait until the closing values of the S&P500 stocks for 2006 were avail-
able. Finally, he would have to find some way to form a message that started
with a description of those closing values, P , and ended up with the originally
committed-to hash H.

Following this example, we can define CTFP preimage resistance as follows:
In the first phase of his attack Nostradamus performs some precomputation and
then outputs an n-bit hash value H; H is his “chosen target”. The challenger

3 Collision resistance would preclude the attack, but does not appear to be necessary
for the attack to fail.

4 We are indebted to Dan Brown for pointing out a previous use of the same idea: In
one of three independent proofs of the security of Pinstov-Vanstone signatures, the
same property with a different name, “target value resistance,” was used. See [4], in
which it was conjectured that SHA1 had this property; our result shows that it does
not if one can find collisions starting from two arbitrary IVs.

then selects some prefix P and supplies it to Nostradamus; P is the “forced
prefix.” In our informal security definition we place no restriction on how the
challenger picks P , but for simplicity we may assume that the challenger picks
P uniformly at random from some large but finite set of strings. In the second
phase of his attack, Nostradamus computes and outputs some string S. Nos-
tradamus compromises the CTFP preimage resistance of the hash function if
hash(P‖S) = H. If we model the hash function as a random oracle [1], then un-
less Nostradamus is lucky and guesses P in the first phase of his attack, we would
expect him to have to try O(2n) values for S in the second phase before finding
one such that hash(P‖S) = H. Consequently, it might seem reasonable to expect
that Nostradamus would have to perform O(2n) hash function computations to
compromise the CTFP preimage resistance of a real hash function. (While one
could consider a more formal definition of CTFP for hash function families, and
consider the relationship between CTFP-resistance and other security goals, we
do not do so here but instead focus on our attacks.)

As described in detail below, the ability to violate the CTFP preimage re-
sistance property allows an attacker to carry out a number of surprising attacks
on applications of a hash function. Almost any use of a hash function to prove
knowledge of some information can be attacked by someone who can violate
this property. Many applications of hashing for signatures or for fingerprinting
some information which are not vulnerable to attack by straightforward collision-
finding techniques are broken by an attacker who can violate CTFP preimage
resistance.

Further, when the CTFP definition is relaxed somewhat (for example, by
allowing Nostradamus some prior limited knowledge or control over the format
of P , giving him prior knowledge of the full (large) set of possible P strings that
might be presented, or allowing him to use any of a large number of encodings of
P with the same meaning), the attacks become still cheaper and more practical.

1.3 Herding Attacks

The major result of this paper is as follows: For Damg̊ard-Merkle[6, 16] con-
struction hash functions, CTFP preimage resistance can always be violated
by repeated application of brute-force collision-finding attacks. More efficient
collision-finding algorithms for the hash function being attacked may be used to
make the attack more efficient, if the details of the collision-finding algorithms
support this. An attack that violates this property effectively “herds” a given
prefix to the desired hash value; we thus call any such attack violating the CTFP
preimage resistance property a “herding attack.”

The herding attack shows that the CTFP preimage resistance of a hash
function like MD5 or SHA1 is ultimately limited by the collision resistance of the
hash function. At a high level, and in its basic variant, the attack is parameterized
by some positive integer k, e.g., k = 50, and by the output size n of the hash
function. In the first phase of a herding attack, the attacker, Alice, repeatedly
applies a collision-finding attack against a hash function to build a diamond
structure, which is a data structure reminiscent of a binary tree. With high

probability it takes at most 2k/2+n/2+2 applications of the hash compression
function (and possibly fewer, depending on details of more efficient collision-
finding attacks5) to create a diamond structure with 2k+1− 2 intermediate hash
states, of which 2k are used in the basic form of the attack. In the second phase
of the attack, Alice exhaustively searches for a string S′ such that P‖S′ collides
with one of the diamond structure’s intermediate states; this step requires trying
O(2n−k) possibilities for S′. Having found such a string S′, Alice can construct
a sequence of message blocks Q from the diamond structure, and thus build a
suffix S = S′‖Q such that hash(P‖S) = H; this step requires a negligible amount
of work, and the resulting suffix S will be k +1-blocks long. We stress that Alice
can have significant control over the contents of S, which means that S may not
be “random looking” but may instead contain structured data suitable for the
application that Alice is trying to attack. Table 1 present some parameters for
a version of our attack.

Table 1. Herding with Short Suffixes

output example diamond suffix length work
size width(k) (blocks)
128 MD5 41 48 287

160 SHA1 52 59 2108

192 Tiger 63 70 2129

256 SHA256 84 92 2172

512 Whirlpool 169 178 2343

n (n− 5)/3 k + lg(k) + 1 2n−k

1.4 Practical Impact

Our techniques for carrying out herding attacks have much in common with the
long message second preimage attacks of [12]. However, those attacks required
implausibly long messages, and so probably could never be applied in practice.
By contrast, our herding attacks require quite short suffixes, and appear to be
practical in many situations. Similarly, many recent cryptanalytic results on
hash functions, such as [22, 23], require very careful control over the format of
the messages to be attacked. This is not generally true of our herding attacks,
though more efficient variants that make use of cryptanalytic results on the

5 The collision finding attacks needed for constructing the diamond structure are some-
what different than those in recent results on MD5, SHA0, and SHA1[22, 23]. We are
uncertain whether these attacks can be adapted to the requirements of construct-
ing the diamond structure, though it seems plausible that it might work. For the
diamond structure we need collisions between two messages starting with different
IVs.

underlying hash functions will naturally have to follow the same restrictions as
those attacks.

Near the end of this paper, we describe a number of ways in which our
herding attacks and variations on them can be exploited. In developing the
herding attack, we also describe a new method of building multicollisions for
Damg̊ard-Merkle hash functions which we believe to be of independent interest,
and which may be useful in many other hash function attacks.

1.5 Related Work

The herding attack is closely related to the long message second preimage attacks
in [8] and [12], and is ultimately built upon the multicollision-finding technique
of [10]. Our technique for herding is related to the result of Lai and Massey [14]
showing a meet-in-the-middle second preimage attack when pseudopreimages
can be found cheaper than exhaustive search; in our attack, instead of finding
pseudopreimages, we construct a message by repeated collision searches, and
then do a meet-in-the-middle type attack to find a large set of possible second
preimages on our own chosen message. Our results complement Coron, Dodis,
Malinaud, and Puniya’s work[5], which does not present attacks like the ones
we present, but which shows that iterative hash functions like MD5 and SHA1
are not random oracles, even when their compression functions are. Variants of
our attacks works against Coron, et al’s fixes but do not violate their provable
security bounds.

More broadly, our result re-enforces the lessons that might sensibly be taken
from [7, 10–12, 15] on the many ways in which seemingly impractical hash func-
tion collisions may be applied in practice. The security properties of Damg̊ard-
Merkle hash functions against attackers who can find collisions are currently not
well understood.

2 The Diamond Structure: A Building Block for Herding

In this section we introduce the diamond structure. This is a structure of mes-
sages constructed to produce a large multicollision of a quite different format
than that of Joux[10]. Our multicollision is more expensive, and the same length.
For example, a 2k diamond-structure multicollision costs about 2n/2+k/2+2 work,
relative to Joux’ k×2n/2 work. There are two reasons why the diamond structure
lets an attacker do things which are not possible with only a Joux multicollision:

1. The diamond structure allows 2k choices for the first block of a 2k multicol-
lision, whereas Joux multicollisions involve a sequence of pairs of choices for
each part of the message.

2. The diamond structure contains 2k+1 − 2 intermediate hash values, making
the herding attack possible with short suffixes.

A diamond structure is essentially a Merkle tree built by brute force.

Fig. 1. The Basic Diamond Structure

Figure 1 describes the basic idea, where edges represent messages and values
like h[i, j] represent intermediate hash states. In the diagram, the attacker starts
with eight different first message blocks, each leading to a different hash value;
he then searches for collisions between pairs of these hash values, yielding four
resulting intermediate hash values (at the cost of about 8 × 2n/2 work using a
naive algorithm). He repeats the process with the four remaining values, then
the two remaining ones. The result is a diamond structure which is 2k states
wide, and contains 2k+1 − 1 states total.

Producing a Suffix from an Intermediate Hash Value. Consider any of
the starting hash values. A suffix which maps that hash value to the final hash H
is constructed by walking down the tree from the leaves to the root, appending
the message blocks from each edge in the tree to produce a suffix.

Consider any intermediate hash value. Similarly, walking from that node
down to the root of the tree yields a suffix which maps the intermediate hash
value to the final hash H. Subsequently we discuss how to augment the suffix if
the hash function includes the length of the message in its last block.

Building the Structure. Building the structure is more efficient than a naive
approach suggests. Instead of fixing the position of each node within the tree and
then searching for collisions, the attacker dynamically builds the tree structure
during the collision search. To map 2k hash values down to 2k−1, she generates
about 2n/2+1/2−k/2 candidate message blocks from each starting hash value in
a single level of the structure, and then finds collisions between the different
starting values dynamically. The total work done to reduce 2k hash values to
2k−1 is about 2n/2+k/2+1/2, and thus the work done to construct a full diamond
structure with 2k hash values at its widest point is about 2n/2+k/2+2.

The work done to build the diamond structure is based on how many mes-
sages must be tried from each of 2k starting values, before each has collided with
at least one other value. Intuitively, we can make the following argument, which
matches experimental data for small parameters: When we try 2n/2+k/2+1/2

messages spread out from 2k starting hash values (lines), we get 2n/2+k/2+1/2−k

messages per line, and thus between any pair of these starting hash values, we
expect about (2n/2+k/2+1/2−k)2 × 2−n = 2n+k+1−2k−n = 2−k+1 collisions. We

thus expect about 2−k+k+1 = 21 = 2 other hash values to collide with any given
starting hash value.

If this search is done on a single processor, then each time a pair of lines
collide, no further searching is done from those lines. There may be cases where
two pairs of lines collide on the same hash value. This very slightly decreases the
number of reachable hash values, but the expected number of these is extremely
small. For example, in a 255 diamond structure, there are about 256 intermediate
hashes which are the results of these collision searches. For a 160-bit hash, we
thus expect roughly 2−49 such collisions, so we can ignore the effect of them on
our result.

Parallelizeability. It is easy to adapt the parallel collision search algorithm of
[20] to the construction of a diamond structure. The result of each iteration of
the search algorithm yields both a seed for the next message block to try, and
also a choice of which of the 2k starting chaining values will be used.

Employing Cryptanalytic Attacks. The above discussion has focused on
brute-force search as a way to build the diamond structure. An alternative is
to use some cryptanalytic results on the hash function. Whether this will work
depends on details of the cryptanalysis:

1. A collision-finding algorithm which produces a pair of messages from the
same initial value is not useful in constructing the diamond structure. Simi-
larly, an algorithm that can find collisions only from initial chaining values
with a single difference is not useful.

2. An algorithm which works for any known IV difference can be directly ap-
plied to build the diamond structure, though one must fix the positions of
the nodes within the diamond structure in advance. If the work to find a
collision pair is 2w, then this algorithm should be used to reduce 2k lines of
hash values to 2k−1 lines so long as w + k − 1 < n/2 + k/2 + 1/2.

3. An algorithm which works for a subset 2−p of all pairs of IVs can be used
to construct the diamond structure if the pairs can be recognized efficiently.
This is done by inserting one extra message block at each layer of the dia-
mond structure, and using this to force selected pairs of lines to initial values
from which the collision-search algorithm will work. The work necessary to
find one collision between lines is now 2p/2+1 + 2w. This algorithm should
be used to reduce 2k lines to 2k+1 so long as lg(2p/2+1 + 2w) + k − 1 <
n/2 + k/2 + 1/2.

Expandable Messages. Using the notation from [12], an (a, b)-expandable
message is a set of messages of varying lengths, between a and b inclusive, all
of which yield the same intermediate hash. Expandable messages may be found
from any initial hash value using the techniques found in [12], and more efficiently
found for some hash functions, including MD5 an SHA1, using techniques from
[8]; in the latter case, the cost is around twice that of a brute-force collision
finding attack.

If all 2k+1− 2 intermediate hash values from the diamond structure are used
in the later steps of herding, then a (1, k + 1)-expandable message must be

produced at the end of the diamond structure, to ensure that the final herded
message is always a fixed length. This is necessary since we assume that the
length of the message will be included in the last block. If only the widest layer
of 2k hash values is used, no expandable message is required.

Precomputation of the Prefix. If the full set of prefixes are known and small
enough, the diamond structure can be computed from their resulting intermedi-
ate hashes. This follows from the fact that the starting hash values are arbitrary.
This is discussed at more depth in Sections 3.1 and 4.

Variant: The Elongated Diamond Structure. Using ideas from [12], long
messages offer a naive way to mount the attack; the diamond structure offers
much shorter suffixes. However, the attacker can build a diamond structure with
many intermediate hashes more cheaply than above, if she is willing to tolerate
unreasonably long messages.

The widest layer of the diamond structure is chosen, with 2k hash values.
Then, the attacker computes 2r message blocks for each of the 2k hash values,
thus producing a total of 2k+r reachable intermediate states. He then constructs
the collision tree as described above.

The total work done to build a 2r-long elongated diamond structure with 2k

values at its widest point is about 2r+k+2k/2+n/2+2; this structure contains 2k+r

intermediate hash values, and yields suffixes of about 2r−1 message blocks on
average. In general, for reasonable suffix lengths, the elongated diamond struc-
ture has only a small advantage over regular diamond structures. An elongated
diamond structure must have an (r, 2r + r)-expandable message appended to its
end, to ensure that the final herded messages are always the same length, and
so always have the same final hash value.

It is possible to parallelize much of the production of an elongated diamond
structure. If the width is 2k hash values at the beginning, then the construction
of the structure can be parallelized up to 2k ways.

3 How to Herd a Hash Function

The herding attack allows an attacker to commit to the hash of a message
she doesn’t yet fully know, at the cost of a large computation. This attack is
closely related to the long message second-preimage attacks of [8, 12] and the
multicollision-finding techniques of [10].

At a high level, the attack works as follows:

1. Build the Diamond Structure: Alice produces a search structure which con-
tains many intermediate hash values. From any of these intermediate hash
values, a message can be produced which will lead to the same final hash H.
Alice may commit to H at this point.

2. Determine the Prefix: Later, Alice gains knowledge of P .
3. Find a Linking Message: Alice now searches for a single-block which, if ap-

pended to P , would yield an intermediate hash value which appears in her
search structure.

4. Producing the Message: Finally, Alice produces a sequence of message blocks
from her structure to link this intermediate hash value back to the previously
sent H.

At the end of this process, Alice has first committed to a hash H, then decided
what message she will provide which hashes to H and which begins with the
prefix P .

Building the Diamond Structure. This step is described in Section 2.

Finding a Linking Message. Once a diamond structure is constructed and
its hash H is committed to, the attacker learns the prefix P . She must then
find a linking message–a message which allows her to link the prefix P into the
diamond structure. See Figure 2. When there are 2k intermediate hash values in
the diamond structure, the attacker expects to try about 2n−k trial messages in
order to find a linking message.

Fig. 2. Finding a Linking Message and Producing the Suffix

The starting chaining values for the diamond structure can be chosen arbi-
trarily. This makes it easy to parallelize the search for linking messages when
herding a prefix into the first (widest) layer of the diamond structure. For ex-
ample, the starting chaining values may be chosen to have their low 64 bits all
zeros[18]; then each processor searching for a linking message need only check
the list of starting hash values about once per 264 trials.

Producing the Message. Once a linking message from P , Mlink, is found,
the suffix is produced as described above–basically, the attacker walks up the
tree from the linked-to hash value to the root, producing another message block
on each step. See Figure 2. If all 2k+1 − 2 intermediate hash values from the
diamond structure are used when finding Mlink, then the pre-determined ex-
pandable message must be appended to the end of the suffix.

3.1 Work Done for Herding Attacks

A maximally short suffix for the herding attack is found by producing a 2k hash
value wide diamond structure, and only searching for linking messages to the
outermost (widest) level of hash values in the diamond structure, so that no
expandable message is needed. In this case, the length of the suffix is k + 1
message blocks, and the work done for the herding attack is approximately

2n−k + 2n/2+k/2+2 . (1)

Searching for linking messages to all 2k+1−2 intermediate hashes in the structure
requires adding an additional lg(k) + 1 message blocks for a (lg(k), k + lg(k))-
expandable message, and decreases the work required to

2n−k−1 + 2n/2+k/2+2 + k × 2n/2+1 , (2)

the k × 2n/2+1 term arising from the search for an expandable message[12].
The cheapest herding attack with a reasonably short suffixes can be deter-

mined by setting the work done for constructing the diamond structure and
finding the linking message equal. We thus get a diamond structure of width 2k,
suffix length L, and total work W , where:

k =
n− 5

3
(3)

L = lg(k) + k + 1 (4)

W = 2n−k−1 + 2n/2+k/2+2 + k × 2n/2+1 ≈ 2n−k . (5)

Thus, using a 160-bit hash function, the cheapest attack with a reasonably short
suffix involves a diamond structure with about 252 messages at its widest point,
producing a 59-block suffix, and with a total work for the attack of about 2108

compression function calls. See Table 1 for additional examples.

Work for Herding Attacks with the Elongated Diamond Structure.
The cheapest herding attack with a suffix of slightly more than 2r blocks can be
determined by once again setting the work done for constructing the diamond
structure and finding the linking message equal, so long as k + r < k/2 + n/2.
We thus get an elongated diamond structure of width 2k, suffix length L, and
total work W , where:

k =
n− 2r − 3

3
(6)

L = lg(k + 2r) + k + 1 + 2r (7)

W = 2n−k−r + 2n/2+k/2+2 + k × 2n/2+1 + 2k+r ≈ 2n−k−r+1 . (8)

Thus, with a 160-bit hash function and a 255 block suffix (about as long as is
allowed for SHA1 or RIPEMD-160), an attacker would end up doing about 290

work total to herd any prefix into the previously published hash value.

Work for Herding from Precomputed Prefixes. If the set of possible pre-
fixes contains 2k possible messages, the diamond structure can be built from
the resulting 2k intermediate hashes. In this case, there is no search for a link-
ing message, and the total work for the attack is done in building the diamond
structure.

3.2 Making Messages Meaningful

These attacks all involve producing a suffix to some forced prefix, which forces
the complete message to have a specific hash value H. In order to use herding
in a real deception, however, the attacker probably cannot just append a bunch
of random blocks to the end of her predictions or other messages. Instead, she
needs to produce a suffix which is at least somewhat meaningful or plausible.
There are a number of tricks for doing this.

Using Yuval’s Trick. Using Yuval’s clever trick[25], the attacker can prepare a
basic long document appropriate to her intended deception, and produce many
independent variation points in the document. This allows the use of meaningful-
looking messages for most contexts. For example, each message block in layer i
of the diamond structure could be a variation on the same theme, using about
n/2 possible variation points. In practice, this likely will make the suffix longer,
since it is hard to put 80 variation points in a 64-character message. However,
this has almost no effect on the herding attack. If the attacker needs ten message
blocks (640 characters) for each collision, her suffixes will be ten times longer,
but no harder to find. The algorithm for finding them works the same way.

The contents of these suffixes must be pretty general. The natural way to
handle this in most applications of herding is to write some common text dis-
cussing how the results are supposed to have been obtained (“I consulted my
crystal ball, and spent many hours poring over the manuscripts of the ancient
prophets....”). These can then be varied at many different points, independently,
to yield many possible bitstrings all having the same meaning.

Committing to Meaning, Not Bits. For many of the attacks for which
herding is useful, the goal is to falsely commit to some actual meaning, not
necessarily some specific message string. For example, an attacker trying to prove
her ability to predict the stock market is not really forced to use any fixed format
for the contents of her stock market predictions, so long as anyone reading them
will unambiguously be able to tell whether she got her predictions right.

This provides a great deal of extra flexibility for the attacker in using Yuval’s
trick, and also in arranging the different parts of the message to be committed
to, in order to maximize her convenience.

4 Exploiting Prior Knowledge of the Prefix Space

As suggested in Sections 2 and 3.1, the attack becomes much more efficient
if the prefix can be precomputed. In fact, it is often possible to precompute

the message piecemeal in ways that leave a huge number of possible prefixes
available, without requiring a huge amount of work.

Just as with the full herding attack, the precomputed version would not be
useful against a random oracle–we make use of the iterative structure of existing
hash functions to make the attack work.

Precomputing All Possible Prefixes. In the herding attack, the attacker may
reasonably expect to produce a diamond structure with 250 or more possible hash
values. For a great many possible applications of the herding attack, this may
be more than the possible number of prefix messages. The attacker may now
take advantage of an interesting feature of the diamond structure: There is no
restriction on the choice of starting hash values for the structure.

Let 2k, the width of the diamond structure, be the number of possible prefix
messages that the attacker may need to herd to her fixed hash value. (If there
are fewer prefix messages, the attacker appends one block to all the possible
prefix messages, and varies that block to produce a set of prefix messages that is
exactly the right size.) She computes the intermediate hash after processing each
prefix message, and uses these intermediate hashes as the starting hash values
for the diamond structure.

The initial work to construct the diamond structure in this way is the same
as for the more general herding attack. However, the attacker now has the ability
to immediately produce a message which starts with any possible prefix with the
desired hash value. That is, she need not do a second expensive computation to
herd the prefix she is given.

The attacker who has a larger set of possible prefixes than this is not lost; she
may precompute the hashes of the most likely 2k prefixes. Then, if any of those
prefixes is presented to her, she can herd it immediately; otherwise, she must do
the large computation, or simply allow her prediction or other deception to fail
with some probability.

Using Joux Multicollisions. Joux multicollisions are not sufficient for the
general herding attack. However, when the set of possible messages to be com-
mitted to is of the right form and can be precomputed, Joux multicollisions can
be used to mount a weaker form of the herding attack.

Consider the case where the attacker wishes to commit to a sequence of “yes”
or “no” predictions, without knowing which she will need to reveal later. An
example of this would be a list of famous people who will or will not marry during
the year. In the precomputation phase of the attack, the attacker determines a
list of famous people and the order in which she will predict whether they will
marry. Following the Joux multicollision technique, she produces a list of about
2n/2 variations on a “Yes, this person will marry this year” prediction and about
2n/2 variations on a “No, this person will not marry this year” prediction. Each
prediction is independent; the attacker finds a colliding yes/no prediction for the
first famous person, then for the second, and so on. See Figure 3. When finished,
she publishes her list of famous people and the hash of her predictions for the
future. At the end of the year, she “reveals” her predictions, choosing for each
pair of colliding blocks the one that reflects what did happen that year.

Fig. 3. Using Joux Multicollisions to Predict Who Will Get Married

This variant of the attack is much cheaper than those based on the diamond
structure, but is also much less flexible. It can use existing cryptanalytic tech-
niques on SHA1 and MD5 since, at each stage, the attacker is looking for two
messages that collide starting from the same IV; of course, the use of existing
cryptanalytic techniques might influence the structure of the attacker’s yes/no
predictions. Precomputations of enormous sets of prefixes become possible using
this technique. Most importantly, it can be combined with the diamond struc-
ture and variations of the Joux multicollision to provide even more flexibility to
the attacker, as we discuss below.

Combining Precomputations and Joux Multicollisions. In some cases,
some large part of the information to be committed to will fit cleanly into the
Joux multicollision structure, but other parts will not. For example, consider
a prediction of the course and outcome of a national election in the United
States6. Before the election is run, the attacker produces a set of 32 prefixes which
describe the course of the election in broad terms, e.g., “Smith won a decisive
victory,” “Jones narrowly carried the critical swing states and won,” etc. After
this, each state’s outcome is listed, e.g., “Alabama went for Smith, Alaska went
for Jones,” The first part of the message is a precomputed diamond structure;
the second part is a Joux multicollision allowing 250 different outcomes.

Applying the Joux Multicollision Idea to Diamond Structures. An even
more powerful way to structure these predictions is to concatenate precomputed
diamond structures in a kind of super-Joux collision.

Consider the above description, but now suppose we wanted to specify one of
32 possible descriptions of how the election went in each state, e.g., “In Alabama,
Smith won a resounding victory,” or “In Maryland, Jones narrowly won after a
series of vicious attack ads.”

The attacker can string together 51 diamond structures total, one to describe
the whole election, one for each state. This allows the attacker to “commit”
to a prediction with 2255 possible values (requiring 2127.5+n/2+2 work with an
n-bit hash function using a straightforward precomputed diamond structure),
while doing much less work (51× 22.5+n/2+2). The attacker also gains enormous
flexibility by being able to avoid the strict format of the Joux multicollisions.

6 The only detail about US politics needed to understand this example is that all
elections ultimately produce exactly one victor.

5 Applying the Attacks: Herding for Fun and Prophets

In this section, we describe how the herding attack can be used in many different
contexts to do (what we believe to be) surprising things.

Predicting the Future: The Nostradamus Attack. The “Nostradamus at-
tack” is the use of herding to commit to the hash of a message that the attacker
doesn’t even know. This destroys the ability to use hashes, for which collisions
can be found, to prove prior knowledge of any information.

The Nostradamus attack is carried out in order to convince people that the
attacker can tell the future. This could be based on some claimed psychic power,
but also on some claimed improved understanding in science or economics, al-
lowing detailed prediction of the weather, elections, markets, etc. This can also
be used to “prove” access to some inside information, as with some attacker at-
tempting to convince a reporter or intelligence agent that she has inside access
to a terrorist cell or secretive government agency.

At a very general level, this attack works as follows:

1. The attacker presents the victim with a hash H, along with a claim about
the kind of information this represents. She promises to produce the message
that yields the hash after the events predicted have occurred.

2. The attacker waits for the events to unfold, just as the victim does.
3. The attacker herds a description of the events as they did unfold into her hash

output, and provides the resulting message to the victim, thus “proving” her
prior knowledge.

There are many variations on this theme; the predictions can be fully precom-
puted, completely unpredictable until they come to pass, or some mix of the
two.

Committing to an Ordering. The techniques for many of the variants of
the Nostradamus attack follow from the discussions in Sections 3 and 4. Here
we suggest another possibility, which uses what we call a “hash router;” see
Figure 4. Alice decides to prove (perhaps in a gambling context) that she can
predict the outcome of a race with 32 entrants. She commits to a sequence of 32
hash outputs, H0,1,...,31. After the race is over, she produces 32 strings, S0,1,...,31

such that Si describes the entrant in the race who finished in ith place, and
Hi = hash(Si).

Alice builds a precomputed diamond structure starting from the names of
the 32 entrants. When the diamond structure yields a final hash H, she produces
32 new message strings (probably simply strings like “1st place”, “2nd place”,
etc.), and processes them from H to get 32 different hash outputs. She commits
to these hash outputs. When the time comes to reveal her choices, she produces
32 strings which commit her to the correct ordering of entrants in the race. Note
that Alice can route any of her starting precomputed prefixes to any of the hash
outputs.

Retroactive Collisions. Under normal circumstances, someone creating a hash
collision must broadly know to what he is committing. While some clever attacks

Fig. 4. Committing to an Ordering Using a “Hash Router”

have gotten around this by using some bits of the two colliding messages to
change the meaning of later parts of a message[7, 9], these attacks are easy to
detect by looking at the underlying data.

The herding attack may be used to “backdate” a collision. That is, the at-
tacker sets up a collision today, and commits to its hash and perhaps one message
with that hash. Later, she decides what document she wishes collided with the
one she committed to, and so she herds that document to the same hash. The
property of the hash function being violated is identical as in the case of “prov-
ing” prior knowledge, but the applications are quite different.

Stealing Credit for Inventions. The attacker can use the same idea to claim
to be a brilliant inventor, while actually stealing other peoples’ work. He submits
hashes to a digital timestamping service periodically. After he sees some new
invention he wants to claim, he herds a description of the invention to some old
hash value.

To save the attacker from building multiple diamond structures, the attacker
could construct a single diamond structure, and append a single message block
which would vary for each submission.

Tweaking a Signed Document. Consider the case where Alice has a very
reasonable document which she has signed, making some sensible predictions
about the future or statements of fact or terms of agreement. She wants to make
sure she can later “tweak” this document in some ways. Herding will permit this:

1. Using the precomputed variant with Joux multicollisions, she can produce
two alternatives for each paragraph or section of the document.

2. Using the precomputed diamond with Joux multicollisions, she can produce
many variations for some sections, and pairs of variations for others. She
chooses one to produce initially, but can change to another without changing
the hash.

3. Using the full herding attack, she can produce one “herded” document. Any
variation in the “prefix” part of the document she wishes to make later can
be made by carrying out another herding attack.

This attack can be used to tweak messages, contracts, news stories, signed/hashed
software, etc.

Random Number Fixing. Alice and Bob want to agree on a shared random
sequence for some game. Alice sends hash(X1), then Bob responds with X2. Fi-
nally, Alice reveals X1, and Alice and Bob each derive random bits by combining
X1 and X2 in some way. The herding attacks and its variations can be used to
allow Alice to exert substantial control over the resulting random bit sequence.
If the full herding attack isn’t practical in this scenario, Alice can at least use
the Joux multicollision variant to allow herself two choices per agreed random
number, where Bob has no choice.

6 Finding Multiblock Fixed Points

Attacks on commitment schemes are not the only applications of the diamond
structure and herding attack ideas. We can also find short cycles in hash func-
tions. This is done in a simple way: We first construct a diamond structure,
where each of the starting hash values in the structure are found by generating
a random message block, and computing the compression function result of that
message block from the hash function’s initial value. If the diamond structure
is 2k wide, we then compute 2n−k trial message blocks from the end of the di-
amond structure. We expect an intermediate collision, which yields a k-block
fixed point for the hash algorithm.

This can be extended; with 2n−k+r work, we expect about 2r different k-block
fixed points, all reachable from a legitimate message. These can be concatenated
together; we can choose which of the 2r k-block chunks of message we wish
to append to the message next, without reference to previous choices. Further,
any message can be “herded” to this set of fixed points with about 2n−k work
and k appended blocks. For completeness, we recall that [17] show how to find
single-block fixed points in Davies-Meyer constructions and [12] show how to
find single-block fixed points in Snefru.

7 Conclusions

In this paper, we have defined a property of a hash function, Chosen Target
Forced Prefix (CTFP) preimage resistance, which is both surprisingly important
for real-world applications of hash functions, and also surprisingly dependent on
collision resistance of the hash function. We have described a variation on the
Joux multicollision technique for building tree-like structures of multicollisions
called “diamond structures,” and enumerated a number of techniques made pos-
sible by these structures. We have described a number of arguably practical
attacks which use these techniques.

At a very basic level, we believe that the most important lesson the reader
can take from this paper is that using iterated hash functions whose collision
resistance has been violated is very difficult, even when the relevant security
property does not appear to depend on collision resistance.

A great deal of research remains to be done in this area. The diamond struc-
ture seems likely to us to be about as useful in developing new attacks as the
Joux multicollision result, and we hope to see others building on the work in this
paper by finding other surprising things to do to iterated hash functions using
herding attacks and the diamond structure. Additionally, there may be many
other surprising ways in which iterated hash functions built on the Damg̊ard-
Merkle construction may be attacked when the attacker can find intermediate
collisions.

8 Acknowledgments

The authors wish to thank Dan Brown, Morris Dworkin, Niels Ferguson, Hal
Finney, Stuart Haber, Ulrich Kuehn, Bart Preneel, Christian Rechberger, Bruce
Schneier, the many participants of the NIST hash workshop, and the anony-
mous referees for helpful comments and discussions on the subject of this paper.
T. Kohno was supported by NSF CCR-0208842, NSF ANR-0129617, and NSF
CCR-0093337. Part of this research was performed while T. Kohno was visiting
the University of California at Berkeley.

References

1. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS 93, pages 62–73. ACM Press, 1993.

2. E. Biham and R. Chen. Near-collisions of SHA-0. In M. Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 290–305. Springer-Verlag, Berlin,
Germany, 2004.

3. E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, and W. Jalby. Collisions
of SHA-0 and Reduced SHA-1. In R. Cramer, editor, EUROCRYPT 2005, volume
3494 of LNCS. Springer-Verlag, Berlin, Germany, 2005.

4. D. R. Brown and D. B. Johnson. Hash functions based on block ciphers. In
D. Naccache, editor, CT-RSA 2001, volume 2020 of LNCS. Springer-Verlag, Berlin,
Germany, 2001.

5. J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard revisited:
How to construct a hash function. In V. Shoup, editor, CRYPTO 2005, volume
3621 of LNCS. Springer-Verlag, Berlin, Germany, 2005.

6. I. Damg̊ard. A design principle for hash functions. In G. Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 416–427. Springer-Verlag, Berlin, Ger-
many, 1989.

7. M. Daum and S. Lucks. Attacking hash functions by poisoned messages: The story
of Alice and her boss, 2005. http://www.cits.rub.de/MD5Collisions.

8. R. D. Dean. Formal Aspects of Mobile Code Security. PhD thesis, Princeton
University, Jan. 1999.

9. M. Gebhardt, G. Illies, and W. Schindler. A note on practical value of single
hash collisions for special file formats. NIST Cryptographic Hash Workshop, 2005.
No published proceedings, available online at http://www.csrc.nist.gov/pki/

HashWorkshop/2005/Oct31_Presentations/Illies_NIST_05.pdf.
10. A. Joux. Multicollisions in iterated hash functions. Application to cascaded con-

structions. In M. Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages
306–316. Springer-Verlag, Berlin, Germany, 2004.

11. D. Kaminsky. MD5 to be considered harmful someday. Cryptology ePrint Archive,
Report 2004/357, 2004. http://eprint.iacr.org/.

12. J. Kelsey and B. Schneier. Second preimages on n-bit hash functions for much less
than 2n work. In R. Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS,
pages 474–490. Springer-Verlag, Berlin, Germany, 2005.

13. V. Klima. Finding MD5 collisions on a notebook PC using multi-message mod-
ifications. Cryptology ePrint Archive, Report 2005/102, 2005. http://eprint.

iacr.org/.
14. X. Lai and J. L. Massey. Hash functions based on block ciphers. In R. A. Rueppel,

editor, EUROCRYPT’92, volume 658 of LNCS. Springer-Verlag, Berlin, Germany,
1992.

15. A. Lenstra, X. Wang, and B. de Weger. Colliding X.509 certificates. Cryptology
ePrint Archive, Report 2005/067, 2005. http://eprint.iacr.org/.

16. R. C. Merkle. One way hash functions and DES. In G. Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 428–446. Springer-Verlag, Berlin, Ger-
many, 1989.

17. S. Miyaguchi, K. Ohta, and M. Iwata. Confirmation that some hash functions are
not collision free. In I. Damg̊ard, editor, EUROCRYPT’90, volume 473 of LNCS.
Springer-Verlag, Berlin, Germany, May 1990.

18. B. Preneel, 2005. Personal communication.
19. V. Rijmen and E. Oswald. Update on SHA-1. In A. Menezes, editor, CT-RSA 2005,

volume 3376 of LNCS, pages 58–71. Springer-Verlag, Berlin, Germany, 2005.
20. P. van Oorschot and M. Wiener. Parallel collision search with cryptanalytic appli-

cations. Journal of Cryptology, 12(1):1–28, 1999.
21. X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the hash functions

MD4 and RIPEMD. In R. Cramer, editor, EUROCRYPT 2005, volume 3494 of
LNCS. Springer-Verlag, Berlin, Germany, 2005.

22. X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1. In V. Shoup,
editor, CRYPTO 2005, volume 3621 of LNCS. Springer-Verlag, Berlin, Germany,
2005.

23. X. Wang and H. Yu. How to break MD5 and other hash functions. In R. Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 19–35. Springer-Verlag,
Berlin, Germany, 2005.

24. X. Wang, H. Yu, and Y. L. Yin. Efficient collision search attacks on SHA-0. In
V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS. Springer-Verlag, Berlin,
Germany, 2005.

25. G. Yuval. How to swindle Rabin. Cryptologia, 3(3):187–189, 1979.

