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HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMSAND LINEAR REPRESENTATIONSBYE. GLASNER (Tel-Aviv) and M. MEGRELISHVILI (Ramat-Gan)Abstrat. For an arbitrary topologial group G any ompat G-dynamial sys-tem (G, X) an be linearly G-represented as a weak∗-ompat subset of a dual Banahspae V ∗. As was shown in [45℄ the Banah spae V an be hosen to be re�exive i� themetri system (G, X) is weakly almost periodi (WAP). In the present paper we study thewider lass of ompat G-systems whih an be linearly represented as a weak∗-ompatsubset of a dual Banah spae with the Radon�Nikodým property. We all suh a system aRadon�Nikodým (RN) system. One of our main results is to show that for metrizable om-pat G-systems the three lasses: RN, HNS (hereditarily non-sensitive) and HAE (hered-itarily almost equiontinuous) oinide. We investigate these lasses and their relation topreviously studied lasses of G-systems suh as WAP and LE (loally equiontinuous). Weshow that the Glasner�Weiss examples of reurrent-transitive loally equiontinuous butnot weakly almost periodi asades are atually RN. Using fragmentability and Namioka'stheorem we give an enveloping semigroup haraterization of HNS systems and show thatthe enveloping semigroup E(X) of a ompat metrizable HNS G-system is a separableRosenthal ompat, hene of ardinality ≤ 2ℵ0 . We investigate a dynamial version ofthe Bourgain�Fremlin�Talagrand dihotomy and a dynamial version of the Todor£evi¢dihotomy onerning Rosenthal ompats.ContentsIntrodution 2241. Topologial dynamis bakground 2272. The enveloping semigroup 2313. A dynamial version of the Bourgain�Fremlin�Talagrand theorem 2364. Metri approximation of dynamial systems 2385. Almost equiontinuity, loal equiontinuity and variations 2406. Fragmented maps and families 2467. Asplund funtions and RN systems 2508. Veeh funtions 2559. Hereditary AE and NS systems 25610. Some examples 26411. The G-W examples are HAE 2672000 Mathematis Subjet Classi�ation: 54H20, 54H15, 37B05, 43A60, 46B22.Key words and phrases: almost equiontinuous, Asplund funtion, fragmentability,Ellis semigroup, loally equiontinuous, Namioka's theorem, Radon�Nikodým system,Rosenthal ompat, sensitive dependene, weakly almost periodi.The seond author thanks the Israel Siene Foundation (grant number 4699).[223℄



224 E. GLASNER AND M. MEGRELISHVILI12. The minenter of an RN system 27013. A reurrent-transitive LE but not HAE system 27214. An enveloping semigroup haraterization of HNS 27515. A dynamial version of Todor£evi¢'s theorem 280Referenes 281Introdution. The main goal of this paper is to exhibit new and per-haps unexpeted onnetions between the (lak of) haoti behavior of a dy-namial system and the existene of linear representations of the system onertain Banah spaes. The property of sensitive dependene on initial on-ditions appears as a basi onstituent in several de�nitions of �haos� (see,for example, [9, 16, 25, 11℄ and referenes therein). In the present paper weintrodue the lasses of hereditarily not sensitive (HNS for short; intuitivelythese are the non-haoti systems) and hereditarily almost equiontinuoussystems (HAE). It turns out that these lasses of dynamial systems arewell behaved with respet to the standard operations on dynamial systemsand they admit elegant haraterizations in terms of Banah spae represen-tations.For an arbitrary topologial group G any ompat G-system X an belinearly G-represented as a weak∗-ompat subset of a dual Banah spae V ∗.As was shown in [45℄ the Banah spae V an be hosen to be re�exive i� themetri G-system X is weakly almost periodi (WAP). We say that a dynami-al system (G,X) is a Radon�Nikodým system (RN) if V ∗ an be hosen as aBanah spae with the Radon�Nikodým property. One of our main results isto show that for metrizable ompat G-systems the three lasses of RN, HNSand HAE dynamial systems oinide. For general ompat G-systems X weprove that X is in the lass HNS i� X is RN-approximable. In other words:a ompat system is non-haoti if and only if it admits su�iently many
G-representations in RN dual Banah spaes. The link between the varioustopologial dynamis aspets of almost equiontinuity on the one hand andthe Banah spae RN properties on the other is the versatile notion of frag-mentability . It played a entral role in the works on RN ompata (see e.g.Namioka [48℄) and their dynamial analogues (see Megrelishvili [42, 43, 45℄).It also serves as an important tool in the present work.The following brief historial review will hopefully help the reader toget a learer perspetive on the ontext of our results. The theory of weaklyalmost periodi (WAP) funtions on topologial groups was developedby W. F. Eberlein [17℄, A. Grothendiek [28℄ and I. Gliksberg andK. de Leeuw [15℄. About thirty years ago, W. A. Veeh [58℄, in an attempt tounify and generalize the lassial theory of weakly almost periodi funtionson a disrete group G, introdued a lass of funtions in ℓ∞(G) whih hedenoted by K(G). He showed that K(G) is a uniformly losed left and right
G-invariant subalgebra of ℓ∞(G) ontaining the algebra of weakly almost pe-



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 225riodi funtions WAP(G) and shares with WAP(G) the property that everyminimal funtion in K(G) is atually almost periodi.In [51℄ Shtern has shown that for any ompat Hausdor� semitopologialsemigroup S there exists a re�exive Banah spae V suh that S is topolog-ially isomorphi to a losed subsemigroup of B = {s ∈ L(V ) : ‖s‖ ≤ 1}.Here L(V ) is the Banah spae of bounded linear operators from V to itselfand B is equipped with the weak operator topology. Megrelishvili providedan alternative proof for this theorem in [43℄ and has shown in [45℄ that WAPdynamial systems are haraterized as those systems that have su�ientlymany linear G-representations on weakly ompat subsets of re�exive Ba-nah spaes. In partiular, if V is a re�exive Banah spae then for everytopologial subgroup G of the linear isometry group Iso(V ) the natural a-tion of G on the weak∗-ompat unit ball V ∗
1 of V ∗ is WAP. Moreover, everyWAP metri ompat G-spae X is a G-subsystem of V ∗

1 for a suitable re-�exive Banah spae V .A seemingly independent development is the new theory of almost equi-ontinuous dynamial systems (AE). This was developed in a series of papers:Glasner &Weiss [25℄, Akin, Auslander & Berg [1, 2℄ and Glasner &Weiss [26℄.In the latter the lass of loally equiontinuous dynamial systems (LE) wasintrodued and studied. It was shown there that the olletion LE(G) ofloally equiontinuous funtions forms a uniformly losed G-invariant sub-algebra of ℓ∞(G) ontaining WAP(G) and having the property that eahminimal funtion in LE(G) is almost periodi.Of ourse the lassial theory of WAP funtions is valid for a generaltopologial group G and it is not hard to see that the AE theory, as wellas the theory of K(G)-funtions�whih we all Veeh funtions�extend tosuh groups as well.Let V be a Banah spae, V ∗ its dual. A ompat dynamial G-system
X is V ∗-representable if there exist a weakly ontinuous o-homomorphism
G → Iso(V ), where Iso(V ) is the group of linear isometries of a Banahspae V onto itself, and a G-embedding φ : X → V ∗

1 , where V ∗
1 is the weak∗-ompat unit ball of the dual Banah spae V ∗ and the G-ation is thedual ation indued on V ∗

1 from the G-ation on V . An old observation (dueto Teleman [53℄) is that every ompat dynamial G-system X is C(X)∗-representable.The notion of an Eberlein ompat (Eb) spae in the sense of Amir andLindenstrauss [4℄ is well studied and it is known that suh spaes are har-aterized by being homeomorphi to a weakly ompat subset of a Banah(equivalently: re�exive Banah) spae. Later the notion of Radon�Nikodým(RN) ompat topologial spaes was introdued. These an be harater-ized as weak∗-ompat sets in the duals V ∗ with the RN property. A Banahspae V whose dual has the Radon�Nikodým property is alled an Asplund



226 E. GLASNER AND M. MEGRELISHVILIspae (see, for example, [22, 48℄ and Remark 6.2.3). We refer to the ex-ellent 1987 paper of I. Namioka [48℄ where the theory of RN ompats isexpounded.One of the main objets of [45℄ was the investigation of RN systems(a dynamial analog of RN ompata) and the related lass of funtionsalled �Asplund funtions�. More preisely, all a dynamial system whihis linearly representable as a weak∗-ompat subset of a dual Banah spaewith the Radon�Nikodým property a Radon�Nikodým system (RN for short).The lass of RN-approximable systems, that is, subsystems of produts ofRN systems, will be denoted by RNapp. It was shown in [45℄ that WAP ⊂
RNapp ⊂ LE.Given a ompat dynamial G-system X, a subgroup H < G and afuntion f ∈ C(X), de�ne a pseudometri ̺H,f on X as follows:

̺H,f (x, x
′) = sup

h∈H
|f(hx) − f(hx′)|.We say that f is an Asplund funtion (notation: f ∈ Asp(X)) if the pseu-dometri spae (X, ̺H,f ) is separable for every ountable subgroup H < G.These are exatly the funtions whih ome from linear G-representationsof X on V ∗ with V Asplund. By [45℄, a ompat G-system X is RNapp i�

C(X) = Asp(X) and always WAP(X) ⊂ Asp(X).The �rst setion of the paper is a brief review of some known aspets ofabstrat topologial dynamis whih provide a onvenient framework for ourresults. In the seond setion we disuss enveloping semigroups and semi-group ompati�ations. Our treatment di�ers slightly from the traditionalapproah and terminology and ontains some new observations. For moredetails we refer to the books [19, 23, 24, 60, 10, 6℄. See also [8, 38, 59℄.In [37℄ Köhler shows that the well known Bourgain�Fremlin�Talagranddihotomy, when applied to the family {fn : n ∈ N} of iterates of a on-tinuous interval map f : I → I, yields a orresponding dihotomy for theenveloping semigroups. In the third setion we generalize this and obtain aBourgain�Fremlin�Talagrand dihotomy for enveloping semigroups of metridynamial systems.Setion 4 treats the property of m-approximability , i.e. of being approx-imable by metri systems. For many groups G every dynamial G-systemis m-approximable and we haraterize suh groups as being exatly theuniformly Lindelöf groups.In Setion 5 we reall some important notions like almost equiontinuity,WAP and LE and relate them to universal systems. We also study the relatednotion of lightness of a funtion f ∈ RUC(G), i.e. the oinidene of thepointwise and the norm topologies on its G-orbit.Setion 6 is devoted to some results onerning fragmentability. These willbe ruial at many points in the rest of the paper. In Setion 7 we investigate



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 227Asplund funtions and their relations to fragmentability. In Setion 8 we dealwith the related lass of Veeh funtions. As already mentioned the latterlass K(G) is a generalization of Veeh's de�nition [58℄. We show that everyAsplund funtion is a Veeh funtion and that for separable groups thesetwo lasses oinide.In Setion 9 we introdue the dynamial properties of HAE and HNS andshow that they are intimately related to the linear representation onditionof being an RN system. In partiular for metrizable ompat systems weestablish the following equalities and inlusions:
Eb = WAP ⊂ RN = HAE = HNS = RNapp ⊂ LE.Here Eb stands for Eberlein systems�a dynamial version of Eberlein om-pats (see De�nition 7.5). Setion 10 is devoted to various examples andappliations. We show that for symboli systems the RN property is equiv-alent to having a ountable phase spae; and that any Z-dynamial system

(f,X), where X is either the unit interval or the unit irle and f : X → Xis a homeomorphism, is an RN system.In Setion 11 we show that the Glasner�Weiss examples of reurrent-transitive LE but not WAP metri asades are atually HAE. In Setion 12we investigate the minenter of an HAE system, and in Setion 13 we usea modi�ed onstrution to produe an example of a reurrent-transitive, LEbut not HAE system. This example exhibits the sharp distintion betweenthe possible minenters of LE and HAE systems.In Setion 14, using fragmented families of funtions and Namioka's jointontinuity theorem, we establish an enveloping semigroup haraterization ofAsplund funtions and HNS systems. Our results imply that the Ellis semi-group E(X) of a ompat metrizable HNS system (G,X) is a Rosenthalompat. In partiular, by a result of Bourgain�Fremlin�Talagrand [12℄, wededue that E(X) is angeli (hene, it annot ontain a subspae homeo-morphi to βN). Finally in Setion 15 we show how a theorem of Todor£evi¢implies that for a metri RN system, E(X) either ontains an unountabledisrete subspae or admits an at most two-to-one metri G-fator.We are indebted to Stevo Todor£evi¢ for enlightening omments. Thanksare due to Hanfeng Li for a ritial reading of the manusript and his on-sequent fruitful suggestions, inluding improvements in the statement andproof of Propositions 5.14 and 9.5. We would like to thank Ethan Akin for aareful reading of the paper and for suggesting several improvements. Finally,we thank Benjy Weiss for many helpful onversations.1. Topologial dynamis bakground. Usually all the topologialspaes we deal with are assumed to be Hausdor� and ompletely regular.However, oasionally we will onsider a pseudometri on a spae, in whih



228 E. GLASNER AND M. MEGRELISHVILIase of ourse the resulting topology need not be even T0. Let G×X → Xbe a ontinuous (left) ation of the topologial group G on the topologialspae X. As usual, we say that (G,X), or X (when the group is understood),is a G-spae or a G-ation. Every G-invariant subset Y ⊂ X de�nes a G-subspae of X. Reall that every topologial group G an be treated as a
G-spae under the left regular ation of G on itself. IfX is a ompat G-spaethen sometimes we all it also a G-system or just a system. We say that a
G-spae X is a subdiret produt of a lass Γ of G-spaes if X is a G-subspaeof a G-produt of some members of Γ .The notations (X, τ) and (X,µ) are used for a topologial and a uni-form spae respetively. When the ating group is the group Z of integers,we sometimes write (T,X) instead of (Z, X), where T : X → X is thehomeomorphism whih orresponds to the element 1 ∈ Z (suh systems aresometimes alled asades). We write gx for the image of x ∈ X underthe homeomorphism ğ : X → X whih orresponds to g ∈ G. As usual,
Gx = OG(x) = {gx : g ∈ G} is the orbit of x and OG(x) = cls(Gx) isthe losure in X of OG(x). If (G, Y ) is another G-system then a surjetiveontinuous G-map π : X → Y (that is, gπ(x) = π(gx) for all (g, x) ∈ G×X)is alled a homomorphism. We also say that Y is a G-fator of X. When
(G,X) is a dynamial system and Y ⊂ X is a non-empty losed G-invariantsubset, we say that the dynamial system (G, Y ), obtained by restritionto Y , is a subsystem of (G,X).Denote by C(X) the Banah algebra of all real-valued bounded funtionson a topologial spae X under the supremum norm. Let G be a topolog-ial group. We write RUC(G) for the Banah subalgebra of C(G) of rightuniformly ontinuous (1) real-valued bounded funtions on G. These arethe funtions whih are uniformly ontinuous with respet to the right uni-form struture on G. Thus, f ∈ RUC(G) i� for every ε > 0 there exists aneighborhood V of the identity element e ∈ G suh that supg∈G |f(vg) −
f(g)| < ε for every v ∈ V . It is equivalent to say that the orbit map
G → C(G), g 7→ gf , is norm ontinuous where gf is the left translationof f de�ned by gf(x) = Lg(f)(x) := f(gx). Analogously an be de�nedthe algebra LUC(G) of left uniformly ontinuous funtions and the righttranslations fg(x) = Rg(f)(x) := f(xg). It is easy to see that UC(G) :=
RUC(G) ∩ LUC(G) is a left and right G-invariant losed subalgebra of
RUC(G).More generally: for a given (not neessarily ompat) G-spae X a fun-tion f ∈ C(X) will be alled right uniformly ontinuous if the orbit map
G→ C(X), g 7→ gf := Lg(f), is norm ontinuous, where Lg(f)(x) := f(gx).The map C(X) × G → C(X), (f, g) 7→ gf , de�nes a right ation. The set

(1) Some authors all these funtions left uniformly ontinuous.
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RUC(X) of all right uniformly ontinuous funtions on X is a uniformlylosed G-invariant subalgebra of C(X).A G-ompati�ation of a G-spae X is a dense ontinuous G-map ν :
X → Y into a ompat G-system Y . A ompati�ation ν : X → Y isproper when ν is a topologial embedding. We say that a G-ompati�ation
ν : G → S of X := G (the left regular ation) is a right topologial semi-group ompati�ation of G if S is a right topologial semigroup (that is, forevery x ∈ S the map ̺s : S → S, ̺s(x) = xs, is ontinuous) and ν is ahomomorphism of semigroups. There exists a anonial 1-1 orrespondene(see for example [59℄) between the G-ompati�ations of X and uniformlylosed G-subalgebras (�subalgebra� will always mean a subalgebra ontain-ing the onstants) of RUC(X). The G-ompati�ation ν : X → Y induesan isometri G-embedding of G-algebras

jν : C(Y ) → RUC(X), φ 7→ φ ◦ ν,and the algebra Aν (orresponding to ν) is de�ned as the image jν(C(Y )).Conversely, if A is a uniformly losed G-subalgebra of RUC(X), then itsGelfand spae |A| ⊂ (A∗,weak∗) has a struture of a dynamial system
(G, |A|) and the map νA : X → Y := |A|, x 7→ evax, where evax(ϕ) := ϕ(x)is the multipliative funtional of evaluation at x, de�nes a G-ompati�-ation. If ν1 : X → Y1 and ν2 : X → Y2 are two G-ompati�ations then
Aν1 ⊂ Aν2 i� ν1 = α ◦ ν2 for some G-homomorphism α : Y2 → Y1. Thealgebra Aν determines the ompati�ation ν uniquely, up to equivalene of
G-ompati�ations.The G-algebra RUC(X) de�nes the orresponding Gelfand spae
|RUC(X)| (whih we denote by βGX) and the maximal G-ompati�ation
iβ : X → βGX. Note that this map may not be an embedding even for Polish
X and G (see [40℄); it follows that there is no proper G-ompati�ation forsuh X. If X is a ompat G-system then βGX an be identi�ed with X and
C(X) = RUC(X).A point x0 ∈ X is a transitive point (notation: x0 ∈ Trans(X)) if
OG(x0) = X, and the G-spae X is alled point-transitive (or just transi-tive) if Trans(X) 6= ∅. It is topologially transitive if for any two non-emptyopen subsets U, V ⊂ X there exists g ∈ G with gU ∩ V 6= ∅. Every point-transitive G-spae is topologially transitive. When X is a metrizable sys-tem, topologial transitivity is equivalent to point-transitivity and, in fat,to the existene of a dense Gδ set of transitive points. For a G-spae (G,X)with G loally ompat we say that a point x ∈ X is a reurrent point ifthere is a net G ∋ gi → ∞ with x = limi→∞ gix. A system (G,X) with areurrent transitive point is alled a reurrent-transitive system. Note thata transitive in�nite Z-system is reurrent-transitive i� X has no isolatedpoints.



230 E. GLASNER AND M. MEGRELISHVILIA system (G,X) is alled weakly mixing if the produt system (G,X×X)(where g(x, x′) = (gx, gx′)) is topologially transitive. A system (G,X) isalled minimal if every point of X is transitive.A triple (G,X, x0) with X ompat and a distinguished transitive point
x0 is alled a pointed dynamial system (or sometimes an ambit). For ho-momorphisms π : (X,x0) → (Y, y0) of pointed systems we require that
π(x0) = y0. When suh a homomorphism exists it is unique. A pointeddynamial system (G,X, x0) an be treated as a G-ompati�ation νx0

:
G → X, νx0

(g) = gx0. We assoiate with every F ∈ C(X) the fun-tion jx0
(F ) = f ∈ RUC(G) de�ned by f(g) = F (gx0). Then the map

jx0
is atually the above-mentioned isometri embedding jνx0

: C(X) →
RUC(G). Let us denote its image by jx0

(C(X)) = A(X,x0). We have
gf = g(jx0

(F )) = jx0
(F ◦ g). The Gelfand spae |A(X,x0)| of the algebra

A(X,x0) is naturally identi�ed with X and in partiular the multiplia-tive funtional evae : f 7→ f(e) is identi�ed with the point x0. Moreoverthe ation of G on A(X,x0) by left translations indues an ation of Gon |A(X,x0)| and under this identi�ation the pointed systems (X,x0) and
(|A(X,x0)|, evae) are isomorphi.Conversely, if A is a G-invariant uniformly losed subalgebra of RUC(G)(here and in what follows, when we say that a subalgebra of RUC(G) is
G-invariant we mean left G-invariant, that is, invariant with respet to theation A×G→ A, (f, g) 7→ gf), then its Gelfand spae |A| has a strutureof a pointed dynamial system (G, |A|, evae). In partiular, we have, orre-sponding to the algebra RUC(G), the universal ambit (G,GR, evae) wherewe denote the Gelfand spae |RUC(G)| = βGG by GR. (See for example [19℄or [60℄ for more details.)It is easy to hek that for any olletion {(G,Xθ, xθ) : θ ∈ Θ} of pointedsystems we have

A
( ∨

{(Xθ, xθ) : θ ∈ Θ}
)

=
∨

{A(Xθ, xθ) : θ ∈ Θ},where ∨
{(Xθ, xθ) : θ ∈ Θ} is the orbit losure of the point x in the prod-ut spae ∏

θ∈ΘXθ whose θ-oordinate is xθ, and the algebra on the righthand side is the losed subalgebra of RUC(G) generated by the union of thesubalgebras A(Xθ, xθ).Definition 1.1. 1. We say that a funtion f ∈ C(X) on a G-spae
X omes from a G-system Y if there exist a G-ompati�ation ν :
X→ Y (so, ν is onto if X is ompat) and a funtion F ∈ C(Y ) suhthat f = ν ◦F (equivalently, f ∈ Aν). Then neessarily f ∈ RUC(X).Only the maximal G-ompati�ation iβ : X → βGX has the propertythat every f ∈ RUC(X) omes from iβ.



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 2312. A funtion f ∈ C(G) omes from a pointed system (Y, y0) (and thenneessarily f ∈ RUC(G)) if for some ontinuous funtion F ∈ C(Y )we have f(g) = F (gy0) for all g ∈ G, i.e. f = jy0(F ) (equivalently, if
f ∈ A(Y, y0)). De�ning ν : X = G → Y by ν(g) = gy0 we observethat this is indeed a partiular ase of 1.1.1.3. A funtion f ∈ RUC(X) is alled minimal if it omes from a minimalsystem.2. The enveloping semigroup. The enveloping (or Ellis) semigroup

E = E(G,X) = E(X) of a dynamial system (G,X) is de�ned as the lo-sure in XX (with its ompat, usually non-metrizable, pointwise onvergenetopology) of the set Ğ = {ğ : X → X}g∈G onsidered as a subset of XX .With the operation of omposition of maps this is a right topologial semi-group. Moreover, the map i : G → E(X), g 7→ ğ, is a right topologialsemigroup ompati�ation of G.Proposition 2.1. The enveloping semigroup of a dynamial system
(G,X) is isomorphi (as a dynamial system) to the pointed produt

(E′, ω0) =
∨

{(OG(x), x) : x ∈ X} ⊂ XX .Proof. It is easy to see that the map p 7→ pω0, (G,E, i(e)) → (G,E′, ω0),is an isomorphism of pointed systems.Let X be a (not neessarily ompat) G-spae. Given f ∈ RUC(X) let
I = [−‖f‖, ‖f‖] ⊂ R and Ω = IG, the produt spae equipped with theompat produt topology. We let G at on Ω by gω(h) = ω(hg), g, h ∈ G.De�ne the ontinuous map

f♯ : X → Ω, f♯(x)(g) = f(gx),and the losure Xf := cls(f♯(X)) in Ω. Note that Xf = f♯(X) whenever Xis ompat.Denoting the unique ontinuous extension of f to βGX by f̃ we nowde�ne a map
ψ : βGX → Xf , ψ(y)(g) = f̃(gy), y ∈ βGX, g ∈ G.Let pre : Ω → R denote the projetion of Ω = IG onto the e-oordinate andlet Fe := pre↾Xf

: Xf → R be its restrition to Xf . Thus, Fe(ω) := ω(e) forevery ω ∈ Xf .For every f ∈ RUC(X) denote by Af the smallest losed G-invariantsubalgebra of RUC(X) whih ontains f . There is then a naturally de�ned G-ation on the Gelfand spae |Af | and a G-ompati�ation (homomorphismof dynamial systems if X is ompat) πf : X → |Af |. Next onsider themap π : βGX → |Af |, the anonial extension of πf .



232 E. GLASNER AND M. MEGRELISHVILIThe ation of G on Ω is not in general ontinuous. However, the restritedation on Xf is ontinuous for every f ∈ RUC(X). This follows from theseond assertion of the next proposition.Proposition 2.2. 1. Eah ω ∈ Xf is an element of RUC(G).2. The map ψ : βGX → Xf is a ontinuous homomorphism of G-systems. The dynamial system (G, |Af |) is isomorphi to (G,Xf )and the diagram
X

πf

��

iβ
//

π

""FF
FF

FF
FF

F
βGX

f♯||xxxxxxxx

ψ
��

f̃

!!B
BB

BB
BB

BB

|Af | // Xfoo Fe // Rommutes.3. f = Fe ◦ f♯. Thus every f ∈ RUC(X) omes from the system Xf .Moreover , if f omes from a system Y and a G-ompati�ation ν :
X → Y then there exists a homomorphism α : Y → Xf suh that
f♯ = α ◦ ν. In partiular , f ∈ Af ⊂ Aν .Proof. 1. f ∈ RUC(X) implies that f♯(X) is a uniformly equiontin-uous subset of IG (endowing G with its right uniform struture). Thus,the pointwise losure cls(f♯(X)) = Xf is also uniformly equiontinuous. Inpartiular, for every ω ∈ Xf the funtion ω : G → I is right uniformlyontinuous.2. Suppose iβ(xν) ∈ iβ(X) is a net onverging to y ∈ βGX. Then

ψ(y)(g) = f̃(gy) = limν f(gxν) = limν f♯(xν)(g). Thus ψ(y) = limν f♯(xν)is indeed an element of Xf and it is easy to see that ψ is a ontinuous
G-homomorphism. In partiular, we see that Xf , being a G-fator of βGX,is indeed a G-system (i.e. the G-ation on Xf is jointly ontinuous).Now we use the map π : βGX → |Af |. By de�nition, the elements of βGXare ontinuous multipliative linear funtionals on the algebra RUC(X), andfor y ∈ βGX its value π(y) ∈ |Af | is the restrition y↾Af

to the subalgebra
Af ⊂ RUC(X). For g ∈ G, as above, let gf ∈ Af ⊂ RUC(X) be de�nedby gf(x) = f(gx). Then π(y1) = π(y2) implies y1(gf) = f̃(gy1) = f̃(gy2) =
y2(gf) for every g ∈ G.Conversely, assuming f̃(gy1) = f̃(gy2) for every g ∈ G, we observe that,as y1 and y2 are multipliative funtionals, we also have y1(h) = y2(h) forevery h in the subalgebra A0 generated by the family {gf : g ∈ G}. Sine
A0 is dense in Af and as y1 and y2 are ontinuous we dedue that π(y1) =
y1↾Af

= y2↾Af
= π(y2).We learly have ψ(y1) = ψ(y2) ⇔ f̃(gy1) = f̃(gy2) for every g ∈ G. Thusfor y1, y2 ∈ βGX we have π(y1) = π(y2) ⇔ ψ(y1) = ψ(y2) ⇔ f̃(gy1) =
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f̃(gy2) for every g ∈ G, and we �nd that indeed |Af | and Xf are isomorphi
G-systems.The veri�ation of the ommutativity of the diagram is straightforward.3. Clearly, Fe(f♯(x)) = f♯(x)(e) = f(ex) = f(x) for every x ∈ X. Forthe rest use the G-isomorphism |Af | ↔ Xf (assertion 2). If f = F ◦ ν forsome F ∈ C(Y ) then f ∈ Aν . This implies the inlusion of G-subalgebras
Af ⊂ Aν , whih leads to the desired G-homomorphism α : Y → Xf .Remark 2.3. 1. Below we use the map f♯ : X → Xf and Proposition 2.2in two partiular ases. First, for a ompat G-spae X when learly

βGX an be replaed by X. We also frequently onsider the ase ofthe left regular ation of G on X := G (see Proposition 2.4). Here theanonial maximal G-ompati�ation iβ : X → βGX is atually theompati�ation G → GR and the orbit Gf = {Rg(f)}g∈G = f♯(G)of f ∈ RUC(G) is pointwise dense in Xf = cls(f♯(G)) ⊂ Ω = IG.2. βGX is a subdiret produt of the G-systems Xf where f ∈ RUC(X).This follows easily from Proposition 2.2 and the fat that elementsof C(βGX) = {f̃ : f ∈ RUC(X)} separate points and losed subsetsof βGX.3. Proposition 2.2.3 atually says that the ompati�ation f♯ :X→Xfis minimal (in fat, the smallest) among all G-ompati�ations ν :
X → Y suh that f ∈ RUC(X) omes from ν. The maximal om-pati�ation in the same setting is learly iβ : X → βGX.Proposition 2.4. 1. Consider the left regular ation of G on X := G.For every f ∈ RUC(G) we have Gf ⊂ Xf = OG(f) ⊂ Ω, f♯(e) = fand Fe(gf) = f(g) for every g ∈ G.2. The pointed G-system (|Af |, evae) is isomorphi to (Xf , f) (hene
Af = A(Xf , f)).3. f = Fe ◦ f♯. Thus every f ∈ RUC(G) omes from the pointed system
(Xf , f). Moreover , if f omes from a pointed system (Y, y0) and ν :
(G, e) → (Y, y0) is the orresponding G-ompati�ation then thereexists a homomorphism α : (Y, y0) → (Xf , f) suh that f♯ = α ◦ ν. Inpartiular , f ∈ Af ⊂ A(Y, y0).4. Denote by XH

f ⊂ IH the dynamial system onstruted for the sub-group H < G and the restrition f↾H (e.g., XG
f = Xf ). If H < G isa dense subgroup then, for every f ∈ RUC(G), the dynamial systems

(H,Xf ) and (H,XH
f ) are anonially isomorphi.Proof. For assertions 1, 2 and 3 use Proposition 2.2 and Remark 2.3.1.4. Let j : Xf → XH
f be the restrition of the natural projetion

IG→ IH . Clearly, j : (H,Xf ) → (H,XH
f ) is a surjetive homomorphism. If

j(ω) = j(ω′) then ω(h) = ω′(h) for every h ∈ H. Sine by Proposition 2.2.1



234 E. GLASNER AND M. MEGRELISHVILIevery ω ∈ Xf is a ontinuous funtion on G and sine we assume that H isdense in G, we onlude that ω = ω′ so that j is an isomorphism.Definition 2.5. We say that a pointed dynamial system (G,X, x0)is point-universal if for every x ∈ X there is a homomorphism πx :
(X,x0) → (OG(x), x). A losed G-invariant subalgebra A ⊂ RUC(G) isalled point-universal if the orresponding Gelfand system (G, |A|, evae) ispoint-universal.Proposition 2.6. The following onditions on the pointed dynamialsystem (G,X, x0) are equivalent :1. (X,x0) is point-universal.2. A(X,x0) =

⋃
x∈X A(OG(x), x).3. (X,x0) is isomorphi to its enveloping semigroup (E(X), i(e)).Proof. 1 ⇒ 2: Clearly, A(X,x0) = A(OG(x0), x0) ⊂

⋃
x∈X A(OG(x), x).Suppose f(g) = F (gx) for all g ∈ G and for some F ∈ C(OG(x)) and

x ∈ X. Sine (X,x0) is point-universal there exists a homomorphism πx :
(X,x0) → (OG(x), x). Hene f(g) = F (gx) = F (gπx(x0)) = F (πx(gx0)) =
(F ◦ πx)(gx0) = jx0

(F ◦ πx)(g) and we onlude that f = jx0
(F ◦ πx) ∈

A(X,x0).
2 ⇒ 3: Proposition 2.1 guarantees the existene of a pointed isomor-phism between the systems (E(X), i(e)) and ∨

x∈X(OG(x), x). Now, usingour assumption we have
A(E(X), i(e)) = A

( ∨

x∈X

(OG(x), x)
)

=
∨

x∈X

A(OG(x), x) = A(X,x0),whene the isomorphism of (X,x0) and (E(X), i(e)).
3 ⇒ 1: For any �xed x ∈ X the map πx : E(X) → X de�ned by

πx(p) = px is a G-homomorphism with πx(i(e)) = x. Our assumption that
(X,x0) and (E(X), i(e)) are isomorphi now implies the point-universalityof (X,x0).Proposition 2.7. A transitive system (G,X, x0) is point-universal i�the map G→ X, g 7→ gx0, is a right topologial semigroup ompati�ationof G.Proof. The neessity of the ondition follows diretly from Proposi-tion 2.6. Suppose now that the map G→ X, g 7→ gx0, is a right topologialsemigroup ompati�ation of G. Given x ∈ X we observe that the map ̺x :
(X,x0) → (X,x), ̺x(z) = zx, is a homomorphism of pointed systems, sothat (G,X, x0) is point-universal.In partiular, for every G-system X the enveloping semigroup (E(X),
i(e)), as a pointed G-system, is point-universal. Here, as before, i : G →
E(X), g 7→ ğ, is the anonial enveloping semigroup ompati�ation.



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 235Proposition 2.8. Let (G,X, x0) be a pointed ompat system and
A = A(X,x0) the orresponding (always left G-invariant) subalgebra of
RUC(G). The following onditions are equivalent :1. (G,X, x0) is point-universal.2. Xf ⊂ A for every f ∈ A (in partiular , A is also right G-invariant).Proof. 1 ⇒ 2: Let f : G → R belong to A. Consider the G-ompati�-ation f♯ : G → Xf := cls(Gf) as de�ned by Proposition 2.4. We have toshow that ϕ ∈ A for every ϕ ∈ Xf . Consider the orbit losure Xϕ = cls(Gϕ)in Xf . By De�nition 1.1.2 there exists a ontinuous funtion F : X → Rsuh that f(g) = F (gx0) for every g ∈ G. That is, f omes from the pointedsystem (X,x0). For some net gi ∈ G we have ϕ(g) = limi f(ggi) for every
g ∈ G and with no loss in generality we have x1 = limi gix0 ∈ X. Then

ϕ(g) = lim
i
f(ggi) = lim

i
F (ggix0) = F (gx1).Thus ϕ omes from the pointed system (OG(x1), x1) and in view of Propo-sition 2.6 we onlude that indeed ϕ ∈ A.

2 ⇒ 1: De�ne the G-ambit
(Y, y0) :=

∨
{(Xf , f) : f ∈ A}.First we show that A(X,x0) = A(Y, y0). Indeed, as we know,

A(Y, y0) =
∨

{A(Xf , f) : f ∈ A}.Proposition 2.4 implies that f ∈ Af = A(Xf , f) for every f ∈ A(X,x0).Thus
f ∈ Af = A(Xf , f) ⊂ A(Y, y0) ∀f ∈ A(X,x0).Therefore, A(X,x0) ⊂ A(Y, y0). On the other hand, Af = A(Xf , f)

⊂ A(X,x0) (for every f ∈ A(X,x0)) beause A(X,x0) is left G-invariant and
Af is the smallest losed left G-invariant subalgebra of RUC(G) whih on-tains f . This implies that A(Y, y0) ⊂ A(X,x0). Thus, A(X,x0) = A(Y, y0).Denote this algebra simply by A.Suppose py0 = qy0 for p, q ∈ E(Y ) (the enveloping semigroup of (G, Y )).By our assumption, Xf ⊂ A for every f ∈ A. Then every y ∈ Y , onsideredas an element of the produt spae ∏

f∈AXf , has the property that its f -oordinate, say yf , is again an element ofA and it follows that yf appears as aoordinate of y0 as well. Therefore also pyf = qyf and it follows that py = qy.Thus the map p 7→ py0 from (E(Y ), i(e)) to (Y, y0) is an isomorphism. ByProposition 2.6, (Y, y0) (and hene also (X,x0)) is point-universal.(Observe that Gf = {Rg(f)}g∈G ⊂ Xf := cls(Gf). Therefore, the on-dition Xf ⊂ A for all f ∈ A trivially implies that A is right invariant.)Proposition 2.9. Let P be a property of ompat G-dynamial systemswhih is preserved by produts, subsystems and G-isomorphisms.



236 E. GLASNER AND M. MEGRELISHVILI1. Let X be a (not neessarily ompat) G-spae and let PX ⊂ C(X)be the olletion of funtions oming from systems having property P .Then there exists a maximal G-ompati�ation XP of X with prop-erty P . Moreover , j(C(XP)) = PX . In partiular , PX is a uniformlylosed , G-invariant subalgebra of RUC(X).2. Let P ⊂ C(G) be the set of funtions oming from systems with prop-erty P . Then (GP , evae) is the universal point-transitive ompat G-system having property P . Moreover P is a point-universal subalgebraof RUC(G). (Thus, P is uniformly losed , right and left G-invariant ,and Xf ⊂ P for every f ∈ P.)3. If in addition P is preserved by fators then f ∈ P i� Xf has prop-erty P .Proof. 1. We only give an outline of the rather standard proedure.There is a omplete set {νi : X → Yi}i∈I of equivalene lasses of G-ompati�ations of X suh that eah Yi has property P . De�ne the de-sired ompati�ation ν : X → Y = cls(ν(X)) ⊂
∏
i∈I Yi via the diagonalprodut. Then we get the suprema of our lass of G-ompati�ations. Infat, Y has property P beause the given lass is losed under subdiretproduts. f ∈ P means that it omes from some Yi via the ompati�ation

νi : X → Yi. Denote Y by XP . Now using the natural projetion of Y on Yiit follows that f omes from Y = XP . This implies j(C(XP)) = PX .2. The onstrution of the maximal ambit (GP , evae) with property Pis similar. In fat it is a partiular ase of the �rst assertion identifying
G-ambits (Y, y0) and G-ompati�ations νy0 : G → Y , νy0(g) = gy0, of
X := G. As to the point-transitivity of P note that aording to the de�-nition the uniformly losed subalgebra P ⊂ RUC(G) is the set of funtionsoming from systems with property P . Every subsystem of GP has property
P . In partiular, (OG(x), x) has property P . Therefore, P ontains the al-gebra A(OG(x), x) for every x ∈ X. By Proposition 2.6 it follows that Pis point-universal. Thus Proposition 2.8 guarantees that Xf ⊂ P for every
f ∈ P (and that P is right and left G-invariant).3. Use Proposition 2.2.3.3. A dynamial version of the Bourgain�Fremlin�Talagrand the-orem. Let E = E(X) be the enveloping semigroup of a G-system X. Forevery f ∈ C(X) de�ne

Ef := {pf : X → R}p∈E = {f ◦ p : p ∈ E}, pf (x) = f(px).Then Ef is a pointwise ompat subset of RX , being a ontinuous image of
E under the map qf : E → Ef , p 7→ pf .Reall that a topologial spae K is Rosenthal ompat [27℄ if it is hom-eomorphi to a pointwise ompat subset of the spae B1(X) of funtions



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 237of the �rst Baire lass on a Polish spae X. All metri ompat spaes areRosenthal. An example of a separable non-metrizable Rosenthal ompat isthe Helly ompat of all (not only stritly) inreasing selfmaps of [0, 1] inthe pointwise topology. Another is the �two arrows� spae of Aleksandrovand Urysohn (see Example 14.10 below). A topologial spae K is angeli ifthe losure of every subset A ⊂ K is the set of limits of sequenes from Aand every relatively ountably ompat set in K is relatively ompat. Notethat the seond ondition is super�uous if K is ompat. Clearly, βN, theStone��eh ompati�ation of the natural numbers N, is not angeli, andhene it annot be embedded into a Rosenthal ompat spae.The following theorem is due to Bourgain�Fremlin�Talagrand [12, The-orem 3F℄, generalizing a result of Rosenthal. The seond assertion (BFT di-hotomy) is presented as in the book of Todor£evi¢ [54℄ (see Proposition 1of Setion 13).Theorem 3.1. 1. Every Rosenthal ompat spae K is angeli.2. (BFT dihotomy) Let X be a Polish spae and let {fn}
∞
n=1 ⊂ C(X)be a sequene of real-valued funtions whih is pointwise bounded (i.e.for eah x ∈ X the sequene {fn(x)}

∞
n=1 is bounded in R). Let K bethe pointwise losure of {fn}

∞
n=1 in RX . Then either K ⊂ B1(X) (i.e.

K is Rosenthal ompat) or K ontains a homeomorphi opy of βN.Next we will show how the BFT dihotomy leads to a orrespondingdynamial dihotomy (see also [37℄). In the proof we will use the followingobservation. Let G be an arbitrary topologial group. For every ompat
G-spae X, denote by j : G → Homeo(X), g 7→ ğ, the assoiated (alwaysontinuous) homomorphism into the group of all selfhomeomorphisms of X.Then the topologial group Ğ = j(G) (we will all it the natural restri-tion) naturally ats on X. If X is a ompat metri spae then Homeo(X),equipped with the topology of uniform onvergene, is a Polish group. Hene,the subgroup Ğ = j(G) is seond ountable. In partiular one an always�nd a ountable dense subgroup G0 of Ğ.Theorem 3.2 (A dynamial BFT dihotomy). Let (G,X) be a metridynamial system and let E = E(X) be its enveloping semigroup. We havethe following alternative: either1. E is a separable Rosenthal ompat (hene cardE ≤ 2ℵ0), or2. the ompat spae E ontains a homeomorphi opy of βN, hene

cardE = 22ℵ0 .The �rst possibility holds i� Ef is a Rosenthal ompat for every f ∈ C(X).Proof. Sine X is ompat and metrizable, one an hoose a sequene
{fn}n∈N in C(X) whih separates the points of X. For every pair s, t of



238 E. GLASNER AND M. MEGRELISHVILIdistint elements of E there exist a point x0 ∈ X and a funtion fn0
fromour sequene suh that fn0

(sx0) 6= fn0
(tx0). It follows that the ontinuousdiagonal map

Φ : E →
∏

n∈N

Efn , p 7→ (f1 ◦ p, f2 ◦ p, . . . ),separates the points of E and hene is a topologial embedding.Now if for eah n the spae Efn is a Rosenthal ompat then so is E ∼=
Φ(E) ⊂

∏∞
n=1E

fn , beause the lass of Rosenthal ompats is losed underountable produts and losed subspaes. On the other hand the map qf :

E → Ef , p 7→ f ◦p, is a ontinuous surjetion for eah f ∈ C(X). Therefore,
Ef = cls(qf (G0)) = cls{f ◦ g : g ∈ G0}, where G0 is a ountable densesubgroup of Ğ. By Theorem 3.1 (BFT dihotomy), if at least one Efn isnot Rosenthal then it ontains a homeomorphi opy of βN and it is easy tosee that so does its preimage E. (In fat if βN ∼= Z ⊂ Efn then any losedsubset Y of E whih projets onto Z and is minimal with respet to theseproperties is also homeomorphi to βN.)Again an appliation of the BFT dihotomy yields the fat that in the�rst ase E is angeli. Clearly, the ardinality of every separable angelispae is at most 2ℵ0 . Now in order to omplete the proof observe that forevery ompat metri G-system X the spae E, being the pointwise losureof Ğ in XX , is separable, hene cardE ≤ 22ℵ0 .The last assertion learly follows from the above proof.4. Metri approximation of dynamial systems. Let (X,µ) be auniform spae and let ε ∈ µ. We say that X is ε-Lindelöf if the uniform over
{ε(x) : x ∈ X}, where ε(x) = {y ∈ X : (x, y) ∈ ε}, has a ountable subover.If X is ε-Lindelöf for eah ε ∈ µ, then it is alled uniformly Lindelöf [42℄.We note that (X,µ) is uniformly Lindelöf i� it is ℵ0-preompat in the senseof Isbell [30℄. If X, as a topologial spae, is either separable, Lindelöf or (see [30, p. 24℄), then (X,µ) is uniformly Lindelöf. For a metrizableuniform struture µ, (X,µ) is uniformly Lindelöf i�X is separable. Uniformlyontinuous maps send uniformly Lindelöf subspaes onto uniformly Lindelöfsubspaes.A topologial group G is ℵ0-bounded (in the sense of Guran [29℄) if forevery neighborhood U of e there exists a ountable subset C ⊂ G suh that
G = CU . Clearly, G being ℵ0-bounded means exatly that G is uniformlyLindëlof with respet to its right (or left) uniform struture. By [29℄ a group
G is ℵ0-bounded i� G is a topologial subgroup of a produt of seondountable topologial groups. If G is either separable or Lindelöf (σ-ompat,for instane) then G is uniformly Lindelöf.Reall our notation for the �natural restrition� Ğ = j(G), where for aompat G-system (G,X), the map j : G → Homeo(X) is the assoiated



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 239ontinuous homomorphism of G into the group of all selfhomeomorphismsof X (see Setion 3).We say that a ompat G-system X is m-approximable if it is a subdiretprodut ofmetri ompat G-systems (see also the notion of quasi-separablityin the sense of [36, 60℄). By Keynes [36℄, every transitive system X with
σ-ompat ating group G is m-approximable. The following generalizationprovides a simple riterion for m-approximability.Proposition 4.1. Let X be a ompat G-system. The following ondi-tions are equivalent :1. X is an inverse limit of metrizable ompat G-systems (of dimension

≤ dimX).2. (G,X) is m-approximable.3. Ğ is uniformly Lindelöf.Proof. 1 ⇒ 2 is trivial.For 2 ⇒ 3 observe that for every metri ompat G-fator Xi of X theorresponding natural restrition Gi ⊂ Homeo(Xi) of G is seond ountablewith respet to the ompat open topology. By our assumption it follows thatthe group Ğ ⊂ Homeo(X) an be topologially embedded into the produt∏
iGi of seond ountable groups. Hene Ğ is uniformly Lindelöf by thetheorem of Guran mentioned above.The impliation 3 ⇒ 1 has been proved (one an assume that G = Ğ) in[39, p. 82℄ and [41, Theorem 2.19℄ (see also [56, Lemma 10℄).Proposition 4.2. Let G be a topologial group. The following onditionsare equivalent :1. G is uniformly Lindelöf.2. The greatest ambit GR is m-approximable.3. Every ompat G-system is m-approximable.4. For every G-spae X and eah f ∈ RUC(X) the G-system Xf ismetrizable.Proof. 1 ⇒ 4: Given f ∈ RUC(X) the orbit mapG→ RUC(X), g 7→ gf ,is uniformly ontinuous, where G is endowed with its right uniform stru-ture. Sine G is uniformly Lindelöf the orbit fG = {gf}g∈G is also uni-formly Lindelöf, hene separable in the Banah spae RUC(X) (inspired by[56, Lemma 10℄). It follows that the Banah G-algebra Af generated by fGis also separable. By Proposition 2.2.2, Xf is metrizable.
4 ⇒ 2: Consider the G-spae X := G. Assuming that eah Xf is metriz-able, we see, by Remark 2.3.2, that GR = βGX is an m-approximable G-system.
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2 ⇒ 1: Sine G naturally embeds as an orbit into GR, we see that themap j : G → Ğ ⊂ Homeo(GR) is a homeomorphism. If GR is m-approx-imable then by Proposition 4.1, Ğ (and hene G) is uniformly Lindelöf.
1 ⇒ 3: Immediate by Proposition 4.1.
3 ⇒ 2: Trivial.5. Almost equiontinuity, loal equiontinuity and variations.By a uniform G-spae (X,µ) we mean a G-spae (X, τ) where τ is a (om-pletely regular Hausdor�) topology, with a ompatible uniform struture µ,so that the topology top(µ) de�ned by µ is τ .Definition 5.1. Let (X,µ) be a uniform G-spae.1. A point x0 ∈ X is a point of equiontinuity (notation: x0 ∈ Eq(X))if for every entourage ε ∈ µ, there is a neighborhood U of x0 suhthat (gx0, gx) ∈ ε for every x ∈ U and g ∈ G. The G-spae X isequiontinuous if Eq(X) = X. As usual,X is uniformly equiontinuousif for every ε ∈ µ there is δ ∈ µ suh that (gx, gy) ∈ ε for every

g ∈ G and (x, y) ∈ δ. For X ompat, equiontinuity and uniformequiontinuity oinide.2. The G-spae X is almost equiontinuous (AE for short) if Eq(X) isdense in X.3. We say that the G-spaeX is hereditarily almost equiontinuous (HAEfor short) if every losed uniform G-subspae of X is AE.The following fat is well known at least for metri ompat G-spaes.See for example [2, Proposition 3.4℄. Note that neither metrizability norompatness of (X,µ) are needed in the proof.Lemma 5.2. If (X,µ) is a point-transitive (2) uniform G-spae and
Eq(X) is not empty then Eq(X) = Trans(X).Let π : G × X → X be a separately ontinuous (at least) ation on auniform spae (X,µ). Following [3, Ch. 4℄ de�ne the injetive map

π♯ : X → C(G,X), π♯(x)(g) = gx,where C(G,X) is the olletion of ontinuous maps from G into X. Givena subgroup H < G endow C(H,X) with the uniform struture of uniformonvergene whose basis onsists of the sets of the form
ε̃ = {(f, f ′) ∈ C(H,X) : (f(h), f ′(h)) ∈ ε for all h ∈ H} (ε ∈ µ).We use the map π♯ : X → C(H,X) to de�ne a uniform struture µHon X, as follows. For ε ∈ µ set

[ε]H := {(x, y) ∈ X ×X : (hx, hy) ∈ ε for all h ∈ H}.The olletion {[ε]H : ε ∈ µ} is a basis for µH .(2) By Lemma 9.2.5 one an assume that X is only topologially transitive.



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 241Always µ ⊂ µH and equality ours i� the ation of H on (X,µ) isuniformly equiontinuous. If (X,µ) is metrizable and d denotes some om-patible metri on X, then the orresponding µH is uniformly equivalent tothe following metri:
dH(x, x′) = supg∈Hd(gx, gx

′).Remark 5.3. 1. It is easy to haraterize µG for G-subsets of RUC(G)(e.g., for Xf = cls(f♯(X)) ⊂ RUC(G)), where µ is the pointwiseuniform struture on RUC(G). The orresponding µG is the metriuniform struture inherited from the norm of RUC(G).2. The arguments of [1, Theorem 2.6℄ show that the uniform spae
(X,µG) is omplete for every ompat (not neessarily metri) G-system (X,µ).Lemma 5.4. Let (X,µ) be a uniform G-spae. The following onditionsare equivalent :1. x0 is a point of equiontinuity of the G-spae (X,µ).2. x0 is a point of ontinuity of the map π♯ : X → C(G,X).3. x0 is a point of ontinuity of the map idX : (X,µ) → (X,µG).Proof. Straightforward.Corollary 5.5. Given a ompat system (G, (X,µ)) (with the uniqueompatible uniform struture µ) the following onditions are equivalent :1. (G, (X,µ)) is (uniformly) equiontinuous.2. µG = µ.3. π♯ : X → C(G,X) is ontinuous.4. µG is preompat.Proof. By Remark 5.3.2 the uniform spae (X,µG) is omplete. Thuspreompat implies ompat. This establishes 4 ⇒ 1.The impliations 1 ⇒ 2 ⇒ 3 ⇒ 4 are trivial upon taking into aountLemma 5.4.Lemma 5.6. The uniform struture µG de�ned above is ompatible withsubdiret produts. More preisely :1. Let G at on the uniform spae (X,µ) and let Y be a G-invariantsubset. Then (µG)↾Y = (µ↾Y )G.2. Let {(Xi, µi) : i ∈ I} be a family of uniform G-spaes. Then (

∏
i µi)G

=
∏
i(µi)G.Proof. Straightforward.Definition 5.7. 1. Let us say that a subset K of a uniform G-spae

(X,µ) is light if the topologies indued by the uniformities µ and µGoinide on K. We say that X is orbitwise light if all orbits are lightin X.



242 E. GLASNER AND M. MEGRELISHVILI2. (X,µ) is said to be loally equiontinuous (LE for short) if everypoint x0 ∈ X is a point of equiontinuity of the uniform G-subspae
cls(Gx0). That is, for every x0 ∈ X and every element ε of the uni-form struture µ there exists a neighborhood O of x0 in X suh that
(gx, gx0) ∈ ε for every g ∈ G and every x ∈ O∩ cls(Gx0) (see [26℄). Itis easy to see that the latter ondition, equivalently, an be replaedby the weaker ondition: x ∈ O ∩Gx0 (this explains Lemma 5.8.1 be-low). It follows by Lemma 5.2 that X is LE i� every point-transitivelosed G-subspae of X is AE.Lemma 5.8. 1. x0 ∈ X is a point of equiontinuity of cls(Gx0) i� Gx0is light in X.2. X is LE i� X is orbitwise light.3. A pointed system (X,x0) is AE i� the orbit Gx0 is light in X.4. Let f ∈ RUC(X). A subset K ⊂ Xf = cls(f♯(X)) is light i� thepointwise and norm topologies oinide on K ⊂ RUC(G).Proof. 1. Straightforward.2. Follows diretly from assertion 1.3. X is point-transitive and AE. Therefore the nonempty set Eq(X) o-inides with the set of transitive points (Lemma 5.2). In partiular, x0 ∈

Eq(X). Thus, Gx0 is light in X = cls(Gx0) by assertion 1.Conversely, let Gx0 be a light subset and x0 be a transitive point. Thenagain by the �rst assertion x0 ∈ Eq(X). Hene Eq(X) (ontaining Gx0) isdense in X.4. For the last assertion see Remark 5.3.1.Given a G-spae X the olletion AP(X) of funtions in RUC(X) omingfrom equiontinuous systems is the G-invariant uniformly losed algebra ofalmost periodi funtions, where a funtion f ∈ C(X) is almost periodi i�the set of translates {Lg(f) : g ∈ G}, where Lg(f)(x) = f(gx), forms apreompat subset of the Banah spae C(X). This happens i� Xf is normompat i� (G,Xf ) is an AP system.A funtion f ∈ C(X) is alled weakly almost periodi (WAP for short, no-tation: f ∈ WAP(X)) if the set of translates {Lg(f) : g ∈ G} forms a weaklypreompat subset of C(X). We say that a dynamial system (G,X) isweakly almost periodi if C(X) = WAP(X). The lassial theory shows that
WAP(G) is a left and right G-invariant, uniformly losed, point-universalalgebra ontaining AP(G) and that every minimal funtion in WAP(G) is in
AP(G). In fat f ∈ WAP(X) i� Xf is weakly ompat i� (G,Xf ) is a WAPsystem.The following haraterization of WAP dynamial systems is due toEllis [18℄ (see also Ellis and Nerurkar [20℄) and is based on a result of



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 243Grothendiek [28℄ (namely: pointwise ompat bounded subsets in C(X)are weakly ompat for every ompat X).Theorem 5.9. Let (G,X) be a dynamial system. The following ondi-tions are equivalent :1. (G,X) is WAP.2. The enveloping semigroup E(X) onsists of ontinuous maps.Remark 5.10. When (G,X) is WAP the enveloping semigroup E(X)is a semitopologial semigroup; i.e. for eah p ∈ E both ̺p : q 7→ qp and
λp : q 7→ pq are ontinuous maps. The onverse holds if in addition we assumethat (G,X) is point-transitive. As one an verify, the enveloping semigroupof the dynamial system desribed in Example 10.7 below is isomorphi tothe Bohr ompati�ation of the integers (use Proposition 2.1). In partiularit is a topologial group; however, the original system is not even AE andtherefore not WAP as we will shortly see.The next haraterization, of AE metri systems, is due to Akin, Aus-lander and Berg [2℄.Theorem 5.11. Let (G,X) be a ompat metrizable system. The follow-ing onditions are equivalent :1. (G,X) is almost equiontinuous.2. There exists a dense Gδ subset X0 ⊂ X suh that every member ofthe enveloping semigroup E is ontinuous on X0.Combining these results Akin, Auslander and Berg [2℄ dedue that everyompat metri WAP system is AE. Sine every subsystem of a WAP systemis WAP it follows from Theorems 5.9 and 5.11 that every metrizable WAPsystem is both AE and LE. This result is retrieved, and generalized, in [45℄for all ompat RNapp G-systems using linear representation methods.Note that a point-transitive LE system is of ourse AE but there arenontransitive LE systems whih are not AE (e.g., see Remark 10.9.1 below).It was shown in [26℄ that the LE property is preserved under produts,under passage to a subsystem and under fators X → Y provided that X ismetrizable (for arbitrary systems X see Proposition 5.14 below).Let LE(X) be the set of funtions on a G-spae X oming from LEdynamial systems. It then follows from Proposition 2.9 that LE(G) is auniformly losed point-universal left and right G-invariant subalgebra of
RUC(G) and that LE(X), for ompat X, is the G-subalgebra of C(X) thatorresponds to the unique maximal LE fator of (G,X). The results andmethods of [26℄ show that WAP(X) ⊂ LE(X) and that a minimal funtionin LE(X) is almost periodi (see also Corollary 5.15.2 below).



244 E. GLASNER AND M. MEGRELISHVILIRemark 5.12. In ontrast to the well behaved lasses of WAP and LEsystems, it is well known that the lass of AE systems is losed neither underpassage to subsystems nor under taking fators; see [25, 1℄ and Remark 10.9.1below.By Proposition 2.9 we see that for every G-spae X the lasses AP(X),
WAP(X), LE(X) form G-invariant Banah subalgebras of RUC(X). Re-all that for a topologial group G we denote the greatest ambit of G by
GRUC(G) = GR = |RUC(G)|. It is well known that the maximal ompat-i�ation uR : G → GR is a right topologial semigroup ompati�ationof G. We adopt the following notation. For a G-invariant losed subalgebra
A of RUC(G) let GA denote the orresponding fator GR → GA, and for a
G-spae X and a losed G-subalgebra A ⊂ RUC(X), let XA = |A| denotethe orresponding fator βGX → XA.In the next proposition we sum up some old and new observations on-erning some subalgebras of RUC(X) and RUC(G).Proposition 5.13. Let G be a topologial group.1. For every G-spae X we have the inlusions

RUC(X) ⊃ LE(X) ⊃ Asp(X) ⊃ WAP(X) ⊃ AP(X),and the orresponding G-fators
βGX → XLE → XAsp → XWAP → XAP.2. For every topologial group G we have the inlusions

RUC(G) ⊃ UC(G) ⊃ LE(G) ⊃ Asp(G) ⊃ WAP(G) ⊃ AP(G),and the orresponding G-fators
GR → GUC → GLE → GAsp → GWAP → GAP.3. The ompati�ations GAP and GWAP of G are respetively a topo-logial group and a semitopologial semigroup; GR and GAsp are righttopologial semigroup ompati�ations of G.Proof. For the properties of Asp(X) we refer to Setion 7, Theorem 7.6.6and Lemma 9.8.2.In order to show that UC(G) ⊃ LE(G) we only have to hek that

LUC(G) ⊃ LE(G). Let f ∈ LE(G). By the de�nition f omes from apoint-transitive LE system (X,x0). Therefore for some ontinuous funtion
F : X → R we have f(g) = F (gx0). Let µ be the natural uniform strutureon X. For a given ε > 0 hoose an entourage δ ∈ µ suh that |F (x)−F (y)| <
ε for every (x, y) ∈ δ. Sine x0 is a point of equiontinuity we an hoosea neighborhood O of x0 suh that (gx, gx0) ∈ δ for every (g, x) ∈ G × O.Now pik a neighborhood U of e ∈ G suh that Ux0 ⊂ O. Then learly
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|F (gux0)−F (gx0)| < ε for every (g, u) ∈ G×U ; equivalently, |f(gu)−f(g)|
< ε. This means that f ∈ LUC(G).Now we show the hereditariness of LE under fators.Proposition 5.14. Let X be a ompat LE G-system. If π : X → Y isa G-homomorphism then (G, Y ) is LE.Proof. We have to show that eah point y0 in the spae Y is an equionti-nuity point of the subsystem OG(y0). Fix y0 ∈ Y and assume, with no loss ingenerality, that OG(y0) = Y . Furthermore, sine by Zorn's Lemma there is asubsystem of X whih is minimal with the property that it projets onto Y ,we may and do assume that X itself is minimal with respet to this property.Denoting by Y0 the subset of transitive points in Y it then follows that theset X0 = π−1(Y0) oinides with the set of transitive points in X. Let ε be anelement of the uniform struture of Y (i.e. a neighborhood of the identity in
Y ×Y ). Then the preimage δ := π−1(ε) is an element of the uniform strutureof X. Let q be a preimage of y0. Then q ∈ Eq(X) sine q is transitive and Xis LE (see Lemma 5.2). Thus there exists an open neighborhood Uq of q suhthat (gx, gq) ∈ δ for all g ∈ G and x ∈ Uq. Let V be the union of all suh
Uq's for q running over the preimages of y0. Then V is an open neighborhoodof π−1(y0). Set W to be Y \ π(X \ V ). Then W is an open neighborhoodof y0 and W ⊂ π(V ). For any y ∈ W we an �nd some preimage q of y0and some point x ∈ Uq suh that π(x) = y. Then (gx, gq) ∈ δ for all g ∈ G,whih means that (gy, gy0) ∈ ε for all g ∈ G. Therefore y0 ∈ Eq(Y ).Corollary 5.15. Let G be a topologial group, X a G-spae and f ∈
RUC(X). Then1. f ∈ LE(X) ⇔ Xf is LE.2. If f ∈ LE(X) is a minimal funtion then f ∈ AP(X).Proof. 1. Use Propositions 5.14 and 2.9.3.2. Observe that every minimal LE system is AP.Our next result is an intrinsi haraterization of the LE property of afuntion.First reall that for the left regular ation of G on X := G, the spae
Xf an be de�ned as the pointwise losure of the orbit Gf (Remark 2.3.1)in RUC(G).Definition 5.16. We say that a funtion f ∈ RUC(G) is1. light (notation: f ∈ light(G)) if the pointwise and norm topologies o-inide on the orbit Gf = {Rg(f)}g∈G = {fg}g∈G ⊂ Xf (with X := G)as a subset of RUC(G);2. hereditarily light (notation: f ∈ hlight(G)) if the pointwise and normtopologies oinide on the orbit Gh for every h ∈ Xf .



246 E. GLASNER AND M. MEGRELISHVILIBy Lemma 5.8.4 and De�nition 5.7.1, f ∈ light(G) (resp. f ∈ hlight(G))i� Gf is a light subset of the G-system Xf (resp. i� Xf is orbitwise light).Proposition 5.17. For every topologial group G and f ∈ RUC(G) wehave:1. UC(G) ⊃ light(G).2. f ∈ light(G) ⇔ Xf is AE.3. f ∈ hlight(G) ⇔ Xf is LE.Proof. 1. f ∈ light(G) means that the pointwise and norm topologiesoinide on Gf . It follows that the orbit map G → RUC(G), g 7→ fg, isnorm ontinuous. This means that f is also left uniformly ontinuous.2. Sine f is a transitive point of Xf = cls(Gf) we an use Lemma 5.8.3.3. Use Lemma 5.8.2.Theorem 5.18. LE(G) = hlight(G) for every topologial group G.Proof. Follows from Proposition 5.17.3 and Corollary 5.15.1.Remark 5.19. 1. By [45, Theorem 8.5℄, for every topologial group Gand every f ∈ WAP(G) the pointwise and norm topologies oinideon fG = {Lg(f)}g∈G = {gf}g∈G. Using the involution
UC(G) → UC(G), f 7→ f∗ (f∗(g) := f(g−1))(observe that Gf∗ = (fG)∗) we get the oinidene of the above-mentioned topologies also on Gf∗. Sine (WAP(G))∗ = WAP(G) wean onlude that WAP(G) ⊂ light(G) for every topologial group G.Theorem 5.18 provides a stronger inlusion LE(G) ⊂ light(G) (sine

WAP(G) ⊂ LE(G) by Proposition 5.13.2).2. In view of Proposition 5.17.2 a minimal funtion is light i� it is AP.Thus, for example, the funtion f(n) = cos(n2) on the integers, whihomes from a minimal distal but not equiontinuous Z-system on the
2-torus, is not light.6. Fragmented maps and families. The following de�nition is ageneralized version of fragmentability (impliitly it appears in a paper ofNamioka and Phelps [49℄) in the sense of Jayne and Rogers [33℄.Definition 6.1 ([42℄). Let (X, τ) be a topologial spae and (Y, µ) auniform spae.1. We say that X is (τ, µ)-fragmented by a (not neessarily ontinuous)funtion f : X → Y if for every non-empty subset A of X and every
ε ∈ µ there exists an open subset O of X suh that O∩A is non-emptyand the set f(O∩A) is ε-small in Y . We also say in that ase that thefuntion f is fragmented . Note that it is enough to hek the ondition



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 247above only for losed subsets A ⊂ X and for ε ∈ µ from a subbase γof µ (that is, the �nite intersetions of elements of γ form a base ofthe uniform struture µ).2. If the ondition holds only for every non-empty open subset A of Xthen we say that f is loally fragmented .3. When the inlusion map i : X ⊂ Y is (loally) fragmented we say that
X is (loally) (τ, µ)-fragmented, or more simply, (loally) µ-fragmented .Remark 6.2. 1. Note that in De�nition 6.1.1 when Y = X, f = idXand µ is a metri uniform struture, we get the usual de�nition offragmentability [33℄. For the ase of funtions see also [32℄.2. Namioka's joint ontinuity theorem [47℄ (see also Theorem 14.1 below)implies that every weakly ompat subset K of a Banah spae is(weak, norm)-fragmented (that is, idK : (K,weak) → (K, norm) isfragmented).3. Reall that a Banah spae V is an Asplund spae if the dual of everyseparable Banah subspae is separable, i� every bounded subset Aof the dual V ∗ is (weak∗, norm)-fragmented, i� V ∗ has the Radon�Nikodým property. Re�exive spaes and spaes of the type c0(Γ ) areAsplund. For more details f. [13, 22, 48℄.4. A topologial spae (X, τ) is sattered (i.e., every non-empty subspaehas an isolated point) i� X is (τ, ̺)-fragmented, where ̺(x, y) = 1 i�
x 6= y.Following [46℄ we say that f : X → Y is barely ontinuous if for everynon-empty losed subset A ⊂ X, the restrited map f↾A has at least onepoint of ontinuity.Lemma 6.3. 1. If f is (τ, µ)-ontinuous then X is (τ, µ)-fragmented by f.2. Suppose that there exists a dense subset of (τ, µ)-ontinuity pointsof f . Then X is loally (τ, µ)-fragmented by f .3. X is (τ, µ)-fragmented by f i� X is hereditarily loally fragmentedby f (that is, for every losed subset A ⊂ X the restrited funtion
f↾A is (relatively) loally (τ, µ)-fragmented).4. Every barely ontinuous f is fragmented.5. Fragmentability is preserved under produts. More preisely , if fi :
(Xi, τ) → (Yi, µi) is fragmented for every i ∈ I then the produt map

f :=
∏

i∈I

fi :
∏

i∈I

Xi →
∏

i∈I

Yiis (τ, µ)-fragmented with respet to the produt topology τ and theprodut uniform struture µ.6. Let α : X → Y be a ontinuous map. If f : Y → (Z, µ) is a fragmentedmap then the omposition f ◦ α : X → (Z, µ) is also fragmented.



248 E. GLASNER AND M. MEGRELISHVILIProof. Assertions 1, 2 and 6 are straightforward.For 3 and 4 use the fat that it is enough to hek the fragmentabilityondition only for losed subsets A ⊂ X.The veri�ation of 5 is straightforward if we take into aount that it isenough to hek the fragmentability (see De�nition 6.1.1) for ε ∈ γ, where
γ is a subbase of µ.Fragmentability has good stability properties, being losed under passageto subspaes (trivial), produts (Lemma 6.3.5) and quotients. Here we in-lude the details for quotients. The following lemma is a generalized versionof [42, Lemma 4.8℄, whih in turn was inspired by Lemma 2.1 of Namioka'spaper [48℄.Lemma 6.4. Let (X1, τ1) and (X2, τ2) be ompat (Hausdor� ) spaes,and let (Y1, µ1) and (Y2, µ2) be uniform spaes. Suppose that F : X1 → X2is a ontinuous surjetion, f : (Y1, µ1) → (Y2, µ2) is uniformly ontinuous,and φ1 : X1 → Y1 and φ2 : X2 → Y2 are maps suh that the diagram

(X1, τ1)

F
��

φ1
// (Y1, µ1)

f
��

(X2, τ2)
φ2

// (Y2, µ2)ommutes. If X1 is fragmented by φ1 then X2 is fragmented by φ2.Proof. We modify the proof of [42, Lemma 4.8℄. In the de�nition of frag-mentability it su�es to hek the ondition for losed subsets. So, let ε ∈ µ2and let A be a non-empty losed, and hene ompat, subset of X2. Choose
δ ∈ µ1 suh that (f × f)(δ) ⊂ ε. By Zorn's Lemma, there exists a mini-mal ompat subset M of X1 suh that F (M) = A. Sine X1 is fragmentedby φ1, there exists V ∈ τ1 suh that V ∩M 6= ∅ and φ1(V ∩M) is δ-small.Then the set fφ1(V ∩M) is ε-small. Consider the set W := A \ F (M \ V ).Then(a) φ2(W ) is ε-small, being a subset of fφ1(V ∩M) = φ2F (V ∩M);(b) W is relatively open in A;() W is non-empty (otherwise, M \ V is a proper ompat subset of Msuh that F (M \ V ) = A).The next lemma provides a key to understanding the onnetion betweenfragmentability and separability properties.Lemma 6.5. Let (X, τ) be a separable metrizable spae and (Y, ̺) a pseu-dometri spae. Suppose that X is (τ, ̺)-fragmented by a surjetive map
f : X → Y . Then Y is separable.Proof. Assume (to the ontrary) that the pseudometri spae (Y, ̺) isnot separable. Then there exist an ε > 0 and an unountable subset H



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 249of Y suh that ̺(h1, h2) > ε for all distint h1, h2 ∈ H. Choose a subset
A of X suh that f(A) = H and f is bijetive on A. Sine X is seondountable, the unountable subspae A of X (in its relative topology) isa disjoint union of a ountable set and a non-empty losed perfet set Momprising the ondensation points of A (this follows from the proof of theCantor�Bendixson theorem; see e.g. [35℄). By fragmentability there existsan open subset O of X suh that O ∩M is non-empty and f(O ∩M) is
ε-small. By the property of H the intersetion O ∩M must be a singleton,ontraditing the fat that no point of M is isolated.Proposition 6.6. If X is loally fragmented by f : X → Y , where
(X, τ) is a Baire spae and (Y, ̺) is a pseudometri spae, then f is ontin-uous at the points of a dense Gδ subset of X.Proof. For a �xed ε > 0 onsider

Oε := {union of all τ -open subsets O of X with diam̺ f(O) ≤ ε}.The loal fragmentability implies that Oε is dense in X. Clearly, ⋂
{O1/n :

n ∈ N} is the required dense Gδ subset of X.A topologial spae X is hereditarily Baire if every losed subspae of
X is a Baire spae. Reall that for metrizable spaes X and Y a funtion
f : X → Y is of Baire lass 1 if f−1(U) ⊂ X is an Fσ subset for everyopen U ⊂ Y . If X is separable then a real-valued funtion f : X → R is ofBaire lass 1 i� f is the pointwise limit of a sequene of ontinuous funtions(see e.g. [35℄).Proposition 6.7. Let (X, τ) be a hereditarily Baire (e.g., Polish or om-pat) spae, and (Y, ̺) a pseudometri spae. Consider the following asser-tions:(a) X is (τ, ̺)-fragmented by f : X → Y ;(b) f is barely ontinuous;() f is of Baire lass 1.Then:1. (a)⇔(b).2. If X is Polish and Y is a separable metri spae then (a)⇔(b)⇔().Proof. For (a)⇔(b) ombine Lemma 6.3 and Proposition 6.6.The equivalene (b)⇔() for Polish X and separable Y is well known (see[35, Theorem 24.15℄) and atually goes bak to Baire.The following new de�nition will play a ruial role in Setion 14.Definition 6.8. 1. We say that a family of funtions F = {f : (X, τ)

→ (Y, µ)} is fragmented if the ondition of De�nition 6.1.1 holds si-



250 E. GLASNER AND M. MEGRELISHVILImultaneously for all f ∈ F . That is, f(O ∩ A) is ε-small for every
f ∈ F . It is equivalent to say that the mapping

π♯ : X → Y F , π♯(x)(f) = f(x),is (τ, µU)-fragmented, where µU is the uniform struture of uniformonvergene on the set Y F of all mappings from F into (Y, µ).2. Analogously one an de�ne the notions of a loally fragmented familyand a barely ontinuous family . The latter means that every losednon-empty subset A ⊂ X ontains a point a ∈ A suh that FA =
{f↾A : f ∈ F} is equiontinuous at a. If µ is pseudometrizable thenso is µU. Therefore if in addition (X, τ) is hereditarily Baire thenit follows by Proposition 6.7.1 that F is fragmented i� F is barelyontinuous.Fragmented families, like equiontinuous families, are stable under point-wise losures as the following lemma shows.Lemma 6.9. Let F = {f : (X, τ) → (Y, µ)} be a fragmented familyof funtions. Then the pointwise losure F of F in Y X is also a (τ, µ)-fragmented family.Proof. Use a straightforward �3ε-trik� argument.7. Asplund funtions and RN systems. Let H be a subgroup of G.Reall that we denote by µH the uniform struture on the uniform G-spae

(X,µ) inherited by the inlusion π♯ : X → C(H,X). Preisely, µH is gener-ated by the basis {[ε]H : ε ∈ µ}, where
[ε]H := {(x, y) ∈ X ×X : (hx, hy) ∈ ε for all h ∈ H}.For every f ∈ C(X) and H < G denote by ̺H,f the pseudometri on Xde�ned by

̺H,f (x, y) = sup
h∈H

|f(hx) − f(hy)|.Then µcls(H) = µH and ̺cls(H),f = ̺H,f .Definition 7.1. 1. A ontinuous funtion f : X → R on the ompat
G-spae X is an Asplund funtion [45℄ if for every ountable sub-group H ⊂ G the pseudometri spae (X, ̺H,f ) is separable. It is ans-Asplund funtion (notation: f ∈ Asps(X)) when (X, ̺G,f ) is sepa-rable. A pseudometri d on a set X is alled Asplund (respetively,
s-Asplund) if for every ountable subgroup H < G (respetively, for
H = G) the pseudometri spae (X, dH) is separable, where

dH(x, y) = sup
h∈H

d(hx, hy).



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 2512. More generally, we say that a funtion f ∈ RUC(X) on a (not ne-essarily ompat) G-spae X is an Asplund funtion (notation: f ∈
Asp(X)) if f omes (in the sense of De�nition 1.1) from an Asplundfuntion F on a G-system Y and a G-ompati�ation ν : X → Y . ByRemark 7.2.2 below, equivalently, one an take eah of the following
G-ompati�ations (see Remark 2.3.3): f♯ : X → Xf (minimal pos-sible) or iβ : X → βGX (maximal). Analogously we de�ne the lass
Asps(X) of s-Asplund funtions on a G-spae X.3. In partiular, a funtion f ∈ RUC(G) is an Asplund funtion(s-Asplund funtion) if it is Asplund (s-Asplund) for the G-spae
X := G with respet to the regular left ation. Notation: f ∈ Asp(G)(resp. f ∈ Asps(G)).Remark 7.2. 1. Note that in the de�nition of Asplund funtions F :
X → R, equivalently, H an run over all uniformly Lindelöf subgroupsof G. Indeed, as in the proof of Proposition 4.2, the orbit FH =
{hF}h∈H is norm separable. Let K < G be a ountable subgroup of
H suh that FK is dense in FH. Then ̺H,F = ̺K,F .2. Let q : Y1 → Y2 be a G-homomorphism of ompat G-spaes. Itis straightforward to show that a ontinuous bounded funtion F :
Y2 → R is Asplund (resp. s-Asplund) i� the funtion f = F ◦ q : Y1 →
R is Asplund (resp. s-Asplund).3. Of ourse every s-Asplund funtion is Asplund. If G, or the naturalrestrition Ğ, is uniformly Lindelöf (e.g. Ğ is seond ountable if X isompat and metrizable) then learly the onverse is also true. Thusin this ase Asp(X) = Asps(X).4. Let (G,X) be a dynamial system and d a pseudometri on X. Sup-pose F : X → R is d-uniformly ontinuous. If d is Asplund or s-Asplund then so is F .Let X be a G-spae. By Proposition 2.2.1, Xf := cls(f♯(X)) is a subsetof RUC(G) for every f ∈ RUC(X). Let rG : Xf →֒ RUC(G) be the inlusionmap. For every subgroup H < G we an de�ne the natural restrition oper-ator qH : RUC(G) → RUC(H). Denote by rH := qH ◦ rG : Xf → RUC(H)the omposition and let ξH,f be the orresponding pseudometri indued on

Xf by the norm of RUC(H). Preisely,
ξH,f (ω, ω

′) = sup
h∈H

|ω(h) − ω′(h)|.Finally, de�ne the omposition fH♯ := rH ◦ f♯ : X → RUC(H). The orre-sponding pseudometri indued by fH♯ on X is just ̺H,f .



252 E. GLASNER AND M. MEGRELISHVILILemma 7.3. Let X be a G-spae and f ∈ RUC(X). Let Fe : Xf → Rbe the map Fe(ω) = ω(e) (de�ned before Proposition 2.2). The following areequivalent :1. f ∈ Asp(X).2. Fe ∈ Asp(Xf ).3. (Xf , ξH,f ) is separable for every ountable (uniformly Lindelöf ) sub-group H < G.4. rH(Xf ) is norm separable in RUC(H) for every ountable (uniformlyLindelöf ) subgroup H < G.Proof. 1 ⇔ 2 follows by De�nition 7.1.2, Remark 7.2.2 and Proposi-tion 2.2.3.
3 ⇔ 4 is lear by the de�nitions of ξH,f and rH .
2 ⇔ 3: Fe ∈ Asp(Xf ) means, by De�nition 7.1.1, that for everyountable (uniformly Lindelöf) subgroup H < G the pseudometri spae

(Xf , ̺H,Fe) is separable, where
̺H,Fe(ω, ω

′) = sup
h∈H

|Fe(hω) − Fe(hω
′)|.Reall that by the de�nition of Fe : Xf → R we have Fe(hω) = (hω)(e)

= ω(h). Hene
ξH,f (ω, ω

′) = sup
h∈H

|ω(h) − ω′(h)| = sup
h∈H

|Fe(hω) − Fe(hω
′)| = ̺H,Fe(ω, ω

′).Therefore the pseudometris ξH,f and ̺H,Fe oinide on Xf . This learlyompletes the proof.Corollary 7.4. Let X be a G-spae and f ∈ RUC(X). The followingare equivalent :1. f ∈ Asps(X).2. Fe ∈ Asps(Xf ).3. Xf is norm separable in RUC(G).Proof. The proof of Lemma 7.3 shows that in fat ξH,f and ̺H,Fe oinideon Xf for every H < G. Consider the partiular ase of H := G taking intoaount that rG(Xf ) = Xf .The following de�nition of RN dynamial systems (a natural general-ization of RN ompata in the sense of Namioka [48℄) and Eberlein sys-tems (a natural generalization of Eberlein ompata in the sense of Amir�Lindenstrauss [4℄) were introdued in [45℄. For the de�nition and propertiesof Asplund spaes see Remark 6.2.3 and [13, 48, 22℄.Definition 7.5. Let (G,X) be a ompat dynamial system.1. A ontinuous (proper) representation of (G,X) on a Banah spae
V is a pair (h, α), where h : G → Iso(V ) is a strongly ontinuouso-homomorphism of topologial groups and α : X → V ∗ is a weak∗-



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 253ontinuous bounded G-mapping (resp. embedding) (with respet tothe dual ation G× V ∗ → V ∗, (gϕ)(v) := ϕ(h(g)(v))).2. (G,X) is a Radon�Nikodým system (RN for short) if there exists aproper representation of (G,X) on an Asplund Banah spae V . If wean hoose V to be re�exive, then (G,X) is alled an Eberlein system.The lasses of Radon�Nikodým and Eberlein ompat systems will bedenoted by RN and Eb respetively.3. (G,X) is alled an RN-approximable system (RNapp) if it an be rep-resented as a subdiret produt (or equivalently, as an inverse limit)of RN systems.Note that ompat spaes whih are not RN are neessarily non-metriz-able, while there are many natural metri ompat G-systems whih arenot RN.The next theorem ollets some useful properties whih were obtainedreently in [45℄.Theorem 7.6. Let (G,X) be a ompat G-system.1. X is WAP i� X is a subdiret produt of Eberlein G-systems. A metrisystem X is WAP i� X is Eberlein.2. The system (G,X) is RN i� there exists a representation (h, α) of
(G,X) on a Banah spae V suh that : h : G → Iso(V ) is a o-homomorphism (no ontinuity assumptions on h), α : X → V ∗ is abounded weak∗ G-embedding and α(X) is (weak

∗, norm)-fragmented.3. f : X → R is an Asplund funtion i� f arises from an Asplundrepresentation (that is, there exists a ontinuous representation (h, α)of (G,X) on an Asplund spae V , suh that f(x) = α(x)(v) for some
v ∈ V ), or equivalently , i� f omes from an RN (or RNapp) G-fator
Y of X.4. The system (G,X) is RNapp i� Asp(X) = C(X).5. RN is losed under ountable produts and RNapp is losed underquotients. For metri ompat systems RNapp = RN holds.6. Asp(X) is a losed G-invariant subalgebra of C(X) ontaining
WAP(X). The anonial ompati�ation uA : G → GAsp is the uni-versal RNapp ompati�ation of G. Moreover , uA is a right topolog-ial semigroup ompati�ation of G.7. (G,X) is RN i� (G, (C(X)∗1,weak∗)) is RN i� (G,P (X)) is RN ,where P (X) denotes the spae of all probability measures on X (withthe indued ation of G).The proofs of assertions 1, 2 and 3 use several ideas from Banah spaetheory; mainly the notion of Asplund sets and Stegall's generalization of afatorization onstrution by Davis, Figiel, Johnson and Peªzy«ski [14, 13,48, 52, 22℄.



254 E. GLASNER AND M. MEGRELISHVILIProposition 7.7. Let G be an arbitrary topologial group. Then (GAsp,
uA(e)) is point-universal (hene Xf ⊂ Asp(G) for every f ∈ Asp(G)).Proof. P := Asp(G) is an algebra of funtions oming from RNapp sys-tems. Sine the lass RNapp is preserved by produts and subsystems we anapply Proposition 2.9.2.Let (X, τ) be a topologial spae. As usual, a metri ̺ on the set X issaid to be lower semiontinuous if the set {(x, y) : ̺(x, y) ≤ t} is losed in
X × X for eah t > 0. A typial example is any subset X ⊂ V ∗ of a dualBanah spae equipped with the weak∗ topology and the norm metri. Itturns out that every lower semiontinuous metri on a ompat Hausdor�spae X arises in this way (Lemma 7.8.1). This important result has beenestablished in [31℄ using ideas of Ghoussoub and Maurey.Lemma 7.8. 1 ([31℄). Let (X, τ) be a ompat spae and let ̺ ≤ 1 be alower semiontinuous metri on (X, τ). Then there is a dual Banahspae V ∗ and a homeomorphi embedding α : (X, τ) → (V ∗

1 ,weak∗)suh that
‖α(x) − α(y)‖ = ̺(x, y)for all x, y ∈ X.2. If in addition X is a G-spae and ̺ is G-invariant , then assertion 1admits a G-generalization. More preisely , there is a linear isometri(not neessarily jointly ontinuous) right ation V ×G→ V suh that

α : X → V ∗
1 is a G-map.Proof. 2. As in the proof of [31, Theorem 2.1℄ the required Banah spae

V is de�ned as the spae of all ontinuous real-valued funtions f on (X, τ)whih satisfy a uniform Lipshitz ondition of order 1 with respet to ̺,endowed with the norm
p(f) = max{‖f‖Lip, ‖f‖},where ‖f‖ = sup{|f(x)| : x ∈ X} and the seminorm ‖f‖Lip is de�nedto be the least onstant K suh that |f(x1) − f(x2)| ≤ K̺(x1, x2) for all

x1, x2 ∈ X. Then α : (X, τ) → (V ∗
1 ,weak∗) is de�ned by α(x)(f) = f(x).De�ne now the natural right ation π : V ×G→ V by π(f, g) = fg = gf ,where gf(x) := f(gx). Then learly p(fg) = p(f) and α : X → V ∗

1 is a
G-map.Theorem 7.9. Let (G,X) be a ompat dynamial system. The followingonditions are equivalent :1. (G,X) is RN.2. X is fragmented with respet to some bounded lower semiontinuous

G-invariant metri ̺.



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 255Proof. 1 ⇒ 2: Our G-system X, being RN, is a G-subsystem of the ball
V ∗

1 = (V ∗
1 ,weak∗) for some Asplund spae V . By a well known hara-terization of Asplund spaes, V ∗

1 is (weak∗, norm)-fragmented. Hene, X isalso fragmented by the lower semiontinuous G-invariant metri ̺(x1, x2) =
‖x1 − x2‖ on X, inherited from the norm of V ∗.

2 ⇒ 1: We an suppose that ̺ ≤ 1. Using Lemma 7.8.1 we an�nd a Banah spae V and a weak∗ embedding α : (X, τ) → V ∗
1 suhthat α is (̺, norm)-isometri. Sine X is (τ, ̺)-fragmented, α(X) ⊂ V ∗

1 is
(weak∗, norm)-fragmented. Moreover, by Lemma 7.8.2, there exists a o-homomorphism (without ontinuity assumptions) h : G→ Iso(V ) (the rightation V × G → V leads to the o-homomorphism h) suh that the map
α : X → V ∗

1 is G-equivariant with respet to the dual ation of G on V ∗de�ned by (gϕ)(v) := ϕ(h(g)(v)). Therefore we get a representation (h, α)of (G,X) on V suh that α(X) ⊂ V ∗
1 is (weak∗, norm)-fragmented. By The-orem 7.6.2 we dedue that the G-system (X, τ) is RN.8. Veeh funtions. The algebra K(G) was de�ned by Veeh in [58℄,for a disrete group G, as the algebra of funtions f ∈ ℓ∞(G) suh that forevery ountable subgroup H < G the olletion Xf↾H

= OH(η0) ⊂ ΩH =

[−‖f‖, ‖f‖]H , with η0 = f↾H , onsidered as a subspae of the Banah spae
ℓ∞(H), is norm separable. Replaing ℓ∞(G) and ℓ∞(H) by RUC(G) and
RUC(H), respetively, we de�ne, for any topologial group G, the algebra
K(G) ⊂ RUC(G) as follows.Definition 8.1. Let G be a topologial group. We say that a funtion
f ∈ RUC(G) is a Veeh funtion if for every ountable (equivalently: separa-ble) subgroup H < G the orresponding H-dynamial system (H,Xf↾H

, η0),when onsidered as a subspae of the Banah spae RUC(H) (see Proposi-tion 2.4.4), is norm separable (that is, rH(Xf↾H
) ⊂ RUC(H) is separable;see the de�nitions before Lemma 7.3). We denote by K(G) the olletion ofVeeh funtions in RUC(G).Theorem 8.2. For any topologial group G we have:1. K(G) is a losed left G-invariant subalgebra of RUC(G).2. The algebra K(G) is point-universal.3. Asp(G) ⊂ K(G).4. K(G) = Asp(G) = Asps(G) for every separable G.Proof. 1. For every f ∈ K(G) let (G,Xf , f) be the orresponding pointeddynamial system as onstruted in Proposition 2.4. If fi, i = 1, 2, arein K(G) and H < G is a ountable subgroup then the subsets Xfi↾H

,
i = 1, 2, are norm separable in RUC(H) and therefore so is X = {ω + η :
ω ∈ Xf1↾H

, η ∈ Xf2↾H
}. SineX(f1+f2)↾H

⊂ X it follows that f1+f2 ∈ K(G).Likewise f1 · f2 ∈ K(G), and we onlude that K(G) is a subalgebra. Uni-



256 E. GLASNER AND M. MEGRELISHVILIformly onvergent ountable sums are treated similarly and it follows that
K(G) is uniformly losed. The left G-invariane is lear.2. Given f ∈ K(G) one shows, as in [58, Lemma 3.4℄, that every element
ω ∈ Xf is also in K(G). Now use Proposition 2.8.3. By Lemma 7.3, a funtion f ∈ RUC(G) is Asplund i� rH(Xf ) isnorm separable in RUC(H) for every ountable subgroup H < G. Con-sider cls(Hf), the H-orbit losure in Xf (for f ∈ Xf = cls(Gf)). Then
rH(cls(Hf)) is also separable in RUC(H). On the other hand, it is easy tosee that the set rH(Xf↾H

) oinides with rH(cls(Hf)). Hene, rH(Xf↾H
) isalso separable in RUC(H). This exatly means that f ∈ K(G).4: Let f ∈ K(G). Then the olletion Xf↾H

is norm separable for everyseparable subgroupH < G. In partiular,Xf (forH := G) is norm separable.Now by Corollary 7.4 we an onlude that f ∈ Asps(G).9. Hereditary AE and NS systems. We begin with a generalizedversion of sensitivity. The funtional version (De�nition 9.1.3) will be on-venient in the proof of Theorem 14.2.Definition 9.1. 1. The uniform G-spae (X,µ) has sensitive depen-dene on initial onditions (or simply, is sensitive) if there exists an
ε ∈ µ suh that for every x ∈ X and any neighborhood U of x thereexists y ∈ U and g ∈ G suh that (gx, gy) /∈ ε (for metri asadessee for example [9, 16, 25℄). Thus a (metri) G-spae (X,µ) is non-sensitive, NS for short, if for every (ε > 0) ε ∈ µ there exists an opennon-empty subset O of X suh that gO is ε-small in (X,µ) for all
g ∈ G, or equivalently, O is [ε]G-small in (X,µG) (respetively: whose
dG-diameter is less than ε, where d is the metri on X and as usual
dG(x, x′) = supg∈G d(gx, gx

′)).2. We say that (G,X) is hereditarily non-sensitive (HNS for short) ifevery non-empty losed G-subspae A of X is not sensitive.3. More generally, we say that a map f : (X, τ) → (Y, µ) is not sensitiveif there exists an open non-empty subset O of X suh that f(gO)is ε-small in (Y, µ) for every g ∈ G. The funtion f is hereditarilynon-sensitive if for every losed G-subspae A of X the restritedfuntion f↾A : A→ (Y, µ) is not sensitive. Using these notions we ande�ne the lasses of NS and HNS funtions. Observe that (X,µ) is NSi� the map idX : (X, top(µ)) → (X,µ) is NS.Let (X,µ) be a uniform G-spae and ε ∈ µ. De�ne Eqε as the union ofall non-empty top(µ)-open [ε]G-small subsets in X. More preisely,
Eqε :=

⋃
{U ∈ top(µ) : (gx, gx′) ∈ ε for all (x, x′, g) ∈ U × U ×G}.Then Eqε is an open G-invariant subset of X and Eq(X) =

⋂
{Eqε : ε ∈ µ}.



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 257Lemma 9.2. Let (X,µ) be a uniform G-spae.1. X is NS if and only if Eqε 6= ∅ for every ε ∈ µ. Therefore, if
Eq(X) 6= ∅ then (X,µ) is NS.2. X is loally µG-fragmented i� Eqε is dense in X for every ε ∈ µ.Thus, if X is loally µG-fragmented then X is NS.3. If X is NS then Eq(X) ⊃ Trans(X).4. If X is NS and topologially transitive then Eq(X) = Trans(X) andso X is point-transitive i� Eq(X) 6= ∅.5. If Eq(X) 6= ∅ and X is topologially transitive then Eq(X) =
Trans(X).Proof. The �rst two assertions are trivial.3. If X is NS then Eqε is not empty for every ε ∈ µ. Any transitive pointis ontained in any non-empty invariant open subset of X. In partiular,

Trans(X) ⊂ Eqε. Hene, Trans(X) ⊂
⋂
{Eqε : ε ∈ µ} = Eq(X).4. By assertion 3 it now su�es to show that if X is topologially tran-sitive then Eq(X) ⊂ Trans(X). Let x0 ∈ Eq(X), y ∈ X and let ε ∈ µ.We have to show that the orbit Gx0 intersets the ε-neighborhood ε(y) :=

{x ∈ X : (x, y) ∈ ε} of y. Choose δ ∈ µ suh that δ ◦ δ ⊂ ε. Sine
x0 ∈ Eq(X) there exists a neighborhood U of x0 suh that (gx0, gx) ∈ δfor every (x, g) ∈ U × G. Sine X is topologially transitive we an hoose
g0 ∈ G suh that g0U ∩ δ(y) 6= ∅. This implies that (g0x, y) ∈ δ for some
x ∈ U . Then (g0x0, y) ∈ δ ◦ δ ⊂ ε.5. Combine assertions 1 and 4.Corollary 9.3. A weakly mixing NS system is trivial.Proof. Let (G,X) be a weakly mixing NS system. Let ε be a neighbor-hood of the diagonal and hoose a symmetri neighborhood of the diagonal
δ with δ ◦δ ◦δ ⊂ ε. By the NS property and Lemma 9.2.1, Eqδ is non-empty.Thus there exists a non-empty open subset U ⊂ X suh thatW =

⋃
g∈G gU×

gU ⊂ δ. By weak mixing the open invariant set W is dense in X ×X andhene X ×X ⊂ ε. Sine ε is arbitrary we onlude that X is trivial.Next we provide some useful results whih link our dynamial and topo-logial de�nitions (and involve fragmentability and sensitivity).Lemma 9.4. 1. Let f : X → Y be a G-map from a topologial G-spae
(X, τ) into a uniform G-spae (Y, µ). Then the following are equiva-lent :(a) f : (X, τ) → (Y, µ) is HNS.(b) f : (X, τ) → (Y, µG) is fragmented.() f : (A, τ↾A) → (Y, µG) is loally fragmented for every losed non-empty G-subset A ofX.



258 E. GLASNER AND M. MEGRELISHVILI2. (X,µ) is HNS i� idX : (X, τ) → (X,µG) is fragmented.3. HAE ⊂ HNS.Proof. 1. (a)⇒(b): Suppose that f : (X, τ) → (Y, µ) is HNS. We haveto show that f is (τ, µG)-fragmented. Let A be a non-empty subset of Xand [ε]G ∈ µG. Consider the losed G-subspae Z := cls(GA) of X. Then byour assumption f↾Z : Z → (Y, µ) is NS. Hene there exists a relatively opennon-empty subset W ⊂ Z suh that (f(gx), f(gy)) = (gf(x), gf(y)) ∈ ε forevery (g, x, y) ∈ G ×W ×W . Therefore, f(W ) is [ε]G-small. Sine GA isdense in Z, the intersetion W ∩GA is non-empty. There exists g0 ∈ G suhthat g−1
0 W ∩A 6= ∅. On the other hand, learly, f(g−1

0 W ) is also [ε]G-small.Thus the same is true for f(g−1
0 W ∩A).(b)⇒(): This is trivial by De�nition 6.1.()⇒(a): Let A be a losed non-empty G-subspae of X and ε ∈ µ. Take anon-empty open subset O of the spae A (say, O = A). Sine f : A→ (Y, µG)is loally fragmented one an hoose a non-empty open subset U ⊂ O suhthat f(U) is [ε]G-small in Y . This means, in partiular, that f↾A : A→ (Y, µ)is NS for every losed G-subspae A. Hene, f is HNS.2. This is a partiular ase of the �rst assertion for f = idX : (X,µ) →

(X,µ).3. Let (G,X) be HAE. For every losed non-empty G-subsystem A thereexists a point of equiontinuity of (G,A). By Lemma 9.2.1, (G,A) is NS.Therefore, (G,X) is HNS.Proposition 9.5. Let X be a ompat G-system with its unique uniformstruture µ. Consider the following onditions:(a) X is AE.(b) X is loally µG-fragmented.() X is NS.Then we have:1. Always, (a)⇒(b)⇒().2. If µG is metrizable (e.g., if µ is metrizable) then (a)⇔(b)⇒().3. If X is point-transitive then (a)⇔(b)⇔().4. If X is topologially transitive then (a)⇒(b)⇔().Proof. 1. (a)⇒(b): Let U be a non-empty open subset of X and ε ∈ µ.Sine X is AE we an hoose a point x0 ∈ Eq(X) ∩ U . Now we an pikan open neighborhood O ⊂ U of x0 suh that (gx, gx′) ∈ ε for every g ∈ Gand x, x′ ∈ O. Therefore, (x, x′) ∈ [ε]G. This proves that X is loally µG-fragmented.(b)⇒(): Trivial by Lemma 9.2.2.



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 2592. (a)⇐(b): If µG is metrizable then Proposition 6.6 guarantees that
idX : (X,µ) → (X,µG) is ontinuous at the points of a dense Gδ subset(say, Y ) of X. By Lemma 5.4, Y ⊂ Eq(X). Hene, Eq(X) is also densein X. Therefore, X is AE.3. ()⇒(a): Observe that Trans(X) ⊂ Eq(X) by Lemma 9.2.3.4. (b)⇐(): Sine X is NS the subset Eqε is non-empty for every ε ∈ µ(Lemma 9.2.1). Sine the open set Eqε is invariant and X is topologiallytransitive we see that Eqε is dense for every ε ∈ µ. By Lemma 9.2.2 thismeans that X is loally µG-fragmented.The equivalene of AE and NS for transitive metri systems is shownin [25, 1℄. The referee proposed the following problem. Does there exist atopologially transitive NS system whih is not point-transitive? That is,an it happen for a topologially transitive system that every Eqε is densebut the intersetion Eq is empty?Corollary 9.6. For every topologial group G and f ∈ RUC(G) thefollowing are equivalent :1. f ∈ light(G).2. Xf is AE.3. Xf is loally norm fragmented (with respet to the norm of RUC(G)).4. Xf is NS.Proof. Use Propositions 9.5.3 and 5.17.2. It should be noted here that if
µ is the natural pointwise uniform struture on Xf = cls(Gf) ⊂ RUC(G)then the norm of RUC(G) indues on Xf the uniform struture µG (Re-mark 5.3.1).Lemma 9.7. HNS is losed under quotients of ompat G-systems.Proof. Let f : X → Y be a G-quotient. Denote by µX and µY theoriginal uniform strutures on X and Y respetively. Assume that X is HNS,or equivalently (see Lemma 9.4.2), that X is (µX)G-fragmented. Sine f :
(X,µX) → (Y, µY ) is uniformly ontinuous, it is easy to see that so is the G-map f : (X, (µX)G) → (Y, (µY )G). We an now apply Lemma 6.4. It followsthat Y is (µY )G-fragmented. Hene, Y is HNS (use again Lemma 9.4.2).Note that the lass NS is not losed under quotients (see [25℄).Lemma 9.8. 1. Every RN ompat G-system X is HAE. In partiular ,suh a system is always LE and HNS.2. Asp(X) ⊂ LE(X) for every G-spae X.Proof. 1. By De�nition 7.5 there exists a representation (h, α) of (G,X)on an Asplund spae V suh that h : G → Iso(V ) is a o-homomorphismand α : (X, τ) → (V ∗,weak∗) is a bounded weak∗ G-embedding. Sine V isAsplund, it follows that α(X) is (weak∗, norm)-fragmented. The map idX :
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(X, τ) → (X, norm) has a dense subset of points of ontinuity by Proposi-tion 6.6. The norm indues on X the metri uniform struture whih ma-jorizes the original uniform struture µ on X. On the other hand the normis G-invariant. It follows that every point of ontinuity of idX : (X,µ) →
(X, norm) is a point of equiontinuity for the system (G,X). Clearly, thesame is true for every restrition on a losed G-invariant non-empty sub-set Y of X. Hene X is HAE. Then learly X is LE (see De�nition 5.7.2).Lemma 9.4.3 implies that X is also HNS.2. Use the �rst assertion and Theorem 7.6.3 (taking into aount De�ni-tion 7.1.2).In the following theorem we show that the lasses HNS and RNapp o-inide. Loosely speaking, we an rephrase this by saying that a ompat
G-system X admits su�iently many good (namely: Asplund) representa-tions if and only if X is �non-haoti�.Theorem 9.9. For a ompat G-spae X (with its unique ompatibleuniform struture µ) the following are equivalent :1. X is RNapp.2. X is HNS.3. π♯ : X → C(G,X) is a fragmented map.4. Ğ = {ğ : X → X}g∈G is a fragmented family.5. (X,µH) is uniformly Lindelöf for every ountable (equivalently , uni-formly Lindelöf ) subgroup H < G.Proof. 1 ⇒ 2: The �rst assertion means that (X,µ) is a subdiret prod-ut of a olletion Xi of RN G-systems (with the uniform struture µi). ByLemma 9.8.1 everyXi is HNS. Lemma 9.4.2 guarantees that eahXi is (µi)G-fragmented. Then X is µG-fragmented. Indeed, this follows by Lemma 5.6and the fat that fragmentability is losed under passage to produts (Lem-ma 6.3.5) and subspaes. Now, by Lemma 9.4.2, X is HNS.

2 ⇔ 3: π♯ : X → C(G,X) is fragmented i� X is µG-fragmented. Hene,we an use Lemma 9.4.2.
3 ⇔ 4: See De�nition 6.8.1.
2 ⇒ 5: Let X ∈ HNS and H < G be a uniformly Lindelöf subgroup. Wehave to show that (X,µH) is uniformly Lindelöf. The system (H,X) (beingm-approximable by Proposition 4.1) is a subdiret produt of a family ofompat metri H-systems {Xi : i ∈ I}. Uniform produt of uniformlyLindelöf spaes is uniformly Lindelöf. Therefore by Lemma 5.6 it su�es toestablish that every (Xi, (µi)H) is uniformly Lindelöf. Sine µi and (µi)Hare metrizable, this is equivalent to showing that (µi)H is separable. Sine

(H,X) is HNS, Lemma 9.7 shows that the H-quotient (H,Xi) is also HNS.
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: (Xi, µi) → (Xi, (µi)H) is fragmented by Lemma 9.4.2. Now,Lemma 6.5 guarantees that (Xi, (µi)H) is separable.

5 ⇒ 1: We have to show thatX is RNapp. Equivalently, by Theorem 7.6.4we need to hek that C(X) = Asp(X). Let F ∈ C(X) and H < G be aountable subgroup. By our assumption, (X,µH) is uniformly Lindelöf. Sine
F : (X,µ) → R is uniformly ontinuous, so is idX : (X,µH) → (X, ̺H,F ).Therefore, (X, ̺H,F ) is uniformly Lindelöf as well. Sine ̺H,F is a pseu-dometri, we onlude that (X, ̺H,F ) is separable. This proves that F ∈
Asp(X).Remark 9.10. 1. Every preompat uniform spae is uniformly Lin-delöf. Note here that (X,µG) is preompat i� (G,X) is equion-tinuous (f. Corollary 5.5). Therefore, RNapp, and its equivalent on-ept HNS, an be viewed as a natural generalization of equiontinu-ity.2. Theorem 9.9 implies that RNapp (or HNS) is �ountably determined�.That is, (G,X) is RNapp i� (H,X) is RNapp for every ountable sub-group H < G.3. Let H < G be a syndeti subgroup (that is, there exists a ompatsubset K ⊂ G suh that G = KH) of a uniformly Lindelöf group G.Then a system (G,X) is RNapp i� (H,X) is RNapp. Indeed, K ats

µ-uniformly equiontinuously on X. Thus if (X,µH) is uniformly Lin-delöf then so is (X,µKH).4. RNapp ⊂ LE by Lemma 9.8.1 (or by [45, Theorem 6.10℄).We now have the following diagram for ompat G-systems:
Eb //

))RRRRRRRRRRRRRRRR RN // HAE // HNS = RNapp
// LE

WAP

77ooooooooooo

Remark 9.11. 1. We do not know (even for asades) if HAE 6= HNS fornon-metrizable systems. All other impliations, in general, are proper:2. RN 6= HAE, Eb 6= WAP. Indeed, take a system (G,X) with trivial Gand a ompat X whih is not RN in the sense of Namioka, and henenot Eberlein, as a ompat spae (e.g. X := βN). Suh a G-system,however, is trivially WAP and also HAE.3. Eb 6= RN. Take a trivial ation on a ompat RN spae whih is notEberlein.4. RNapp 6= LE even for transitive metri systems (f. Remark 10.9.1 andTheorem 11.1).5. WAP 6= HNS. See again Theorem 11.1.



262 E. GLASNER AND M. MEGRELISHVILITheorem 9.12. For a ompat G-system X the following are equivalent :1. f ∈ Asp(X).2. fG♯ : X → RUC(G) is fragmented.3. f♯ : X → Xf is HNS.4. f : X → R is HNS.5. Ğf := {ğf : X → R}g∈G (where ğf (x) = f(gx)) is a fragmentedfamily.6. Xf ⊂ RUC(G) is norm fragmented.7. The G-system Xf is RN.Proof. 1 ⇒ 2: By Theorem 7.6.3 there exist a G-quotient α : (X,µX) →
(Y, µY ) with Y ∈ RN and F ∈ C(Y ) suh that f = F ◦ α. Then f♯ =
F♯ ◦ α. Therefore, by Lemma 6.3.6, it is enough to show that F♯ : Y →
RUC(G) is fragmented, or equivalently, that Y is ̺G,F -fragmented (see re-marks before Lemma 7.3). By our assumption (Y, µY ) is RN. Therefore, The-orem 9.9 guarantees that Y is (µY )G-fragmented. Sine idY : (Y, (µY )G) →
(Y, ̺G,F ) is uniformly ontinuous, it follows that Y is ̺G,F -fragmented, asrequired.

2 ⇔ 3: Use Lemma 9.4.1 taking into aount Remark 5.3.1.
3 ⇔ 4: Let f♯ : X → Xf be HNS. Then f♯↾A : A → Xf is NS for everynon-empty invariant losed subset of A ⊂ X. Therefore by De�nition 9.1(observe that the uniform struture of Xf ⊂ RG is the pointwise uniformstruture inherited from RG) for every ε > 0 and every �nite subset S ⊂ Gthere exists a relatively open non-empty subset O ⊂ A suh that

|f♯(gx)(s) − f♯(gx
′)(s)| < ε for all (s, g) ∈ S ×G and all (x, x′) ∈ O ×O.Now sine |f♯(gx)(s) − f♯(gx

′)(s)| = |f(sgx) − f(sgx′)| and g runs over allelements of G our ondition is equivalent to the inequality
|f(gx) − f(gx′)| < ε for all g ∈ G.The latter means that f(gO) is ε-small for every g ∈ G. Equivalently, f :

X → R is HNS.
2 ⇔ 5: See De�nition 6.8.1.
2 ⇒ 6: Let f♯ : X → Xf be the anonial G-quotient. Then by Lem-ma 6.4 (with Y1 = Y2 = RUC(G)) the fragmentability of fG♯ : X → RUC(G)guarantees the fragmentability of rG : Xf → RUC(G). This means that Xfis norm fragmented.
6 ⇒ 7: The norm on RUC(G) is lower semiontinuous with respet tothe pointwise topology. Hene, Theorem 7.9 ensures that the G-system Xfis RN.
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7 ⇒ 1: Sine Xf is RN, by Theorem 7.6.3 and Proposition 2.2.3 we seethat f ∈ Asp(X).Remark 9.13. Note in the following list how, for a G-spae X, topolog-ial properties of Xf orrespond to dynamial properties of f ∈ RUC(X)and provide an interesting dynamial hierarhy:
Xf is norm ompat ⇔ f is AP,
Xf is weakly ompat ⇔ f is WAP,
Xf is norm fragmented ⇔ f is Asplund,
Xf is orbitwise light ⇔ f is LE.In the domain of ompat metri systems NS and AE are distint prop-erties. In ontrast to this fat, if these onditions hold hereditarily then theyare equivalent.Theorem 9.14. Let (X, d) be a ompat metri G-spae. The followingproperties are equivalent :1. X is RN.2. X is HAE.3. Every losed G-subsystem Y of X has a point of equiontinuity.4. X is HNS.5. X is dG-fragmented (reall that dG(x, x′) = supg∈Gd(gx, gx

′)).6. (X, dG) is separable (that is, d is an s-Asplund metri).7. Every ontinuous funtion F : X → R is s-Asplund.Proof. Sine X is metri, Ğ ⊂ Homeo(X) is seond ountable. So we anand do assume, for simpliity, that G is seond ountable.By Theorem 7.6.5, RN = RNapp in the domain of ompat metri sys-tems. Hene, it follows by our diagram above that 1 ⇔ 2 ⇔ 4.
2 ⇒ 3: Trivial.
3 ⇒ 4: By the assumption Eq(Y ) 6= ∅ for every subsystem (G, Y ). Thus,

Y is NS by Lemma 9.2.1. It follows that X is HNS.
4 ⇔ 5: By Lemma 9.4.2.
5 ⇒ 6: Apply Lemma 6.5 to the map idX : (X, d) → (X, dG).
6 ⇒ 7: By our assumption (X, dG) is separable. Sine idX : (X, dG) →

(X, ̺G,F ) is uniformly ontinuous, we dedue that (X, ̺G,F ) is also separable.Hene, f ∈ Asps(X).
7 ⇒ 1: Every s-Asplund funtion is Asplund. Hene, C(X) = Asp(X).By assertions 4 and 5 of Theorem 7.6 we an onlude that X is RN.Summing up we have the following simple diagram (with two properinlusions) for metri ompat systems:

Eb = WAP → RN = HAE = HNS = RNapp → LE.



264 E. GLASNER AND M. MEGRELISHVILI10. Some examplesCorollary 10.1. The lass of ompat metrizable HNS (hene also RN ,HAE ) systems is losed under fators and ountable produts.Proof. RN = HAE = HNS by Theorem 9.14. Now use Lemma 9.7 andTheorem 7.6.5.Corollary 10.2. Every sattered (e.g., ountable) ompat G-spae Xis RN (see also [45℄).Proof. Apply Theorem 7.9 using Remark 6.2.4.A metri G-spae (X, d) is alled expansive if there exists a onstant
c > 0 suh that dG(x, y) := supg∈G d(gx, gy) > c for any distint x, y ∈ X.Corollary 10.3. An expansive ompat metri G-spae (X, d) is RNi� X is ountable.Proof. If X is RN then by Theorem 9.14, (X, dG) is separable. On theother hand, (X, dG) is disrete for every expansive system (X, d). Thus, Xis ountable.For a ountable disrete group G and a �nite alphabet S the ompatspae SG is a G-spae under left translations (gω)(h) = ω(g−1h), ω ∈ SG,
g, h ∈ G. A losed invariant subset X ⊂ SG de�nes a subsystem (G,X).Suh systems are alled subshifts or symboli dynamial systems.Corollary 10.4. For a ountable disrete group G and a �nite alphabet
S let X ⊂ SG be a subshift. The following properties are equivalent :1. X is RN.2. X is ountable.Moreover if X ⊂ SG is an RN subshift and x ∈ X is a reurrent point thenit is periodi (i.e. Gx is a �nite set).Proof. It is easy to see (and well known) that every subshift is expansive.For the last assertion reall that if x is a reurrent point with an in�niteorbit then its orbit losure ontains a homeomorphi opy of the Cantorset.For some (one-dimensional) ompat spaes every selfhomeomorphismwill produe an RN system.Proposition 10.5. 1. For eah element f ∈ Homeo(I), the homeomor-phism group of the unit interval I = [0, 1], the orresponding dynamialsystem (f, I) is HNS.2. For eah element f ∈ Homeo(S1), the homeomorphism group of theirle S1 = {z ∈ C : |z| = 1}, the orresponding dynamial system

(f, S1) is HNS.



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 265Proof. 1. Fix an element f ∈ Homeo(I), whih with no loss of gener-ality we assume is orientation preserving. Consider the dynamial system
(f, I) and for a set A ⊂ I de�ne Of (A) =

⋃
n∈Z

fn(A). Let us note �rstthat for every x ∈ [0, 1] the sequene . . . , f−2(x), f−1(x), x, f(x), f2(x), . . .is inreasing, hene the orbit losure of x is just the orbit together withthe points limn→∞ f−n(x) and limn→∞ fn(x). In partiular the dynamialsystem (f, I) is LE.Next we show that (f, I) is NS. If this is not the ase then there exists an
ε > 0 suh that for every non-empty open set U ⊂ I there exists n ∈ Z suhthat diam(fnU) ≥ ε. Let (a, b) ⊂ I be an open interval and let {Uk}k∈N bea ountable basis for open sets in (a, b). If for every k the set (a, b)∩Of (Uk)is dense in (a, b) then the orbit of any point x ∈ (a, b)∩

⋂∞
k=1Of (Uk) will bedense in (a, b), whih is impossible.We onlude that for every interval (a, b) and every proper subinterval

J1 there is another subinterval J2 ⊂ (a, b) whih is disjoint from Of (J1). Byindution we an �nd an in�nite sequene of disjoint intervals Jj in (a, b)suh that for every j the set Jj+1, and hene also Of (Jj+1), is disjoint from⋃
i≤j Of (Ji). Sine for eah j the set Of (Jj) ontains an interval of lengthat least ε we arrive at a ontradition. This onludes the proof that (f, I)is NS.Next onsider any non-empty losed invariant subset Y ⊂ I. If Y ontainsan isolated point then learly the system (f, Y ) is NS. Thus we now assumethat Y is a perfet set. We an then repeat the argument that showed that

(f, I) is NS for the system (f, Y ) and arrive at the same kind of ontraditionsine again an orbit of a single point in Y annot be everywhere dense in anon-empty set of the form (a, b) ∩ Y .2. We will use Poinaré's lassi�ation of the systems (S1, f) whose na-ture is well understood (see for example [34, Setion 11.2℄). Again we anassume with no loss of generality that our homeomorphism f preserves theorientation on S1. Let r(f) ∈ R denote the rotation number of f . If r(f)is rational then some power of f has a �xed point and we are redued tothe ase of a homeomorphism of I = [0, 1]. Thus we an assume that r(f) isirrational. There are two ases to onsider.The �rst ase is when the system (S1, f) is minimal; then f is onjugateto an irrational rotation and is therefore equiontinuous.In the seond ase, when (S1, f) is not minimal, there exists a uniqueminimal subset K ⊂ S1 with K a Cantor set and there are wandering in-tervals J ⊂ S1. For suh an interval, given an ε > 0 there exists an N suhthat for every n ∈ Z with |n| ≥ N , diam(fn(J)) < ε; hene the NS propertyof (S1, f) follows.For the HNS property onsider an arbitrary subsystem (Y, f)with Y ⊂ S1.Again distinguish between the ases when Y has an isolated point and when



266 E. GLASNER AND M. MEGRELISHVILIit is a perfet set. The presene of an isolated point ensures NS. Finally, when
Y is perfet it is either equal to K, hene equiontinuous, or we an still usethe existene of the wandering intervals in (S1, f) to obtain a non-empty set
J ∩ Y with the property that the diameter of its images under the iteratesof f tends to zero.Examples 10.6. Of ourse it is easy to �nd non-RN metri systems.Here are some �random� examples.1. The asades on the torus T2 de�ned by a hyperboli automorphism,or the horoyle �ows, being weakly mixing (see Corollary 9.3), arenot RN. Likewise Anosov di�eomorphisms on a ompat manifold,being expansive (see [5℄), are not RN by Corollary 10.3.2. Systems whih ontain non-equiontinuous minimal subsystems fail tobe RN.3. Let X be ompat metri and unountable and set G = Homeo(X).Then in many ases (like X = [0, 1]) the ation is expansive, henenot RN (Corollary 10.3).4. As we have seen, any unountable subshift is not RN. Thus, for ex-ample, the well known �generator of the Morse asade�

w = . . . 01101001100101100̇110100110010110 . . .onsidered as a funtion w : Z → R is not an Asplund funtion on thegroup Z.A point-transitive LE system is, by de�nition, AE but there are non-transitive LE systems whih are not AE.Example 10.7. As an be easily seen, the Z-system (T,D), where D =
{z ∈ C : |z| ≤ 1} is the unit disk in the omplex plane and T : D → D is thehomeomorphism given by the formula Tz = z exp(2πi|z|), is an LE systemwhih is not AE.There exist many ompat metrizable transitive AE systems whih fail tobe HAE. This follows, for example, from the lemma below. We will use thefollowing onstrution whih is due to Takens. For a metri asade (T,X)de�ne an asymptoti pseudo-orbit to be a bi-in�nite sequene {xn} suh that
lim|n|→∞ d(Txn, xn+1) = 0. Note that (T,X) is hain transitive i� it admitsan asymptoti pseudo-orbit with alpha and omega limit point sets the wholespae.Lemma 10.8. Let (T,X) be a metri asade.1. If (T,X) is a hain reurrent Z-spae then X is isomorphi to asubsystem of a ompat metri transitive AE asade (T, Y ).2. If (T,X) is transitive-reurrent then X is also a retrat of the ambienttransitive AE system (T, Y ).



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 267Proof. Let {tn} be a bi-in�nite monotoni sequene in (0, 1) with
limn→∞ tn = 1, limn→∞ t−n = 0. Let S be the irle represented as the in-terval [0, 1] with 0 identi�ed with 1. Let {xn} be an asymptoti pseudo-orbitin X. Identify X with the subset X×{0} ⊂ X×S and let Y = X∪{(xn, tn) :
n ∈ Z}. Extend T to Y by T (xn, tn) = (xn+1, tn+1). This ompletes the proofof part 1. For part 2 note that if the pseudo-orbit is atually an orbit thenthe �rst oordinate projetion from Y to X is a Z-retration.Remark 10.9. 1. If we apply the onstrution of Lemma 10.8 to the(learly hain reurrent) system (T,X) = (T,D) of Example 10.7, weobtain a transitive (but not reurrent-transitive) metri LE system

(T, Y ) whih is not HAE (nor RNapp). Applying Lemma 10.8 to atransitive non-AE system (T,X) (e.g. a minimal weakly mixing sys-tem), we obtain an example of an AE system with both a subsystemand a fator whih are not AE (see [25℄).2. As noted above, HAE is preserved under both passage to subsystemsand the operation of taking fators. In the next setion we will showthat the Glasner�Weiss family of reurrent-transitive LE but not WAPsystems onsists, in fat, of HAE systems. On the other hand, in Se-tion 13 we will modify these examples so that the resulting dynamialsystem will still be reurrent-transitive, LE, but no longer HAE. Thuseven among metri reurrent-transitive Z-systems we have the properinlusions
WAP ⊂ HAE ⊂ LE.Then we an onlude that the following inlusions are also proper:

WAP(Z) ⊂ Asp(Z) ⊂ LE(Z).3. It is interesting to ompare some of the urrent de�nitions of haosand the orresponding lasses of dynamial systems (see, for exam-ple, [16, 25, 11℄) with the lass of G-systems X suh that Asp(X) =
{onstants}. The latter are the systems whih admit only trivial repre-sentations on Asplund Banah spaes. Every weakly mixing ompatsystem belongs to this lass beause by Corollary 9.3 every Asplundfuntion (in fat, every ontinuous NS funtion) on suh a system isonstant.4. By Theorem 1.3 of [25℄ and the variational priniple, an LE (e.g.,RN) asade has topologial entropy zero. This probably holds for amuh broader lass of ating groups but we have not investigated thisdiretion.11. The G-W examples are HAE. In this setion we assume thatthe reader is familiar with the details of the paper [26℄. In partiular we usethe notations of that paper with no further omments.



268 E. GLASNER AND M. MEGRELISHVILITheorem 11.1. The G-W examples of reurrent-transitive LE but notWAP systems are atually HAE.Proof. Reall that Ω is the spae of ontinuous maps x : R → 2I , where
I = [0, 1] and 2I is the ompat metri spae of losed subsets of I equippedwith the Hausdor� metri d. (In fat, the values x assumes are either intervalsor points.) The topology on Ω is that of uniform onvergene on ompatsets: xn → x if for every ε > 0 and every M > 0 there exists N > 0 suhthat for all n > N , sup|t|≤M d(xn(t), x(t)) < ε. On Ω there is a natural R-ation de�ned by translations: (T tx)(s) = x(s+ t). The ompat metrizabledynamial system (T,X), where T = T 1, is obtained as the orbit losureX =
cls{Tnω : n ∈ Z} for a arefully onstruted (kite-like) element ω ∈ Ω (seealso the �gure in Setion 13). The fat that ω : R → 2I is a Lipshitz funtionimplies that eah member of X is Lipshitz as well with the same onstant,so that X as a family of funtions is equiontinuous. The ompatness of Xfollows from the Arzelà�Asoli theorem. We next sum up some of the salientfats we have about (T,X):(a) For every x ∈ X there is a unique interval [a, b] ⊂ [0, 1] suh that:(i) x(t) ⊂ [a, b], ∀t ∈ R,(ii) there exists a sequene tl ∈ R with limx(tl) = [a, b].We set

N(x) = [a, b].(b) The funtion x 7→ N(x) is lower semiontinuous, that is, limν xν = x
⇒ lim infν N(xν) ⊃ N(x).() Call intervals [a, b] ⊂ [0, 1] of the form N(x), x ∈ X, admissible.Then for every admissible [a, b] ⊂ [0, 1] there exists a unique element
ωab ∈ X with N(ωab) =ωab(0) = [a, b]. (In partiular ω01 =ω.)(d) Let J = {ωab ∈ X : 0 ≤ a ≤ b ≤ 1}. Then J is a losed subsetof X and N : J → {(a, b) : 0 ≤ a ≤ b ≤ 1} ⊂ [0, 1] × [0, 1] isa homeomorphism onto the set of admissible intervals. (Not everysubinterval of [0, 1] is admissible. For example neither [0, 9/10] norany degenerate interval with 9/10 < a = b ≤ 1 is attained.)(e) De�ning Xab = OT (ωab) we have x ∈ Xab i� N(x) ⊂ [a, b].(f) For eah admissible interval [a, b] ⊂ [0, 1] the subsystem (T,Xab)is AE, with Eq(Xab) = {x ∈ X : N(x) = [a, b]}.These fats, perhaps exept (b), are either stated expliitly and proved in[26℄ or an be easily dedued from the results in that paper. For ompletenesswe provide a proof for (b).Proof of (b). With no loss in generality we assume lim infν N(xν)

= limν N(xν) = [a, b] and we then have to show that [a, b] ⊃ N(x). There
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mix(0) = N(x). Therefore, given ε > 0,there exists an i with(11.1) d(Tmix(0),N(x)) < ε.Next hoose ν suh that(11.2) d(Tmixν(0), Tmix(0)) < εand(11.3) d(N(xν), [a, b]) < ε.Now, by (11.3) we have

[a− ε, b+ ε] ⊃ N(xν) ⊃ Tmixν(0),hene by (11.1) and (11.2),
[a− 3ε, b+ 3ε] ⊃ N(x).Sine ε > 0 is arbitrary we onlude that indeed [a, b] ⊃ N(x).Of ourse this list implies the LE property of (T,X). However, we areafter the stronger property HAE. For this purpose onsider now an arbitrarylosed invariant non-empty subset Y of X. Let JY be the subset of Y whihonsists of those elements y ∈ J ∩Y for whih N(y) = y(0) is maximal; thatis, if z ∈ Y and N(z) ⊃ N(y) then N(z) = N(y).

Claim 1. The restrition N↾Y : Y → [0, 1]× [0, 1] is ontinuous at pointsof JY .Proof. Suppose Y ∋ yn → y ∈ JY . By the lower semiontinuity of N,
[a, b] = lim inf

n
N(yn) ⊃ N(y).Choose a subsequene ni suh that N(yni

) → [a, b]. Then for some sequene
mi we have Tmiyni

(0) → [a, b]. By ompatness we an assume with noloss in generality that Tmiyni
→ z for some z ∈ Y . Now, Tmiyni

(0) →
z(0) = [a, b] ⊃ N(y), whene N(y) = [a, b]. It follows easily that limnN(yn)
= N(y).In item (d) of the above list we noted that J is a losed subset of X and
N : J → [0, 1] × [0, 1] is a homeomorphism into. Set K = N(J ∩ Y ) and let
K0 ⊂ K be the subset of maximal elements in K; i.e. [a, b] ∈ K0 i� [a, b] ∈ Kand K ∋ [c, d] ⊃ [a, b] implies [c, d] = [a, b]. Clearly K0 is a losed subset ofthe losed set K and for every [c, d] ∈ K there exists some [a, b] ∈ K0 with
[c, d] ⊂ [a, b].
Claim 2. K0 = N(JY ).Proof. Let [a, b] be an element ofK0; then [a, b]=N(y) for some y ∈J ∩Y .If [c, d] = N(z) ⊃ [a, b] for some z ∈ Y , then for some z′ ∈ OT (z) ⊂ Y we



270 E. GLASNER AND M. MEGRELISHVILIhave z′(0) = [c, d] = N(z′). In partiular z′ ∈ J ∩ Y and N(z′) = [c, d] ∈ K.Hene [c, d] = [a, b] and it follows that y ∈ JY .Conversely, if y ∈ JY with y(0) = [a, b] = N(y) and N(z) = z(0) =
[c, d] ⊃ [a, b] for z ∈ Y , then [c, d] = [a, b] and [a, b] ∈ K0.
Claim 3. JY is losed and non-empty ; in fat Y = cls{TnJY : n ∈ Z}.Proof. The fat that JY is losed and non-empty is a diret onsequeneof Claim 2. Clearly N(Y ) = N(J ∩Y ) = K and it follows that every [a, b] =

N(y) ∈ N(Y ) is a subset of some [c, d] = N(ωab) ∈ K0. By item (e) we have
y ∈ Xab = OT (ωab) and our laim follows.
Claim 4. Every ωab ∈ JY with a < b is in Eq(Y ).Proof. The key fat in proving the inlusion JY \ {onstant funtions}

⊂ Eq(Y ) is a ertain uniformity of the funtion ε′ = ε′(ε, b − a) pro-vided by Lemma 3.5 of [26℄. In essene, as an be seen by ombining Lem-mas 3.5, 3.6 and 1.1 of [26℄, this funtion is the equiontinuity modulusfuntion for D(z, w) = supn∈Zd(T
nz, Tnw) on orbit losures in (T,X); i.e.given a point x ∈ X with N(x) = [a, b] and ε > 0, the ε′-neighborhood of x,

Bε′(x)∩OT (x), in OT (x) is (ε,D)-small. The point is that the ε′ = ε′(ε, b−a)provided by Lemma 3.5 of [26℄ is uniform in x as long as b − a is boundedaway from zero.Therefore, given a point ωab ∈ JY with a < b, and ε > 0, we an hoose apoint ωa′b′ ∈ J with a′ < a < b < b′ so that a−a′, b′−b are su�iently smallto ensure that ωab ∈ Bε′(ωa′b′). Of ourse by (e) we have ωab ∈ OT (ωa′b′).By Claim 1, ωab is a ontinuity point for the restrition of the map Nto Y and it follows that there exists a neighborhood V of ωab suh that
N(y) ⊂ [a′, b′] for every y ∈ V , hene y ∈ OT (ωa′b′). We now onlude that
Bε′(ωa′b′) ∩ V is an (ε,D)-small neighborhood of ωab in the subsystem Y ,and the proof that ωab is an equiontinuity point of the system (T, Y ) isomplete.We next observe that T ats as the identity on the open subset

U = Y \ cls{Tnωab : ωab ∈ JY , a < b, n ∈ Z}(when non-empty) and thus every point in U is an equiontinuity point.This observation together with Claims 3 and 4 shows that the set Eq(Y ) ofequiontinuity points is dense in Y . That is, (T, Y ) is an AE system, andour proof of the HAE property of (T,X) is omplete.12. The minenter of an RN system. Unlike the ase of transitiveWAP systems, where the minenter (i.e. the losure of the union of the min-imal subsets of X) onsists of a single minimal equiontinuous subsystem,the minenter of a transitive RN system need not be minimal. In the G-Wexamples the minenter onsists of a ontinuum of �xed points; moreover, as



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 271was shown in [26℄, a slight modi�ation of the onstrution there will yieldexamples of HAE systems whose minenter onsists of unountably manynon-trivial minimal equiontinuous subsystems all isomorphi to a singleirle rotation. However, in Setion 13 we will present a more sophistiatedmodi�ation whih produes an example of an LE system with a minenterontaining unountably many non-isomorphi rotations. In the present se-tion we obtain some information about the minenter of RN systems. Thiswill be used in the next setion to draw a sharp distintion between LE andHAE systems. For simpliity we deal with metrizable systems. Reall thatfor suh systems RN is the same as HAE.The prolongation relation Prol(X) ⊂ X × X of a ompat dynamialsystem (G,X) is de�ned as follows:
Prol(X) = {(x, x′) : there exist nets gν ∈ G and xν ∈ Xsuh that lim

ν
xν = x and lim

ν
gνxν = x′}.It is easy to verify that Prol(X) is a losed symmetri and G-invariant rela-tion. For x0 ∈ X we let

Prol[x0] = {x ∈ X : (x0, x) ∈ Prol(X)}.Note that always OG(x) ⊂ Prol[x], and if x0 ∈ OG(x) then x ∈ Prol[x0]. Forlosed invariant sets A ⊂ B ⊂ X we say that A is apturing in B if x ∈ Band OG(x) ∩A 6= ∅ imply x ∈ A (see [7℄).Lemma 12.1. 1. Let (X, d) be a metri G-system, x0 ∈ Eq(X) and x ∈
Prol[x0]. Then x ∈ OG(x0). Hene,

Prol[x0] = OG(x0).2. If x0 ∈ Eq(X) and x0 ∈ OG(x), then x ∈ Eq(X) and x ∈ OG(x0);that is, Eq(X) is a apturing subset of X.Proof. 1. Given ε > 0 there exists δ > 0 suh that z ∈ Bδ(x0) implies
dG(x0, z) < ε. There are nets gν ∈ G and xν ∈ X suh that limν xν =
x0 and limν gνxν = x. For su�iently large ν we have xν ∈ Bδ(x0) and
d(gνxν , x) < ε, hene

d(gνx0, x) ≤ d(gνx0, gνxν) + d(gνxν , x) < 2ε,hene x ∈ OG(x0). Thus Prol[x0] ⊂ OG(x0). The inlusion Prol[x0] ⊃
OG(x0) is always true.2. Given ε > 0 there exists a δ > 0 suh that dG(x0, z) < ε for every
z ∈ Bδ(x0). There exists g ∈ G with gx ∈ Bδ(x0) and therefore an η > 0with gBη(x) ⊂ Bδ(x0). Now for every h ∈ G and w ∈ Bη(x) we have

d(hgx, hgw) < d(hgx, hx0) + d(hgw, hx0) < 2ε.



272 E. GLASNER AND M. MEGRELISHVILIThus also x ∈ Eq(X). By assumption x0 ∈ OG(x) hene x ∈ Prol[x0] andby part 1, x ∈ OG(x0).Proposition 12.2. Let (X, d) be a metrizable RN G-system, and Mits minenter. Then Eq(M) is a disjoint union of minimal equiontinuoussystems, eah a apturing subset of M .Proof. Our system X is HAE by Theorem 9.14. Therefore the subsystem
(G,M) is AE. Let x0 ∈ M be an equiontinuity point of M . Given ε > 0there exists a 0 < δ < ε suh that x ∈ Bδ(x0) ∩M implies d(gx0, gx) < εfor every g ∈ G. Let x′ ∈ Bδ(x0) be a minimal point. It then follows that
S = {g ∈ G : gx′ ∈ Bδ(x0)} is a syndeti subset of G (i.e. FS = G for some�nite subset F of G). Colleting these estimates we get, for every g ∈ S,

d(gx0, x0) ≤ d(gx0, gx
′) + d(gx′, x0) ≤ 2ε.Thus for eah ε > 0 the set N(x0, Bε(x0)) = {g ∈ G : d(gx0, x0) ≤ ε} issyndeti, whene x0 is minimal.Thus every equiontinuity point x0 of M is minimal and we apply Lem-ma 12.1 to onlude that Eq(M) is a apturing subset of M .Corollary 12.3. The minenter Z of a metrizable RN system (G,X)is transitive i� Z is minimal and equiontinuous.Remark 12.4. The Birkho� enter Y of a ompat metrizable Z-dy-namial system (T,X) an be de�ned as the losure of its reurrent points.A non-empty open set U ⊂ X suh that T jU ∩ U = ∅ for all j ∈ Z \ {0} isalled a wandering set . The omplement of the union of all wandering sets is alosed invariant subsystem Z1 ⊂ X whih ontains Y . Repeating this proess(ountably many times) we get by trans�nite indution a ountable ordinal ηsuh that Zη = Y . Sine an isolated transitive point of any ompat metrisystem is always an equiontinuity point it follows easily that the system

(T,X) is LE i� its Birkho� enter (T, Y ) is LE. The same statement doesnot hold for RN systems. An example of a ompat sensitive system (T,X)whose Birkho� enter onsists of �xed points was shown to us by E. Akin(private ommuniation).13. A reurrent-transitive LE but not HAE system. As promisedin Setion 10 we will sketh in the present setion a modi�ation of the G-Wonstrution that will yield a reurrent-transitive system whih is LE but notHAE. The possibility of introduing suh a modi�ation (in order to ahieveanother goal) ourred to the authors of [26℄ already at the time when thatpaper was written. The �rst author (E.G.) would like to thank B. Weiss forhis help in heking the details of the modi�ed onstrution.Theorem 13.1. There exists a reurrent-transitive LE but not HAE sys-tem.



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 273Proof. In the original onstrution the basi �frames� αn were de�ned bythe formula
αn(t) = α0(t/pn), n = 1, 2, . . . ,where α0 is the original periodi kite-like funtion:

0.1
0

1

1The kite-like funtion α0and the sequene pk is de�ned by p0 = 1 and pn+1 = 10knpn for a sequeneof integers kn ր ∞ suh that
∞∑

n=1

pn
pn+1

=

∞∑

n=1

1

10kn
<∞.In the modi�ed onstrution the kite-like parts of αn will not be hanged butthe lines between onseutive kites will ontain larger and larger segmentsin whih the original straight line will be replaed by graphs of funtions ofthe form(13.1) fθ : t 7→ sin(2πθt),properly saled so that they �t into our strip R × [0, 1]. At the outsetthe sequene kn will be hosen to grow su�iently fast in order to leaveroom for the insertion of the sine funtions. The parameters θ will be on-struted indutively as a binary tree of irrational numbers {θε : ε ∈ {0, 1}n},

n = 1, 2, . . . , where at the n + 1 stage θε0 = θε and θε1 is a new point in
[0, 1]. The numbers θε will satisfy inequalities of the form(13.2) ‖pnθε‖ ≪ 1/nn for all ε ∈ ∞⋃

k=1

{0, 1}k,where ‖λ‖ denotes the distane of the real number λ from the losest integer.The points on the irle whih satisfy the inequality (13.2) at stage n + 1form a union of �nitely many disjoint open intervals, and the �neighbor� θε1of θε0 = θε will be hosen in that same interval whih already ontains θε0.When the onstrution is �nished we end up with a Cantor set Λ ⊂ T on-sisting of the losure of the set {θε : ε ∈
⋃∞
k=1{0, 1}

k}. At stage n therewill be �nitely many funtions fθ with parameters θε, ε ∈ ⋃n
k=1{0, 1}

k, andthey will replae segments of the straight lines onneting the kites of αn.Eah of these funtions will grow in amplitude very gradually from zeroto say 1/100 and then after running for a long time with maximal ampli-tude 1/100 will symmetrially diminish in amplitude till it beomes again a



274 E. GLASNER AND M. MEGRELISHVILIstraight line. Eah funtion will appear one and their ourrenes will beseparated by very long strethes of the straight line. Of ourse this piturewill be repeated periodially between any two onseutive kites of αn. Apartfrom these hanges the onstrution of the funtions βn will be repeatedunmodi�ed as in [26℄.We laim that the onstrution skethed above, when arefully arriedout, will yield an element ω ∈ Ω whose orbit losure X = cls{Tnω : n ∈ Z}will be, like the original system, a reurrent-transitive LE system. However,unlike the old system, whose minimal sets were all �xed points, our newsystem will have, for eah θ ∈ Λ, a minimal subset isomorphi to the irra-tional rotation (Rθ,T). We will not verify these laims, whose proofs parallelthe proofs of the original onstrution in [26℄. We will though demonstratethat (T,X) is not HAE. Indeed, this is a diret onsequene of the followingproposition. (A seond proof will be given in Remark 14.9.)Proposition 13.2. Let (T,X) be a ompat metri asade and supposethat there exists an unountable subset Λ ⊂ T with the property that for eah
λ ∈ Λ there exists a subsystem Yλ ⊂ X suh that the system (T, Yλ) isisomorphi to the rotation (Rλ,T) on the torus T = R/Z. Then (T,X) isnot HAE.Proof. Suppose to the ontrary that (T,X) is HAE and let Y =
cls(

⋃
{Yλ : λ ∈ Λ}). By assumption the system (T, Y ) is also HAE andlearly Y oinides with its minenter: Y = M(Y ). Let A0 be a subset of

Y suh that for eah λ ∈ Λ there is exatly one point in the intersetion
A0 ∩ Yλ, and let A =

⋃
{TnA0 : n ∈ Z}. If {Um}∞m=1 is a ountable basisfor open sets in Y then the set O =

⋃
{Um : card(Um ∩ A) ≤ ℵ0} is openand it meets at most ountably many Yλ's. Omitting, at the outset, thisountable set from Λ we an and do assume that Um ∩A is unountable forevery m. By the AE property the set Y0 = Eq(Y ) of equiontinuity pointsis a dense Gδ subset of Y , and by Proposition 12.2 eah point of Y0 belongsto a minimal set. Sine the set fix(Y ) of �xed points in Y is losed, it hasan empty interior and it follows that the set Y1 = Y0 \ fix(Y ) is also a dense

Gδ subset of Y .Choose a point z0 ∈ Y1; then z0 ∈ Z for some non-trivial minimal set Z.Now the system Z an admit at most a ountable set of eigenvalues andtherefore an be not disjoint from at most ountably many of the systems
Yλ. We an therefore hoose an in�nite sequene {λn} ⊂ Λ and a sequene ofpoints yn ∈ Yλn

suh that (i) limn→∞ yn = z0, (ii) the set {λn : n = 1, 2, . . . }is independent over the rational numbers Q, and (iii) Z is disjoint from theminimal system ∏∞
n=1(Rλn

,T). Thus the dynamial system
(T,Ω) = (T, Z) ×

∞∏

n=1

(Rλn
,T)



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 275is minimal and in partiular for some sequene mi we have
lim
i→∞

Tmiyn = yn for n = 1, 2, . . . , while lim
i→∞

Tmiz0 = z1 6= z0.Sine limn→∞ yn = z0, this ontradits the fat that z0 is an equiontinuitypoint and the proof of the proposition is omplete.This also onludes the proof of Theorem 13.1.14. An enveloping semigroup haraterization of HNS. In thissetion we give an enveloping semigroup haraterization of Asplund fun-tions and HNS systems in terms of fragmented families (De�nition 6.8). Inaddition to fragmentability, our approah essentially uses Namioka's theo-rem. First we reall this fundamental result and an auxiliary de�nition. Atopologial spae X is said to be �eh-omplete if X is a Gδ subset in someompat Hausdor� spae. If X is either a loally ompat Hausdor� spaeor a omplete metri spae then X is �eh-omplete. We need the followingversion of Namioka's theorem.Theorem 14.1 (Namioka's joint ontinuity theorem, [47℄). Let w : K ×
X → M be a separately ontinuous funtion where M is a metri spae, Kis ompat and X is �eh-omplete. Then there exists a dense Gδ set X0 in
X suh that w is jointly ontinuous at every point of K ×X0.Let E = E(X) be the enveloping semigroup of a ompat G-system X.Reall that

Ef := {pf : X → R}p∈E , pf (x) = f(px),is a pointwise ompat subset of RX , being a ontinuous image of E underthe map
qf : E → Ef , qf (p) = pf(see Setion 3).For every f ∈ C(X) de�ne the map

wf : E ×X → R, wf (p, x) := f(px).In turn wf indues the mapping Ef×Xf → R, (pf , f♯(x)) 7→ f(px). Observethat by the proof of Proposition 2.2.2 (with f♯ = ψ : βG(X) = X → Xf )we have ψ(x1) = ψ(x2) i� f(gx1) = f(gx2) for all g ∈ G. It follows that
ψ(x1) = ψ(x2) i� f(px1) = f(px2) for all p ∈ E. Hene, Ef ×Xf → R andthe following ommutative diagram is well de�ned:

E ×X

qf
��

f♯

��

// X

f

��
Ef ×Xf

// RWe are now ready to prove the following result.



276 E. GLASNER AND M. MEGRELISHVILITheorem 14.2. Let X be a ompat G-system. The following are equiv-alent :1. f ∈ Asp(X).2. Ef is a fragmented family.3. Ef is a barely ontinuous family.4. For every losed (G-invariant) subset Y ⊂ X there exists a dense Gδsubset Y0 of Y suh that the indued map pf : Y0 → R, pf (y) = f(py),is ontinuous for every member p of the enveloping semigroup E.Proof. 1 ⇒ 2: By Theorem 9.12 the family Ğf := {ğf : X → R}g∈G isfragmented. Then so is the family Ef , being the pointwise losure of Ğf(Lemma 6.9).
2 ⇔ 3: See De�nition 6.8.2.
2 ⇒ 4: Sine Ef is a fragmented family, for every losed non-empty sub-set Y ⊂ X the family of restritions EfY := {pf ↾Y : Y → R} is (loally)fragmented. Now by Proposition 6.6 (see also De�nition 6.8.1) there exists adense Gδ subset Y0 ⊂ Y suh that every y0 ∈ Y0 is a point of equiontinuityof the family EfY . Clearly this implies that pf : Y0 → R is ontinuous forevery p ∈ E.
4 ⇒ 1: We have to show by Theorem 9.12 that the G-map f♯ : X →

RUC(G) is norm fragmented. The ation of G on RUC(G) preserves thenorm. Therefore, in this ase µG = µ holds, where µ is the uniform struturegenerated by the norm. By Lemma 9.4.1 it su�es to hek that f♯↾Y : Y →
(RUC(G), µ) is loally fragmented for every losed non-empty G-subset Yin X.By our assumption we an pik a dense Gδ subset Y0 of Y suh that theindued map pf : Y0 → R, pf (y) = f(py), is ontinuous for every p ∈ E(X).It follows that

wf ↾E×Y0
: E × Y0 → R, wf (p, y) = f(py),is separately ontinuous. Sine Y0 is �eh-omplete, by Namioka's theoremthere exists a dense subset Y1 of Y0 suh that wf ↾E×Y0

is jointly ontinuousat every (p, y1) ∈ E × Y1. Our aim is to prove that f♯↾Y : Y → RUC(G) isontinuous at every y1 ∈ Y1. In fat we have to show that every y1 ∈ Y1 isa point of equiontinuity of the family of maps {gf↾Y : Y → R}g∈G. By theompatness of E and the inlusion Ğ ⊂ E it is su�ient to hek that themap
wf ↾E×Y : E × Y → Ris ontinuous at eah (p, y1) ∈ E × Y1. In order to hek the latter ondition�x ε > 0. By the joint ontinuity of wf ↾E×Y1

: E × Y1 → R, one an hoosean open neighborhood U of p in E and an open neighborhood O of y1 in the



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 277spae Y suh that
|f(py1) − f(qy)| < ε/3for every q ∈ U and y ∈ O∩Y1. We laim that |f(py1)−f(qz)| < ε for every

(q, z) ∈ U ×O. Fix suh a pair (q, z) and hoose g := gq,z ∈ G suh that theorresponding g-translation ğ : X → X belongs to U and satis�es
|f(gz) − f(qz)| < ε/3.Sine Y1 is dense in Y and ğ : X → X is ontinuous, one an pik a ∈ Y1∩Osuh that
|f(ga) − f(gz)| < ε/3.Putting these estimates together we obtain the desired inequality |f(py1) −

f(qz)| < ε. Thus, we have shown that f♯↾Y : Y → RUC(G) is ontinuous atevery y1 ∈ Y1. Sine Y1 is dense in Y , we an onlude by Lemma 6.3.2 that
f♯↾Y is loally fragmented.As a orollary we obtain the following enveloping semigroup harater-ization of metri RN systems. It ertainly an also be derived from Theo-rem 9.14 and the result of Akin�Auslander�Berg mentioned earlier (see The-orem 5.11).Corollary 14.3. Let X be a ompat metri G-system. The followingare equivalent :1. (G,X) is RN.2. For every losed (G-invariant) subspae Y ⊂ X there exists a dense

Gδ subset Y0 of Y suh that for every p ∈ E the indued map
p : Y0 →X, p(y) := py, is ontinuous.Proof. (2)⇒(1) follows by Theorem 14.2. Now we prove (1)⇒(2). Sine

X is a metri ompat spae we an hoose a ountable dense subset {fn :
n ∈ N} in C(X). By Theorem 7.6.4, C(X) = Asp(X). By Theorem 14.2 fora given losed (G-invariant) subset Y ⊂ X and every n ∈ N there exists adense Gδ subset Yn of Y suh that for p ∈ E the indued map pfn

: Yn → Ris ontinuous. Then it is easy to see that Y0 :=
⋂
n∈N

Yn is the desired subsetof Y .Definition 14.4. We say that a ompat right topologial semigroup Sis an F-semigroup if the family of maps {λp : S → S}p∈S , where λp(s) = ps,is a fragmented family. By De�nitions 6.8.1 and 6.1.1 it is equivalent to saythat Sf := {pf : S → R}p∈S (where pf (x) = f(px)) is a fragmented familyfor every f ∈ C(S). Yet another way to formulate the de�nition is to requirethat for every non-empty losed subset A ⊂ S, every f ∈ C(S) and ε > 0there exists an open subset O ⊂ S suh that A ∩ O is non-empty and thesubset f(p(A ∩O)) is ε-small in R for every p ∈ S.



278 E. GLASNER AND M. MEGRELISHVILIEvery ompat semitopologial semigroup is an F -semigroup. The ver-i�ation is easy applying Namioka's theorem to the map S × A → R,
(s, a) 7→ f(sa), where A is a losed non-empty subset of S.Theorem 14.5. Let X be a ompat G-system. Consider the followingonditions:(a) X is HNS (equivalently , RNapp).(b) Ğ := {ğ : X → X}g∈G is a fragmented family.() E(X) = {p : X → X}p∈E(X) is a fragmented family.(d) (G,E(X)) is HNS (equivalently , RNapp).(e) E(X) is an F-semigroup.Then we have:1. Always, (a)⇔(b)⇔()⇒(d)⇔(e).2. If X is point-transitive then (a)⇔(b)⇔()⇔(d)⇔(e).Proof. 1. (a)⇔(b): The proof follows from Theorem 9.9.(b)⇔(): Use Lemma 6.9.(a)⇒(d): By the de�nition (G,E) is a G-subsystem of XX . Sine RNappis losed under subdiret produts we dedue that E is also in RNapp.(d)⇔(e): E(X) is an F -semigroup i� {λp : E → E}p∈E is a fragmentedfamily i� the subfamily {λg : E → E}g∈G is a fragmented family (use oneagain Lemma 6.9). The latter ondition is equivalent to assertion (d) asfollows by the equivalene (a)⇔(b) (applied to the system (G,E)).2. (d)⇒(a): If x0 is a transitive point ofX then the map E → X, p 7→ px0,is a ontinuous onto G-map. Sine RNapp is losed under quotients we �ndthat X also belongs to RNapp.Corollary 14.6. GAsp is an F-semigroup for every topologial group G.Proof. The ompat G-system X := GAsp is RNapp by Theorem 7.6.6.Therefore, Theorem 14.5 implies that the enveloping semigroup E(GAsp) isan F -semigroup. Sine (GAsp, uA(e)) is point-universal (Proposition 7.7),by Proposition 2.6 there exists a G-isomorphism φ : (E(GAsp), i(e)) →
(GAsp, uA(e)) of pointed G-systems. In fat this map is an isomorphism of(right topologial) semigroups beause uA(G) is dense in GAsp and i(G) isdense in E(GAsp).Corollary 14.7. Let (G,X) be a ompat HNS system. Then p :
X → X is fragmented (equivalently , Baire lass 1, when X is metri) forevery p ∈ E(X).Proof. Use Theorem 14.5 (and Proposition 6.7.2).For the de�nition of Rosenthal ompats see Setion 3.



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 279Theorem 14.8. 1. Let X be a ompat metrizable G-spae. For every
f ∈ Asp(X) the ompat spae Ef ⊂ RX is a Rosenthal ompat.2. Let X be a metrizable ompat RN G-spae. Then the envelopingsemigroup E is a (separable) Rosenthal ompat with ardinality ≤ 2ℵ0(in partiular , no subspae of E an be homeomorphi to βN).Proof. 1. Sine f ∈ Asp(X), by Theorem 14.2, Ef = {pf : X → R}p∈Eis a fragmented family. In partiular, eah map pf : X → R is fragmented.Sine X is ompat and metrizable we an apply Proposition 6.7. Hene,eah funtion pf ∈ Ef is of Baire lass 1 (on the Polish spae X). Therefore,

Ef is a Rosenthal ompat.2. C(X) = Asp(X) by Theorem 7.6.4. It follows by the �rst assertionthat Ef is a Rosenthal ompat for every f ∈ C(X). An appliation of thedynamial version of the BFT theorem, Theorem 3.2, onludes the proof.Remark 14.9. Theorem 14.8.2 an be used to obtain an alternativeproof of Proposition 13.2. In fat, as an be seen from Proposition 2.1, theenveloping semigroup of the system (T,X) in Proposition 13.2 has ardinal-ity 22ℵ0 .Our next example is of a metri minimal asade (T,X) whih is notRN yet its enveloping semigroup E = E(T,X): (a) is a separable Rosenthalompat of ardinality 2ℵ0 , and (b) has the property that eah p ∈ E is ofBaire lass 1. Thus this example shows that the onverse of Theorem 14.8.2does not hold and neither does that of Corollary 14.7.Example 14.10. Let T = R/Z be the one-dimensional torus, and let
α ∈ R be a �xed irrational number and Tα : T → T the rotation by α,
Tαβ = β + α (mod1). We de�ne a topologial spae X and a ontinuousmap π : X → T as follows. For β ∈ T \ {nα : n ∈ Z} the preimage π−1(β)will be a singleton xβ . On the other hand, for eah n ∈ Z, π−1(nα) willonsist of exatly two points x−nα and x+

nα. For onveniene we will use thenotation β± (β ∈ T) for points of X, where (nα)− = x−nα, (nα)+ = x+
nαand β− = β+ = xβ for β ∈ T \ {nα : n ∈ Z}. A basis for the topologyat a point of the form xβ, β ∈ T \ {nα : n ∈ Z}, is the olletion of sets

π−1(β−ε, β+ε), ε > 0. For (nα)− a basis will be the olletion of sets of theform {(nα)−}∪π−1(nα− ε, nα), where ε > 0. Finally, for (nα)+ a basis willbe the olletion of sets of the form {(nα)+}∪π−1(nα, nα+ε). It is not hardto hek that this de�nes a ompat metrizable zero-dimensional topologyon X (in fat X is homeomorphi to the Cantor set) with respet to whih
π is ontinuous. Next de�ne T : X → X by the formula Tβ± = (β + α)±.Again it is not hard to see that π : (T,X) → (Rα,T) is a homomorphismof dynamial systems and that (T,X) is minimal and not equiontinuous



280 E. GLASNER AND M. MEGRELISHVILI(in fat it is almost-automorphi; see e.g. Veeh [57℄). In partiular (T,X) isnot RN.We now de�ne for eah γ ∈ T two distint maps p±γ : X → X by theformulas
p+
γ (β±) = (β + γ)+, p−γ (β±) = (β + γ)−.We leave the veri�ation of the following laims as an exerise.1. For every γ ∈ T and every sequene ni ր ∞ with limi→∞ niα = γ and

niα < γ for all i, we have limi→∞ Tni = p−γ in E(T,X). An analogousstatement holds for p+
γ .2. E(T,X) = {Tn : n ∈ Z} ∪ {p±γ : γ ∈ T}.3. The subspae {Tn : n ∈ Z} inherits from E the disrete topology.4. The subspae E(T,X)\{Tn : n ∈ Z} = {p±γ : γ ∈ T} is homeomorphito the �two arrows� spae of Aleksandrov and Urysohn (see [21, p. 212℄,and also Ellis' example [19, Example 5.29℄). It thus follows that E isa separable Rosenthal ompat of ardinality 2ℵ0 .5. For eah γ ∈ T the omplement of the set C(p±γ ) of ontinuity pointsof p±γ is the ountable set {β± : β + γ = nα for some n ∈ Z}. Inpartiular eah element of E is of Baire lass 1.15. A dynamial version of Todor£evi¢'s theorem. A surprisingresult of Todor£evi¢ asserts that a Rosenthal ompat X whih is not metriz-able obeys the following alternative: either X ontains an unountable dis-rete subspae or it is an at most two-to-one ontinuous preimage of a om-pat metri spae ([55, Theorem 3℄). We present here the following dynamialversion.Proposition 15.1 (A dynamial Todor£evi¢ dihotomy). Let G be auniformly Lindelöf group and (G,X) a ompat system with the property that

X is a Rosenthal ompat. Then either X ontains an unountable disretesubspae or there exists a metri dynamial system (G, Y ) and a G-fator
π : (G,X) → (G, Y ) suh that |π−1(y)| ≤ 2 for every y ∈ Y .Proof. If we rule out the �rst alternative in Todor£evi¢'s theorem thenit follows by that theorem that there exists a ompat metri spae Zand a ontinuous map φ : X → Z with |φ−1(z)| ≤ 2 for every z ∈ Z. By[41, Theorem 2.11℄ there exist a ompat metri G-spae Y , a ontinuousonto G-map f1 : X → Y and a ontinuous map f2 : Y → Z suh that
φ = f2 ◦ f1. Clearly, |f−1

1 (y)| ≤ 2 for every y ∈ Y .We do not know whether Theorem 14.8.2 an be strengthened to thestatement that the enveloping semigroup of any ompat metri RN systemis in fat metri. However, Proposition 15.1 yields the following.



HEREDITARILY NON-SENSITIVE DYNAMICAL SYSTEMS 281Corollary 15.2. Let X be a metri RN G-system, where G is an ar-bitrary topologial group. Then either the enveloping semigroup E = E(X)ontains an unountable disrete subspae, or it admits a metri G-fator
π : (G,E) → (G, Y ) suh that |π−1(y)| ≤ 2 for every y ∈ Y .Proof. This follows diretly from Theorem 14.8.2 and Proposition 15.1beause the natural restrition Ğ (see Setion 3) is seond ountable (andhene, uniformly Lindelöf).Problem 15.3. By Theorem 14.8.2 the enveloping semigroup of theG-W example is a separable Rosenthal ompat (of ardinality 2ℵ0). Wedo not have a onrete desription of this enveloping semigroup and do noteven know whether it is metrizable or if it ontains an unountable disretesubspae.
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