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This paper derives the leading nonlinear hereditary effects in the generation of gravitational ra-

diation, i.e. , the terms in the wave form which depend in an irreducible manner on the entire past
history of the source. At the quadratically nonlinear order there are two types of hereditary con-

tributions. The first ones are due to the reradiation of gravitational waves by the stress-energy
distribution of (linear) gravitational waves, and give rise to a net cumulative change in the wave

form of bursts ("memory effect" ). The second ones come from the backscattering of (linear) grav-

itational waves emitted in the past onto the constant curvature associated with the total mass of
the source ("gravitational-wave tails" ). An extension of a previously proposed multipole-moment

wave generation formalism allows us to compute explicitly the wave form, including hereditary con-

tributions, up to terms of fractional order (v/c) . Our results are derived for slow-moving systems

of bodies, independently of the strength of their internal gravity. The tail contribution to the far

wave-zone field is found to be fully consistent with a corresponding hereditary contribution to the

gravitational radiation damping previously derived from a study of the near-zone field.

PACS number(s): 04.30.+x

I. INTRODUCTION

The present development of a worldwide network of
gravitational-wave detectors makes it timely to deepen
our theoretical understanding of the generation of grav-

itational radiation by material sources. Although some

astrophysical sources, involving very strong gravitational

fields, and undergoing very rapid time evolution, are so

complex that they will have to be tackled by numerical

simulations, a lot is still to be learned from analytical ap-

proximation methods. We have particularly in mind the
emission of gravitational waves by in-spiraling compact
binary systems where improvements in the computation

of the wave form may be important for pulling the signal

out of the noise.

The present paper is the continuation of a sequence of
articles [1—5], that we shall refer to in the following as

papers I—V, respectively, in which we expounded a new

gravitational-wave generation formalism. This formal-

ism decomposes the problem of relating the gravitational-

wave form at infinity to the structure and motion of the
source ("generation problem" ) into three separate steps.

Step 1 consists in setting up an iterative algorithm
which constructs the most general (past-stationary and

past-asymptotically fiat) solution of the vacuum Einstein

equations in the form of a double, nonlinearity and mul-

tipolar, expansion. The arbitrary elements entering this
construction are two sets of time-dependent symmetric

and trace-free (STF) Cartesian tensors, referred to as

the "algorithmic multipole moments:"

g,„pt = g,„~~[~], (1.2)

where the square brackets denote a general functional de-

pendence. [Note that g,„,are functions of four variables,

while lM is a set of functions of one variable. ] Building

up on previous work [7—9], we have shown in paper I how

to define the right-hand side of Eq. (1.2) to all orders in

a combined multipolar post-Minkowskian expansion. [In

principle this construction can be implemented to any

(finite) order by algebraic manipulation programs. ]

Step 2 consists in extracting from the algorithmically

constructed external metric (1.2) the "radiative multi-

pole moments"

R = {I," 'j(t); E&2j u {J~ ~'(t); f &2j, (1.3)

M = {Ml.(t); E &Oj u {SL,(t); E &1j, (1.1)

where {Mg, E & Oj = {M,M, , M,», , . . .j denote the
"mass" algorithmic moments, while {Sl„I & 1j
{S,, S,„„.. .j denote the "spin" ones. In Eq. (1.1) the

index L is shorthand notation for a multispatial index of
order f., L:—iii2 it (see Ref. [6] for our notation).

The (formal) solution of the vacuum Einstein equa-

tions constructed by this algorithm will be referred to as

the "external metric, " because it is expected to represent

the metric everywhere in a domain D, = {(x,t); r & ra j
exterior to the source (which is located near the ori-

gin of our spatial coordinate system). Using as basic

gravitational variables the densitized contravariant met-

ric g ~—:haggai, the result of the algorithm is to give
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that describe the leading (1/R) behavior of the gravita-

tional Beld in the far wave zone ("future null infinity").

More precisely, it was shown in paper II that the general

multipolar post-Minkowskian metric (1.2) admitted, un-

der the assumption of past stationarity, a regular confor-

mal structure at future null infinity ("asymptotic simplic-

ity" [10, 11]). This means in particular that there exist

some "radiative" coordinates X"= (cT, X') with respect
to which the metric coefficients, say G'"g(Xr) [where

I

ds &extd~ad~& —gextdXadX&], admit an asymp-

totic expansion in powers of R i, when R = ]X] —h oo

with U = T —R/c and N = X/R being fixed. Then the

radiative multipole moments (1.3) are defined as the co-

efficients of the multipole decomposition of the 1/R part

of the external metric in radiative coordinates [9]. The

transverse-traceless (TT) part of the asymptotic spatial

metric (gravitational-wave amplitude "h, ") reads

gTT (gext 6 )TT

4G 1 red[8] 2~ red[8] (1]= + z Ptj ihip(N) ) &I 2'-lpL, z(v)
— &aL, ze-a[t(h JIp)[tl, z(v) + O (1.4)

I,"'"'= d'M, /dV'+ O(g),

J; ['] =d'S./dVe+O(g) .

(1.6a)

(1.6b)

For this reason, it has been suggested [9) to introduce also

the Eth-order antiderivatives of the basic radiative mo-

ments, say II~ and JL~ such that Iz
——d Ilre /dU,

Jl [ ] —= de Jir~/dve However, th. e definition of the ob-

jects IPd and JL~ leads to ambiguities and difficulties

when one considers sources that were not stationary in

the remote past. In the present paper, we shall consider

only the moments (1.3) which are directly related to the
observable wave form hTT. The superscripts [E] must be
viewed as a mere notation reminding us that, in restricted

physical situations, Il and JL may be equal to thered[8] rsd[e]

8th time derivatives of other objects.
The first two steps of our formalism give, in principle,

a complete picture of the nonlinear structure of the grav-
itational field everywhere outside the source (at least,
in the domain where the field is weak enough for the
nonlinearity expansion to make sense). However, this
knowledge is totally disconnected from the actual mate-
rial source, and must be complemented by a different,
source-rooted, approach. Indeed, the aim of the third

where T&hi,] = zi(Tj, I, + Tgg), and where P jgI, (N)

PhP&i, —
&

P~Pj, i„with P, 1(N) = 6,p,
—N, Nh, , denotes

the TT algebraic projection operator onto the plane or-

thogonal to N.
The transformation between the original ("canonical" )

coordinates in which the external metric is constructed

by the algorithm (1.2) and the radiative coordinates can

be algorithmically constructed (see paper II and below,

where the construction is implemented to order G ).
Therefore, the radiative moments (1.3) can be function-

ally expressed in terms of the algorithmic moments (1.1),
at least as a formal power series in the gravitational cou-

pling constant:

'R = R[M].
In the linearized approximation, the radiative multi-

pole moments are the 8th-order time derivatives of the

algorithmic moments:

step of the formalism is to provide the link between the
algorithmic moments (1.1) and the structure and motion
of the source. Symbolically,

JH = M [source] . (1.7)

ML, =IL, [source] + O(c 4) (g )0),
&L, = Jr, [source] + O(c ) (E & 1),

(1.8a)

(1.8b)

where II, and JL, denote some explicit, compact-support
integral expressions involving only the stress-energy ten-
sor of the matter and its time derivatives.

By eliminating the algorithmic moments between the
results of Steps 2 and 3, i.e. , Eqs. (1.5) and (1.7), one can
finally relate the gravitational wave form to the structure
and motion of the source. The accuracy with which this
can be done is limited by the accuracy of each separate
step. The main object of the present paper is to refine

the accuracy of Step 2, i.e., to work out explicitly the
leading nonlinear O(g) contributions in Eqs. (1.6a) and

(1.6b). These contributions exhibit a new feature which

has been hitherto neglected in generation formalisms. In-

deed, we shall find that these O(G) terms are, following

the terminology of paper III, "hereditary" in the sense
that they depend on the full past history of the system,
in other terms, they keep a "memory" of the past activity
of the source. (In paper III we derived the leading hered-

itary contributions in the near zone gravitationa-l fields.

Step 3, Eq. (1.7), can be tackled by different means,
depending upon which type of source one is consider-

ing. For instance, if one considers a mildly relativistic
source, the link (1.7) will be derived by matching the
(multipolar-post-Minkowskian-expanded) external met-
ric (1.2) to the inner metric obtained by describing the
near-zone gravitational field of the source by means of
a combined weak-field-slow-motion ("post-Newtonian" )
approximation scheme. This matching procedure has
been studied in paper III, and we implemented it in pa-

pers IV and V at an accuracy which goes well beyond
the usual "quadrupole formalism" [12—14]. More pre-

cisely, we showed how to obtain the link (1.7), for both
the mess [4] ant[ spin [5] moments, np to fractional cor-
rections of order (v/c) (GM/czr)z:
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The link with our present nave-zone hereditary eKects
will be discussed below). The physical origin of these
hereditary contributions to the wave form is twofold.

The leading contribution, for slow-motion sources, comes
from the scattering of linear gravitational waves oK the
background curvature generated by the total mass of the
system ("wave tails" ). A second contribution, which en-

ters at the same order of nonlinearity, comes from the
reradiation of gravitational waves by the stress-energy
distribution of linear waves. The relative characteristics
of these two types of hereditary effects will be discussed
below. (Note that our results on nonlinear hereditary
effects were already contained in an earlier paper [15].)

The inclusion of wave tails will boost the accuracy
of our generation formalism by one power of the slow-

motion parameter v/c. Moreover, we shall extend the
domain of applicability of our results by showing how to
generalize Eqs. (1.8) to systems containing strongly self-

gravitating bodies, e.g. , an in-spiraling binary neutron

star.
Finally, let us note that it is conceivable that one could

match directly the analytically known metric (1.2) to a
numerically computed metric considered in a finite grid
around some astrophysical source. This could be helpful

in extracting from finite-grid results the true wave form

at infinity. We shall comment below on the impact of the
results we shall derive in this paper on this program.

The organization of this paper is as follows. In Sec. II
we investigate the nonlinear hereditary functional depen-

dence of the quadratic external metric and of the ra-

diative multipole moments on the algorithmic moments.

The hereditary effects that we obtain ("memory" and
"tail" effects) are discussed and we study their sensitiv-

ity on the remote past of the source. In Sec. III we ex-

tend our wave generation formalism to the inclusion of
"tail" effects (the only hereditary effects to be included

at lowest order in the slow-motion approximation), and

to systems of strongly self-gravitating bodies. The "tail"
effects are finally shown to be consistent with correspond-

I

A. Nonlinear hereditary structure
of radiative multipole moments

Equation (1.5) symbolizes the link between the radia-

tive multipole moments 'R, Eq. (1.3), which are directly
measurable in the asymptotic wave zone [see Eq. (1.4)],
and the algorithmic multipole moments which are conve-

nient functional parameters encoding the structure of the
metric outside the source, Eq. (1.2). As both the multi-

polar post-Minkowskian algorithm and the construction
of radiative coordinates proceed by expansion in pow-

ers of the gravitational constant G the relation (1.5) will

admit a formal nonlinearity expansion of the type

'R = VM + GZ&[M] + + G" 'Z„[M] +

(2 1)

where 'D is a linear differential operator and A'„denotes
a multilinear functional (homogeneous of order n) of the
algorithmic moments. More precisely, one can write (for

)2

Iq' ~ j ——Mq~l(u) + ) G" X„r,(u), (2.2a)

rad[e-ij (e-~)
saieie i Jar, z (u) —saieie x ~aL, z (u)

+ ) . G" '
&~1.(u),

n)2
(2.2b)

where a superscript within parentheses denotes a mul-

titime differentiation, F&~l(u) = d~F(u)/du and where

the n-tuple nonlinear functionals X„and Y„have the

general structure

ing hereditary eKects in the radiation reaction force act-

ing within the source.

II. NONLINEAR HEREDITARY STRUCTURE
OF GRAVITATIONAL RADIATION

X„r.(u) = ) «i" «KLr. , L,„(u,ui, , u P"' P")~'I', ,'(ui) ~L",„"'(u ) . (2.2c)

In Eq. (2.2c), iC denotes a multi-time kernel whose index
structure is made out only of Kronecker deltas and fV[r
denotes either a mass moment ML, (in which case g—:g)
or a spin moment endowed with its natural Levi-Civita
symbol, c „+„,8 r. i (in which case I. = E+ 1). Only
quantities having the dimension of time enter the kernel

K: the time argument u of the left-hand side, n inter-

mediate time arguments (all restricted to be anterior to
u because of the multiretarded nature of the algorithm),
the time scale P '~ entering the definition of the algo-
rithm [i.e. ,

P"s = ri/c where ri is the length scale used

to adimensionalize the radius in the analytic-continuation
factors (r/ri) present in the algorithm, see, e.g. , pa-

per III, Eq. (3.6b)], and the time scale P"d entering the
algorithm of construction of radiative coordinates, start-

ing from the (harmonic) algorithmic ones. (Pa's and P'ad

can be chosen at will. In particular, one could arrange

to have P'~—:P '~. However, it is clearer to keep these

two time scales separate. )
It is useful to distinguish two types of terms in the mul-

tilinear functionals Z„[JH] appearing in Eq. (2.1) [and

more explicitly in Eq. (2.2c)]. Namely

Z„[M] = 8 [M] + 'R [M], (2.3)

where 8„[M] denotes a "synchronous" (or "snapshot")

functional, i.e., a sum of terms that depend only on the

values of the JHL, (u)'s and their time derivatives at the
same time argument where one evaluates R(u), while

'R„[JH] denotes a "hereditary" functional, i.e., a sum

of terms that depend, in an irreducible manner, upon

the values of some Ml, . (u, ) for all the time arguments

u, ( u. The hereditary terms are physically interest-

ing for two reasons. On the one hand, their study casts
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a light on the way the nonlinear structure of Einstein's

equations generates a functional dependence of the out-

going radiation on the entire past history of the source,

and, on the other hand, these terms could be numeri-

cally important in some radiation processes because they
build up gradually during all the time when the system
radiates. In particular, these terms might be crucial to
an accurate computation of the phase of the wave form

emitted by in-spiraling binary systems.
In the following, we shall determine explicitly the lead-

ing hereditary terms in the radiative multipoles, i.e.,

those coming from the quadratic functionals G'Rz[M] in

the nonlinearity expansion (2.1).

B.Hereditary structure
of the quadratic external metric

The nonlinear expansion of the external ("gothic" )
metric (1.2) reads

g./[M] = f ~+Gh, ~[M]+G'h, p[M]+", (2.4)

where f ~ is the Minkowski metric with signature +2,

f P = diag( —1,1, 1, 1), and where Gh, i~, Gzh2~, ... are
the linearized, quadratic, ... approximations to the met-

ric, that depend functionally on the set of algorithmic

moments M. The linearized external metric hi in the
expansion (2.4) is given explicitly by the multipole ex-

pansion

h [M]= ——) Br, r ML, t ——00 4 .( ) -i r
c 8 C

e&o

hr[Artl = —&, Bl &
r 'Ml'-, (~

——
)

r&1

- (-)'~,
+8 )

(E 1)I
scab aI i-

E)1

X r SqI. 1
C

ii'~[M] = ——), 8 r M, .

E)2

(2.5a)

(2.5b)

s
c4) (8+1)! '

(1)X i' E~b(qS )bL. c
(2.5c)

I,'[M] = p, p+q, p. (2 6)

[see, e.g. , Eqs. III (3.3), by which we denote Eqs. (3.3)
of paper III]. The linearized external metric (2.5) is
the "seed" of the entire algorithm. For instance, the

quadratic piece hz is defined as the sum of two con-
tributions:

where I"PCl& ("finite part of the retarded integral" ) is
the operator defined by Eqs. I (3.13)and (3.14) (in which
enters the length scale ri = cP"s). As for the second

contribution in (2.6), g, it is a solution of the homoge-
neous wave equation of the retarded type:

q,'=& a, r-'sc (t —-")
E&0

(2.s)

I [M] = n„'~. 'g ~) + -) a, . 'T,'(t -r/c)-
8=0,1

+S,'[M] . {2.9)

» Eq (29) Q ~(u, n), where u = t —r/c, denotes
the coefBcient of 1/rz in the effective nonlinear source

Nz (r, u, n), Tg (u) (present only for the multipolarities
E = 0 and / = 1) are some antiderivatives of products of
derivatives of multipole moments [that were contained

in the Kr (u) terms in Eq. (2.8)], while the remainder

Sz
~

[M] denotes some synchronous functional of M (i.e.,

a sum of terms of the type F(u)nr, /r" where F(u) is a
product of derivatives of multipole moments taken at the
same retarded time u).

The quantity Q P consists of two separate terms:

k.A:~ „4M d'z ~

where k = (l, n) denotes the (Minkowskian) outgoing
radial null direction, and where

(2.10)

2 du du 4 du du
(2.11a)

The quantity II(u, n) is proportional to the gravitational-
wave luminosity [computed with the linearized metric
(2.5)]. Namely

which serves to ensure the condition of harmonicity of the

coordinates. In Eq. (2.8), the functions Kr~(u) denote
some quadratic functionals of the algorithmic moments

Mg (u) and SL, (u) that can be explicitly computed, if nec-

essary, by means of the algorithm of paper I [see Eqs. I
(4.12) and (4.13)]. They will be partially computed be-

low. The nature of the functional dependence of hz in

terms of the algorithmic moments has been investigated
in paper III. There it was found (extending the termi-

nology used above for the functionals M' ~[M]), that,
contrary to hi~ which is a snapshot functional of M [in

the sense that hi ~(t, x) depends only on the values of the
ML, (u)'s and their time-derivatives at the retarded time-

argument u = t —r/c, where r:—~x~], hz contains, in

addition to many snapshot terms, an irreducibly heredi-

tary dependence on the values of the ML, (v)'s for v ( u.
From Eqs. III (4.31) we can separate explicitly the hered-

itary terms:

The first contribution pz~ is the retarded integral (com-
puted using a procedure of analytic continuation) of the
effective quadratic source N~ (hi) given by Eq. III (3.5):

167r dI ~'~"
II(u, n) =

h1

167r dE~'~

G'c3 dudO q

(2.11b)

~2 R 2 (2.7) !n Eqs. (2.10), (2.lla) z ~(u, n) denotes the nonstatic
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e&2

(&)+ g ++3(g + 1)t
&aL 2sab—{i~&)bL 2(u)

E)2

(2.12c)

[Equations (2.12) follow from Eqs. (2.5) by letting the

spatial derivatives BL = B„B,, act on the retarded

times t r/c pre—sent in the various functions F(t r/c) /r, —
and by deleting the time-independent mass term M/r. ]

Moreover, we see that the term khaki II/c2 in Eq. (2.10)
can be thought of as the stress-energy tensor of the out-

going gravitational radiation ("bundle of gravitons").
The quadratically nonlinear metric can thus be natu-

rally decomposed into four contributions:

h2~[M] = u ~+ v ~+ iv ~+ 82P[M] . (2.13)

In Eq. (2.13), Sz~[JH] is the synchronous remainder of
Eq. (2.9), while

, , II
i

, fkk&
(2.14)"&"" r

is the hereditary term coming from the fact that the grav-

itational energy radiated in the past by the source acts
itself as a nonlinear source for the gravitational field (this

term was studied in [15] under the name of the "bundle"

term),

, (4M d2zi&
v i'=O„'

(c4r2 du2 r
(2.15)

is the hereditary term due to the fact that the curved

light cones differ by 0(Mlnr) from the flat ones (it can
also be thought of as a scattering of the gravitational
waves on the background curvature associated with the
ADM mass M), and

part of the coefficient of 1/r in the (linearized) wave-

zone expansion of the linearized metric hi, Eqs. (2.5).
Namely

(2.12a)
e&2

e&2

(&)+4)
E)2

(2.12b)

A
—= a~'

~

II{ ')(u, n) ~,
$2cr2

(2.17)

where II{ )(u) is the past-zero antiderivative of II(u),

11{-')(u,n) =—
16vr dEs' (u, n)
Gcs dA

1

(2.18)

t-r jc
dv U ~(v, n) —B A~ —B~A + f ~B~A~,

where

(2.19)

U = ——Gp,00

2
(2.20a)

(2.20b)

1U'j = ) n, jLIIL
e&o

, ;(8+1)(8+2) "

II+)
(~ )(~ 2)

rlL 1{i j)L i——

—2

); (8+1)(E+2)
(2.20c)

In Eqs. (2.20) the quantities IIL(u) represent the coef-

ficients of the expansion of the gravitational luminosity

II(u, n) in STF spherical harmonics:

where dEs' /dA is the angular distribution of the total
energy radiated in the form of gravitational waves be-

tween the infinite past and the retarded time u. Then
one notices that the combination u E + B Ai + B~A

f~~B~A~ is the retarded integral of a term of the form

F(u, n)/r which can be explicitly evaluated by using
formulas III (4.24) and III (4.26). Finally, one gets the
term (2.14) in the form

—= ) BL
I

-TL (t r/c) I-p
- I'1

p

re=o, i
(2.16) II(u, n) = ) nLIIL(u)

E)0

(2.21)

is the "semihereditary" term associated with the secular

variations of mass, linear momentum and angular mo-

mentum (as will appear from its expression below).
Thanks to the various technical tools introduced in our

previous papers (plus those discussed in Appendix A be-

low), one can give the explicit expressions of the vari-

ous hereditary components of hz . To evaluate the term

(2.14), one first introduces the quantity

[IIL(u) being a symmetric and trace-free Cartesian ten-

sor; Ilo(u) in Eq. (2.20a) denotes the E = 0 piece of
II(u, n), i.e. , its spherical average].

Turning our attention to the term (2.15), one notices
that it is a sum of retarded integrals of terms of the form

nLG(u)/r The latter. can be evaluated by using the
formula III (4.21), namely,
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+oo z - (z —r)ztn(z —r) —(z + r)zln(z + r)

)dzG t —— BI,
2l! C r

(2.22)

We are interested in studying the asymptotic behavior
of the right-hand side of Eq. (2.22) when r —+ oo, with
t —r/c fixed. For this purpose, it is convenient to use an
alternate form of the retarded integral (2.22), involving
the Legendre function of the second kind Qg(z). Let us
recall that the latter function is defined, when z ) 1, by

Q ( ) = -P ( )l I, , ~

—) —,P -'( )P'- (»(z+»
i=1

(2.23)

where Pg(z) is the usual Legendre polynomial, with

Pg(1) = 1 (see, e.g. , Ref. [16], page 333). Then it is

shown in Appendix A that the form (2.22) of the retarded

integral can be rewritten as

~—,' ",'G(z--')

dz G t ——
g

— . 2.24

Now, the desired expansion at infinity, r -+ oo with
t —r/c fixed, is easily obtained from the fact that, from
Eq. (2.23), the Legendre function Qg(z) behaves, when
$~1, 88

1 (z-11 1
Qe(z) = --ln

I ~

—) —. + O[(z —1)ln(z —1)] .
2 E 2 ) i

(2.25)

Inserting the latter expansion into (2.24) yields immedi-

ately, when r ~ oo with t —r/c fixed,

e

dyG t ———
y ln —+2 —. +

C 2r . i ( r2 )
(2.26)

By summing over the multipolarity /, one gets the following formula for a source G(u, n) = Q&&c nL, Gp(u), where

the Gl, (u) are STF:

+OO cy . ( '. 2') r &lnr 5
DR' —G t--, n = — dy G t---y, n ln —+ . —. nL L t---y +0 2

2T 0 2"
t&() k =i ') C (r j

(2.27)

These results can be directly applied to the evalua-

tion of Eq. (2.15). Since the source of v~~, namely

4Mr c d zo~/du2, is a time derivative, the second

term in (2.27) yields only synchronous terms that we can

ignore. Hence, the leading asymptotic behavior of the

hereditary part of vo) can be written as

I

where the functions rn(u), rn, (u), and s;(u) are some

semihereditary functions linked to the scalar part IIO of

II [first term in (2.21)], to the vector part II; of II [second

term in (2.21)] and to some other synchronous vectorial

functions F~ and G, (whose explicit expressions will not

be needed) by

0

(t —r/c, n) (lnr )
r (r2) (2.2S)

m(u) = ——II; (u),
1 (-1)

4C

m, (u) = ——III )
(u) + F,( i)

(u)

s, (u) = GI
')

(u) .

(2.30a)

(2.30b)

(2.30c)

In Eq. (2.28) 8„~(u) denotes some synchronous func-

tional of the algorithmic moments ~(u).
Finally, the semihereditary term (2.16) is obtained by a

straightforward application of the algorithm [Eqs I (4.12)
and (4.13)]. This yields

By expanding the spatial derivatives in Eqs. (2.29) we

get the leading asymptotic behavior of u) )i in the form

~00 t 4
r

oi 4 (1) r ].
n '= ——mi t —— —2z gB —sg t ——

r C r C

(2.298) (2.31)

where 8 P denotes another synchronous functional of JH,

and where

m'~ = 0 )

(2.29b)

(2.29c)
= n, + -n, rr, ,

00

3
(2.32a)
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w'~= 0.

(2.32b)

(2.32c) vG,„iG,„si(X~) = f ~+ Ghi s(X~)

+ G h~ ~(X~) + 0(G ), (2.35)

from ~g,„g,„~(x~) = f~p+ Ghi~+ G h2 + 0(Gs) to

C. Hereditary terms in the radiative multipole
moments

The sum of the right-hand sides of Eqs. (2.19), (2.28),
and (2.31) gives the hereditary piece of the leading term
in the far wave-zone expansion of the quadratic external
metric. In order to extract from this leading term the
radiative multipole moments, we still need to transform
the (harmonic) coordinates z used in the algorithm to
some radiative coordinates X adapted to a smooth de-

scription of the metric structure at null infinity. The
proof that such a transformation X = X~(xi ) exists
was given in paper II. From inspection of Eqs. (2.19) and

(2.28), one sees that this transformation at order G2 can
be taken as

X = x + G( + G A + 0(G ),
where

( = —
z 6o ln(r/cP" ),2M

C

(2.33)

(2.34)

and where A was defined in Eq. (2.17). The quantity
P'~ in Eq. (2.34) denotes a new arbitrary time scale (a
priori independent of the time scale P~'s = ri/c entering
the algorithm). Roughly speaking, the ( term serves to
correct for the difference between flat and curved cones,
while A takes care of the influence of the radiated gravi-

tational energy on harmonic coordinate systems. (As has

been well known since the work of Fock [14] both types
of terms generate logarithms in the harmonic-coordinate

components of the wave-zone metric. ) Under the trans-

formation (2.33) the gothic metric components change

where

h, ~(X~) = h, ~ + 8 (~ + c)~( —f ~B~(~
&a pa

(2.36)

h~ ~(X~) = hz~+c) A~+ c)~A

f sB—~A~ —("c)„hi~
x

(2.37)

Using Eqs. (2.13), (2.19), (2.28), and (2.31), one finds in-

deed that the leading-logarithmic terms disappear from

Eq. (2.37) to leave a 1/R falloff in the limit R ~ oo with

T —R/c fixed. (The results given above would allow still
for the presence of subdominant ln R/R terms, which a
more complete treatment [2] proves to be altogether ab-
sent in radiative coordinates. ) More precisely, one finds

for the leading 1/R terms in the radiative-coordinates
linearized metric

h, ~(X~) = —[z P(U, N) —2M(ho K~+6(~)K )]

( 1 l
qR'r

(2.38)

where U:—T R/c, N——:X/R, where z~~(U, N) denotes
the quantities (2.12) with the replacement everywhere
of u = t —r/c by U—:T R/c an—d of n = x/r by
N = X/R, and where K —= (1,N) is the radiative-
coordinates Minkowskian outgoing null vector. As for

the leading 1/R term in the radiative quadratic metric

(2.37) it has the form

h2 (X~) =-I~p 1 1

A C

+OO Y dz
dVK ~(V, N) + dY ln

~ d ~

z ~(U —Y, N) + 82'(U, N) +0
C p q2P' dr dU'

(2.39)

K (U, N) = —II + —N, II, ,
pp 1 1

(2.40a)

K '(U, N) = —II, + ) NiLIIL
e)o

+) 2(g 1)
L 1 iL 1——

e) 1

(2.40b)

where 8&~(U, N) is some synchronous quadratic func-

tional of M(U), and where K S—:[U 1 + W ~] —x is

given by

K'j(U, N) = ) NjLIIL
e&o

—1)
, (~ + 1)(~+ 2)

"
-(& —2)+)

(g )(~ )
L 1{i j)L—1—

—2)
, (~ + 1)(~+ 2)

(2.40c)
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K~Kp= 0,
where Kp = fp~K~ = (

—1,N).

(2.41)

In Eqs. (2.40) III. = III, (U) denote as in Eq. (2.21) above

the STF spherical harmonics expansion coefficients of the
gravitational luminosity II(v, N) [obtained by replacing

(u, n) ~ (U, N) in the definition (2.21)]. Let us note the
following algebraic identity satisfied by K ~:

From the results (2.38) and (2.39) it is a simple matter
to extract the radiative multipole moments defined by
Eq. (1.4) above. (One must keep in mind the minus sign

appearing in the relation between the covariant and the
gothic metric deviations. ) Upon application of the TT
projection operator P,~hy(N) many terms in Eqs. (2.38),
(2.39) drop out, and one gets, for the radiative multipole

moments,

~
M,"+"

(V Y)-

... ~
S,"'"(V-Y)+GS,",(U)+O(G'),

2GM +
'(V) =Mal(v) +

'
dV IIr, (V) +

0

+GSzL, (v) + o(G')

Jrad[lj
(V) S(El (U)

0

(2.42a)

(2.42b)

where SzL and Sz'I are some synchronous quadratic func-

tionals of M [while the remainders O(Gz) contain at least

cubically nonlinear hereditary functionals].

Equations (2.42) constitute one of the central results

of the present paper. Before completing it in the next

section, it can be useful to comment upon the nature of
the various hereditary efFects entering Eqs. (2.42).

Let us first consider the II terms, i.e. , the nonlinear

hereditary influence of the emission of gravitational ra-

diation by the system in the past. The kernel entering
these contributions [as written in Eq. (2.42a)],

U

d vie (U V) JH "'
(V) & "'

(V)

D icMemory» ~erszs cctail" effects

A striking feature of the results (2.42) is that they dis-

play the presence of two, and only two, different types of
hereditary terms entering, at the quadratic approxima-

tion, the link between algorithmic moments and radiative

ones, 'R = 'R[W]: namely II terms and M terms [the lat-

ter containing an integral over ln(Y/2P'~ )]. Moreover,

although both types of contributions are hereditary, they
contain quite different weightings of the past activity of
the system.

I

is a flat function of U —V, more precisely a step func-

tion: Kri(V, V) oc e(U —V). (The convergence of the

integral is ensured by the fact that the time derivatives

of the moments tend to zero in the remote past. ) As a
consequence, even after the system has ceased to emit

radiation (in the sense that ML
+ l and Sz~+ l tend to(e+x) (e+x)

zero at late times), the cumulative effect of the emis-

sion of gravitational radiation will produce a constant

(DC) contribution to the gravitational-wave amplitude

(1.4) ("memory efFect" ). More explicitly, one reads off

Eq. (2.42a):

Gcl+1P +~
Il (+oo) —I~' (—oo) = [M~ (+oo) —M~ (

—co)] +
'

dV IIr, (V) + O(C' ), (2.43a)

(2.43b)

Equ«ion (2.43a) can be directly expressed [using
Eq. I(A.29a)] in terms of the angular distribution

(N)/d~ = j dvdE ' "/dvdA of the total en-
ergy radiated by the system:

I,'"f'~(+~) —I'~f'I(-~)

= M~ (+oo) —M~ (—oo)
(e) (e)

2c&
—

&(2g+ 1)ff d+s~~~
NL, (N)dA+ O(G ) .

(2.43c)

The DC memory effects in Eqs. (2.43) associated with

the differences M&~
l (+oo) —M&f

l
(—oo) and S&f (+oo)—

SL (—oo) have been discussed by [17]and [18]. These dif-(e)

ferences generically do not vanish if the source contains
free moving masses in its initial or final state (scatter-
ing situation). (In setting up our formalism we restricted
our attention to systems that become stationary in the
remote past; we shall admit here that we can extend
the applicability of the results of our formalism to cover

scattering situations. ) The DC memory associated with

the II terms was Grst noticed, in a particular context, by
Payne [19] (see also [20]). It was included in the results

of [15], where it was noted to be (formally) of higher or-

der in the slow-motion parameter v' ""'/c than the other
hereditary contributions in (2.42) (see below). Recently,
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this effect has been rediscovered in a general, and rigor-
ous, guise [21] (see also [22]). In Refs. [23, 24] the connec-
tion of the result of Ref. [21] with the effect of the past
emission of gravitational radiation was made explicit, and
Ref. [24] derived (independently of the work [15] that had

gone unnoticed) formulas equivalent to Eqs. (2.43). Note
however that the practical interest of the pure DC effects

(2.43) is rather small because gravitational-wave detec-
tors have a limited frequency bandwidth, [f~;„,f~s„], es-

pecially on the low-frequency side, i.e. , f;„)0. There-
fore, in order to assess the possible physical relevance of
(2.43), one needs to complete it by including all hered-

itary efFects having a heredity time scale comparable to

f,i„T.he. answer to the latter question is given, at the
quadratic approximation, by Eqs. (2.42).

In addition to the "memory" hereditary efFects coming
from the II terms (which comprise both DC and AC con-

tributions) Eqs. (2.42) contain also the contributions of
the backscattering of the gravitational waves emitted in

the past onto the constant curvature associated with the
total mass M. These contributions, i.e. , the M terms
in Eqs. (2.42), are often referred to as "gravitational-
wave tails, " and have been studied in various contexts
(notably in Ref. [25] which is closest in spirit to our ap-
proach). However, we are not aware of results as ex-

plicit as ours, notably Eqs. (2.42) and its completions

given below. In the form in which they are written in

Eqs. (2.42), these M terms seem to contain the kernel

KM (U —V) oc ln(U —V)8(U —V), exhibiting a logarith-
mic blowup for large time intervals. However, this loga-
rithmic behavior, though mathematically correct (within
the assumptions of our framework) is, from the physical
point of view, slightly misleading. Indeed, let us integrate
twice by parts the M terms:

dVln
~ [

M[ ](V) = M[ ](U —2P"d)
&

2prad ) L 2prad L

U Qpt4d

U —2Pr ~
(2.44)

The new form (2.44) shows that the influence of the
remote-past activity of the source enters radiative mo-

ments via a quadratically decreasing kernel K~M" (U—
V) oc (U —V) z. Therefore, in a scattering situation,

where ML (V) is expected to have a finite, nonzero, limit
as V ~ —oo [see the expressions below relating ML, (V)
to the matter distribution] the remote past history of
the system gives a "tail" contribution to the radiative

moments which falls off only as the inverse of the time

span between now and the considered period in the past.
Strictly speaking, the M terms give no DC contribu-

tions to Eqs. (2.43). However, for what concerns real-

istic, band-limited detectors of gravitational waves the

rather slow fallofF of the kernel ia ~M" indicates that the
M terms might contribute, for some sources, numerically

important hereditary effects.

III. GENERATION OF GRAVITATIONAL
VPAVES, INCLUDING TAIL EFFECTS

A. Relation between the radiative
and algorithmic quadrupole moments

for slow-motion systems

In the previous section, we investigated the relation be-

tween the radiative moments 'R and the algorithmic ones

M in the form of a nonlinearity expansion, Eq. (2.1).
Our final result (2.42) solved the problem of getting the

first nonlinear terms in the relation R = R[JH] that de-

pended upon the past history of M. These hereditary

terms 'Rg[M] appear at the quadratic order, and at the

same order there are other "synchronous" terms, 8&l and

82'e in Eqs. (2.42), that were left undetermined by the in-

vestigation of the previous section.

Irsd[e] 1 Jrsd[e]
L + p+s L

E&2

(3.1)

In view of Eq. (3.1), we shall consider with particular

attention the leading contribution to the wave form, i.e. ,

the electriclike radiative quadrupole I, . The slow-rsd[2]

motion expansion of the relation R = R[M] is obtained

by putting back the needed powers of 1/c in Eqs. (2.2).
From the fact that the kernel iCL,L, ...e, contains only

quantities having the dimension of time, dimensional

analysis (see paper IV) shows that the nth-order non-
rw[z] rw[e —&]

linearities contribute to II and e;„, ,J L 2 terms

of order

gn —1

p[~—i)+ze,. -e (tery
' GQ~

—OO —OO

x iCL,L„r, (u, ui, . . . , u„, p'. .s. , P" )

Moreover, the knowledge that the index structure of

In the present section we shall consider slow-motion

radiating systems, for which it is meaningful to order the
terms in the relation R = R[M] according to the pow-

ers of 1/c (slow-motion expansion), instead of those of G
(nonlinearity expansion). (Physically the small parame-

ter of the slow-motion expansion is v/c rs/A where v is

a characteristic internal velocity of the source, and rp/A

the ratio between the size of the source and the charac-

teristic wavelength of the emitted radiation. ) First, let us

recall from Eq. (1.4) that the contributions of the succes-

sive radiative rnultipoles to the directly observable grav-

itational wave form h~e, are of decreasing slow-motion

order:
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]CL,~, ...g is made only of Kronecker b's is easily seen

to imply the equality

E=) E, —2k, (3.3)

where the natural integer k denotes the number of con-

tractions among the indices born by the ML, . 's. There-

fore, the nth-order nonlinearities contribute terms of or-

der O(1/cs[" ~&+2"). In particular, quadratic nonlineari-

ties contribute terms of order O(1/cs+2") while cubic and

higher nonlinearities are at least O(1/cs). Now, as all the

I

moments entering the angular distribution coeScients,
III„of the gravitational energy flux are of order E, & 2,
we see that the II terms in Eq. (2.42a) can contribute at
order 1/c only for radiative multipoles of order / ) 4.
Conversely, we see that the II terms contribute only at
order O(1/cs) to the quadrupole and octupole radiative

moments.

In the case of the electriclike and magneticlike

quadrupole moments I;, and J~9, one concludes
rad[2) rad[2]

from the arguments above that their slow-motion expan-

sion up to order O(1/cs) takes the form

I,", [](U) = M,~,. ](U)+
0

dYM, , (U —Y) In[ ~+K' +O
~

—
~,

Ec )
' (3.4a)

+oo

(U) =S;, (U)+ dYS; (U —Y) 1n
~

„~+K" 0[ —~, (3.4b)

where K' and K" are two numerical constants. The
latter constants denote the coefflcients appearing in
the most general O(1/cs) quadratically nonlinear syn-
chronous quadrupolar terms 82;~ and 82',

z
in Eqs. (2.42).

(Dimensional analysis shows that the only other possible
synchronous term would involve at least one derivative
of the spin moment S, , which vanishes as a consequence
of the field equations, or of the mass dipole M~, which we

can put to zero by working in the center-of-mass frame
of the ingoing system. )

To compute the constants K' and K" we need to im-

plement in detail the algorithmic construction of the part
of the external metric which is generated by the nonlinear

interplay between the monopole (M) and the quadrupole
moments M,~ and S,~. This implementation is explicitly
done in Appendix B for the mass quadrupole M;~. The
final result for the constant K' appearing in Eq. (3.4a) is

/ 11K' = —.
12

B. Relation between the gravitational-wave form
and the matter distribution for slow-motion,

weakly self-gravitating systems

Equations (3.4) solve, within the indicated accuracy,
the second step of our formalism, i.e., that symbolized

by Eq. (1.5) of the Introduction. As we emphasized

there, this result must be completed by a source-rooted

approach providing the missing link between the algorith-
mic moments and the structure and motion of the source,

I

I

as symbolized in Eq. (1.7). In the case of slow-motion sys-

tems having an everywhere weak self-gravitational field

we have already provided this link with the fractional

accuracy O(1/c ). Namely, we have shown in paper IV
that

M„(t) = I;,(t)+O(1/c'), (3.6)

20
d xx;& g 0'g ( tx),

2lc2 dt
(3 7)

involving an effective active gravitational mass density

0,-2 (Too + Tss)

and an effective active current density

o = c 1T'Oi

(3 8)

(3.9)

In these equations i,~ and x;~g denote the STF parts of
x'x~ and x'x~x", respectively (e g , i;~—:.x'.x~ —x2P~/3),
and T"" denote the contravariant components of the

stress-energy tensor of the source in a harmonic coor-

dinate system (see paper IV).
Combining Eqs. (3.4)—(3.7) we get the following ex-

plicit link between the radiative electriclike quadrupole

and the source:

where I,~ (t) is the post-Newtonian "source" mass

quadrupole

d2

I;~(f) = f d~ a n(xxt)3+ ,~ z
s xi~x rr(x, f)

14c2 t2

OO

(3.10)

Note that, if we consider sources that were so "quiet" in
the infinite past that the second derivative of I;~(t) was
tending to zero strictly faster than t ~

[say like (—t)
when t ~ —oo], we can integrate twice the right-hand
side of Eq. (3.10), and thereby give a meaning to a quan-

I

tity I,'ad (having the dimension of a mass quadrupole)

such that I,'. - = I,'. . However, it is physically bet-

ter to work only with the (time differentiated) radiative

moment I, , because, on the one hand, it is directly
rad[2j
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linked with the observable wave form h, T, and on the
other hand, there are many interesting physical situa-
tions where I;~(t) is not expected to tend to zero in the
infinite past (in particular, scattering situations). In such
cases, the impossibility to define an undifferentiated I,'~d

is probably linked to a loss of diEerentiability of the con-
formal structure at future null infinity. More precisely,
a related calculation of Damour [26] indicates that in a
scattering situation the curvature component 4e (in the
notation of Newman and Penrose) peels only as 1/r in-

stead of the usually assumed 1/rs behavior connected

with a C3 differentiability of the conformal structure at
future null infinity. Such calculations exhibiting an ex-

plicit loss of peeling behavior may shed a light on the
physical meaning of the nonpeeling estimates rigorously
derived by Christodoulou and Klainerman [27].

Continuing our study of tail effects, we find by combin-

ing the result (3.4b) above with the results of paper V
about the analogue of Eq. (3.6) for the spin moments,
that we can derive the following link between the radia-
tive magneticlike quadrupole and the source:

2GM Y „ fl
J,
'

(.U) = J, (U)+ dYJ, (U —Y) in~ „d ~+&" +0~ —
4 ~

(3.11)

where K" is the (yet uncalculated) constant appearing in

Eq. (3.4b), and where J,~ is a post-Newtonian "source"

spin quadrupole which has been explicitly given in paper
V as a compact-support integral involving only the stress-

energy tensor of the matter:

I

by the results of papers IV and V) and the radiative

coordinate system X". We see from Eq. (2.34) that a
multiplicative change P" ~ AP™dinduces an additive

shift in Xo—:cT (for some fixed z"), and thereby an

additive shift in U:—T —R/c, namely

(3.12) Ui plead (z") = Uprad (x") + 2 (lnA) GM/c (3.15)

(see Sec. VB of paper V).
Actually the truncation of the result (3.11) at order

1/cs is sufficient, when combined with the c 4-accurate

result (3.10) and the c s-accurate results for the higher

multipoles,

Ir' =Ml +0(l/c ) = I~~ +0(1/c ),
~~j —g~ & + 0(1/cs) —J& & + 0(l /es)

(3.13a)

(3.13b)

(where the post-Newtonian-accurate source multipoles

II, [T""] and JL, [T""] were obtained in papers IV
and V, respectively), to obtain the link between the

gravitational-wave form and the structure and motion

of the source within the fractional accuracy 0(1/c ):

The hereditary functional '8;~ [T""] is obtained by first

inserting the results of papers IV and V in Eqs. (3.10)—
(3.13), and then inserting the latter equations in the ra-

diative multipole expansion (1.4). Up to the fractional

accuracy 0(1/c ) there is only one hereditary contribu-

tion in the outgoing wave form, namely the "tail" appear-

ing in Eq. (3.10), caused by the scattering of a linearized

quadrupolar wave off the curvature of spacetime asso-

ciated with the ADM mass M. Note that at the next
order 1/c4 the wave form will contain two independent

hereditary contributions: the tail term in the radiative

spin quadrupole, Eq. (3.11), as well as a tail term in the
radiative mass octupole, as is clear from Eq. (2.42a).

The explicit appearance of the (arbitrary) time scale
P' d in Eq. (3.10), as well as in the final result (3.14) is to
be noted. This time scale was introduced in Eq. (2.34) as

part of the definition of the transformation between the

algorithmic coordinate system x" (linked to the source

It is easy to see that the efFect of the shift (3.15) in the
first term on the right-hand side of Eq. (3.10) is exactly

compensated by the A-dependent contribution due to the

integral on the right-hand side:

d Y I, (U —Y) ln. (1/A),
C

(3.16)

C. Relation between the gravitational-wave form
and the source for systems of well-separated

strongly self-gravitating bodies

The results of the previous subsection have been de-

rived for material sources that contain everywhere weak

gravitational fields. A priori, this excludes the applica-

tion of our final results to the very interesting sources

which consist of systems of strongly self-gravitating bod-

ies, say an in-spiraling binary neutron star. However, be-

cause of the "modular" structure of our formalism (which

consists of three separate steps), we can extend the appli-

cation of our results to such a case. Indeed, the essence

thereby ensuring that I,
'

j[U(x")] and IiTT(z&), where

we recall that z" are source-rooted coordinates, are inde-

pendent of the choice of P'~~ (within the accuracies with

which they have been derived). Thereby we see that the

numerical value 11/12 of the coefFicient K' computed in

Eq. (3.5) has an intrinsic meaning, independent of con-

ventional choices.
One can note that the computation of Eq. (3.14), with

the indicated accuracy, necessitates the knowledge of the

evolution of the material source with post-Newtonian ac-

curacy [i.e. , neglecting only terms = 0(1/c4)]. We see

therefore, that one can now boost up the precision of the

evolution-and-generation scheme of Ref. [28] by includ-

ing in the computation of the outgoing wave form the

fractional 0(1/cs) terms displayed in Eq. (3.10).
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of the third step of our formalism is to identify (mod-

ulo a coordinate transformation) the near-zone expan-

sion of the (algorithmically constructed) external met-

ric (1.2) with the expression taken in the external near-

zone by the metric generated by the matter, as given

by some source-rooted, post-Newtonian-type, approxi-
mation method. See, in particular, Eq. (4.17) of paper V,
whose left-hand side is the near-zone expansion of the al-

gorithmic metric, while its right-hand side coines from

solving, in the near-zone, the inhomogeneous field equa-

tions

oh,.„~=, T + Nz~(h) + O(6, 7, 6) . (3.17)

XuAuA [g(ZA)] [giIIs(ZA)uAuA]

(3.18)

In Eq. (3.18) A = 1, . . . , N labels the N compact bod-

ies, mA denotes the (constant) Schwarzschild mass of the
Ath compact body (defined when considering an isolated

body), zA(s) denotes some "center of field" world line

associated with the Ath body (with u~A = dzA/dsA and

f„„uAuA ———1), g denotes minus the determinant of

g ) = gi)zg P, g p denotes the matrix inverse of g P

and Ze(z) is the function

In Eq. (3.17) T denotes the contravariant tensor den-
—eP

sity of weight+2 representing the stress-energy distribu-

tion of the matter, T = gT~P where g:——det(g~p),
N P denotes as above the quadratically nonlinear terms

in the harmonically reduced Einstein equations (written
in terms of h )—:g~) —f ) ), and the symbol O(6, 7, 6)
means that the allowed error terms are O(c s) in hoo,

O(c r) in ho' and O(c s) again in h'&.

At this point, we can make use of the fact that Damour

[29] has shown that the metric generated by a system of
well-separated strongly self-gravitating bodies could be

obtained, everywhere outside the bodies, by iteratively

solving inhomogeneous equations of the form (3.17), with—aP
an effective T of the form

T, = ) ms f casse, [z" —zs(ss)]
A

nonspinning bodies in Eq. (3.18); the method is easily

extended to slowly spinning bodies, in which case it is

sufficient to add further spin contributions to Eq. (3.18),
as indicated in Ref. [30]). We conclude that the algo-

rithmic mass and spin moments of the metric outside a
system of N compact bodies are given by

M, = AC. , (I,]T,S])+O] —', ],

ez = AC =s (Js(T, ]) + 0
I

—
s .

]«')

(3.20a)

(3.20b)

1 ~o . ( 3, 1=) rnAI 1+—~A+ vA I6 (x zA),
cz '

] cz 2c2
A

(3.22a)

3= ) rnA'UA
I
1+—UA+ vA

I
6.(x —zA),

c ' -
]I, cz 2c2 )A

(3.22b)

, t' 3, 1) rnAUAiA I
1 + z UA + VA I

6e(x —zA)

where ACe —o stands for "analytic continuation at s = 0,
"

and where the functionals Il, [T" ], Jr, [T" ] are those
defined by Eqs. V (5.11) [with Eqs. V(5.8), in which

(1+4U'"/c2)TI'" must be everywhere replaced by T" ].
At the order at which we are working [defined by the error

terms in Eq. (3.17)], it is a simple matter to work with

the analytically extended effective source terms (3.18).
Essentially, one finds that the analytic continuation in s
is a way to bypass all the ill-defined quantities that would

arise if one was working with a formal "point-particle"

stress-energy tensor, containing b functions. More pre-

cisely, the use of the Riesz function Z, of Eqs. (3.19) is

equivalent to replacing the usual 6 distributions by the

functions

6,(x) = ——b, (r' ) = —s(1 —s)r', (3.21)
1, ~

1

4m 4x

where r = Ix]. With this notation, one can insert in

Eqs. (3.20) the expressions of paper V:

Z (z) =—H '(s)( f x x~)fe—

where

(3.19a)

A = dzA/dt and

(3.22c)

Hs (s) = z 2' 'I'
(
—
)

I'
] (3.19b)

In those equations s denotes a complex number, which is

taken as different from zero to be able to solve Eq. (3.17)
by iteration [including nonlinear terms and the values

of g~) on the world lines, defined as formal power se-

ries in h P(z)]. After the computation of the iteration,
one must analytically continue s down to zero (Ref. [29]
showed that this process was mathematically well de6ned
(no poles at s = 0), and gave the physically unique met-
ric outside N compact bodies). Thanks to this result,
we can apply the method of papers IV and V to systems
of compact bodies. (For simplicity, we have considered

UA —G' ) rnB Iz„—» I

BgA

(3.22d)

Ml, (t) = IL,(t) + O(1/c ),
where

(3.23)

When e' is continued down to zero, 6,(x) tends (in the
sense of distribution theory) towards 6(x), but this limit

process works also for the nonlinear contributions in II.
and JI., in which the direct use of b functions would lead
to undefined expressions. Finally, one finds that the mass

multipole moments are explicitly given by
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IL, (t) = ) m~
l

1 ——U~+ v& l zz
( 3

cz 2c

2(2E + 3)cz dtz ~-

4(2E + 1) d

(E + 1)(2E+ 3)c2 dt )-
with

(3.24)

of the hereditary contribution

Phereditary V &a b PQ[ ] (t)
1R=GXX3b)

where

(3.27)

(3.28)

U~ = (-").
]z~ —za]

(3.25)

In Eq. (3.24) z& denotes as usual the STF projection of

z& z&. When E = 2 the result (3.24) agrees with the
expression derived in the Appendix of [31].

Similarly, but with more work, one can write down

explicit expressions for the spin moments:

S,(t) = J,(t) + O(1/"), (3.26)

where Jl, is a rather complicated expression which can be
straightforwardly obtained from the results of paper V.
In particular, Appendix C of paper V gives the fully ex-

plicit expression of the post-Newtonian spin quadrupole

J,~ [Eq. V (C.5)].
Having obtained the explicit link between the algorith-

mic moments and the source we can straightforwardly

use, as in the previous subsection, the other relations

(3.4) and (3.13) to work out the analogue of Eq. (3.14)
in the case of the generation of gravitational waves by
systems of compact bodies.

D. Energy balance between the near-zone tail efFects
and the wave-zone ones

In paper III, we computed the leading terms in the
near-zone metric which depended, in an irreducible man-

ner, on the full past history of the system. We found that
this dominant near-zone hereditary contribution had the

physical effect of modifying the expression of the grav-

itational radiation damping force. More precisely, the
lowest-order radiation reaction potential [32, 33], V~ =
2: x Q b {t)/5cs, where Q b{t) is any Newtonian-order

quadrupole moment [e.g. , Q b
= J d zoi b+ O(c ) =

I b+ O(c )] was found to be modified by the addition

Note that, in paper III, we had used the time scale P~'s

instead of P'~~ to adimensionalize the integration time
variable v in Eq. (3.28). This change of time scale intro-

duces only synchronous terms in Eq. (3.28) and therefore
leaves invariant the result (3.27). Clearly the term (3.28)
must be related to the hereditary contributions we de-

rived in the far-wave-zone metric, see Eq. (3.10). There
is a useful way of looking at the relation between the
two results, which consists of studying the energy bal-

ance between the energy extracted from the system by
the hereditary-modified gravitational damping force de-

rived from (3.27), and the energy lost at infinity in the
form of heredity-modified gravitational waves. More pre-

cisely, we already remarked in paper III [Eqs. III (7.20)
and III (7.21)) that the irreversible energy losses in the
near-zone caused by the modification (3.27) had the form

Esoorce

leading hered

=
5 ~ ' dt Q-b + 2'Q. b l

1 t' d (2) 1

(3.29)

d@Bondi c3

dU 32m G

t'c)IiT,T &

'
jgdQ(N), (3.30a)

reads

[here and in the following, our calculations correctly in-

clude only the leading synchronous and hereditary con-

tributions but neglect any other term, e.g. , a O(1/cz)
synchronous modi6cation of the Newtonian quadrupole

Q.b]

On the other hand, we can write down the wave-zone

losses computed from the Bondi formula applied to the
tail-modified wave form (3.10). The multipolar expan-

sion of

dE '" ' . (E+1)(E+2) G ( d Irad[g] 4E(E+2) G ( d, ~g[g!

dU (E —1)EE!(2E+1)!!c + qdU
~

(E —1)(E+1)!(2E+1)!!cz + (dU
+

L&2 E&2

(3.30b)

From the results of the present paper we deduce that the leading contributions to the wave-zone losses (3.30) containing

an inHuence of the past history of the source are simply

dU isaaing 5c (dU ' ) 5c
[

dU ' c p
hered

2

dY'I, (U —Y) lnl d
l+—(4) ( Y' l 11

(3.31)
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Comparing Eqs. (3.29) and (3.31), we see that the two

results are nicely consistent (within the accuracy with

which they are derived) with the expectation that there
should be an energy balance between the energy ex-

tracted from the source and the radiation losses at in-

finity. In particular, one should note the role of the fac-
tor s in Eq. (3.29) which ensures consistency between

the result (3.2S) (containing a prefactor 4GM/cs) and

our wave-tail expression (3.10) (which contained a factor
2GM/cs).

APPENDIX A: LEGENDRE FORM
OF RETARDED INTEGRALS

The aim of this appendix is to prove that the following

expression of the retarded integral of a source behaving

like r ~,

( B i +' (1 B i 2+'&!

(
2 r2)e+&

' (AS)

Finally, by integrating both sides of (AS) /+1 times with

respect to z we get

&I Bi' &-2i"' +" (t-z/. )'
e+i

"t
(r Br)

'
( r ) (tz 1)e+1

(A9)

I et us first consider the partial derivatives with respect
to z of the function &pe(r, z). From (A2) we find, after

8+1 partial differentiations,

/B&t
+'

ye(r, z) =
(Bz) Z2- r2

Applying to both sides of (A7) the operator (r B/Br)
yields

where we denote

x BI,(pe(r, z),

(z —r)eln(z —r) —(z+ r)eln(z+ r)
(pe(r, z) =

Str

(Al)

(A2)

Note that in writing (A9) one has used the fact that the

LHS of (A9) behaves like z e i when z -+ oo.

The latter formula (A9) is, thanks to the integral rep-

resentation (A4) of the Legendre function, precisely the

formula (A6) we needed to prove.

can be equivalently rewritten in the form

+Oo

, G(g —-) ~

= — d~g(t —-)c i r c

xq, (-*), (A3)

+ (t — )e
Qe(2:) = 2e e, dt, (A4)

where Qe(x) denotes the Legendre function of the second

kind. %e shall use the following integral representation
of the Legendre function of the second kind:

APPENDIX 8: MONOPOLE-QUADRUPOLE
QUADRATIC METRIC

The case of the interaction between the mass monopole

M and the mass quadrupole M;~(t) is the simplest case

of nonstationary quadratically nonlinear metric. We

present here the computation of this case, using the al-

gorithm of paper I, from which we shall deduce the rela-

tion linking the radiative quadrupole to the algorithmic

quadrupole.

The linearized metric composed with M and M,~ is,

from Eqs. (2.5),

2(-)'+'.
Be,&pe(r, z) = Ae, Qer r (A5)

valid when x & 1 (see Ref. [16] page 31S). [Another form
of Qe is given by Eq. (2.23).]

We thus want to prove

oo 4M 2 z rhi= — — Bbr—Mb t ——
c~r c~ . c

P

c

(Bla)

(Blb)

(Blc)

or, using the form I(A30) of the operator Be, ,

I'1 Bi 2 z

I -„B I V e(r, z) =
( „)e+x Qe— (A6)

We insert this metric into the effective quadratic source

N2 [Eq. III (3.5)] and discard all terms which are not
of the type "M x M;~". We find

r 2
2

N2 —— M —126M~b —126 — M ~
—112 — M

b
—46 — M ~

—8 — M
b

t —— (B2a)

n 108 (g)
C5r5

Nf'= "~MI6M(q +6(—
) M, q +2(—

) M,q ) (t ——
)

",' (-') M.';) —",' (-")'M.',"—8 (-")'M.",.') (
—"-), (B2b)
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0M +60 — Mb +24 — M~ +4

(B2c)

Following the analytic continuation procedure of the algorithm, we now multiply N~ by the factor r+ and compute

0& r Nz y applying the formula III 4.23 to each of the terms in r+Nz . Then we take the 6nite part

(coefficient of Bo) of the Laurent expansion near 8 = 0 of the resulting expression [being careful to handle correctly

the coefficients III (4.23bc)] and we get the first contribution pz~ ——FPO& Nz
~ in the metric. As a check of the

intermediate steps of the computation, one must fred that the pole part (coefhcient of ff ) of fsn' (rnNr S) in

fact cancels out (see paper III). We find that pz so obtained is, in this monopole-quadrupole case, divergence-free:

Bppz ——0. Hence, by application of the algorithm, we do not need to add any supplementary contribution, i.e. ,

q~ = 0 and hz ——
pz . The result is

hoo ++~
M 2)M 2)

r M(y) + 7 M(2) + )0 M(3)

M dxM, b t —— (3x —1) ln
~

+6x2nab (4) rx 2 (x —1

c (x+l

hs' = s's M (
—Mls —

(
—
) M, s

——
(

—
) M, sl

) (
—-)

4n, (4) rx (z —1 l
M dxM, t —— xln~ ~+2

hsr = su's M( Ms ————(-) M,„—3 (
—
) M, s

——
(

—
) MPs

) (r ——
)

+'",",'M(--', M.s--', (-")M.",'-3(-") hf.",'- —"(-") Ml;t)(t-"-)

M(~) " (&) " M(3)

J deM!," (t ——"*) fn (* ')

(B3a)

(B3b)

(B3c)

h~
00 4n p

C T 0
dyM, s (u —

y) ln( —
) +—

In these expressions we have used the Legendre repre-

sentation (2.23) of the "hereditary" retarded integrals.

The metric (B3) is essentially the harmonic coordinates

version of the "2-2" metric of Refs. [8, 25].
Let us now write down the leading behavior at infin-

ity r ~ oo, u = t —-", = const, of this metric. Using

Eq. (2.26) we find

dyMi, . l(u —y) ln (
—")+—hOc

C T

(84b)

h~~ ———

(B4c)

0

-"'"M M.",)(u)+0
i

'""~i,

dyM, , (u —
y) ln (

—
)
+—

0

-"""MM("(u)+ " 'MM(')(u)
2C7T ~ C7r

&& ~ij nab (s) ( in')
i")~
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Noser ere can follow the reasonings in Sec. II to put the
latter metric into radiative form and then find the radia-

tive quadrupole moment by TT projection onto the plane

orthogonal to N. The result can be immediately read off

the first term of the right-hand side of Eq. (B4c). Finally

@re get

dy M,&,"(t—y)

y 11

2prad

(B5)
vrhich is the formula used in the text.
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