Hereditary efficiently dominatable graphs

Martin Milanič

UP FAMNIT and UP PINT, University of Primorska

Raziskovalni matematični seminar, UP FAMNIT, 14. november 2011

Martin Milanič Hereditary efficiently dominatable graphs

Efficient dominating sets

G = (V, E): finite, simple, undirected graph

a vertex $v \in V$ dominates itself and all its neighbors

A set $D \subseteq V$ is an efficient dominating set in *G* if every vertex in *V* is dominated by exactly one vertex in *D*:

$$|N[v] \cap D| = 1$$

for all $v \in V$.

Biggs 1973 (perfect codes in distance-transitive graphs)

G = (V, E): finite, simple, undirected graph

a vertex $v \in V$ dominates itself and all its neighbors

A set $D \subseteq V$ is an efficient dominating set in *G* if every vertex in *V* is dominated by exactly one vertex in *D*:

 $|N[v] \cap D| = 1$

for all $v \in V$.

Biggs 1973 (perfect codes in distance-transitive graphs)

G = (V, E): finite, simple, undirected graph

a vertex $v \in V$ dominates itself and all its neighbors

A set $D \subseteq V$ is an efficient dominating set in *G* if every vertex in *V* is dominated by exactly one vertex in *D*:

$$|N[v] \cap D| = 1$$

for all $v \in V$.

Biggs 1973 (perfect codes in distance-transitive graphs)

G = (V, E): finite, simple, undirected graph

a vertex $v \in V$ dominates itself and all its neighbors

A set $D \subseteq V$ is an efficient dominating set in *G* if every vertex in *V* is dominated by exactly one vertex in *D*:

$$|N[v] \cap D| = 1$$

for all $v \in V$.

• Biggs 1973 (perfect codes in distance-transitive graphs)

Efficient dominating sets

Equivalently:

- D is an independent set of vertices such that
- every vertex outside *D* has a unique neighbor in *D*.

Efficient dominating sets

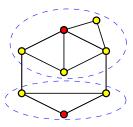
Equivalently:

- D is an independent set of vertices such that
- every vertex outside *D* has a unique neighbor in *D*.

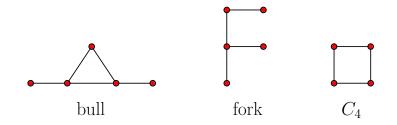
Equivalently:

$$\{N[v] \mid v \in D\}$$

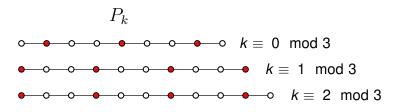
forms a partition of V.



Some small graphs do not contain any efficient dominating sets:



All paths contain efficient dominating sets:



 C_k contains an efficient dominating set $\iff k \equiv 0 \mod 3$.

Complexity

G is efficiently dominatable if it contains an efficient dominating set.

All efficient dominating sets of *G* are of the same size:

every efficient dominating set is a minimum dominating set.

Determining whether *G* is efficiently dominatable is NP-complete, even for:

- planar cubic graphs,
- planar bipartite graphs,
- chordal bipartite graphs,
- chordal graphs,
- line graphs of planar bipartite graphs of max degree three.

Complexity

G is efficiently dominatable if it contains an efficient dominating set.

All efficient dominating sets of *G* are of the same size:

• every efficient dominating set is a minimum dominating set.

Determining whether *G* is efficiently dominatable is NP-complete, even for:

- planar cubic graphs,
- planar bipartite graphs,
- chordal bipartite graphs,
- chordal graphs,

• line graphs of planar bipartite graphs of max degree three.

G is efficiently dominatable if it contains an efficient dominating set.

All efficient dominating sets of *G* are of the same size:

• every efficient dominating set is a minimum dominating set.

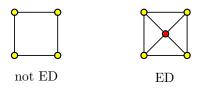
Determining whether *G* is efficiently dominatable is NP-complete, even for:

- planar cubic graphs,
- planar bipartite graphs,
- chordal bipartite graphs,
- chordal graphs,
- line graphs of planar bipartite graphs of max degree three.

... but polynomially solvable for:

- trees, interval graphs, series-parallel graphs,
- split graphs, block graphs, circular-arc graphs,
- permutation graphs, trapezoid graphs,
- cocomparability graphs, distance-hereditary graphs,
- AT-free graphs,
- graphs of bounded treewidth or clique-width.

The efficiently dominatable graphs do not form a hereditary class:



G is hereditary efficiently dominatable (HED) if every induced subgraph of G is efficiently dominatable.

We are interested in:

- characterizations,
- algorithmic aspects.

G is hereditary efficiently dominatable (HED) if every induced subgraph of *G* is efficiently dominatable.

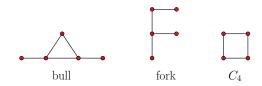
We are interested in:

- characterizations,
- algorithmic aspects.

Hereditary efficiently dominatable graphs

Proposition

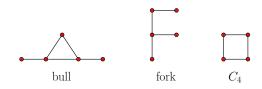
Every HED graph is (bull, fork, C_{3k+1} , C_{3k+2})-free.



Hereditary efficiently dominatable graphs

Proposition

Every HED graph is (bull, fork, C_{3k+1} , C_{3k+2})-free.



The converse holds as well.

```
To prove this, we first study the structure of (bull, fork, C_4)-free graphs.
```

Let G be a (bull, fork, C_4)-free graph. Then, G can be built from

paths and cycles

- disjoint union of two graphs,
- duplicating a vertex,
- adding a dominating vertex,
- raft expansion,
- semi-raft expansion.

Let G be a (bull, fork, C_4)-free graph. Then, G can be built from paths and cycles

- disjoint union of two graphs,
- duplicating a vertex,
- adding a dominating vertex,
- raft expansion,
- semi-raft expansion.

Let G be a (bull, fork, C₄)-free graph. Then, G can be built from

paths and cycles

- disjoint union of two graphs,
- duplicating a vertex,
- adding a dominating vertex,
- raft expansion,
- semi-raft expansion.

Let G be a (bull, fork, C_4)-free graph. Then, G can be built from

paths and cycles

- disjoint union of two graphs,
- duplicating a vertex,
- adding a dominating vertex,
- raft expansion,
- semi-raft expansion.

Let G be a (bull, fork, C_4)-free graph. Then, G can be built from

paths and cycles

- disjoint union of two graphs,
- duplicating a vertex,
- adding a dominating vertex,
- raft expansion,
- semi-raft expansion.

Let G be a (bull, fork, C_4)-free graph. Then, G can be built from

paths and cycles

- disjoint union of two graphs,
- duplicating a vertex,
- adding a dominating vertex,
- raft expansion,
- semi-raft expansion.

Let G be a (bull, fork, C_4)-free graph. Then, G can be built from

paths and cycles

- disjoint union of two graphs,
- duplicating a vertex,
- adding a dominating vertex,
- raft expansion,
- semi-raft expansion.

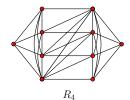
Let G be a (bull, fork, C₄)-free graph. Then, G can be built from

paths and cycles

- disjoint union of two graphs,
- duplicating a vertex,
- adding a dominating vertex,
- raft expansion,
- semi-raft expansion.

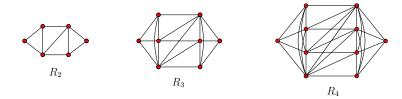
Rafts and semi-rafts

Rafts of order 2, 3 and 4:

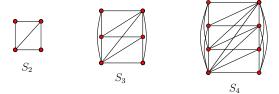


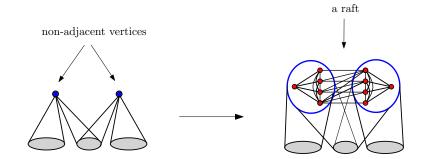
Rafts and semi-rafts

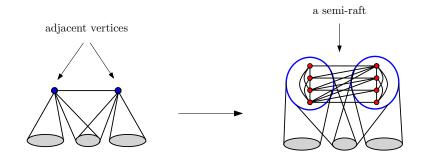
Rafts of order 2, 3 and 4:



Semi-rafts of order 2, 3 and 4:







Let G be a (bull, fork, C₄)-free graph. Then, G can be built from

paths and cycles

- disjoint union of two graphs,
- duplicating a vertex,
- adding a dominating vertex,
- raft expansion,
- semi-raft expansion.

G: a minimal counterexample.

Case 1. G contains an induced cycle of order at least 5

Easy.

- C: shortest induced cycle of order at least 5
- Analyzing the neighborhood of C shows that G = C.

G: a minimal counterexample.

Case 1. G contains an induced cycle of order at least 5

Easy.

- C: shortest induced cycle of order at least 5
- Analyzing the neighborhood of *C* shows that G = C.

Case 2. The only possible induced cycle in G is C_3 .

 $P = P_k$: a longest induced path in *G*.

- k ≥ 4 since otherwise G is (P₄, C₄)-free, therefore it is either disconnected or contains a dominating vertex, which is impossible by minimality.
- If k ≥ 5 then analyzing the neighborhood of P shows that G = P.

Sketch of proof

Case 2. The only possible induced cycle in G is C_3 .

- $P = P_k$: a longest induced path in *G*.
 - k ≥ 4 since otherwise G is (P₄, C₄)-free, therefore it is either disconnected or contains a dominating vertex, which is impossible by minimality.
 - If k ≥ 5 then analyzing the neighborhood of P shows that G = P.

Case 2. The only possible induced cycle in G is C_3 .

 $P = P_k$: a longest induced path in *G*.

 k ≥ 4 since otherwise G is (P₄, C₄)-free, therefore it is either disconnected or contains a dominating vertex, which is impossible by minimality.

 If k ≥ 5 then analyzing the neighborhood of P shows that G = P.

- k ≥ 4 since otherwise G is (P₄, C₄)-free, therefore it is either disconnected or contains a dominating vertex, which is impossible by minimality.
- If k ≥ 5 then analyzing the neighborhood of P shows that G = P.

- *k* ≥ 4 since otherwise *G* is (*P*₄, *C*₄)-free, therefore it is either disconnected or contains a dominating vertex,
- If $k \ge 5$ then analyzing the neighborhood of *P* shows that G = P.

- k ≥ 4 since otherwise G is (P₄, C₄)-free, therefore it is either disconnected or contains a dominating vertex, which is impossible by minimality.
- If $k \ge 5$ then analyzing the neighborhood of *P* shows that G = P.

- k ≥ 4 since otherwise G is (P₄, C₄)-free, therefore it is either disconnected or contains a dominating vertex, which is impossible by minimality.
- If k ≥ 5 then analyzing the neighborhood of P shows that G = P.

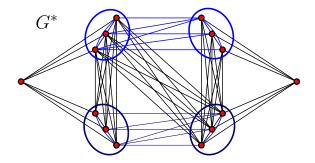
- k ≥ 4 since otherwise G is (P₄, C₄)-free, therefore it is either disconnected or contains a dominating vertex, which is impossible by minimality.
- If k ≥ 5 then analyzing the neighborhood of P shows that G = P.

If k = 4 then analyzing the neighborhood of *P* shows that *G* is an induced subgraph of the following 14-vertex graph:

If k = 4 then analyzing the neighborhood of *P* shows that *G* is an induced subgraph of the following 14-vertex graph:

If k = 4 then analyzing the neighborhood of *P* shows that *G* is an induced subgraph of the following 14-vertex graph:

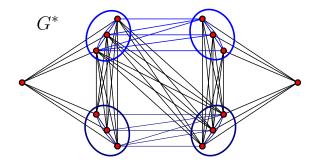
If k = 4 then analyzing the neighborhood of *P* shows that *G* is an induced subgraph of the following 14-vertex graph:



 G^* arises from a double semi-raft expansion applied to raft R_2 .

Martin Milanič Hereditary efficiently dominatable graphs

If k = 4 then analyzing the neighborhood of *P* shows that *G* is an induced subgraph of the following 14-vertex graph:



 G^* arises from a double semi-raft expansion applied to raft R_2 .

Theorem

Let G be a (bull, fork, C₄)-free graph. Then, G can be built from

paths and cycles

by applying a sequence of the following operations:

- disjoint union of two graphs,
- duplicating a vertex,
- adding a dominating vertex,
- raft expansion,
- semi-raft expansion.

Theorem

Let G be a (bull, fork, C_{3k+1} , C_{3k+2})-free graph. Then, G can be built from

paths and $\{cycles \ C_{3k} \ ; \ k \in \mathbb{N}\}$

by applying a sequence of the following operations:

- disjoint union of two graphs,
- duplicating a vertex,
- adding a dominating vertex,
- raft expansion,
- semi-raft expansion.

Theorem

Let G be a (bull, fork, C_{3k+1} , C_{3k+2})-free graph. Then, G can be built from

paths and {cycles C_{3k} ; $k \in \mathbb{N}$ }

by applying a sequence of the following operations:

- disjoint union of two graphs,
- duplicating a vertex,
- adding a dominating vertex,
- raft expansion,
- semi-raft expansion.

The set of efficiently dominatable graphs is closed under each of the operations used in the theorem:

- disjoint union of two graphs,
- duplicating a vertex,
- adding a dominating vertex,
- raft expansion,
- semi-raft expansion.

Corollary

Every (bull, fork, C_{3k+1} , C_{3k+2})-free graph is efficiently dominatable.

Theorem

The set of efficiently dominatable graphs is closed under each of the operations used in the theorem:

- disjoint union of two graphs,
- duplicating a vertex,
- adding a dominating vertex,
- raft expansion,
- semi-raft expansion.

Corollary

Every (bull, fork, C_{3k+1} , C_{3k+2})-free graph is efficiently dominatable.

Theorem

The set of efficiently dominatable graphs is closed under each of the operations used in the theorem:

- disjoint union of two graphs,
- duplicating a vertex,
- adding a dominating vertex,
- raft expansion,
- semi-raft expansion.

Corollary

Every (bull, fork, C_{3k+1} , C_{3k+2})-free graph is efficiently dominatable.

Theorem

The set of efficiently dominatable graphs is closed under each of the operations used in the theorem:

- disjoint union of two graphs,
- duplicating a vertex,
- adding a dominating vertex,
- raft expansion,
- semi-raft expansion.

Corollary

Every (bull, fork, C_{3k+1} , C_{3k+2})-free graph is efficiently dominatable.

Theorem

The set of efficiently dominatable graphs is closed under each of the operations used in the theorem:

- disjoint union of two graphs,
- duplicating a vertex,
- adding a dominating vertex,
- raft expansion,
- semi-raft expansion.

Corollary

Every (bull, fork, C_{3k+1} , C_{3k+2})-free graph is efficiently dominatable.

Theorem

The set of efficiently dominatable graphs is closed under each of the operations used in the theorem:

- disjoint union of two graphs,
- duplicating a vertex,
- adding a dominating vertex,
- raft expansion,
- semi-raft expansion.

Corollary

Every (bull, fork, C_{3k+1} , C_{3k+2})-free graph is efficiently dominatable.

Theorem

The set of efficiently dominatable graphs is closed under each of the operations used in the theorem:

- disjoint union of two graphs,
- duplicating a vertex,
- adding a dominating vertex,
- raft expansion,
- semi-raft expansion.

Corollary

Every (bull, fork, C_{3k+1} , C_{3k+2})-free graph is efficiently dominatable.

Theorem

The set of efficiently dominatable graphs is closed under each of the operations used in the theorem:

- disjoint union of two graphs,
- duplicating a vertex,
- adding a dominating vertex,
- raft expansion,
- semi-raft expansion.

Corollary

Every (bull, fork, C_{3k+1} , C_{3k+2})-free graph is efficiently dominatable.

Theorem

Is there an efficient algorithm

for finding an efficient dominating set in a given efficiently dominatable graph?

No (unless P = NP).

Is there an efficient algorithm for finding an efficient dominating set in a given efficiently dominatable graph?

No (unless P = NP).

Martin Milanič Hereditary efficiently dominatable graphs

Is there an efficient algorithm for finding an efficient dominating set in a given efficiently dominatable graph?

No (unless P = NP).

Is there an efficient algorithm for finding an efficient dominating set in a given efficiently dominatable graph?

No (unless P = NP).

Is there an efficient algorithm for finding an efficient dominating set in a given hereditary efficiently dominatable graph?

Yes! We will see two approaches.

Is there an efficient algorithm for finding an efficient dominating set in a given hereditary efficiently dominatable graph?

Yes! We will see two approaches.

Is there an efficient algorithm for finding an efficient dominating set in a given hereditary efficiently dominatable graph?

Yes! We will see two approaches.

- if G contains an induced bull, fork, or $C_4 \rightarrow G$ is not HED
- while G is decomposable, decompose → compute a set H of indecomposable induced subgraphs of G
- if there exists an *H* ∈ *H* such that *H* = *C*_{3k+1} or *C*_{3k+2} → *G* is not HED
- otherwise, each *H* ∈ *H* is either *P_k* or *C_{3k}* → we can find an ED set in every *H*; these sets can be mapped to an ED set in *G*.

- if G contains an induced bull, fork, or $C_4 \rightarrow G$ is not HED
- while G is decomposable, decompose → compute a set H of indecomposable induced subgraphs of G
- if there exists an *H* ∈ *H* such that *H* = *C*_{3k+1} or *C*_{3k+2} → *G* is not HED
- otherwise, each *H* ∈ *H* is either *P_k* or *C_{3k}* → we can find an ED set in every *H*; these sets can be mapped to an ED set in *G*.

- if G contains an induced bull, fork, or $C_4 \rightarrow G$ is not HED
- while G is decomposable, decompose → compute a set H of indecomposable induced subgraphs of G
- if there exists an *H* ∈ *H* such that *H* = *C*_{3k+1} or *C*_{3k+2} → *G* is not HED
- otherwise, each *H* ∈ *H* is either *P_k* or *C_{3k}* → we can find an ED set in every *H*; these sets can be mapped to an ED set in *G*.

- if G contains an induced bull, fork, or $C_4 \rightarrow G$ is not HED
- while G is decomposable, decompose → compute a set H of indecomposable induced subgraphs of G
- if there exists an *H* ∈ *H* such that *H* = *C*_{3k+1} or *C*_{3k+2} → *G* is not HED
- otherwise, each *H* ∈ *H* is either *P_k* or *C*_{3k} → we can find an ED set in every *H*; these sets can be mapped to an ED set in *G*.

- if G contains an induced bull, fork, or $C_4 \rightarrow G$ is not HED
- while G is decomposable, decompose → compute a set H of indecomposable induced subgraphs of G
- if there exists an *H* ∈ *H* such that *H* = *C*_{3k+1} or *C*_{3k+2} → *G* is not HED
- otherwise, each *H* ∈ *H* is either *P_k* or *C*_{3k} → we can find an ED set in every *H*; these sets can be mapped to an ED set in *G*.

- if G contains an induced bull, fork, or $C_4 \rightarrow G$ is not HED
- while G is decomposable, decompose \rightarrow compute a set \mathcal{H} of indecomposable induced subgraphs of G
- if there exists an $H \in \mathcal{H}$ such that $H = C_{3k+1}$ or $C_{3k+2} \rightarrow G$ is not HED
- otherwise, each *H* ∈ *H* is either *P_k* or *C*_{3k} → we can find an ED set in every *H*; these sets can be mapped to an ED set in *G*.

- if G contains an induced bull, fork, or $C_4 \rightarrow G$ is not HED
- while G is decomposable, decompose → compute a set H of indecomposable induced subgraphs of G
- if there exists an *H* ∈ *H* such that *H* = *C*_{3k+1} or *C*_{3k+2} → *G* is not HED
- otherwise, each *H* ∈ *H* is either *P_k* or *C_{3k}* → we can find an ED set in every *H*; these sets can be mapped to an ED set in *G*.

- if G contains an induced bull, fork, or $C_4 \rightarrow G$ is not HED
- while G is decomposable, decompose → compute a set H of indecomposable induced subgraphs of G
- if there exists an $H \in \mathcal{H}$ such that $H = C_{3k+1}$ or $C_{3k+2} \rightarrow G$ is not HED
- otherwise, each *H* ∈ *H* is either *P_k* or *C*_{3k} → we can find an ED set in every *H*; these sets can be mapped to an ED set in *G*.

Input: a graph *G* **Output:** either an efficient dominating set in *G*, or a proof that *G* is not hereditary efficiently dominatable.

Algorithm:

- if G contains an induced bull, fork, or $C_4 \rightarrow G$ is not HED
- while G is decomposable, decompose → compute a set H of indecomposable induced subgraphs of G
- if there exists an $H \in \mathcal{H}$ such that $H = C_{3k+1}$ or $C_{3k+2} \rightarrow G$ is not HED
- otherwise, each *H* ∈ *H* is either *P_k* or *C_{3k}* → we can find an ED set in every *H*; these sets can be mapped to an ED set in *G*.

Input: a graph *G* **Output:** either an efficient dominating set in *G*, or a proof that *G* is not hereditary efficiently dominatable.

Algorithm:

- if G contains an induced bull, fork, or $C_4 \rightarrow G$ is not HED
- while G is decomposable, decompose → compute a set H of indecomposable induced subgraphs of G
- if there exists an $H \in \mathcal{H}$ such that $H = C_{3k+1}$ or $C_{3k+2} \rightarrow G$ is not HED
- otherwise, each *H* ∈ *H* is either *P_k* or *C_{3k}* → we can find an ED set in every *H*; these sets can be mapped to an ED set in *G*.

Input: a graph *G* **Output:** either an efficient dominating set in *G*, or a proof that *G* is not hereditary efficiently dominatable.

Algorithm:

- if G contains an induced bull, fork, or $C_4 \rightarrow G$ is not HED
- while G is decomposable, decompose → compute a set H of indecomposable induced subgraphs of G
- if there exists an $H \in \mathcal{H}$ such that $H = C_{3k+1}$ or $C_{3k+2} \rightarrow G$ is not HED
- otherwise, each *H* ∈ *H* is either *P_k* or *C_{3k}* → we can find an ED set in every *H*; these sets can be mapped to an ED set in *G*.

efficient domination number

= maximum number of vertices that can be efficiently dominated

= max{ $|D \cup N(D)| | D \subseteq V$ independent, every $v \in V \setminus D$ has at most one neighbor in D}

The efficient domination problem:

Given a graph G, compute the efficient domination number of G.

efficient domination number

= maximum number of vertices that can be efficiently dominated

 $= \max\{|D \cup N(D)| | D \subseteq V \text{ independent, every } v \in V \setminus D \text{ has at most one neighbor in } D\}$

The efficient domination problem:

Given a graph *G*, compute the efficient domination number of *G*.

efficient domination number

 maximum number of vertices that can be efficiently dominated

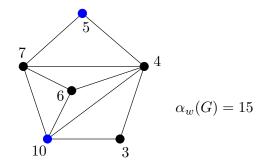
 $= \max\{|D \cup N(D)| | D \subseteq V \text{ independent, every } v \in V \setminus D \text{ has at most one neighbor in } D\}$

The efficient domination problem:

Given a graph G, compute the efficient domination number of G.

The weighted independent set problem

WEIGHTED INDEPENDENT SET (WIS) Problem: Input: $G = (V, E), w : V \to \mathbb{N}$ Task: Compute $\alpha_w(G) = \max$ weight of an independent set.



Reduction to the WIS problem

 G^2 – square of a graph G:

•
$$V(G^2) = V(G)$$
,

•
$$uv \in E(G^2) \iff d_G(u,v) \leq 2.$$

What are the independent sets in G^2 ?

Observation

Efficient domination number of G = maximum weight of an independent set in G² where

w(x) = |N[x]|

for all $x \in V(G)$

Reduction to the WIS problem

 G^2 – square of a graph G:

•
$$V(G^2) = V(G)$$
,

•
$$uv \in E(G^2) \iff d_G(u,v) \leq 2.$$

What are the independent sets in G^2 ?

Observation

Efficient domination number of G = maximum weight of an independent set in G^2 where

w(x) = |N[x]|

for all $x \in V(G)$.

Reduction to the WIS problem

The efficient domination problem is polynomially solvable in every class of graphs X such that

the WIS problem is polynomially solvable in the class

Theorem

The WIS problem is polynomially solvable for claw-free graphs.

Minty 1980 + Nakamura–Tamura 2001 Oriolo–Pietropaoli–Stauffer 2008 Nobili–Sassano 2010 Faenza–Oriolo–Stauffer 2011 The efficient domination problem is polynomially solvable in every class of graphs X such that the WIS problem is polynomially solvable in the class

 $\{G^2 \mid G \in X\}.$

Theorem

The WIS problem is polynomially solvable for claw-free graphs.

Minty 1980 + Nakamura–Tamura 2001 Oriolo–Pietropaoli–Stauffer 2008 Nobili–Sassano 2010 Faenza–Oriolo–Stauffer 2011 The efficient domination problem is polynomially solvable in every class of graphs X such that the WIS problem is polynomially solvable in the class

$$\{G^2 \mid G \in X\}$$
.

Theorem

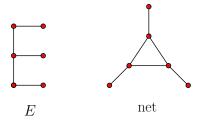
The WIS problem is polynomially solvable for claw-free graphs.

Minty 1980 + Nakamura–Tamura 2001 Oriolo–Pietropaoli–Stauffer 2008 Nobili–Sassano 2010 Faenza–Oriolo–Stauffer 2011

(E, net)-free graphs

Proposition

If G is (E, net)-free then G^2 is claw-free.



Corollary

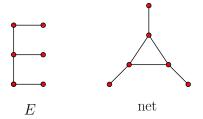
The ED number can be computed in polynomial time for (E, net)-free graphs.

Martin Milanič Hereditary efficiently dominatable graphs

(E, net)-free graphs

Proposition

If G is (E, net)-free then G^2 is claw-free.



Corollary

The ED number can be computed in polynomial time for (E, net)-free graphs.

Martin Milanič Hereditary efficiently dominatable graphs

The same approach can be used to show that the efficient domination problem is polynomial for:

- cocomparability graphs,
- interval graphs,
- circular-arc graphs,
- trapezoid graphs,
- strongly chordal graphs,
- AT-free graphs.

All these graph classes are closed under taking squares, and the WIS problem is polynomial on each of them.

Summary

- Characterizations of hereditary efficiently dominatable graphs.
- HED graphs can be recognized in polynomial time by:
 (1) expressing their defining property in MSOL,
 (2) using the fact that they are of bounded clique-width,
 (3) applying a theorem of Courcelle-Makowsky-Rotics
 (2000).

Is there a more direct polynomial-time algorithm for recognizing hereditary efficiently dominatable graphs?

Summary

- Characterizations of hereditary efficiently dominatable graphs.
- HED graphs can be recognized in polynomial time by:

expressing their defining property in MSOL,
 using the fact that they are of bounded clique-width,
 applying a theorem of Courcelle-Makowsky-Rotics
 0000).

Is there a more direct polynomial-time algorithm for recognizing hereditary efficiently dominatable graphs?

- Characterizations of hereditary efficiently dominatable graphs.
- HED graphs can be recognized in polynomial time by:
 (1) expressing their defining property in MSOL,

(2) using the fact that they are of bounded clique-width,(3) applying a theorem of Courcelle-Makowsky-Rotics(2000).

Is there a more direct polynomial-time algorithm for recognizing hereditary efficiently dominatable graphs?

- Characterizations of hereditary efficiently dominatable graphs.
- HED graphs can be recognized in polynomial time by:

 expressing their defining property in MSOL,
 using the fact that they are of bounded clique-width,
 applying a theorem of Courcelle-Makowsky-Rotics
 applying a theorem of Courcelle-Makowsky-Rotics
 there a more direct polynomial-time algorithm for
- What is the complexity of recognizing (*C*_{3*k*+1}, *C*_{3*k*+2})-free graphs?

- Characterizations of hereditary efficiently dominatable graphs.
- HED graphs can be recognized in polynomial time by:
 (1) expressing their defining property in MSOL,
 (2) using the fact that they are of bounded clique-width,
 (3) applying a theorem of Courcelle-Makowsky-Rotics
 (2000).

Is there a more direct polynomial-time algorithm for recognizing hereditary efficiently dominatable graphs?

- Characterizations of hereditary efficiently dominatable graphs.
- HED graphs can be recognized in polynomial time by:
 (1) expressing their defining property in MSOL,
 (2) using the fact that they are of bounded clique-width,
 (3) applying a theorem of Courcelle-Makowsky-Rotics
 (2000).

Is there a more direct polynomial-time algorithm for recognizing hereditary efficiently dominatable graphs?

- Characterizations of hereditary efficiently dominatable graphs.
- HED graphs can be recognized in polynomial time by:
 (1) expressing their defining property in MSOL,
 (2) using the fact that they are of bounded clique-width,
 (3) applying a theorem of Courcelle-Makowsky-Rotics
 (2000).

Is there a more direct polynomial-time algorithm for recognizing hereditary efficiently dominatable graphs?

Hvala!

Martin Milanič Hereditary efficiently dominatable graphs