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Efficient dominating sets

G = (V ,E): finite, simple, undirected graph

a vertex v ∈ V dominates itself and all its neighbors

A set D ⊆ V is an efficient dominating set in G if every vertex in

V is dominated by exactly one vertex in D:

|N[v ] ∩ D| = 1

for all v ∈ V .

Biggs 1973 (perfect codes in distance-transitive graphs)

(1-)perfect code / perfect (independent) dominating set
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Efficient dominating sets

Equivalently:

D is an independent set of vertices such that

every vertex outside D has a unique neighbor in D.
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Efficient dominating sets

Equivalently:

D is an independent set of vertices such that

every vertex outside D has a unique neighbor in D.

Equivalently:

{N[v ] | v ∈ D}

forms a partition of V .
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Examples

Some small graphs do not contain any efficient dominating sets:

bull fork C4
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Paths and cycles

All paths contain efficient dominating sets:

Pk

k ≡ 0 mod 3

k ≡ 1 mod 3

k ≡ 2 mod 3

Ck contains an efficient dominating set ⇐⇒ k ≡ 0 mod 3.
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Complexity

G is efficiently dominatable if it contains an efficient dominating

set.

All efficient dominating sets of G are of the same size:

every efficient dominating set is a minimum dominating set.

Determining whether G is efficiently dominatable is

NP-complete, even for:

planar cubic graphs,

planar bipartite graphs,

chordal bipartite graphs,

chordal graphs,

line graphs of planar bipartite graphs of max degree three.
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Complexity

... but polynomially solvable for:

trees, interval graphs, series-parallel graphs,

split graphs, block graphs, circular-arc graphs,

permutation graphs, trapezoid graphs,

cocomparability graphs, distance-hereditary graphs,

AT-free graphs,

graphs of bounded treewidth or clique-width.
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Relation to hereditary classes

The efficiently dominatable graphs do not form a hereditary

class:

not ED ED
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Hereditary efficiently dominatable graphs

G is hereditary efficiently dominatable (HED) if every induced

subgraph of G is efficiently dominatable.

We are interested in:

characterizations,

algorithmic aspects.
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Hereditary efficiently dominatable graphs

Proposition

Every HED graph is (bull, fork, C3k+1, C3k+2)-free.

bull fork C4
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Hereditary efficiently dominatable graphs

Proposition

Every HED graph is (bull, fork, C3k+1, C3k+2)-free.

bull fork C4

The converse holds as well.

To prove this, we first study the structure of

(bull, fork, C4)-free graphs.
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A decomposition theorem

Theorem

Let G be a (bull, fork, C4)-free graph. Then, G can be built from

paths and cycles

by applying a sequence of the following operations:

disjoint union of two graphs,

duplicating a vertex,

adding a dominating vertex,

raft expansion,

semi-raft expansion.
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Rafts and semi-rafts

Rafts of order 2, 3 and 4:

R2

R3

R4
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Rafts and semi-rafts

Rafts of order 2, 3 and 4:

R2

R3

R4

Semi-rafts of order 2, 3 and 4:

S2

S3

S4
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Raft expansion

non-adjacent vertices

a raft
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Semi-raft expansion

adjacent vertices

a semi-raft
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A decomposition theorem

Theorem

Let G be a (bull, fork, C4)-free graph. Then, G can be built from
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Sketch of proof

G: a minimal counterexample.

Case 1. G contains an induced cycle of order at least 5

Easy.

C: shortest induced cycle of order at least 5

Analyzing the neighborhood of C shows that G = C.
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Sketch of proof

Case 2. The only possible induced cycle in G is C3.

P = Pk : a longest induced path in G.

k ≥ 4 since otherwise G is (P4,C4)-free,

therefore it is either disconnected or

contains a dominating vertex,

which is impossible by minimality.

If k ≥ 5 then analyzing the neighborhood of P shows that

G = P.
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Sketch of proof

If k = 4 then analyzing the neighborhood of P shows that G is

an induced subgraph of the following 14-vertex graph:
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Sketch of proof

If k = 4 then analyzing the neighborhood of P shows that G is

an induced subgraph of the following 14-vertex graph:

G
∗

G∗ arises from a double semi-raft expansion applied to raft R2.
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Characterization of HED graphs

The set of efficiently dominatable graphs is closed under each

of the operations used in the theorem:

disjoint union of two graphs,

duplicating a vertex,

adding a dominating vertex,

raft expansion,

semi-raft expansion.

Corollary

Every (bull, fork, C3k+1, C3k+2)-free graph is efficiently

dominatable.

Theorem

The class of hereditary efficiently dominatable graphs equals

the class of (bull, fork, C3k+1, C3k+2)-free graphs.
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Martin Milanič Hereditary efficiently dominatable graphs



Characterization of HED graphs

The set of efficiently dominatable graphs is closed under each

of the operations used in the theorem:

disjoint union of two graphs,

duplicating a vertex,

adding a dominating vertex,

raft expansion,

semi-raft expansion.

Corollary

Every (bull, fork, C3k+1, C3k+2)-free graph is efficiently

dominatable.

Theorem

The class of hereditary efficiently dominatable graphs equals

the class of (bull, fork, C3k+1, C3k+2)-free graphs.
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Martin Milanič Hereditary efficiently dominatable graphs



Characterization of HED graphs

The set of efficiently dominatable graphs is closed under each

of the operations used in the theorem:

disjoint union of two graphs,

duplicating a vertex,

adding a dominating vertex,

raft expansion,

semi-raft expansion.

Corollary

Every (bull, fork, C3k+1, C3k+2)-free graph is efficiently

dominatable.

Theorem

The class of hereditary efficiently dominatable graphs equals

the class of (bull, fork, C3k+1, C3k+2)-free graphs.
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Finding efficient dominating sets efficiently?

Is there an efficient algorithm

for finding an efficient dominating set

in a given efficiently dominatable graph?

No (unless P = NP).
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A polynomial-time robust algorithm

Input: a graph G

Output: either an efficient dominating set in G, or a proof that

G is not hereditary efficiently dominatable.

Algorithm:

if G contains an induced bull, fork, or C4 → G is not HED

while G is decomposable, decompose → compute a set H
of indecomposable induced subgraphs of G

if there exists an H ∈ H such that H = C3k+1 or C3k+2 →
G is not HED

otherwise, each H ∈ H is either Pk or C3k → we can find

an ED set in every H; these sets can be mapped to an ED

set in G.
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Another approach

efficient domination number

= maximum number of vertices that can be efficiently

dominated

= max{|D ∪ N(D)| |D ⊆ V independent, every v ∈ V \ D has at

most one neighbor in D}

The efficient domination problem:

Given a graph G, compute the efficient domination number

of G.
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The weighted independent set problem

WEIGHTED INDEPENDENT SET (WIS) Problem:

Input: G = (V ,E), w : V → N

Task: Compute αw (G) = max weight of an independent set.

5

7
4

310

6
αw(G) = 15
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Reduction to the WIS problem

G2 – square of a graph G:

V (G2) = V (G),

uv ∈ E(G2) ⇐⇒ dG(u, v) ≤ 2.

What are the independent sets in G2?

Observation

Efficient domination number of G =

maximum weight of an independent set in G2 where

w(x) = |N[x ]|

for all x ∈ V (G).
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Reduction to the WIS problem

The efficient domination problem is polynomially solvable in

every class of graphs X such that

the WIS problem is polynomially solvable in the class

{G2 |G ∈ X} .

Theorem

The WIS problem is polynomially solvable for claw-free graphs.

Minty 1980 + Nakamura–Tamura 2001

Oriolo–Pietropaoli–Stauffer 2008

Nobili–Sassano 2010

Faenza–Oriolo–Stauffer 2011
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(E, net)-free graphs

Proposition

If G is (E, net)-free then G2 is claw-free.

E net

Corollary

The ED number can be computed in polynomial time for

(E, net)-free graphs.
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More polynomial results

The same approach can be used to show that the efficient

domination problem is polynomial for:

cocomparability graphs,

interval graphs,

circular-arc graphs,

trapezoid graphs,

strongly chordal graphs,

AT-free graphs.

All these graph classes are closed under taking squares, and

the WIS problem is polynomial on each of them.
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Summary

Characterizations of hereditary efficiently dominatable

graphs.

HED graphs can be recognized in polynomial time by:

(1) expressing their defining property in MSOL,

(2) using the fact that they are of bounded clique-width,

(3) applying a theorem of Courcelle-Makowsky-Rotics

(2000).

Is there a more direct polynomial-time algorithm for

recognizing hereditary efficiently dominatable graphs?

What is the complexity of recognizing

(C3k+1,C3k+2)-free graphs?
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Martin Milanič Hereditary efficiently dominatable graphs



Summary

Characterizations of hereditary efficiently dominatable

graphs.

HED graphs can be recognized in polynomial time by:

(1) expressing their defining property in MSOL,

(2) using the fact that they are of bounded clique-width,

(3) applying a theorem of Courcelle-Makowsky-Rotics

(2000).

Is there a more direct polynomial-time algorithm for

recognizing hereditary efficiently dominatable graphs?

What is the complexity of recognizing

(C3k+1,C3k+2)-free graphs?
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The end

Hvala!
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