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Abstract: In this paper, we consider Herglotz-type variational problems dealing with fractional
derivatives of distributed-order with respect to another function. We prove necessary optimality
conditions for the Herglotz fractional variational problem with and without time delay, with higher-
order derivatives, and with several independent variables. Since the Herglotz-type variational
problem is a generalization of the classical variational problem, our main results generalize several
results from the fractional calculus of variations. To illustrate the theoretical developments included
in this paper, we provide some examples.
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1. Introduction

Fractional calculus is as old as ordinary calculus, but it was only at the end of the 20th
Century that it managed to attract the attention of many researchers, who in their studies
showed that this theory is an important tool to model problems, not only in mathematics,
but also in other areas, such as physics, engineering, chemistry, biology, epidemiology,
and control theory, among others (see [1–6]). Many important mathematicians such as
Euler, Lagrange, Fourier, Abel, Liouville, and Riemann worked in fractional calculus.
Fractional derivatives and fractional integrals are generalizations of the notions of integer-
order derivatives and integrals and include n-th derivatives and n-fold integrals as special
cases. Several different fractional derivatives have been defined, such as Riemann–Liouville,
Caputo, Riesz, Erdelyi–Kober, and Hadamard, just to mention a few [7,8]. We note that each
definition has its own properties and that many of them are not equivalent to each other.
In this paper, we deal with the general notions of distributed-order fractional derivatives
with respect to an arbitrary kernel in the Riemann–Liouville and Caputo sense, recently
introduced in [9]. One of the advantages of fractional derivatives is that these operators
are non-local, thus conserving system memories, as opposed to integer-order derivatives,
which are local operators.

The calculus of variations deals with the optimization of functionals involving an inte-
gral in which the Lagrangian depends on the independent variable, an unknown function,
and its derivative (or derivatives). The classical problem of the calculus of variations was
generalized by G. Herglotz in 1930 [10], who presented a new problem involving a first-
order initial-value problem that defines a function z(·) in a given interval [a, b] and consists
of finding trajectories x and z that extremize the z(b) value. This problem is also known as
a generalized variational problem. One of the advantages of this problem is that it allows
giving a variational description of non-conservative and dissipative processes, even when
the Lagrangian is autonomous [11], which is not possible using the classical variational
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calculus. Herglotz’s problem only attracted the attention of the scientific community in
the late Twentieth Century. Thereafter, many important results of the classical calculus of
variations were then generalized to Herglotz problems [11–16].

The fractional calculus of variations generalizes the classical variational calculus,
replacing the integer-order derivatives by fractional derivatives in the Lagrangian function
given in the integral of the functional to be extremized. It was in 1996 that the fractional
calculus of variations had a considerable development, being relevant to better describe
non-conservative systems in mechanics. Furthermore, this theory provides a more realistic
approach to physics, allowing it to consider non-conservative systems in a more natural
way [6,17]. Since then, this theory has attracted much attention from a large number of
researchers, with several articles published [12,18–23].

In [9], the authors introduced a new fractional operator, combining two fractional
operators: fractional derivatives of distributed-order and fractional derivatives with respect
to another function. The order of this new fractional derivative is not constant, and this
operator is defined using a function of probability, which acts as a distribution of orders of
differentiation, multiplied by a fractional derivative. Our objective in this paper is to study
several Herglotz-type problems involving this new fractional derivative.

This paper is organized as follows. In Section 2, we present the classical Herglotz
variational problem and some necessary background on fractional calculus. In Section 3,
we study the fractional Herglotz problem, in four different cases, using distributed-order
fractional derivatives with arbitrary kernels. Namely, we study fractional variational
problems of the Herglotz-type for the case where the orders of differentiation belong to the
interval [0, 1], for the higher-order case, for problems involving time delay, and with several
independent variables. Finally, we present some examples to illustrate our main results.

2. Preliminaries
2.1. Herglotz’s Variational Problem

We begin this section presenting the Herglotz variational problem.

Problem (PH): Determine trajectories x ∈ C2([a, b],R) and z ∈ C1([a, b],R) that extremize

z(b),

where the pair (x, z) satisfies the differential equation:

z′(t) = L(t, x(t), x′(t), z(t)), t ∈ [a, b],

with initial condition:
z(a) = γ ∈ R,

where it is assumed that the Lagrangian L satisfies the following conditions:

(1) L ∈ C1([a, b]×R3,R);

(2) t 7→ ∂L
∂x

(t, x(t), x′(t), z(t)), t 7→ ∂L
∂x′

(t, x(t), x′(t), z(t)), and t 7→ ∂L
∂z

(t, x(t), x′(t), z(t))

are differentiable functions for any admissible trajectories (x, z).

It is clear that, if the Lagrangian function L does not depend on the variable z, Problem
(PH) reduces to the classical problem of the calculus of variations. Herglotz proved that a
necessary optimality condition for a pair (x, z) to be a local extremizer of Problem (PH) is
given by the following equation, known as the generalized Euler–Lagrange equation [10]:

∂L
∂x

(t, x(t), x′(t), z(t))− d
dt

∂L
∂x′

(t, x(t), x′(t), z(t))

+
∂L
∂z

(t, x(t), x′(t), z(t))
∂L
∂x′

(t, x(t), x′(t), z(t)) = 0, t ∈ [a, b].
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Obviously, if the Lagrangian function L does not depend on z, then we obtain the
famous Euler–Lagrange equation (see [24]):

∂L
∂x

(t, x(t), x′(t))− d
dt

∂L
∂x′

(t, x(t), x′(t)) = 0, t ∈ [a, b].

2.2. Distributed-Order Fractional Calculus with Respect to an Arbitrary Smooth Kernel

For the notions of distributed-order fractional derivatives with respect to an arbitrary
smooth kernel in the Riemann–Liouville and Caputo senses, in the case where α ∈ [0, 1],
we refer the reader to [9].

Next, we recall the extensions of these two derivatives for the case of higher-order
derivatives.

Let n ∈ N and φ : [n− 1, n]→ [0, 1] be a continuous function such that∫ n

n−1
φ(α)dα > 0.

We start with some needed definitions (see e.g., [25]).

Definition 1. Let x : [a, b]→ R be an integrable function and ψ ∈ Cn([a, b],R) be an increasing
function such that ψ′(t) 6= 0, for all t ∈ [a, b]. The left and right Riemann–Liouville distributed-
order fractional derivatives of a function x with respect to the kernel ψ are defined by:

Dφ(α),ψ
a+ x(t) :=

∫ n

n−1
φ(α)Dα,ψ

a+ x(t)dα and Dφ(α),ψ
b− x(t) :=

∫ n

n−1
φ(α)Dα,ψ

b− x(t)dα,

where Dα,ψ
a+ and Dα,ψ

b− are the left and right ψ-Riemann–Liouville fractional derivatives of order
α ∈ [n− 1, n], respectively.

Definition 2. Let x, ψ ∈ Cn([a, b],R) be two functions such that ψ is increasing and ψ′(t) 6= 0,
for all t ∈ [a, b]. The left and right Caputo distributed-order fractional derivatives of x with respect
to ψ are defined by:

CDφ(α),ψ
a+ x(t) :=

∫ n

n−1
φ(α)CDα,ψ

a+ x(t)dα and CDφ(α),ψ
b− x(t) :=

∫ n

n−1
φ(α)CDα,ψ

b− x(t)dα,

where CDα,ψ
a+ and CDα,ψ

b− are the left and right ψ-Caputo fractional derivatives of order α ∈ [n− 1, n],
respectively.

In the following, we denote

In−φ(α),ψ
a+ x(t) :=

∫ n

n−1
φ(α)In−α,ψ

a+ x(t)dα and In−φ(α),ψ
b− x(t) :=

∫ n

n−1
φ(α)In−α,ψ

b− x(t)dα,

where In−α,ψ
a+ and In−α,ψ

b− are, respectively, the left and right Riemann–Liouville fractional
integrals of order n− α with respect to the kernel ψ. For brevity’s sake, we will use the
following notation:

y[m]
ψ (t) :=

(
1

ψ′(t)
d
dt

)m
y(t).

To finalize this section, we present the following result, which is fundamental in the
proof of our results (cf. [25]).
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Theorem 1 (Integration by parts formulas). Given x : [a, b]→ R a continuous function and
y ∈ Cn([a, b],R), then

∫ b

a
x(t)CDφ(α),ψ

a+ y(t)dt =
∫ b

a

(
Dφ(α),ψ

b−
x(t)
ψ′(t)

)
y(t)ψ′(t)dt

+

[
n−1

∑
k=0

(
−1

ψ′(t)
d
dt

)k(
In−φ(α),ψ
b−

x(t)
ψ′(t)

)
y[n−k−1]

ψ (t)

]t=b

t=a

and∫ b

a
x(t)CDφ(α),ψ

b− y(t)dt =
∫ b

a

(
Dφ(α),ψ

a+
x(t)
ψ′(t)

)
y(t)ψ′(t)dt

+

[
n−1

∑
k=0

(−1)n−k
(

1
ψ′(t)

d
dt

)k(
In−φ(α),ψ
a+

x(t)
ψ′(t)

)
y[n−k−1]

ψ (t)

]t=b

t=a

.

3. Main Results

In this section, we study four different types of variational problems of the Herglotz
type involving distributed-order fractional derivatives with arbitrary smooth kernels.

3.1. Herglotz Fractional Variational Problem—Case 1

For this problem, we restrict ourselves to the case where α ∈ [0, 1], that is considering
the definitions introduced in [9].

Consider two continuous functions φ, ϕ : [0, 1]→ [0, 1] satisfying the following conditions:∫ 1

0
φ(α)dα > 0 and

∫ 1

0
ϕ(α)dα > 0.

In what follows, we use the notation:

[x, z](t) :=
(

t, x(t),C Dφ(α),ψ
a+ x(t),C Dϕ(α),ψ

b− x(t), z(t)
)

and we denote the partial derivative of L with respect to its ith-coordinate by ∂iL.
We can formulate the problem as follows:

Problem (PH1): Determine trajectories x ∈ C1([a, b],R) and z ∈ C1([a, b],R) that extremize
(minimize or maximize)

z(b)

where the pair (x, z) satisfies the differential equation:

z′(t) = L
(

t, x(t),C Dφ(α),ψ
a+ x(t),C Dϕ(α),ψ

b− x(t), z(t)
)

, t ∈ [a, b],

and
z(a) = γ ∈ R.

It is assumed that CDφ(α),ψ
a+ x and CDϕ(α),ψ

b− x are of class C1, L : [a, b]×R4 −→ R is of
class C1, and the maps exist and are continuous on [a, b]:

t 7→ Dφ(α),ψ
b−

(
λ(t) · ∂3L[x, z](t)

ψ′(t)

)
and t 7→ Dϕ(α),ψ

a+

(
λ(t) · ∂4L[x, z](t)

ψ′(t)

)
,

for all admissible pairs (x, z), where

λ(t) := e−
∫ t

a ∂5L[x,z](s)ds, t ∈ [a, b]. (1)
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The following result gives a necessary condition of the Euler–Lagrange type and
natural boundary conditions, for an admissible pair (x, z) to be a solution of the problem
(PH1).

Theorem 2. (Necessary optimality conditions for Problem (PH1)) If the pair (x, z) is a solution of
Problem (PH1), then (x, z) satisfies the generalized fractional Euler–Lagrange equation:

λ(t)∂2L[x, z](t) +
(

Dφ(α),ψ
b−

λ(t)∂3L[x, z](t)
ψ′(t)

)
ψ′(t)

+

(
Dϕ(α),ψ

a+
λ(t)∂4L[x, z](t)

ψ′(t)

)
ψ′(t) = 0, (2)

for all t ∈ [a, b]. Furthermore, if x(a) is free, then (x, z) satisfies the following condition:

I1−φ(α),ψ
b−

λ(t)∂3L[x, z](t)
ψ′(t)

= I1−ϕ(α),ψ
a+

λ(a)∂4L[x, z](t)
ψ′(t)

, at t = a, (3)

and if x(b) is free, then (x, z) satisfies the following condition:

I1−φ(α),ψ
b−

λ(t)∂3L[x, z](t)
ψ′(t)

= I1−ϕ(α),ψ
a+

λ(t)∂4L[x, z](t)
ψ′(t)

, at t = b. (4)

Proof. Suppose that the pair (x, z) is a solution of Problem (PH1) and h ∈ C1([a, b],R) is an
arbitrary function, such that its Caputo distributed-order fractional derivatives, CDφ(α),ψ

a+ h

and CDϕ(α),ψ
b− h, are continuously differentiable. Define the function β : [a, b]→ R by

β(t) :=
d
dε

z[x + εh](t) |ε=0 .

Since z(a) is fixed, we have that β(a) = 0. Now, we define g :]− r, r[→ R, where r > 0,
by

g(ε) = z[x + εh](b).

We have that zero is a local extremizer of g, since z(b) is a local extremum, and therefore,

β(b) :=
d
dε

z[x + εh](b) |ε=0= g′(0) = 0.

Since

β′(t) =
d
dt

d
dε

z[x + εh](t) |ε=0=
d
dε

d
dt

z[x + εh](t) |ε=0=
d
dε

L[x + εh, z](t) |ε=0

= ∂2L[x, z](t) · h(t) + ∂3L[x, z](t) ·C Dφ(α),ψ
a+ h(t) + ∂4L[x, z](t) ·C Dϕ(α),ψ

b− h(t)

+∂5L[x, z](t) · d
dε

z[x + εh](t) |ε=0

= ∂2L[x, z](t) · h(t) + ∂3L[x, z](t) ·C Dφ(α),ψ
a+ h(t) + ∂4L[x, z](t) ·C Dϕ(α),ψ

b− h(t)

+∂5L[x, z](t) · β(t),

then

β′(t)− ∂5L[x, z](t) · β(t) = ∂2L[x, z](t) · h(t) + ∂3L[x, z](t) ·C Dφ(α),ψ
a+ h(t)

+ ∂4L[x, z](t) ·C Dϕ(α),ψ
b− h(t).
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Solving this equation, we obtain

e−
∫ t

a ∂5L[x,z](s)dsβ(t)− β(a) =
∫ t

a
e−
∫ s

a ∂5L[x,z](p)dp ·
(

∂2L[x, z](s) · h(s)

+ ∂3L[x, z](s) ·C Dφ(α),ψ
a+ h(s) + ∂4L[x, z](s) ·C Dϕ(α),ψ

b− h(s)
)

ds.

Considering t = b, we obtain

∫ b

a
λ(s) ·

(
∂2L[x, z](s) · h(s) + ∂3L[x, z](s) ·C Dφ(α),ψ

a+ h(s)

+ ∂4L[x, z](s) ·C Dϕ(α),ψ
b− h(s)

)
ds = 0. (5)

Using fractional integration by parts (Theorem 1) in Equation (5), we obtain

∫ b

a

(
λ(s)∂2L[x, z](s) +

(
Dφ(α),ψ

b−
λ(s)∂3L[x, z](s)

ψ′(s)

)
ψ′(s)

+

(
Dϕ(α),ψ

a+
λ(s)∂4L[x, z](s)

ψ′(s)

)
ψ′(s)

)
h(s)ds +

[
h(s)

(
I1−φ(α),ψ
b−

λ(s)∂3L[x, z](s)
ψ′(s)

)

− h(s)
(

I1−ϕ(α),ψ
a+

λ(s)∂4L[x, z](s)
ψ′(s)

)]s=b

s=a

= 0. (6)

Considering h(a) = h(b) = 0 in Equation (6), we have

∫ b

a

(
λ(s)∂2L[x, z](s) +

(
Dφ(α),ψ

b−
λ(s)∂3L[x, z](s)

ψ′(s)

)
ψ′(s)

+

(
Dϕ(α),ψ

a+
λ(s)∂4L[x, z](s)

ψ′(s)

)
ψ′(s)

)
h(s)ds = 0.

From the fundamental lemma of the calculus of variations (see [24]), we obtain

λ(s)∂2L[x, z](s) +
(

Dφ(α),ψ
b−

λ(s)∂3L[x, z](s)
ψ′(s)

)
ψ′(s) +

(
Dϕ(α),ψ

a+
λ(s)∂4L[x, z](s)

ψ′(s)

)
ψ′(s) = 0,

for all s ∈ [a, b], proving the generalized fractional Euler–Lagrange Equation (2). Since h(a)
is arbitrary if x(a) is free, using (2) and considering h(a) 6= 0 and h(b) = 0 in (6), we obtain

I1−ϕ(α),ψ
a+

λ(s)∂4L[x, z](s)
ψ′(s)

= I1−φ(α),ψ
b−

λ(s)∂3L[x, z](s)
ψ′(s)

, at s = a,

proving the natural boundary condition (3). Similarly, since h(b) is arbitrary if x(b) is free,
considering h(a) = 0 and h(b) 6= 0 in (6) and using (2), we obtain the natural boundary
condition (4).

Remark 1. We note that if the Lagrangian L does not depend on z, then we obtain as a corollary
Theorem 3.2 of [9].

3.2. Herglotz Fractional Variational Problem—Case 2

For this problem, let us consider the case where the Lagrangian depends on higher-
order distributed-order fractional derivatives (see Definition 2).
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Consider the distribution functions φi, ϕi with domains [i− 1, i], i = 1, . . . , n, where
n ∈ N is fixed, satisfying the following conditions∫ i

i−1
φi(α)dα > 0 and

∫ i

i−1
ϕi(α)dα > 0, for all i.

For the simplicity of notation, we consider the following:

[x, z]n(t) :=
(

t, x(t),C Dφ1(α),ψ
a+ x(t),C Dϕ1(α),ψ

b− x(t), . . . ,C Dφn(α),ψ
a+ x(t),C Dϕn(α),ψ

b− x(t), z(t)
)

.

Problem (PHn): Determine trajectories x ∈ Cn([a, b],R) and z ∈ C1([a, b],R) that extremize

z(b)

where (x, z) satisfies the differential equation:

z′(t) = L[x, z]n(t), t ∈ [a, b],

subject to the boundary condition:

z(a) = γ ∈ R.

We assume that, for each i = 1, . . . , n, CDφi(α),ψ
a+ x and CDϕi(α),ψ

b− x are all of class C1,
the Lagrangian function L : [a, b]×R2n+2 → R is of class C1, and the maps exist and are
continuous on [a, b]:

t 7→ Dφi(α),ψ
b−

(
λ(t) · ∂2i+1L[x, z]n(t)

ψ′(t)

)
and t 7→ Dϕi(α),ψ

a+

(
λ(t) · ∂2i+2L[x, z]n(t)

ψ′(t)

)
, (7)

for all admissible pairs (x, z), where

λ(t) := e−
∫ t

a ∂2n+3L[x,z](s)ds, t ∈ [a, b]. (8)

We are now in a position to present our second result.

Theorem 3. (Necessary optimality conditions for Problem (PHn)) If the pair (x, z) is a solution of
Problem (PHn), then (x, z) satisfies the generalized fractional Euler–Lagrange equation:

λ(t)∂2L[x, z]n(t) +
n

∑
i=1

[(
Dφi(α),ψ

b−
λ(t)∂2i+1L[x, z]n(t)

ψ′(t)

)
ψ′(t)

+

(
Dϕi(α),ψ

a+
λ(t)∂2i+2L[x, z]n(t)

ψ′(t)

)
ψ′(t)

]
= 0, (9)

for all t ∈ [a, b]. Furthermore,

(i) For a given i = 0, . . . , n− 1, if x[i]ψ (a) is free, then

n

∑
k=i+1

[(
− 1

ψ′(t)
1
dt

)k−i−1(
Ik−φk(α),ψ
b−

λ(t)∂2k+1L[x, z]n(t)
ψ′(t)

)

+ (−1)i+1
(

1
ψ′(t)

1
dt

)k−i−1(
Ik−ϕk(α),ψ
a+

λ(t)∂2k+2L[x, z]n(t)
ψ′(t)

)]
= 0, at t = a; (10)
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(ii) For a given i = 0, . . . , n− 1, if x[i]ψ (b) is free, then

n

∑
k=i+1

[(
− 1

ψ′(t)
1
dt

)k−i−1(
Ik−φk(α),ψ
b−

λ(t)∂2k+1L[x, z]n(t)
ψ′(t)

)

+ (−1)i+1
(

1
ψ′(t)

1
dt

)k−i−1(
Ik−ϕk(α),ψ
a+

λ(t)∂2k+2L[x, z]n(t)
ψ′(t)

)]
= 0, at t = b. (11)

Proof. Let h ∈ Cn([a, b],R) be an arbitrary function such that h[i]ψ (a) = 0 or h[i]ψ (b) = 0, if

x[i]ψ (a) or x[i]ψ (b) are fixed, respectively, for each i = 0, . . . , n− 1. Defining β : [a, b]→ R by

β(t) :=
d
dε

z[x + εh](t) |ε=0,

then β(a) = 0, β(b) = 0, and

β′(t) = ∂2L[x, z]n(t) · h(t) +
n

∑
i=1

(
∂2i+1L[x, z]n(t) ·C Dφi(α),ψ

a+ h(t)

+ ∂2i+2L[x, z]n(t) ·C Dϕi(α),ψ
b− h(t)

)
+ ∂2n+3L[x, z]n(t) · β(t). (12)

The solution of Equation (12) is defined by

e−
∫ t

a ∂2n+3L[x,z](s)ds · β(t)− β(a) =
∫ t

a
e−
∫ s

a ∂2n+3L[x,z](p)dp ·
(

∂2L[x, z]n(s) · h(s)

+
n

∑
i=1

[
∂2i+1L[x, z]n(s) ·C Dφi(α),ψ

a+ h(s) + ∂2i+2L[x, z]n(s) ·C Dϕi(α),ψ
b− h(s)

])
ds. (13)

Considering λ(t) = e−
∫ t

a ∂2n+3L[x,z](s)ds and taking t = b in (13), Theorem 1 allows us
to prove that

∫ b

a

(
λ(s)∂2L[x, z]n(s) +

n

∑
i=1

[(
Dφi(α),ψ

b−
λ(s)∂2i+1L[x, z]n(s)

ψ′(s)

)
ψ′(s)

+

(
Dϕi(α),ψ

a+
λ(s)∂2i+2L[x, z]n(s)

ψ′(s)

)
ψ′(s)

])
h(s)ds

+
n

∑
i=1

i−1

∑
k=0

[((
− 1

ψ′(s)
1
ds

)k(
Ii−φi(α),ψ
b−

λ(s)∂2i+1L[x, z]n(s)
ψ′(s)

)

+ (−1)i−k
(

1
ψ′(s)

1
ds

)k(
Ii−ϕi(α),ψ
a+

λ(s)∂2i+2L[x, z]n(s)
ψ′(s)

))
h[i−k−1]

ψ (s)

]s=b

s=a

= 0.
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Since

n

∑
i=1

i−1

∑
k=0

[((
− 1

ψ′(s)
1
ds

)k(
Ii−φi(α),ψ
b−

λ(s)∂2i+1L[x, z]n(s)
ψ′(s)

)

+ (−1)i−k
(

1
ψ′(s)

1
ds

)k(
Ii−ϕi(α),ψ
a+

λ(s)∂2i+2L[x, z]n(s)
ψ′(s)

))
h[i−k−1]

ψ (s)

]s=b

s=a

=
n−1

∑
i=0

h[i]ψ (s)
n

∑
k=i+1

[((
− 1

ψ′(s)
1
ds

)k−i−1(
Ik−φk(α),ψ
b−

λ(s)∂2k+1L[x, z]n(s)
ψ′(s)

)

+ (−1)i+1
(

1
ψ′(s)

1
ds

)k−i−1(
Ik−ϕk(α),ψ
a+

λ(s)∂2k+2L[x, z]n(s)
ψ′(s)

))]s=b

s=a

;

from the arbitrariness of h and using the fundamental lemma of calculus of variations, we
have proven the generalized fractional Euler–Lagrange Equation (9) and the necessary
conditions (10) and (11).

Remark 2. It is easy to see that Theorem 9 of [25] is a corollary of Theorem 3.

3.3. Herglotz Fractional Variational Problem—Case 3

It is well known that time delay is a common phenomenon that occurs in many
engineering and nature problems. Therefore, it is extremely important to consider when
formulating such problems the explicit dependence of a time delay, in order to better
understand the evolution of the dynamical systems under observation. Motivated by the
importance of considering a time delay in the formulation of variational problems, we now
study the Herglotz variational problem with time delay. For the simplicity of presentation,
we restrict ourselves to the case where α ∈ [0, 1].

In what follows, τ is a fixed real number such that 0 ≤ τ < b− a, and in order to
simplify the notation, we write:

[x, z]τ(t) :=
(

t, x(t), x(t− τ),C Dφ(α),ψ
a+ x(t),C Dϕ(α),ψ

b− x(t), z(t)
)

.

Problem (PHτ): Determine x ∈ C1([a− τ, b],R) and z ∈ C1([a, b],R) that extremize

z(b)

where
z′(t) = L[x, z]τ(t), t ∈ [a, b];

z(a) = γ ∈ R and x(t) = µ(t) on [a− τ, a], where µ ∈ C1([a− τ, a],R) is a given initial
function.

It is assumed that CDφ(α),ψ
a+ x and CDϕ(α),ψ

b− x are of class C1 and L satisfies the following
conditions:

1. L : [a, b]×R5 −→ R is of class C1;
2. The functions exist and are continuous:

t 7→ Dφ(α),ψ
(b−τ)−

(
λ(t) · ∂4L[x, z]τ(t)

ψ′(t)

)
and t 7→ Dϕ(α),ψ

a+

(
λ(t) · ∂5L[x, z]τ(t)

ψ′(t)

)
on [a, b− τ], and

t 7→ Dφ(α),ψ
b−

(
λ(t) · ∂4L[x, z]τ(t)

ψ′(t)

)
and t 7→ Dϕ(α),ψ

(b−τ)+

(
λ(t) · ∂5L[x, z]τ(t)

ψ′(t)

)
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on [b− τ, b], where

λ(t) := e−
∫ t

a ∂6L[x,z]τ(s)ds, t ∈ [a, b].

The next result presents the necessary optimality conditions for the fractional varia-
tional problem of the Herglotz type with time delay.

Theorem 4 (Necessary optimality conditions for Problem (PHτ)). If the pair (x, z) is a
solution of Problem (PHτ), then (x, z) satisfies the generalized fractional Euler–Lagrange equations:

λ(t)∂2L[x, z]τ(t) + λ(t + τ)∂3L[x, z]τ(t + τ)

+

(
Dφ(α),ψ
(b−τ)−

λ(t)∂4L[x, z]τ(t)
ψ′(t)

)
ψ′(t) +

(
Dϕ(α),ψ

a+
λ(t)∂5L[x, z]τ(t)

ψ′(t)

)
ψ′(t)

−
∫ 1

0

φ(α)

Γ(1− α)

d
dt

∫ b

b−τ
(ψ(s)− ψ(t))−αλ(s)∂4L[x, z]τ(s)dsdα = 0, ∀ t ∈ [a, b− τ] (14)

and

λ(t)∂2L[x, z]τ(t) +
(

Dφ(α),ψ
b−

λ(t)∂4L[x, z]τ(t)
ψ′(t)

)
ψ′(t)

+

(
Dϕ(α),ψ
(b−τ)+

λ(t)∂5L[x, z]τ(t)
ψ′(t)

)
ψ′(t)

+
∫ 1

0

ϕ(α)

Γ(1− α)

d
dt

∫ b−τ

a
(ψ(t)− ψ(s))−αλ(s)∂5L[x, z]τ(s)dsdα = 0, ∀ t ∈ [b− τ, b]. (15)

Furthermore, if x(b) is free, then (x, z) satisfies the natural boundary condition:

I1−φ(α),ψ
b−

λ(t)∂4L[x, z]τ(t)
ψ′(t)

= I1−ϕ(α),ψ
a+

λ(t)∂5L[x, z]τ(t)
ψ′(t)

, at t = b. (16)

Proof. Let h ∈ C1([a− τ, b],R) be an arbitrary function such that h(t) = 0, a− τ ≤ t ≤ a,
CDφ(α),ψ

a+ h, and CDϕ(α),ψ
b− h are of class C1. Defining function β : [a, b]→ R by

β(t) :=
d
dε

z[x + εh]τ(t) |ε=0

we have that β(a) = β(b) = 0. Hence, we obtain

β′(t) =
d
dt

d
dε

z[x + εh]τ(t) |ε=0=
d
dε

d
dt

z[x + εh]τ(t) |ε=0=
d
dε

L[x + εh, z]τ(t) |ε=0

= ∂2L[x, z]τ(t) · h(t) + ∂3L[x, z]τ(t) · h(t− τ) + ∂4L[x, z]τ(t) ·C Dφ(α),ψ
a+ h(t)

+ ∂5L[x, z]τ(t) ·C Dϕ(α),ψ
b− h(t) + ∂6L[x, z]τ(t) · β(t). (17)

Solving the differential Equation (17), we obtain

λ(t)β(t)− β(a) =
∫ t

a
λ(s)

(
∂2L[x, z]τ(s) · h(s) + ∂3L[x, z]τ(s) · h(s− τ)

+ ∂4L[x, z]τ(s) ·C Dφ(α),ψ
a+ h(s) + ∂5L[x, z]τ(s) ·C Dϕ(α),ψ

b− h(s)
)

ds. (18)
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Considering t = b and replacing β(a) = β(b) = 0 in (18), we have

∫ b

a

(
λ(s)∂2L[x, z]τ(s) · h(s) + λ(s)∂3L[x, z]τ(s) · h(s− τ)

+ λ(s)∂4L[x, z]τ(s) ·C Dφ(α),ψ
a+ h(s) + λ(s)∂5L[x, z]τ(s) ·C Dϕ(α),ψ

b− h(s)
)

ds = 0. (19)

Since∫ b

a
λ(s)∂3L[x, z]τ(s) · h(s− τ)ds =

∫ b−τ

a
λ(s + τ)∂3L[x, z]τ(s + τ) · h(s)ds,

then, from (19), we obtain

∫ b−τ

a

(
λ(s)∂2L[x, z]τ(s) + λ(s + τ)∂3L[x, z]τ(s + τ)

)
· h(s)ds

+
∫ b

b−τ
λ(s)∂2L[x, z]τ(s) · h(s)ds

+
∫ b

a

(
λ(s)∂4L[x, z]τ(s) ·C Dφ(α),ψ

a+ h(s) + λ(s)∂5L[x, z]τ(s) ·C Dϕ(α),ψ
b− h(s)

)
ds = 0. (20)

Note also that

Dφ(α),ψ
b−

λ(s)∂4L[x, z]τ(s)
ψ′(s)

= Dφ(α),ψ
(b−τ)−

λ(s)∂4L[x, z]τ(s)
ψ′(s)

−
∫ 1

0

φ(α)

Γ(1− α)

(
1

ψ′(s)
d
ds

) ∫ b

b−τ
(ψ(p)− ψ(s))−αλ(p)∂4L[x, z]τ(p)dpdα, (21)

for all s ∈ [a, b− τ], and

Dϕ(α),ψ
a+

λ(s)∂5L[x, z]τ(s)
ψ′(s)

= Dϕ(α),ψ
(b−τ)+

λ(s)∂5L[x, z]τ(s)
ψ′(s)

+
∫ 1

0

ϕ(α)

Γ(1− α)

(
1

ψ′(s)
d
ds

) ∫ b−τ

a
(ψ(s)− ψ(p))−αλ(p)∂5L[x, z]τ(p)dpdα = 0, (22)

for all s ∈ [b− τ, b]. Using Equation (21) and Theorem 1, we conclude that

∫ b

a
λ(s)∂4L[x, z]τ(s) ·C Dφ(α),ψ

a+ h(s)ds =
∫ b−τ

a

((
Dφ(α),ψ
(b−τ)−

λ(s)∂4L[x, z]τ(s)
ψ′(s)

)
ψ′(s)

−
∫ 1

0

φ(α)

Γ(1− α)

d
ds

∫ b

b−τ
(ψ(p)− ψ(s))−αλ(p)∂4L[x, z]τ(p)dpdα

)
h(s)ds

+
∫ b

b−τ

(
Dφ(α),ψ

b−
λ(s)∂4L[x, z]τ(s)

ψ′(s)

)
ψ′(s)h(s)ds +

[(
I1−φ(α),ψ
b−

λ(s)∂4L[x, z]τ(s)
ψ′(s)

)
h(s)

]s=b

s=a

.

(23)

Similarly, using (22) and Theorem 1, we obtain

∫ b

a
λ(s)∂5L[x, z]τ(s) ·C Dϕ(α),ψ

b− h(s)ds =
∫ b

b−τ

((
Dϕ(α),ψ
(b−τ)+

λ(s)∂5L[x, z]τ(s)
ψ′(s)

)
ψ′(s)

+
∫ 1

0

ϕ(α)

Γ(1− α)

d
ds

∫ b−τ

a
(ψ(s)− ψ(p))−αλ(p)∂5L[x, z]τ(p)dpdα

)
h(s)ds

+
∫ b−τ

a

(
Dϕ(α),ψ

a+
λ(s)∂5L[x, z]τ(s)

ψ′(s)

)
ψ′(s)h(s)ds−

[(
I1−ϕ(α),ψ
a+

λ(s)∂5L[x, z]τ(s)
ψ′(s)

)
h(s)

]s=b

s=a

.

(24)
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Therefore, we obtain

∫ b−τ

a

(
λ(s)∂2L[x, z]τ(s) + λ(s + τ)∂3L[x, z]τ(s + τ)

+

(
Dφ(α),ψ
(b−τ)−

λ(s)∂4L[x, z]τ(s)
ψ′(s)

)
ψ′(s)

−
∫ 1

0

φ(α)

Γ(1− α)

d
ds

∫ b

b−τ
(ψ(p)− ψ(s))−αλ(p)∂4L[x, z]τ(p)dpdα

+

(
Dϕ(α),ψ

a+
λ(s)∂5L[x, z]τ(s)

ψ′(s)

)
ψ′(s)

)
h(s)ds +

∫ b

b−τ

(
λ(s)∂2L[x, z]τ(s)

+

(
Dφ(α),ψ

b−
λ(s)∂4L[x, z]τ(s)

ψ′(s)

)
ψ′(s) +

(
Dϕ(α),ψ
(b−τ)+

λ(s)∂5L[x, z]τ(s)
ψ′(s)

)
ψ′(s)

+
∫ 1

0

ϕ(α)

Γ(1− α)

d
ds

∫ b−τ

a
(ψ(s)− ψ(p))−αλ(p)∂5L[x, z]τ(p)dpdα

)
h(s)ds

+

[(
I1−φ(α),ψ
b−

λ(s)∂4L[x, z]τ(s)
ψ′(s)

)
h(s)−

(
I1−ϕ(α),ψ
a+

λ(s)∂5L[x, z]τ(s)
ψ′(s)

)
h(s)

]s=b

s=a

= 0,

introducing (23) and (24) into (20). Therefore, choosing the appropriate h and using the
fundamental lemma of calculus of variations, we obtain the generalized fractional Euler–
Lagrange Equations (14) and (15) and the natural boundary condition (16).

Remark 3. It is clear that Theorem 2 of [25] can be obtained from Theorem 4 in the particular case
where the Lagrangian is independent of z.

3.4. Herglotz Fractional Variational Problem—Case 4

For this the last problem, we consider the case where the state function depends on
several independent variables. Here, we have the case where the fractional orders belong
to the interval [0, 1].

We consider U = [a, b] × Λ and Λ = ∏n
i=1[ai, bi]. We denote by t ∈ [a, b] the time

variable and s = (s1, . . . , sn) ∈ Λ the spacial coordinates. We use the notation:

[x, z](t, s) :=
(

t, s, x(t, s),C Dφ(α),ψ
+ x(t, s),C Dϕ(α),ψ

− x(t, s), z(t)
)

,

where

CDφ(α),ψ
+ x(t, s) =

(
CDφ(α),ψ

a+ x(t, s),C Dφ(α),ψ
a+1

x(t, s), . . . ,C Dφ(α),ψ
a+n

x(t, s)
)
∈ Rn+1

and

CDϕ(α),ψ
− x(t, s) =

(
CDϕ(α),ψ

b− x(t, s),C Dϕ(α),ψ
b−1

x(t, s), . . . ,C Dϕ(α),ψ
b−n

x(t, s)
)
∈ Rn+1,

and CDφ(α),ψ
a+ x and CDϕ(α),ψ

b− x denote the left and right partial distributed-order fractional

derivatives of x with respect to the variable t; CDφ(α),ψ
a+i

x and CDϕ(α),ψ
b−i

x, for any i ∈ {1, . . . , n},
denote the left and right partial distributed-order fractional derivatives of x with respect to
the variable si. Furthermore, it is assumed that the domain of function ψ contains the intervals
[a, b] and [ai, bi], for i = 1, . . . , n.

Problem (PH∗): Determine trajectories x ∈ C1(U,R) and z ∈ C1([a, b],R) that extremize

z(b)
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such that the pair (x, z) satisfies the differential equation:

z′(t) =
∫

Λ
L[x, z](t, s)dns, t ∈ [a, b], dns = ds1 . . . dsn,

and
z(a) = γ ∈ R.

Furthermore, we assume that x(t, s) is fixed when si = ai and si = bi, for all t ∈ [a, b]. We
suppose that CDφ(α),ψ

a+ x, CDϕ(α),ψ
b− x, CDφ(α),ψ

a+i
x, and CDϕ(α),ψ

b−i
x are of class C1 for i = 1, . . . , n,

L : [a, b]×R3n+4 −→ R is a continuously differentiable function, and the maps exist and are
continuous on U:

(t, s) 7→ Dφ(α),ψ
b−

(
λ(t) · ∂n+3L[x, z](t, s)

ψ′(t)

)
, (t, s) 7→ Dϕ(α),ψ

a+

(
λ(t) · ∂2n+4L[x, z](t, s)

ψ′(t)

)
,

and

(t, s) 7→ Dφ(α),ψ
b−i

(
λ(t) · ∂n+3+iL[x, z](t, s)

ψ′(si)

)
, (t, s) 7→ Dϕ(α),ψ

a+i

(
λ(t) · ∂2n+4+iL[x, z](t, s)

ψ′(si)

)
,

for all admissible pairs (x, z) and for all i = 1, . . . , n, where

λ(t) := e−
∫ t

a
∫

Λ ∂3n+5L[x,z](p,s)dnsdp, t ∈ [a, b].

Under these assumptions, we can prove our last result.

Theorem 5 (Necessary optimality conditions for Problem (PH∗)). If the pair (x, z) is a
solution of Problem (PH∗), then (x, z) satisfies the generalized fractional Euler–Lagrange equation:

λ(t)∂n+2L[x, z](t, s) +
(

Dφ(α),ψ
b−

λ(t)∂n+3L[x, z](t, s)
ψ′(t)

)
ψ′(t)

+

(
Dϕ(α),ψ

a+
λ(t)∂2n+4L[x, z](t, s)

ψ′(t)

)
ψ′(t) +

n

∑
i=1

[(
Dφ(α),ψ

b−i

λ(t)∂n+3+iL[x, z](t, s)
ψ′(si)

)
ψ′(si)

+

(
Dϕ(α),ψ

a+i

λ(t)∂2n+4+iL[x, z](t, s)
ψ′(si)

)
ψ′(si)

]
= 0, (25)

for all (t, s) ∈ U. Furthermore, if x(a, ·) is free, then

∫
Λ

(
I1−φ(α),ψ
b−

λ(t)∂n+3L[x, z](t, s)
ψ′(t)

)
dns =

∫
Λ

(
I1−ϕ(α),ψ
a+

λ(t)∂2n+4L[x, z](t, s)
ψ′(t)

)
dns,

at t = a, (26)

and if x(b, ·) is free, then

∫
Λ

(
I1−ϕ(α),ψ
a+

λ(t)∂2n+4L[x, z](t, s)
ψ′(t)

)
dns =

∫
Λ

(
I1−φ(α),ψ
b−

λ(t)∂n+3L[x, z](t, s)
ψ′(t)

)
dns,

at t = b. (27)

Proof. Let h ∈ C1(U,R) be an arbitrary function such that its Caputo distributed-order
fractional derivatives are continuously differentiable. Because the state function is fixed
when si = ai and si = bi, we suppose that, for any i ∈ {1, . . . , n}, if si = ai or si = bi, then
h(t, s) = 0 for all t ∈ [a, b]. Defining function β : [a, b]→ R by
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β(t) :=
d
dε

z[x + εh](t) |ε=0,

then β(a) = β(b) = 0 and

β′(t) =
d
dt

d
dε

z[x + εh](t) |ε=0=
d
dε

d
dt

z[x + εh](t) |ε=0

=
d
dε

∫
Λ

L[x + εh, z](t, s)dns |ε=0=
∫

Λ

d
dε

L[x + εh, z](t, s)dns |ε=0

=
∫

Λ

(
∂n+2L[x, z](t, s) · h(t, s) + ∂n+3L[x, z](t, s) ·C Dφ(α),ψ

a+ h(t, s)

+∂2n+4L[x, z](t, s) ·C Dϕ(α),ψ
b− h(t, s) +

n

∑
i=1

[
∂n+3+iL[x, z](t, s) ·C Dφ(α),ψ

a+i
h(t, s)

+∂2n+4+iL[x, z](t, s) ·C Dϕ(α),ψ
b−i

h(t, s)
])

dns + β(t) ·
∫

Λ
∂3n+5L[x, z](t)dns;

we obtain

∫ b

a
λ(t) ·

∫
Λ

(
∂n+2L[x, z](t, s) · h(t, s) + ∂n+3L[x, z](t, s) ·C Dφ(α),ψ

a+ h(t, s)

+ ∂2n+4L[x, z](t, s) ·C Dϕ(α),ψ
b− h(t, s) +

n

∑
i=1

[
∂n+3+iL[x, z](t, s) ·C Dφ(α),ψ

a+i
h(t, s)

+ ∂2n+4+iL[x, z](t, s) ·C Dϕ(α),ψ
b−i

h(t, s)
])

dnsdt = 0.

Using Theorem 1, we obtain

∫ b

a

∫
Λ

(
λ(t)∂n+2L[x, z](t, s) +

(
Dφ(α),ψ

b−
λ(t)∂n+3L[x, z](t, s)

ψ′(t)

)
ψ′(t)

+

(
Dϕ(α),ψ

a+
λ(t)∂2n+4L[x, z](t, s)

ψ′(t)

)
ψ′(t) +

n

∑
i=1

[(
Dφ(α),ψ

b−i

λ(t)∂n+3+iL[x, z](t, s)
ψ′(si)

)
ψ′(si)

+

(
Dϕ(α),ψ

a+i

λ(t)∂2n+4+iL[x, z](t, s)
ψ′(si)

)
ψ′(si)

])
h(t, s)dnsdt

+

[ ∫
Λ

(
I1−φ(α),ψ
b−

λ(t)∂n+3L[x, z](t, s)
ψ′(t)

)
h(t, s)dns

−
∫

Λ

(
I1−ϕ(α),ψ
a+

λ(t)∂2n+4L[x, z](t, s)
ψ′(t)

)
h(t, s)dns

]t=b

t=a

= 0.

From the arbitrariness of h and using the fundamental lemma of the calculus of
variations, we obtain the generalized fractional Euler–Lagrange Equation (25) and the
natural boundary conditions (26) and (27).

4. Illustrative Examples

In order to illustrate our results, we present three examples.
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Example 1. Consider the following fractional differential equation:

z′(t) =
(

CDφ(α),ψ
0+ x(t) · (ψ(t)− ψ(0))α+1 − (ψ(t)− ψ(0))α+3

)4
+ (t − cos t)z(t),

for t ∈ [0, 1], where z(0) = 4, x(0) = 0 and x(1) = (ψ(1)− ψ(0))α+2. Define φ : [0, 1]→ [0, 1]
by

φ(α) =
2

Γ(α + 3)
.

If we consider x(t) = (ψ(t)− ψ(0))α+2, t ∈ [0, 1], then by Lemma 1 of [26], we obtain

CDα,ψ
0+ x(t) =

Γ(α + 3)
2

(ψ(t)− ψ(0))2.

Thus,
CDφ(α),ψ

0+ x(t) =
∫ 1

0
φ(α)CDα,ψ

0+ x(t)dα = (ψ(t)− ψ(0))2.

Note that x satisfies the necessary optimality condition (2):Dφ(α),ψ
1−

4(ψ(t)− ψ(0))α+1λ(t)
(

CDφ(α),ψ
0+ x(t) · (ψ(t)− ψ(0))α+1 − (ψ(t)− ψ(0))α+3

)3

ψ′(t)


· ψ′(t) = 0, ∀t ∈ [0, 1],

where λ(t) = e−
t2
2 +sin t. Therefore,

x(t) = (ψ(t)− ψ(0))α+2 and z(t) = 4e
t2
2 −sin t

is a candidate to be a local extremizer of the value z(1).

Example 2. Let x ∈ C4([1, 5],R) and z ∈ C1([1, 5],R) such that the pair (x, z) is a solution of
the fractional differential equation:

z′(t) = 4t +

(
CDφ4(α),ψ

1+ x(t)− (ψ(t)− ψ(1))2 − ψ(t) + ψ(1)
ln(ψ(t)− ψ(1))

)5

− 2
t

z(t),

and for i = 0, 1, 2, 3, we have x[i]ψ (1) = 0, x[i]ψ (5) is free, and z(1) = 2, where φ4 : [3, 4]→ [0, 1] is
defined by

φ4(α) =
Γ(6− α)

120
.

Note that, if x(t) = (ψ(t)− ψ(1))5, t ∈ [1, 5], then, by Lemma 1 of [26], we obtain

CDα,ψ
1+ x(t) =

120
Γ(6− α)

(ψ(t)− ψ(1))5−α.

Hence,

CDφ4(α),ψ
1+ x(t) =

∫ 4

3
φ4(α)

CDα,ψ
1+ x(t)dα =

(ψ(t)− ψ(1))2 − ψ(t) + ψ(1)
ln(ψ(t)− ψ(1))

.
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Note that x satisfies the generalized fractional Euler–Lagrange Equation (9):

Dφ4(α),ψ
5−

5(t2 − 1)
(

CDφ4(α),ψ
1+ x(t)− (ψ(t)− ψ(1))2 − ψ(t) + ψ(1)

ln(ψ(t)− ψ(1))

)4

ψ′(t)

ψ′(t) = 0,

∀ t ∈ [1, 5],

and the natural boundary conditions (11), for each i = 0, 1, 2, 3,

4

∑
k=i+1

(
− 1

ψ(t)
d
dt

)k−i−1

Ik−φ4(α),ψ
5−

5(t2 − 1)
(

CDφ4(α),ψ
1+ x(t)− (ψ(t)− ψ(1))2 − ψ(t) + ψ(1)

ln(ψ(t)− ψ(1))

)4

ψ′(t)

 = 0, at t = 5.

Therefore, by Theorem 3, the pair (x, z) where x(t) = (ψ(t)− ψ(1))5 and z(t) = t2 +
1
t2 ,

t ∈ [1, 5], is a candidate to be a local extremizer of the value z(5).

Example 3. Consider x ∈ C1([−2, 4],R) and z ∈ C1([0, 4],R) such that the pair (x, z) is a
solution of the following fractional differential equation:

z′(t) =
(

x(t− 2)− (ψ(4)− ψ(t− 2))3
)2

+

(
CDϕ(α),ψ

4− x(t) · (ψ(4)− ψ(t))α − (ψ(4)− ψ(t))α+2

2 ln(ψ(4)− ψ(t))

)2

+
1

cos(t/4)
z(t),

where z(0) = 3, µ(t) = (ψ(4)− ψ(t))3, t ∈ [−2, 0], and x(4) = 0. Let ϕ : [0, 1] → [0, 1]
defined by

ϕ(α) =
Γ(4− α)

6
.

If x(t) = (ψ(4)− ψ(t))3, t ∈ [−2, 4], then, by Lemma 1 of [26], we have

CDα,ψ
4− x(t) =

6
Γ(4− α)

(ψ(4)− ψ(t))3−α,

and the distributed-order fractional derivative of x is given by

CDϕ(α),ψ
4− x(t) =

(ψ(4)− ψ(t))3 − (ψ(4)− ψ(t))2

ln(ψ(4)− ψ(t))
.

Note that x satisfies the generalized fractional Euler–Lagrange Equations (14) and (15):

2λ(t + 2)
(

x(t + 2)− (ψ(4)− ψ(t + 2))3
)

+

Dϕ(α),ψ
0+

2λ(t)
(

CDϕ(α),ψ
4− x(t)− (ψ(4)− ψ(t))3 − (ψ(4)− ψ(t))2

ln(ψ(4)− ψ(t))

)
(ψ(4)− ψ(t))α

ψ′(t)

ψ′(t)

= 0,
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for all t ∈ [0, 2], andDϕ(α),ψ
2+

2λ(t)
(

CDϕ(α),ψ
4− x(t)− (ψ(4)− ψ(t))3 − (ψ(4)− ψ(t))2

ln(ψ(4)− ψ(t))

)
(ψ(4)− ψ(t))α

ψ′(t)

ψ′(t)

+
∫ 1

0

ϕ(α)

Γ(1− α)

(
d
dt

∫ 2

0
(ψ(t)− ψ(s))−α2λ(s)

(
CDϕ(α),ψ

4− x(s)− (ψ(4)− ψ(s))3 − (ψ(4)− ψ(s))2

ln(ψ(4)− ψ(s))

)
(ψ(4)− ψ(s))αds

)
dα = 0,

for all t ∈ [2, 4], where λ(t) = e−
∫ t

0 sec(4s)ds. Therefore, by Theorem 4, (x, z), where

x(t) = (ψ(4)− ψ(t))3 and z(t) = 3(sec(t/4) + tan(t/4))4

is a candidate to be a local extremizer of the value z(4).

5. Concluding Remarks

In this paper, we studied four cases of the fractional-Herglotz-variational-type prob-
lems, where the Lagrangian depends on distributed-order fractional derivatives with
arbitrary smooth kernels. In the first case, the distributed order belongs to [0, 1], by consid-
ering the definitions introduced in [9]. In the second case, we considered the higher-order
case, that is when α ∈ [n− 1, n] for a given n ∈ N, considering the definitions recently
introduced in [25]. In the third case, we studied the Herglotz variational problem with time
delay, and in the last case, we considered the Herglotz variational problem with several
independent variables. We proved the necessary optimality conditions for all of these
Herglotz-type problems, and three examples were presented to illustrate our results. To
finalize this paper, we point out that our theoretical contributions generalize several results
recently proven in the context of the fractional calculus of variations.
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