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Abstract

We used a bivariate (multivariate) linear mixed-effects model to estimate the narrow-sense heritability (h2) and heritability
explained by the common SNPs (hg

2) for several metabolic syndrome (MetS) traits and the genetic correlation between pairs
of traits for the Atherosclerosis Risk in Communities (ARIC) genome-wide association study (GWAS) population. MetS traits
included body-mass index (BMI), waist-to-hip ratio (WHR), systolic blood pressure (SBP), fasting glucose (GLU), fasting insulin
(INS), fasting trigylcerides (TG), and fasting high-density lipoprotein (HDL). We found the percentage of h2 accounted for by
common SNPs to be 58% of h2 for height, 41% for BMI, 46% for WHR, 30% for GLU, 39% for INS, 34% for TG, 25% for HDL,
and 80% for SBP. We confirmed prior reports for height and BMI using the ARIC population and independently in the
Framingham Heart Study (FHS) population. We demonstrated that the multivariate model supported large genetic
correlations between BMI and WHR and between TG and HDL. We also showed that the genetic correlations between the
MetS traits are directly proportional to the phenotypic correlations.
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Introduction

Obesity associated traits such as central adiposity, dyslipidemia,

hypertension, and insulin resistance are major risk factors for type

2 diabetes and cardiovascular complications [1]. The constellation

of these traits has been termed metabolic syndrome (MetS).

Understanding the genetic factors underlying these traits and how

they are correlated is clinically important. Large-scale genotyping

investigations such as genome-wide association studies (GWAS)

are useful tools for identifying genetic factors. However, significant

genetic variants discovered in GWAS explain only a small

proportion of the expected narrow-sense heritability, h2, defined

as the ratio of additive genetic variance to phenotypic variance [2].

This discrepancy underlies the debate concerning ‘‘missing’’

genetic factors among the common variants [3,4].

The main approach of GWAS has been to identify significant

single-nucleotide polymorphisms (SNPs) by examining each SNP

individually for significance. The h2 attributed to that marker is

then given by 2f(12f)a2, where f is the frequency of the marker

and a is the additive effect. To reduce the chance of false

positives, a stringent p-value criterion has been adopted (typically

p = 5*1028, based on an adjusted p-value of 0.05 for one-million

tests). It has been suggested that this selection criterion is too

conservative [5] and that some of the missing heritability may be

linked to genetic markers of small effect that fail this stringent

cutoff.

Alternatively, the narrow sense heritability explained by the

common SNPs, hg
2, may be estimated by adapting a linear mixed-

effects model [6,7] that is used to estimate h2. This model

decomposes the phenotypic variance into genetic and residual

variance components. Usually, the model is applied to related

individuals where the genetic relationships are estimated by using

family pedigree or genetic markers [8,9]. Yang et al. [6,7] pointed

out that hg
2 could be estimated using genetic relationships obtained

from the common SNPs for unrelated individuals. The main

assumed difference between hg
2 and h2 is due to the difference in

linkage disequilibrium (LD) between the common SNP markers

and the rest of the genome, with the assumption that closely

related individuals would be in greater LD than unrelated

individuals. Thus, heritability estimated with the genetic relation-

ships of unrelated individuals is attributed to the common variants

while that estimated with genetic relationships of related

individuals is attributed to the entire genome. While the method

does not identify single variants, it provides the maximum

expected variance expected by the set of markers or the relative

complement of the set (e.g., common versus rare variants).

Recently, it has been shown that a large proportion of h2 is

explained by the common single-nucleotide polymorphisms (SNPs)
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for several traits using this model [6,7]. Here, we showed that large

proportions of the phenotypic variance for several metabolic

syndrome (MetS) traits were also captured by the common SNPs.

Among these, we validated the height and body-mass index

estimates by Yang et al. [6,7] in independent GWAS populations.

We also quantified the genetic correlation between traits explained

by the common SNPs.

Results

We estimated h2 and hg
2 for height and body-mass index (BMI)

in the Framingham Heart Study population (FHS), and height and

seven metabolic syndrome traits (MetS) traits: BMI, waist-to-hip

ratio (WHR), systolic blood pressure (SBP), fasting glucose (GLU),

fasting insulin (INS), fasting triglycerides (TG), and fasting high-

density lipoprotein (HDL) in the Atherosclerosis Risk in Commu-

nities population (ARIC) (ARIC MetS estimates shown in Table 1).

Our base FHS population consisted of 4,240 subjects and our base

ARIC population consisted of 8,451 subjects (see Methods and

Tables S1 and S2 for a description of the populations). The genetic

relationship between pairs of subjects was estimated using 436,126

genome-wide common SNP markers for ARIC and 320,118 SNPs

for FHS (see Methods for details).

We first estimated h2 for related individuals with relationships

between 0.35 and 0.65, derived empirically from the SNP

markers, for height and BMI in the ARIC and FHS populations

(see Methods for derivation of the relationship matrix). This

resulted in 3,663 subjects (6,706,953 pairs of subjects) for FHS and

530 subjects (140,185 pairs of subjects) for ARIC. We found h2 to

be 0.77 (s.e. 0.03) for height and 0.39 (s.e. 0.04) for BMI in FHS,

and 0.88 (s.e. 0.09) for height and 0.34 (s.e. 0.12) for BMI in

ARIC. The estimated h2 were consistent with values obtained

using phenotypic regression (data not shown) and previous results

[6,7,10,11].

We then compared these values to estimates for hg
2 for unrelated

individuals with relationships less than 0.025 (see Methods for

derivation of the relationship matrix). This resulted in 1,489

subjects (1,107,816 pairs of subjects) for FHS and 5,647 subjects

(31,882,962 pairs of subjects) for ARIC. As mentioned above, hg
2

provides an estimate of the heritability explained by common

variants because of presumed lesser linkage disequilibrium

between the common SNPs and the rest of the genome as

compared to related individuals. We found hg
2 to be 0.50 (s.e. 0.18)

for height and 0.10 (s.e. 0.18) for BMI in FHS, and 0.46 (s.e. 0.05)

for height and 0.14 (s.e. 0.05) for BMI in ARIC. These values are

consistent with previously estimated values [6,7]. Using the

average across FHS and ARIC estimates, this implied that the

common SNPs accounted for approximately 58% of h2 for height

and 33% for BMI. To assess whether including more common

SNPs would explain more of the h2, we examined how hg
2

depended on the number of SNPs. As shown in Figure S1, the

mean and standard error of the hg
2 estimate for height in the ARIC

population appeared to stabilize after approximately 300,000

SNPs.

We then estimated h2 and hg
2 for the MetS traits in the ARIC

population using the same subjects as above (see Table 1). We

validated our h2 estimates by using phenotypic regression between

related individuals for some of the traits (data not shown). The

median h2 was 0.33, the minimum was 0.23 (INS), and the

maximum was 0.48 (HDL). The median hg
2 was 0.13, the

minimum was 0.09 (INS), and maximum was 0.24 (SBP).

Comparing the medians suggested that hg
2 explains ,39% of

the h2 for these MetS traits. We found that the common SNPs

explained large proportions of the h2: 41% of h2 for BMI, 46% for

WHR, 30% for GLU, 39% for INS, 34% for TG, 25% for HDL,

and 80% for SBP.

We next estimated the genetic correlations between MetS traits

using a bivariate (multivariate) model (see Tables S3 and S4 for

covariances). Table 2 shows the genetic and residual correlations

for related individuals using bivariate models. The genetic

correlation is the additive genetic covariance between traits

normalized by the geometric mean of the individual trait genetic

variances. The residual correlation is similarly estimated using the

residual covariance and variances. For related individuals, we

found significant genetic correlations for BMI-WHR, WHR-INS,

GLU-INS, INS-TG, and TG-HDL and significant residual

correlations between BMI-WHR, BMI-INS, BMI-HDL, WHR-

INS, INS-HDL, and TG-HDL. Table 3 shows the genetic and

residual correlations for the unrelated individuals. We found

significant genetic correlations for BMI-WHR and TG-HDL and

significant residual correlations for all of the estimates except SBP-

Table 1. h2 and hg
2 estimates (ARIC population).

BMI WHR GLU INS TG HDL SBP

h2 0.34 (0.12) 0.28 (0.12) 0.33 (0.12) 0.23 (0.12) 0.47 (0.11) 0.48 (0.11) 0.30 (0.12)

hg
2 0.14 (0.05) 0.13 (0.05) 0.10 (0.05) 0.09 (0.05) 0.16 (0.05) 0.12 (0.05) 0.24 (0.05)

Mean and standard error estimates from univariate models.
doi:10.1371/journal.pgen.1002637.t001

Author Summary

The narrow-sense heritability of a trait such as body-mass
index is a measure of the variability of the trait between
people that is accounted for by their additive genetic
differences. Knowledge of these genetic differences
provides insight into biological mechanisms and hence
treatments for diseases. Genome-wide association studies
(GWAS) survey a large set of genetic markers common to
the population. They have identified several single markers
that are associated with traits and diseases. However,
these markers do not seem to account for all of the known
narrow-sense heritability. Here we used a recently
developed model to quantify the genetic information
contained in GWAS for single traits and shared between
traits. We specifically investigated metabolic syndrome
traits that are associated with type 2 diabetes and heart
disease, and we found that for the majority of these traits
much of the previously unaccounted for heritability is
contained within common markers surveyed in GWAS. We
also computed the genetic correlation between traits,
which is a measure of the genetic components shared by
traits. We found that the genetic correlation between
these traits could be predicted from their phenotypic
correlation.

Heritability of Metabolic Syndrome Traits

PLoS Genetics | www.plosgenetics.org 2 March 2012 | Volume 8 | Issue 3 | e1002637



HDL. The genetic correlations for unrelated individuals were

proportional to the genetic correlations for related individuals (see

Figure S2) with a proportionality constant of 0.44 (s.e. = 0.15 ; two-

tail t-distribution p-value with 20 d.f. = 8.2*1023). The phenotypic

correlations between traits were similar for related and unrelated

individuals and are shown in Table 4. These values were also

consistent with the reported estimates in the National Heart Lung

and Blood Institute-Family Heart Study (NHLBI-FHS), which

included Framingham Heart Study and ARIC families [11].

We validated our genetic correlation estimates using bivariate

models for each pair of traits by analyzing all 7 MetS traits

simultaneously for the unrelated individuals in a single multivar-

iate model. This 7 trait multivariate model was much more

expensive computationally so we used a less stringent convergence

rule. The results were similar to the bivariate model (see Table S5

and S6) although the genetic correlation increased and their error

decreased for a number of the estimates. In addition to the

significant genetic correlations in the bivariate models, we also

found the genetic correlation for BMI-INS to be significant in the

7 trait model.

We then examined the relationship between the genetic and

phenotypic correlations (see Figure S3). For related individuals, we

found that the phenotypic correlations rp were proportional to the

genetic correlations rg with a proportionality constant of 1.2

(s.e. = 0.16; two-tail t-distribution p-value with 20 d.f. = 3.1*1027).

For unrelated individuals, we found that the phenotypic

correlations were proportional to the genetic correlations with a

proportionality constant of 0.85 (s.e. = 0.19 ; two-tail t-distribution

p-value with 20 d.f. = 2.3*1024). The direct proportionality

between rp and rg implies that the ratio rg/rp is approximately

constant for the MetS traits.

Discussion

We used a recently developed approach to analyzing GWAS

data and provided new estimates for the total amount of additive

genetic information contained in the common SNPs for MetS

traits. The approach uses a linear mixed-effects model to estimate

the additive genetic variances and correlations between traits. The

model relies on knowing the genetic relationships between the

individuals analyzed. Previously, this had been obtained from

family pedigrees. Visscher et al. [9] and Yang et al. [6] observed

that the genetic relationships could be computed from the GWAS

SNPs. They also presumed that the heritability estimated for

unrelated individuals with low SNP correlation are explained

mainly by these common SNPs because the linkage disequilibrium

between the common SNPs and the rest of the genome is weak.

This would be in contrast to related individuals with high SNP

correlation where linkage disequilibrium is strong. Thus, herita-

bility estimated with the genetic relationships of unrelated

individuals is attributed to the common SNPs while that estimated

with the related individuals is attributed to the entire genome. This

then creates a major distinction between h2 and hg
2. We computed

both in the same population. However, differences between

Table 2. Genetic and residual correlation coefficients between MetS traits in the ARIC population among related individuals from
the bivariate REML model.

BMI WHR GLU INS TG HDL SBP

BMI 0.75 (0.16)* 0.23 (0.24) 0.17 (0.27) 0.19 (0.20) 20.12 (0.21) 0.55 (0.24)

WHR 0.52 (0.08)* 0.35 (0.26) 0.67 (0.26)* 0.10 (0.22) 20.12 (0.22) 0.37 (0.26)

GLU 0.19 (0.12) 0.14 (0.12) 0.69 (0.25)* 0.21 (0.21) 20.07 (0.21) 0.13 (0.27)

INS 0.64 (0.08)* 0.35 (0.09)* 0.22 (0.11) 0.76 (0.21)* 20.33 (0.23) 0.29 (0.29)

TG 0.29 (0.12) 0.34 (0.12) 0.21 (0.13) 0.27 (0.11) 20.59 (0.13)* 0.21 (0.22)

HDL 20.38 (0.12)* 20.34 (0.12) 20.22 (0.13) 20.39 (0.11)* 20.45 (0.11)* 20.06 (0.23)

SBP 0.11 (0.12) 0.18 (0.11) 0.05 (0.12) 0.24 (0.11) 0.10 (0.13) 20.02 (0.13)

Mean and standard error of the Pearson correlation coefficient for genetic correlations (upper triangle) and residual correlations (lower triangle). An asterisk indicates
significance with p,0.05 adjusted for 21 hypotheses using the two-tailed hypothesis test and normal distribution of the Fisher transformed correlation coefficient.
doi:10.1371/journal.pgen.1002637.t002

Table 3. Genetic and residual correlations between MetS traits in the ARIC population among unrelated individuals from the
bivariate REML model.

BMI WHR GLU INS TG HDL SBP

BMI 0.91 (0.18)* 0.01 (0.32) 0.57 (0.24) 0.20 (0.24) 20.15 (0.28) 0.16 (0.20)

WHR 0.44 (0.03)* 0.09 (0.32) 0.33 (0.31) 0.32 (0.23) 20.06 (0.30) 0.17 (0.21)

GLU 0.27 (0.04)* 0.18 (0.04)* 0.05 (0.40) 0.07 (0.30) 20.16 (0.34) 0.11 (0.24)

INS 0.51 (0.03)* 0.40 (0.04)* 0.39 (0.04)* 0.22 (0.29) 20.20 (0.36) 0.20 (0.25)

TG 0.31 (0.04)* 0.33 (0.04)* 0.20 (0.04)* 0.43 (0.04)* 20.57 (0.19)* 0.002 (0.19)

HDL 20.34 (0.04)* 20.33 (0.04)* 20.16 (0.04)* 20.39 (0.04)* 20.51 (0.03)* 20.03 (0.22)

SBP 0.25 (0.05)* 0.18 (0.05)* 0.17 (0.05)* 0.22 (0.04)* 0.21 (0.05)* 20.04 (0.05)

Mean and standard error of the Pearson correlation coefficient for genetic correlations (upper triangle) and residual correlations (lower triangle). An asterisk indicates
significance with p,0.05 adjusted for 21 hypotheses using the two-tailed hypothesis test and normal distribution of the Fisher transformed correlation coefficient.
doi:10.1371/journal.pgen.1002637.t003
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estimates of h2 and hg
2 may also arise due to differences in

environmental influences and non-additive genetic effects that

may bias the estimates. Provided that these biases are small then

the ratio of hg
2 to h2 provides an estimate of the proportion of

narrow sense heritability captured by the common SNPs.

We confirmed previous findings that a large proportion of h2 is

explained by the common SNPs. Our hg
2 estimates for height and

BMI in two independent analyses (i.e. ARIC and FHS) were

consistent with previously reported values [6,7]. Our h2 estimates

for BMI, GLU, INS, TG, HDL, and SBP were similar to the

findings of the large family National Heart, Lung, and Blood

Institute (NHLBI) Family Heart Study [11], which included

Framingham Heart Study and ARIC families. We found that hg
2

explained a large proportion of h2 across the MetS traits, and hg
2

explained approximately 39% of the h2 for these traits. We

estimated that the common SNPs explain 58% of h2 for height,

41% for BMI, 46% for WHR, 30% for GLU, 39% for INS, 34%

for TG, 25% for HDL, and 80% for SBP. Our hg
2 findings are

striking compared to traditional GWAS approaches where

significant common SNPs have been shown to explain only 4%

of h2 for BMI with 32 SNPs, 11% for GLU with 14 SNPs, 20% for

TG with 48 SNPs, 25% for HDL with 60 SNPs, 3% for SBP with

10 SNPs, and 12% for height with 180 SNPs [12–16]. Height had

the largest absolute hg
2, which was consistent with having a large

h2. Surprisingly, SBP had the largest proportion of h2 explained by

the common SNPs while only a few percent of this has been

uncovered by traditional GWAS. However, the standard error of

hg
2 for SBP was large and reducing this error will be important for

further investigation. Conversely, our analysis suggested that the

SNP markers already identified for TG and HDL may contain the

maximum heritability expected from the common SNPs.

Our analysis of hg
2 against the number of SNPs suggested that

the mean and standard error of hg
2 for height is well estimated by

approximately 300,000 markers and that including more markers

would have little effect for this trait and perhaps others. The

standard error of hg
2 also increased with SNP number. This may

seem paradoxical but can be explained by recalling that the

estimate for hg
2 is proportional to the regression coefficient of the

square of the phenotype differences versus the genetic relationship

(i.e. Haseman-Elston regression) [8]. The standard error of hg
2 is

thus inversely proportional to the variance of the genetic

relationship. Since the latter is estimated from the common SNPs,

this variance is expected to decrease as the number of SNPs

increases thereby increasing the standard error [6].

Using the bivariate (multivariate) model [17,18] we estimated

the genetic and residual correlations between the MetS traits.

Among these, we found that the genetic correlations in related and

unrelated individuals for BMI and WHR were significantly

different from zero. This is consistent with both traits as indirect

measures of body fat and common health risks [19]. Previously,

Rice et al., 1994 [20] found significant genetic correlations

between BMI and SBP among normotensive nonobese families.

This suggested a common genetic etiology to their physiological

relationship through hyperinsulinemia resulting in increased renal

reabsorption of sodium and sympathetic activation [20]. We found

a large genetic correlation among related subjects, although it was

not significant because of the large error. This was consistent with

the large family study by the NHLBI that did not find a significant

genetic correlation [8]. Perusse et al, 1997 [21] argued that cross-

trait resemblance between BMI and lipids is mostly environmen-

tal. In concordance, we did not find significant genetic correlations

between either BMI or WHR and TG and HDL for either related

or unrelated individuals (see Table 3 and Table 4) while residual

(which includes environmental) correlations were significant for

BMI–HDL. We found that the residual covariance accounted for

a minimum of 71% (derived from the estimates in Table 4 and

Table S3) of the phenotype covariance between BMI or WHR and

the lipid measurements for related individuals. Genetic correla-

tions between TG and HDL were also large, which is consistent

with their direct physiological relationship [22]. This is also

consistent with the findings from a recent GWAS meta-analysis

whose results showed that 50% of the significant markers for TG

were also significant for HDL (derived from Supplementary

Tables 6 and 11 in [16]), and with a genome-wide LOD

correlation analysis [23]. While we found some significant genetic

correlations among both related and unrelated subjects, the

variance was large for these estimates and greater statistical power

is needed for better accuracy.

We found that the genetic correlation was directly proportional

to the phenotypic correlation, which was an unexpected, empirical

finding. Previously, a linear relationship between the correlations

was hypothesized by Cheverud for sets of traits with common

functions, and shown empirically for a number of traits [8,24–26].

While this finding is interesting from an evolutionary genetics

perspective, it may also serve a useful purpose in the maximum

likelihood computation of the linear mixed-effects model by

providing initial genetic correlation (i.e. covariance) estimates

based on the phenotypic correlations.

In summary, we provided evidence that the common SNPs

explain large proportions of the variance for several MetS traits in

agreement with previous findings for some of these traits [6,7].

This is consistent with the original premise of GWAS that a large

Table 4. Phenotypic correlation coefficients between MetS traits in the ARIC population.

BMI WHR GLU INS TG HDL SBP

BMI 0.59 (0.04)* 0.20 (0.04)* 0.49 (0.04)* 0.24 (0.04)* 20.26 (0.04)* 0.25 (0.04)*

WHR 0.51 (0.01)* 0.21 (0.04)* 0.43 (0.04)* 0.23 (0.04)* 20.24 (0.04)* 0.23 (0.04)*

GLU 0.24 (0.01)* 0.17 (0.01)* 0.34 (0.04)* 0.21 (0.04)* 20.15 (0.04)* 0.07 (0.04)

INS 0.52 (0.01)* 0.39 (0.01)* 0.35 (0.01)* 0.42 (0.04)* 20.35 (0.04)* 0.25 (0.04)*

TG 0.30 (0.01)* 0.33 (0.01)* 0.19 (0.01)* 0.40 (0.01)* 20.52 (0.04)* 0.14 (0.04)*

HDL 20.32 (0.01)* 20.30 (0.01)* 20.15 (0.01)* 20.37 (0.01)* 20.52 (0.01)* 20.04 (0.04)

SBP 0.23 (0.01)* 0.18 (0.01)* 0.15 (0.01)* 0.21 (0.01)* 0.16 (0.01)* 20.04 (0.01)*

Mean and standard error of the Pearson correlation coefficient. Coefficients among related individuals shown in the upper triangle. Coefficients among unrelated
individuals shown in the lower triangle. An asterisk indicates significance with p,0.05 adjusted for 21 hypotheses using the two-tailed hypothesis test and normal
distribution of the Fisher transformed correlation coefficient.
doi:10.1371/journal.pgen.1002637.t004
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proportion of phenotypic variation for common traits may be due

to common variants [27]. However, an amendment to this premise

is that it is likely to be many common variants with small effect.

This is supported by recent meta-analyses with larger sample sizes

that have identified more associated common SNPs. This

approach can serve as a first approximation of the total heritability

expected from common SNPs given a genome-wide set of markers

and requires fewer subjects to achieve significant results. We also

found genetic associations that will be useful for single gene and

systems biology studies. Future studies with greater power will

provide estimates for weaker multivariate genetic associations and

provide greater precision for the estimates presented here.

Methods

ARIC population and GWAS data
Our main study population was the Atherosclerosis Risk In

Communities (ARIC) population. The ARIC population consists

of a large sample of unrelated individuals and some families across

North America. The population was recruited from four centers

across the United States: Forsyth County, North Carolina;

Jackson, Mississippi; Minneapolis, Minnesota; and Washington

County, Maryland. For this study, we restricted our analysis to the

European-American group. The population was recruited in 1987

from the general population consisting of subjects aged 45 to 64

years. The ARIC population consisted of 8,451 subjects.

Quality control and genotype calls for common SNPs were

evaluated previously for ARIC using the Affymetrix Human SNP

Array 6.0. We selected bilallelic autosomal markers based on the

following criteria: missingness ,0.05, Hardy-Weinberg equilibri-

um (p,1026) and minor allele frequency .0.05. Subjects with

missingness .0.05 were removed. This resulted in 436,126

retained markers.

Quality control measurements from dbGAP (GENEVA ARIC

Project Quality Control Report Sept 22, 2009) indicate significant

population stratification between self-identified white (European-

ancestory kind group) and black populations when projected onto

HapMap components. Furthermore, principal-components anal-

ysis of the European-ancestory group by dbGAP showed that no

component explained more than 0.1% of the population variance.

For this study we only analyzed the European-ancestory group

and treated it as a single population.

ARIC phenotypes were adjusted for age, sex, and study center.

Only single measurements from visit 1 were used for these

subjects. We only used subjects with negative diabetes status and

with genotype and phenotype information for all traits. This

resulted in 8,451 subjects. We standardized all the traits. We first

log-transformed BMI, glucose, insulin, triglycerides, HDL, and

systolic blood pressure. All laboratory measurements are under

fasting conditions. Population trait statistics are in Table S1.

Framingham Heart Study (FHS) population
We estimated h2 and hg

2 for height and BMI in the

Framingham Heart Study population (FHS). The FHS

population is a large multi-generational dataset that started in

1948 in Framingham, Massachusetts in the United States. It

consists of a number of ethnicities predominantly from the

United Kingdom, Ireland, Italy, and Western Europe [28].

Markers were screened similarly to ARIC and we also removed

any SNPs that did not overlap with the ARIC set, which results

in 320,118 SNPs. We used principal components analysis of the

linkage disequilibrium (LD) pruned genetic relationship matrix

to identify components with variance .0.1%. LD pruning was

as in the ARIC 2009 report. This resulted in 73,432 retained

SNPs. We found three significant components that were then

used as covariates in the REML model. For consistency with

ARIC, we restricted the age range at time of exam to 45 to 65

years and randomly selected a single measurement in the case

of multiple measurements. Phenotypes were adjusted for age,

sex, and generation prior to the REML estimation and

standardized. We first log-transformed BMI. Population trait

statistics are in Table S2. Our base FHS population consisted of

4,240 subjects.

h2 estimates using common SNP estimated relationship
We determined h2 using the linear mixed-effects model (see

derivation below) and related individuals defined as genomic

relatedness between 0.35 and 0.65. We assume that the common

SNPs are in greater linkage disequilbrium among related

individuals and, as such, can be used to estimate the total

additive-genetic variance across the allele spectrum as suggested by

Visscher et al., 2006 [9]. We constrained the relationship matrix to

have at least one related pair per subject. This was done by

pruning the entire population relationship matrix by randomly

selecting a row and removing the row and its corresponding

column if no genomic covariance in the row was between the

cutoff values. For all pairs, including unrelated individuals, we

used their empirically defined relationship. This resulted in 530

individuals being selected for analysis in ARIC and 3,663

individuals in FHS.

h2 was estimated with h2 = varg/(varg+vare), where varg and vare are

the genetic and residual variance components estimated by the

REML model using related individuals. The error was estimated

from the inverse Fisher Information (see linear mixed-effects

model below) and propagated using a first-order Taylor

expansion.

Common SNP linear mixed-effects model estimate of hg
2

We used the linear mixed-effects model and only unrelated

individuals to estimate the additive-genetic variance attributable to

the common SNPs (hg
2). Unrelated individuals were defined as

subjects with maximum genomic correlation of ,0.025. The

genomic relationship matrix was then produced as above based on

this cutoff. The cutoff was taken from Yang et al. 2010 [6] and is

less than the expected coefficient of relatedness between 2nd

cousins. For these estimates we used the same group of 5,647

unrelated individuals for all estimates in ARIC and 1,489

individuals in FHS. hg
2 was estimated as hg

2 = varg/(varg+vare),

where varg and vare are the genetic and residual variance

components estimated by the REML model using unrelated

individuals. The standard error was estimated as above. The

height hg
2 versus SNP number analyses were performed over allele

frequency range of 0.05 to 0.5 in order of increasing and

decreasing frequency.

Correlations
The genetic correlation (rg) is defined as rg~

covg(t1,t2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varg(t1)varg(t2)

p ,

where (varg(ti)) is the additive genetic variance of trait i and

covariance (covg(ti,tj)) is the additive genetic covariance between

the traits. The variances and covariances are estimated directly in

the multivariate linear mixed-effects model. The error was

computed from the estimated errors of the variances and

covariance using a first-order Taylor expansion. The residual

and phenotypic correlations were analogously defined. Phenotype

correlations and error were estimated by linear regression of the

standardized phenotypes.
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Proportionality constants
The mean and errors for proportionality constants between the

genetic and phenotypic correlations were determined by randomly

sampling over the distributions of the parameter estimates (i.e.

Monte Carlo method) assuming that the error around the mean

parameter estimate was normally distributed and that the

parameters were independent. We then fit a linear function with

the y-intercept fixed at 0 (after first confirming that it was not

significantly different from zero).

Significance testing
We assessed significance for correlation coefficients (r) using the

standardized Fisher transformed estimate of r: arctan(r)/arctan

(s.e.(r)). We estimated the two-tailed p-value from a normal

distribution and significance was determined by p,0.05 and

Bonferroni corrected for 21 hypotheses.

Significance for regression coefficient (b) was estimated using

the standardized coefficient b=s:e:(b). We estimated the two-tailed

p-value from a t-distribution and 20 degrees of freedom and

significance was determined by p,0.05.

Preprocessing of SNPs and phenotypes was done using PLINK

[29] (v1.07,http://pngu.mgh.harvard.edu/purcell/plink/) and

MATLAB (2010b, MathWorks, Natick, MA). REML optimization

was executed using software written in MATLAB.

Bivariate (multivariate) linear mixed-effects linear model
We considered the following multivariate linear mixed-effects

model for m individuals, n loci and t traits [6–8,17,18,30]:

yi~XivizZuizei

where yi is a m61 vector of trait i for m individuals, Xi is an m6s

fixed effects matrix for trait i, vi is a s61 vector of fixed effects

parameters for trait i, Z is an m6n matrix of standardized

genotypes, ui is an n61 vector of random effects for trait i

satisfying ui,N(0,G) and ei is an m61 vector of residual effects

satisfying ei,N(0,R), with matrix blocks Gij = covgijIn and

Rij = coveijIm and Il is the l6l identity matrix. This model can

be used for single or multiple traits. For two traits, it is called a

bivariate model. The model is identical to that used by [6,7,17].

We considered only bi-allelic SNPs in Hardy-Weinberg equilib-

rium. Denote the minor allele by q and the major allele by Q. Let the

minor allele frequency at locus i have frequency pi. We assign a value

of 2 for genotype qq, 1 for genotype qQ and 0 for genotype QQ. The

Hardy-Weinberg mean frequency for the genotype at locus i is 2pi

and the variance is 2pi(12pi). The standardized genotype entries

have values of (222pi)/(2pi(122pi))
1/2 for qq, (122pi)/(2pi(122pi))

1/2

for qQ, and 22pi/(2pi(122pi))
1/2 for the QQ genotype.

The log of the likelihood function is given by

L~{
n

2
ln 2pð Þ{ 1

2
ln Vj j{

Xt

i~1,j~1

yi{Xivið ÞV{1
ij yj{Xj

� �

where the covariance matrix can be expressed as a tensor product

V~G6AzR6I with m6m blocks V21
ij and A is the genetic

relationship matrix. Following Yang et al. [6], we used a modified

covariance matrix for A, A~ZZ’=n, where the diagonals of A are

computed using the formula

Akl~
1

n

Xm

k~1

Zkl Zklz
2pl{1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pl(1{pl)

p
 !

:

We use the restricted maximum likelihood (REML) approach [8]

where the gradients of the log likelihood are given by

LL

Lcovgij

~
1

2
y0PAijPy{

1

2
Tr(PAij)

LL

Lcoveij

~
1

2
y0PIijPy{

1

2
Tr(PIij)

where Iij is a tm6tm dimensional matrix with zero entries except

for a m6m identity matrix at block location i, j, Aij~A6Iij and

P~V{1{V{1Y(Y0V{1Y){1Y0V{1, where Y~It6Xi.

We solved the REML equations using an EM algorithm [8],

which was given by

(covgij)
kz1~(covgij)

kz
(covgij)

k

m
y0PkAijP

ky{Tr(PkAij)
� �

(coveij)
kz1~(coveij)

kz
(coveij)

k

m
y0PkIijP

ky{Tr(PkIij)
� �

for iteration k+1 in terms of iteration k. We iterated until the rate of

change of the log likelihood function was less than about 1024. We

also checked that the rate of change of the square of the covariance

predictions was less than 1028. We checked our results against the

software developed by Yang et al. (GCTA) [31] for the univariate

model.

For the multivariate model, we transformed to a coordinate

system where the covariance matrices were diagonal [8] to speed up

the computation. Let zj be the set of phenotypes for individual j. We

used the canonical transformation ~zzj~Qzj such that QGQ0~L
and QRQ0~It. Q can be computed from the formula

Q~
ffiffiffiffiffiffiffiffiffiffiffi
SRS0
p

S{1 where SGR{1~LS, (S is the matrix of left

eigenvectors of GR21). The transformed genetic covariances are

given by L and the residual covariances are It. Each step consisted

of taking a single step with the univariate EM algorithm for the

transformed additive genetic and residual variance followed by a

transformation back to the original coordinates. We iterated until

the maximum of the magnitudes of the components of the gradient

of the log likelihood function was less than approximately 5|10{4.

In our computations, we used both the direct EM algorithm and

the canonically transformed algorithm because even though the

transformed algorithm was in principle faster, it sometimes had poor

convergence properties if the initial guess was not sufficiently close to

the maximum likelihood value. We ensured that both give the same

results. For computational efficiency, the results shown are computed

from the bivariate model for the different trait pairs. We confirmed

our results with a multivariate model that included all traits.

Our error estimates were given by the inverse of the Fisher

information matrix F, which we computed by evaluating the

Hessian of the log likelihood at the maximum likelihood

predictions. F is a t(t+1)6t(t+1) dimensional matrix with rows

corresponding to the genetic and residual variances and

covariances (where covij was set equal to covji) and with block

elements (that are not all contiguous) given by

Fij,kl~
1

2

Tr(PAijPAkl) Tr(PAijPAkl)

Tr(PAijPIkl) Tr(PIijPIkl)

� �

for iƒjand kƒl.
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Supporting Information

Figure S1 Height hg
2 versus number of SNPs by sampling the

allele frequency from 0.05 to 0.5 (red = low to high, blue = high to

low, black = using all SNPs). A) hg
2 estimates for height relative to

the number of SNPs (mean and s.e.). B) Standard error versus

number of SNPs.

(TIF)

Figure S2 Genetic correlation coefficient for unrelated individ-

uals versus the genetic correlation coefficients for related

individuals. Shown are the mean and standard errors. Dashed

line is the least squares fit with the y-intercept fixed at 0 estimated

using a Monte Carlo method (slope = 0.44).

(TIF)

Figure S3 A) Genetic correlation coefficients versus the

phenotypic correlation coefficients for related individuals. Shown

are the mean and standard errors. Dashed line is the least squares

fit with the y-intercept fixed at 0 estimated using a Monte Carlo

method (slope = 1.2). B) Genetic correlation coefficients versus the

phenotype correlation coefficients for unrelated individuals.

Shown are the mean and standard errors. Dashed line is the least

squares fit with the y-intercept fixed at 0 estimated using a Monte

Carlo method (slope = 0.85).

(TIF)

Table S1 Atherosclerosis Risk in Communities Study (ARIC)

population statistics by sex; mean (sd; minimum-maximum).

BMI = body-mass index, WC = waist circumference, WHR = wa-

ist-to-hip ratio, GLU = fasting glucose, INS = fasting insulin,

TG = fasting triglycerides, HDL = fasting high-density lipoprotein,

SBP = systolic blood pressure.

(DOCX)

Table S2 Framingham Heart Study (FHS) population statistics.

(DOCX)

Table S3 Genetic and residual covariance estimates for the

ARIC population among related individuals. Mean and standard

error of genetic (upper triangle) and residual (lower triangle)

covariance estimates from the univariate (diagonals) and bivariate

(off-diagonals) REML model.

(DOCX)

Table S4 Genetic and residual covariance estimates for the

ARIC population among unrelated individuals. Mean and

standard error of genetic (upper triangle) and residual (lower

triangle) covariance estimates from the univariate (diagonals) and

bivariate (off-diagonals) REML model.

(DOCX)

Table S5 Genetic (upper triangle) and residual (lower triangle)

correlations among unrelated individuals in the ARIC population

based on simultaneous analysis of all MetS traits. Mean and

standard error of the Pearson correlation coefficient for genetic

correlations (upper triangle) and residual correlations (lower

triangle). An asterisk indicates significance with p,0.05 adjusted

for 21 hypotheses using the two-tailed hypothesis test and normal

distribution of the Fisher transformed correlation coefficient.

(DOCX)

Table S6 Genetic (upper triangle) and residual (lower triangle)

covariances among unrelated individuals in the ARIC population

based on simultaneous analysis of all MetS traits. Mean and

standard error.

(DOCX)
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