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Determining the biological relevance of findings from genome-wide 

association studies (GWAS) has emerged as a major challenge for 

complex trait analysis, as over 90% of significant associations are 

noncoding. Several lines of evidence suggest that genetic variation  

implicated in GWAS alters transcription1–3. eQTLs4,5 overlap markedly  

with GWAS-identified SNPs, both collectively6–8 and for specific 

traits (for example, height, adiposity, cardiovascular risk factors, 

chemotherapy-induced cytotoxicity, autism, schizophrenia and 

Crohn’s disease)9–16. An estimated 55% of eQTL SNPs lie in DNase I  

hypersensitivity sites, and 77% of significant GWAS SNPs are in or 

correlated with these sites2,17,18. Although understanding of eQTLs 

has progressed rapidly, important questions remain. Most eQTL 

catalogs are incomplete, and few studies have had sample sizes of 

n > 1,000 (refs. 15,19,20), although n > 3,000 may be necessary for 

more complete eQTL identification21. Many eQTLs do not replicate, 

even using the same HapMap lymphoblastoid cell lines (LCLs) under 

standardized procedures19. Replication of distant (trans) eQTLs has  

been particularly elusive22. Potential sources of variation include  

tissue type8,10,23, ancestry7, winner’s curse and batch effects5,7,24–26, 

and cell heterogeneity27,28.

To achieve large sample sizes in humans, tissues must be accessible. 

An attractive choice is peripheral venous blood, although most but not 

all20,29 human blood-derived eQTL studies have used LCLs. However, 

gene expression differs between LCLs and peripheral blood30, and LCLs 

can be influenced by factors such as Epstein-Barr virus (EBV) copy 

number and growth rates31. The Multiple Tissue Human Expression 

Resource (MuTHER) LCL study of expression in female twins found 

a large impact of the common ‘environment’ shared by twins: 32% of 

transcripts showed common environmental effects of >30%, compared 

to 2% in adipose and 8% in skin8. The authors attributed this dramatic 

effect to correlated sample handling rather than to environmental 

exposures shared by twins, suggesting possible biases with LCLs.

Despite these challenges, quantifying human transcriptomic herit-

ability is important. Although genes with genome-wide significant 

eQTLs are by definition ‘heritable’, additional polygenic variation may 

be widespread and fail to reach statistical significance by standard 
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genotype-expression association. Genes with substantial polygenic  

variation may also be subject to unique selection pressures not  

apparent from the analysis of local eQTLs. The classical twin design, 

contrasting resemblance in monozygotic twin pairs to that in dizy-

gotic twin pairs, offers distinct advantages in the interpretability and 

efficiency of heritability estimation32.

To address these questions, we conducted a combined study of twin 

heritability of expression and eQTLs that is the largest yet reported 

(3.4 times the size of the next largest twin eQTL report8,15,30), provid-

ing high resolution. We assessed gene expression in peripheral blood, 

with careful attention to sample collection, cell type heterogeneity, 

bias and control of experimental error. Our goals were to (i) describe 

and evaluate the heritability of all transcripts measured in peripheral 

blood; (ii) identify a comprehensive list of local and distant eQTLs 

and evaluate their characteristics and replicability; and (iii) assess the 

biomedical relevance of the identified eQTLs.

RESULTS
Twin-based heritability in the peripheral blood transcriptome
We first report the heritability of steady-state transcription in  

peripheral blood for 43,628 probe sets from 18,392 genes from 

2,752 individual twins in the Netherlands Twin Registry (NTR; 

Table 1). The U219 platform includes alternate 3′ sequences of well-

 annotated genes, and we refer to each of the probe sets as a ‘tran-

script’ (1–18 transcripts per gene, mean of 2.4). We performed careful  

annotation for the platform, which compares favorably to RNA 

sequencing (RNA-seq) (Supplementary Note)33. Subjects were from 

1,444 twin pairs (both members of 1,308 pairs, 95.1% of subjects and 

1 member from 136 pairs). The 1,308 complete pairs consisted of 690 

monozygotic pairs (52.8%; 209 male and 481 female monozygotic 

pairs) and 618 dizygotic pairs (47.2%; 110 male, 256 female and 252 

opposite-sex dizygotic pairs). Expression quality control included 

zygosity and sex confirmation, randomization for sex and zygosity 

balance, sample identity checks and removal of low-quality samples. 

Primary analyses were based on robust multi-array average (RMA) 

expression estimates, filtered to exclude probes containing SNPs or 

mapping non-uniquely, with each transcript transformed to an exact 

normal distribution for robust analysis.

The Supplementary Note lists ~140 covariates used, including 

blood cell counts and the genotypes of blood count–associated SNPs. 

We computed the proportion of variance explained (R2) attributable 

to covariates and the effect of covariate control on heritability (h2) 

and variance explained by common (c2) and unique (e2) environment, 

where these values were measured using a covariance (ACE) model 

that includes additive genetic, common or shared environment, and 

non-shared environment terms (Supplementary Fig. 1). Variance 

components were not constrained to be positive, so the model would 

be unbiased for h2 estimation, and to indicate whether genetic non-

additive effects (dominance) might be present (by estimating c2 as 

negative). Covariate correction notably increased evidence for highly 

heritable transcripts, whereas no transcript was significant for c2 values  

(Supplementary Fig. 1b–e), in contrast to the MuTHER study8.

Figure 1a shows a P-value Manhattan plot for twin-based h2  

estimation for 18,392 genes (selecting for each gene the transcript  

with the largest h2 value), based on twin zygosity comparisons. The 

h2 value had mean ± s.d. of 0.101 ± 0.142 (0.138 ± 0.153 for expressed 

genes), with maximum estimated h2 = 0.905. We conservatively 

highlight 777 genes with significant heritability (q<0.05; 4.2% of the 

genes on the microarray), applying k-means clustering and analy-

sis of genomic location. The 777 genes yielded 9 expression clusters  

(Fig. 1b and Supplementary Table 1). Mean within-cluster expres-

sion correlation r ranged from 0.46 to 0.006. Cluster identity was 

supported by significantly (P < 0.05) higher connectivity in protein-

protein interaction databases34 and Gene Ontology (GO) pathways35 

(Supplementary Table 1). Numerous clustered genes showed expres-

sion patterns similar to those observed in other tissues, including 

brain35, suggesting broader tissue relevance. Regional clustering indi-

cated enrichment for immune function (Supplementary Table 2; for 

example, IgG Fc fragment receptors encoded at chr. 1: 161–162 Mb and 

the major histocompatibility complex (MHC) region at chr. 6: 31–33 

Mb), whereas other regions showed fewer heritable genes (for exam-

ple, the neuronal protocadherin gene cluster at chr. 5: 140–141 Mb  

and epidermal keratin gene clusters on chr. 17: 39–40 Mb and chr.  

21: 31–32 Mb). Heritability was strongly associated with mean expression  

(r = 0.356, P < 1 × 10−200; Fig. 1c), with a striking increase above an 

array-specific detection threshold, showing detectable expression for 

21,971 transcripts (50.3%).

We next compared h2 values for all genes to multiple external ‘pre-

dictors’ (refs. 1,36–44) using an enrichment statistic rigorously evalu-

ated under permutations of twin zygosity (Table 2). Heritability was 

strongly associated with expression mean and variance. Regional GC 

content was negatively associated with h2 after correction for mean 

expression. This negative association was surprising, as GC content 

±5 kb from the transcription start site (TSS) was positively correlated 

with gene density (r = 0.40), and each correlated modestly with mean 

expression (r = 0.11 and 0.10, respectively). Accordingly, after correc-

tion for mean expression, the negative association with gene density 

was even stronger (Fig. 2a and Table 2). Genes with recent evolutionary 

acceleration in primates and humans42 showed significant (P = 7.11 ×  

10−5 and 3.73 × 10−5) positive association with h2 after correction for 

mean expression (Fig. 2b and Table 2). HomoloGene conservation was 

highly significant (P = 2.00 × 10−17), although it was attenuated after 

correction. Associations between h2 and numerous Kyoto Encyclopedia 

of Genes and Genomes (KEGG) and GO pathways were also highly sig-

nificant (Supplementary Table 3). Interestingly, all pathway associa-

tions with h2 were positive, except for two related to sensory perception 

and smell (GO:0050907 and GO:0050911, respectively).

To investigate disease relevance, we used the National Human 

Genome Research Institute (NHGRI) GWAS catalog (17 July 2013)1, 

identifying the nearest gene (GWAS genes) for each of 3,628 signifi-

cantly disease-associated SNPs (P ≤ 5 × 10−8), for a total of 2,343 GWAS 

genes. There was a highly significantly positive association between 

heritability and GWAS genes (Fig. 2b and Table 2). Enrichment  

remained elevated for genes that were nearby but not necessarily 

the closest to the GWAS-identified SNP, and genes with numerous 

nearby GWAS SNPs were especially heritable (Supplementary Fig. 2).  

Enrichment was attenuated by removing chromosome 6 genes 

(including the MHC region) and for immune-related diseases43 

Table 1 Demography of 2,752 subjects from 1,444 twin pairs for 

twin-based heritability analyses

Variable Median or proportion Quartiles

Age (years) 32 28–39

Body mass index (kg/m2) 23.3 21.3–25.8

White blood cell count (109/l) 6.3 5.3–7.4

Hematocrit (fraction) 0.42 0.40–0.45

Female sex 0.658

Blood draw between 7:00 and 11:00 a.m. 0.940

Fasting at time of blood draw 0.947

Current smoker 0.216

Alcohol user (12 drinks/year) 0.771

Quartiles, interquartile range.
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(Supplementary Table 4). GWAS phenotypes 

included ones relevant to blood and immu-

nity along with the central nervous system, 

the bowel, cancers and morphological traits. 

Given that GWAS genes were designated 

only on the basis of proximity to NHGRI-

listed SNPs, these results may reflect an even 

stronger true tendency of disease-causing 

genes to be highly heritable (Supplementary 

Fig. 2). These results are complementary to 

observations that disease-associated SNPs 

show eQTL enrichment6. Additionally, 

the Online Mendelian Inheritance in Man 

(OMIM) database shows similar heritability enrichment, even though 

NHGRI GWAS and OMIM only partly overlap (of genes in either 

list, 10% are in both). The OMIM genes with significant heritability  

(q < 0.05) are also quite diverse, further supporting the potential  

relevance of peripheral blood to other tissues and developmental processes  

(Supplementary Table 5). Moreover, evolutionary associations are 

consistent with the observation that heritability is necessary for 

responsiveness to selection45.

We emphasize that these results do not imply causality, and, in 

particular, disease associations should be interpreted with caution. 

Enrichment of disease-associated heritability may reflect other under-

lying sources of commonality but still point to transcription as an 

important intermediary in disease risk.

Local genetic contributions and bias in h2 estimation
After genotyping quality control and imputation, 8.3 million SNPs were 

available for eQTL mapping in 2,494 individual twins (90.4% of the 

expression data set). We evaluated multiple predictors of heritability, 

including association r2 values based on the most significant local 

SNP within 1 Mb, r2 values for the top distant SNP, local SNP her-

itability estimation based on genetic relatedness among unrelated 

subjects using Genome-wide Complex Trait Analysis (GCTA)46 and 

variance-component results from complete local identity-by-descent 

inference among the dizygotic pairs (local IBD). We computed ratios 

of each component to the overall h2 estimate (Supplementary Fig. 3). 

Mean and median values for r hlocal SNP

2
/

2 (0.04 and 0.09, respectively) 

were similar to those reported in the MuTHER study8, whereas the 

h hlocal IBD

2
/

2  ratio was higher (median = 0.11, mean = 0.30), consistent 

with higher explained variation when the total local contribution was 

considered. However, in published studies, estimates have been com-

plicated by bias and variability in h2 estimation. MuTHER reported 

mean h2 values in expressed genes of 0.16 (skin), 0.21 (LCLs) and 0.26 

(adipose), with >20% of expressed genes displaying h2 > 0.3 (ref. 8). 

Our study, although much larger, produced lower values of 0.14 and 

12.3%. Each of our h2 estimates  should be unbiased, as we allowed 

for negative estimates (even if h2 ≥ 0), whereas variance-component 

methods8 can produce bias by forcing estimates to be non-negative, 

and sampling variability further complicates the view.

To more definitively assess the true extent of transcriptomic herit-

ability for our study, we modeled true h2 values as following a gamma 

distribution, with sampling variation determined by the ACE model. 

The result (Fig. 3a) was a shrunken distribution with a similar mean 

h2 value but markedly less variation. The model estimated that the 

true proportion of expressed genes with heritability of >0.3 was actu-

ally only 7.9%. With high heritability thresholds, differing results 

across studies can appear dramatic—whereas the MuTHER report 

estimated >700 expressed genes in both skin and LCLs with herit-

ability of >0.5, we estimate the true number in our study as ~100. 

The studies differed in tissue type and platform (the MuTHER study 

used the Illumina HT-12 BeadChip platform), NTR mean age was 

~20 years younger and the NTR samples included both sexes. Results 

when age was removed as a covariate (Supplementary Note) sug-

gested that it was not an important heritability determinant in NTR. 

However, the important effect of sampling variation has not been fully 

explored. First, we assessed the gamma fit by artificially adding sam-

pling error to the true distribution, showing that it fit our estimated 

h2 distribution (Fig. 3a). A similar approach quantified the impact 

of sample size (Supplementary Note), again using the gamma model 
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Figure 1 Transcriptome-wide estimates of 

heritability based on 2,752 twins. (a) Manhattan 

plot of heritability P values for the transcript with 

the highest h2 estimate for each of 18,392 genes. 

The inset (PADI2) shows that the evidence for 

heritability is based on higher correlation between 

monozygotic pairs (MZ) than between dizygotic 

pairs (DZ). The dashed line marks the threshold 

for genes with q < 0.05. (b) Clustering of 777 

genes with q < 0.05 for h2 estimates. The most 

heritable genes belong to the cluster with the 

lowest intergene correlation, but many significant 

genes belong to clusters with high intergene 

correlation. (c) Among 43,628 transcripts, the 

significant proportion (in terms of FDR q value) 

is dependent on mean transcript expression, 

increasing rapidly for transcripts above an 

approximate detection threshold (RMA expression 

≥3.584, determined as the 90th percentile of 

chromosome Y RMA ‘expression’ in females).
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obtained from NTR but inflating the sampling variation to reflect the 

smaller MuTHER sample size. The resulting estimated h2 distribution 

was similar to that reported by MuTHER (Fig. 3b). We suggest that, 

despite other differences between the studies, much of the appar-

ent differences may be attributable to sample size effects. Analysis  

of the recent Brisbane Systems Genetics twin study47 suggested a 

similar effect of sampling variation (Supplementary Fig. 4a and 

Supplementary Note). Although we conclude that the underlying 

heritability in all of these studies may be comparable, this is a distri-

butional statement, and larger sample sizes are desirable in terms of 

accuracy. Accuracy prediction as a function of sample size is shown 

in Supplementary Figure 4b—even with the NTR sample size, we 

predict that the rank correlation between true and estimated herit-

ability is only slightly greater than 0.5.

We applied similar modeling approaches to local IBD–based h2 

values (Fig. 3c,d), estimating the proportion of total h2 attributable to 

local genetic variation. Our mean local IBD–derived h2 estimate was 

0.03, with mean meanlocal IBD( )/ ( ) .h h
2 2

0 23= . The value for this ratio 

was somewhat lower than those reported by MuTHER (>0.30), which 

is perhaps partly attributable to the focus of their study on genes with 

higher total heritability8. A definitive state-

ment of average per-gene ratios ( / )h hlocal IBD
2 2  

will require more complex modeling to handle 

correlation structures in the measurements 

and underlying true structure. However, the 

results from our large sample support the 

view that local genetic variation explains only 

a minority of transcriptomic heritability and 

much of the unexplained variation is among 

genes with modest h2 estimates. A regression 

approach (Supplementary Fig. 5) showed 

that ~35% of the variation in estimated h2 

values could be explained by the predictors.

eQTL analyses of peripheral blood
We next analyzed genotypes as predictors of 

transcription (a GWAS for each transcript) 

for 2,494 twins, using an REML (restricted 

maximum-likelihood) model accounting 

for twin status and covariates. eQTLs within  

1 Mb upstream of the TSS and 1 Mb down-

stream of the transcription end site of a gene 

were classified as ‘local’, and all others were 

classified as ‘distant’, with separate false dis-

covery rate (FDR) control. Genes with at least 

one local eQTL (q < 0.01) had significantly 

higher expression levels and heritability  

(P < 1 × 10−200 for both).

The effect of sample size on local eQTL 

identification is shown in Figure 4a, which 

includes nearly all published blood-derived 

eQTL studies7,8,15,20,31,48–52 (compari-

sons to the large meta-analysis in ref. 29 

are described separately), the full NTR data (n = 2,494) and ran-

dom subsamples of our data. We reanalyzed the data sets using a 

common quality control pipeline on inverse quantile-normalized 

data19 (except where unavailable8,15). For comparison, we selected 

a set of unrelated twins (1,263 individuals) and performed local  

Table 2 Predictors of high heritability expression levels

Predictor

Mean h2  

change Enrichment z P

Expression- 

corrected 

enrichment z P

Mean expression 11.25 2.43 × 10−29 – –

Variance in expression 14.14 2.23 × 10−45 14.89 4.02 × 10−50

GC content, +5 kb of TSS −1.42 0.155 −5.33 9.60 × 10−8

GC content, −5 kb of TSS −0.72 0.471 −5.00 5.73 × 10−7

DHS near TSSa 9.45 3.55 × 10−21 4.01 6.00 × 10−5

DHS near TSS, blood 8.87 7.02 × 10−16 1.30 0.195

Gene densityb −6.98 2.98 × 10−12 −10.85 2.09 × 10−27

Gene sizec 8.07 7.02 × 10−16 11.30 1.27 × 10−29

Local recombination rated 0.73 0.464 3.01  0.0026

Size of LD blocke −0.05 0.959 −0.49 0.622

Gene conservation scoref 8.49 2.00 × 10−17 1.14 0.255

Genes under selection (185)g 0.013 1.60 0.109 1.82 0.068

Genes under positive selection (549)h 0.007 1.32 0.186 1.78 0.074

Genes under balancing selection (47)i 0.042 2.65 0.0081 2.83 0.0046

Genes under adaptive selection (174)j 0.019 2.26 0.024 1.13 0.260

Human accelerated genes (161)k 0.024 3.05  0.0023 4.12 3.73 × 10−5

Primate accelerated genes (137)k 0.024 2.86  0.0042 3.97 7.11 × 10−5

NHGRI GWAS catalog (2,343)l 0.018 7.42 1.14 × 10−13 7.52 5.53 × 10−14

NHGRI, chr. 6 genes removed (2,142) 0.016 6.06 1.37 × 10−9 6.42 1.36 × 10−10

NHGRI, immune diseases (720)m 0.032 7.22 5.02 × 10−13 5.77 7.99 × 10−9

NHGRI, non-immune diseases (1,623) 0.011 3.71 0.0002 4.88 1.03 × 10−6

OMIM disease entries (3,089)n 0.018 8.87 7.63 × 10−19 7.54 4.81 × 10−14

NHGRI + OMIM (4,809) 0.019 10.81 2.96 × 10−27 9.84 7.81 × 10−23

TSS, transcription start site; DHS, DNase I–hypersensitive site; NHGRI, National Human Genome Research Institute; 

GWAS, genome-wide association study; OMIM, Online Mendelian Inheritance in Man. Values in bold correspond to  

P < 0.0022, for Bonferroni significance at α = 0.05 for the 23 tests in each of uncorrected and corrected analyses.
aFrom Encyclopedia of DNA Elements (ENCODE) Duke UCSC tracks. bDefined as the reversed rank of the variance of the 

base-pair positions of the gene and two flanking genes. cThe end transcription base-pair position minus the start transcription 

base-pair position. ddeCODE sex-averaged standardized recombination maps in 10-kb bins. eLinkage disequilibrium block 

boundaries as described in the Supplementary Note. fNCBI HomoloGene (Build 66) score, defined as the ratio of the number of 

appearances in other organisms to the total of 21. gRef. 36, genes with the property shown in parentheses. hRefs. 36–38.  
iRef. 39. jRef. 35. kRef. 41. lRef. 1, for SNPs with P < 5 × 10−8. mFollowing classification in ref. 42. nRef. 43.
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Figure 2 Gene density and other predictors of heritability, using 2,616 

paired twins and 18,392 genes. (a) Mean h2 estimates (corrected for 

gene expression levels) versus density of protein-coding genes per 

autosome, showing that heritability is considerably higher for gene-poor 

chromosomes. Plot symbol area is proportional to the number of genes 

present on the array per chromosome. (b) Histograms of the permuted 

enrichment z statistics for two predictors listed and defined in Table 2. 

Observed values (blue circles) are extreme compared to the permutations.
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eQTL mapping on random subsets of varying sample size, using fewer 

covariates (no blood counts or SNPs) and ~600,000 genotyped SNPs. 

We also evaluated our robustness approaches (normal quantile trans-

formation and normal quantile transformation with SNP minor allele 

frequency (MAF) of >0.005 or >0.01 in each subsample). For local 

eQTLs, there was little difference among the transformations.

There is considerable interstudy variability in the number of sig-

nificant eQTLs (Fig. 4a), even with consistent quality control and 

analysis19,31. With increasing sample size, it seems that most expressed 

genes (>10,000) show evidence of local eQTL influence in periph-

eral blood. For NTR, the number of genes with significant eQTLs  

(q < 0.01) was 11,834, and, after employing final quality control steps, 

there were 9,640 significant genes. Replication was examined in 1,895 

unrelated samples from the Netherlands Study of Depression and 

Anxiety (NESDA), which had a similar sex distribution (68% female) 

and age range (from 18 through 65 years). Reproducibility of eQTLs 

between NTR and the 1,895 unrelated NESDA samples is shown in 

Supplementary Figure 6, and enrichment and deficits of regulatory 

features for local eQTL SNPs are shown in Supplementary Figure 7.

Of the 9,640 genes with local eQTLs in NTR (at least 1 SNP with  

q < 0.01), 9,148 (94.9%) replicated (q < 0.1) in NESDA (using a less 

stringent replication q-value threshold to allow for winner’s curse 

attenuation). This approach was not intended to control the per-gene 

FDR but to focus on genes with the greatest evidence of replication. 

Of the genes with the strongest evidence of local eQTLs in NTR (q < 

0.001), 6,756 of 6,941 (97.3%) replicated in NESDA. There was strong 

overlap (P = 1 × 10−180) of genes with local eQTLs in the full NTR 

sample, with the same gene having a local eQTL in a meta-analysis 

of HapMap LCL studies19. For genes with local eQTLs (q < 0.1) in 

the LCL meta-analysis, 56.1% (2,417/4,306) also had significant local 

eQTLs in NTR. Genes that replicated had smaller meta-analysis q 

values (P = 1 × 10−18), along with higher expression (P = 2 × 10−119) 

and higher heritability (P = 8 × 10−131) in NTR. The lack of over-

lap among smaller HapMap samples is likely an example of winner’s 

curse: considering two larger studies15,20, among the genes annotated 

in all three studies, replication in NTR was 66.8% (2,799/4,189 genes) 

and 77.2% (3,404/4,412 genes), respectively (Fig. 4b). Similarly, for 

local gene-SNP pairs with q < 0.05 from the peripheral blood eQTL 
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Figure 3 Apparent heritability and local IBD effects versus true underlying 

distributions. (a) For twin-based h2 estimates (n = 2,752; 8,818 expressed 

genes shown), subtracting the effects of sampling variation produces an 

estimated true distribution (blue curve). Resimulating from the fitted true 

assumed distribution closely approximates the observed h2 estimates 

(black curve). (b) Analogous expressed gene results for local IBD effect 

estimation. (c) Proportions of all 18,392 genes exceeding h2 thresholds 

for observed data and for the estimated true h2 distribution. The MuTHER 

study (n = 856) reported many more extreme h2 values, but the observation 

is consistent with greater sampling variation due to smaller sample size.  

(d) Analogous plot using only expressed genes from both studies.

Figure 4 Comparison and replication of 

eQTL results. (a) Number of unique genes 

with evidence of local association (q < 0.01; 

within 1 Mb of gene), depicted for published 

leukocyte eQTL studies (LCLs8, monocytes15 

and peripheral blood leukocytes (PBLs)20), 

as well as subsampling of NTR data (PBLs) 

using only genotyped markers and moderate 

quality control (n = 2,494; 43,628 transcripts 

examined). Sample sizes are corrected for the 

number of covariates used. The “NTR with final 

QC” value applies q < 0.001. qnorm refers to 

the rank inverse quantile-normal transformed 

expression data. Ancestries are CEU (Northern 

and Western European), YRI (Yoruba in Ibadan, 

Nigeria), CHB (Han Chinese in Beijing, China), 

JPT (Japanese in Tokyo, Japan), LWK (Luhya 

in Webuye, Kenya) and GIH (Gujarati Indians 

in Houston, Texas). (b) Overlap of local eQTL 

findings with two other large blood studies, 

at q < 0.01. (c) Number of unique genes with 

evidence (q < 0.01) for distant association  

(>1 Mb from gene). The implausible  

non-monotone pattern for NTR on original 

expression values shows the importance of 

robust association methods. Using final quality 

control on NTR data and q < 0.001 drops the 

number of distant eQTLs from over 800 to ~300. The results suggest that many distant associations remain to be discovered, but careful quality control 

is essential. (d) Overlap of distant eQTL findings (q < 0.001) with previous studies (within 1 Mb of gene).
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meta-analysis of Westra et al.29 (n = 5,311), the estimated true dis-

covery rates in NTR and NESDA were 59.6% and 59.7%, respectively 

(Supplementary Fig. 8 and Supplementary Note).

Characteristics of distant eQTLs
Robust distant eQTL results (Fig. 4c, expression transformed to an 

exact normal) were again consistent with published studies, roughly 

linear (log-log scale) with sample size15. For NTR, we obtained a robust 

set of 348 distant eQTLs by applying stricter significance criteria  

(q < 0.001) followed by additional careful quality control. Extrapolating 

to larger sample sizes, we anticipate the identification of <1,000 repli-

cating eQTLs, even for sample sizes exceeding 5,000. Overlap of genes 

with significant distant eQTLs (q < 0.001) among the large studies is 

shown in Figure 4d, with much lower overlap for distant eQTLs than 

for local eQTLs. For significant distant gene-SNP pairs from Westra  

et al.29 (n = 5,311), the estimated true discovery rates in NTR and 

NESDA were 23.1% and 23.0%, respectively (Supplementary Fig. 8).

Our 601 distant eQTLs with q < 0.001 (Fig. 5) involved 581 genes 

and 538 non-redundant SNPs (for each gene, only the most significant 

SNP per chromosome was retained). We applied additional quality 

control to these highly significant distant eQTLs (Supplementary 

Note), reducing the number of eQTLs to 348 (57.9%), of which 165 

(47.4%) replicated in NESDA (q < 0.01) (Fig. 5, Supplementary  

Fig. 6 and Supplementary Table 6). Genes in the 348 eQTLs were ana-

lyzed using the Database for Annotation, Visualization and Integrated 

Discovery (DAVID) P values for KEGG and GO enrichment, which 

have been shown to be liberal53, but only GO:0003779 (actin binding) 

was declared significant (P = 0.0001, FDR q = 0.046).

The 304 SNPs among the 348 eQTLs were examined using the 

Ensembl Variant Effect Predictor54 (Supplementary Table 6), with 

each SNP assigned on the basis of the most severe predicted conse-

quence. Most of the SNPs were intronic, and the next most frequent 

SNPs included intergenic SNPs, SNPs upstream or downstream of 

protein-coding sequence, and exonic SNPs (Fig. 5b). The 53 inter-

genic SNPs had the lowest rate of overlap with regulatory features or 

replication in NESDA (Supplementary Fig. 9). SNPs in upstream or 

downstream sequences were more likely to overlap with regulatory 

elements, and SNPs in intronic or exonic regions were more likely to 

replicate in NESDA. Only 6 of the 348 distant eQTLs were exonic, 

suggesting that they influence expression rather than modify proteins, 

consistent with our finding that these distant eQTL SNPs are more 

likely to be local eQTLs than randomly selected comparable SNPs 

(Supplementary Fig. 10).

We next sought to identify eQTL hotspots (SNPs influencing 

numerous transcripts). We grouped the 304 distant eQTL SNPs into 

203 regional clusters (Supplementary Fig. 11), of which 160 included 

only 1 SNP and the other 43 spanned 2 kb to 2 Mb of DNA (median 

size of 89 kb). Eleven clusters associated with ≥6 genes were consid-

ered potential hotspots, showing agreement with analogous results 

from NESDA. For each of the 304 SNPs, we estimated the proportion 

of associated transcripts, using NESDA data to avoid selection bias. 

These values were <0.008 for a wide range of NTR eQTL strengths 

(Fig. 5c), many times lower than reported for the three tissues in the 

MuTHER study8. We conclude that eQTL hotspots and significant 

distant eQTLs influence relatively few genes in peripheral blood.

We analyzed each putative eQTL hotspot using a penalized partial 

correlation graph55. We highlight a network where a distant eQTL 

located on chromosome 19 is also a local eQTL of MYO1F. Given the  

expression of SOX13, MYO1F expression is independent of that in 

other distant eQTL genes (Fig. 5d), suggesting that eQTL signals 

are mediated by SOX13. MYO1F encodes unconventional myosins, 

which bind to membranous compartments and serve in intracellular 

movements. SOX13 encodes a transcription factor that modulates the 

WNT-TCF signaling pathway56, and several other distant eQTL genes 

are involved in cellular signaling (for example, TMEM134, RGS12 

and SYT13). Additional network estimation was performed for the 

replicating hotspots (Supplementary Fig. 12), but the relatively few 

genes influenced by hotspots or distant eQTLs suggest that such net-

works do not have a predominant role in steady-state transcription 

in peripheral blood.
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Figure 5 Properties of distant eQTLs. (a) In total, 

348 eQTLs (gene-SNP pairs) were significant  

(q < 0.001) and passed the quality control 

procedures; of these, 165 replicated (q < 0.1) 

in 1,895 NESDA individuals. (b) We examined 

304 SNPs in significant eQTLs for overlap with 

regulatory features, including DNase I/FAIRE 

(formaldehyde-assisted isolation of regulatory 

elements) and transfactor-binding sites, using 

the Ensembl Variant Effect Predictor (version 

2.8)54. Most features were not enriched, although 

the three SNPs annotated as 5′ UTR variants 

all overlap regulatory features, representing a 

significant enrichment (P < 0.01) compared to 

the total 18.4% overlap of distant eQTL SNPs 

with regulatory features. The overall proportion of 

regulatory features is 56/304 = 0.184. (c) The π1 

value represents the estimated proportion of the 

transcriptome influenced by the 304 SNPs that 

passed quality control in significant eQTLs. Across 

all significant bins, the cumulative proportion 

is only ~3%. (d) A distant eQTL hotspot on 

chromosome 19 was associated with the expression 

of 12 distant genes and 1 local gene (MYO1F). 

The partial correlation graph suggests that MYO1F 

expression is independent of the expression of the 

other distant genes, given the expression of the 

transcription factor SOX13.
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Biomedical relevance
This catalog of eQTLs can be used to generate in silico hypotheses for 

biomedical follow-up using peripheral blood as a proxy tissue. Using 

the NHGRI GWAS catalog1, after stringent filtering (P < 1 × 10−8), 

there were significant results for 3,415 SNPs, 498 traits and 4,167 SNP-

trait pairs from 927 reports. The greatest numbers of SNPs associated 

with a trait or disease were found for height (n = 248), high-density 

lipoprotein (HDL) cholesterol (n = 92), Crohn’s disease (n = 155), type 2  

diabetes (n = 98) and ulcerative colitis (n = 81). The extended MHC 

region (chr. 6: 25–34 Mb, 0.3% of the genome) was the second most 

gene-dense region of the genome and contained the greatest number 

of SNPs implicated by GWAS (6.8%). Of the 4,167 SNP-trait pairs 

implicated by GWAS, 534 (12.8%) were part of a local eQTL (either 

directly or via a proxy SNP with r2 > 0.5).

To complement the analyses, we evaluated genes cataloged in 

OMIM (downloaded 17 July 2013)44. Of the 3,118 genes in OMIM, 

74.4% were part of a SNP-gene local eQTL pair (q < 0.05). These 

included many genes related to immune and hematological abnor-

malities, muscular dystrophy (21 genes) and genes implicated in nerv-

ous system diseases. Examples include Alzheimer’s disease (APP and 

PSEN2), deafness (42 genes), amyotrophic lateral sclerosis (15 genes), 

Charcot-Marie-Tooth disease (25 genes), epilepsies (21 genes) and 

candidate genes for schizophrenia (DISC1, DAOA and RGS4). Of the 

517 genes implicated in mendelian autism spectrum disorders57 or 

mental retardation44,58,59, 69.6% were part of a local eQTL SNP-gene 

pair. Of the 3,294 genes with a copy number variant implicated in 

autism spectrum disorders57, developmental delay60 or a psychiatric 

disorder61, 72.4% were part of a local eQTL SNP-gene pair.

Finally, we combined heritability predictors and gene-disease 

 designations into several multiple regressions (Supplementary Table 7). 

Predictors were as shown in Table 2, with the addition of eQTL evidence 

(best local and distant r2 values), chromosome 6 (human leukocyte antigen 

(HLA) genes), chromosome 19 (an outlier in gene density analysis), the  

X chromosome (under-represented in GWAS) and a blood DNase I  

hypersensitivity–gene conservation interaction (identified in exploratory 

analyses). eQTL evidence alone (top local and distant SNPs) explained 

23.9% of the variation in h2 estimates, and the full model explained 32.9%. 

h2 estimates remained significantly predictive of OMIM and NHGRI 

GWAS disease status except for the smaller sets of NHGRI-cataloged 

genes subdivided by immune designation, even when the best local and 

distant eQTLs were no longer significant. Gene conservation was highly 

predictive of OMIM status. Gene density showed strong negative associa-

tion with disease status, but this effect was attenuated for OMIM. NHGRI 

disease status was significantly enriched (P = 1.70 × 10−10; Supplementary 

Table 7) for chromosome 6 loci and showed a deficit on the X chromosome 

(P = 1.87 × 10−13), which we attribute to the neglect of the X chromosome 

in GWAS62. OMIM showed enrichment of the X chromosome, consistent 

with the importance of X-linked disorders in medical genetics.

DISCUSSION
We have established clear patterns underlying the heritability of 

steady-state gene transcription in peripheral blood and have demon-

strated strong connections to disease annotation. The use of peripheral 

blood enables further investigation of immune-related diseases63 but 

may also be useful for other tissues. Our results supply mechanistic 

hypotheses that can be evaluated in subsequent experiments. In com-

parisons across four mouse tissues, we found that genes expressed in 

multiple tissues tended to have cis regulatory elements (J.J. Crowley,  

V. Zhabotynsky, W. Sun, S. Huang, I.K. Pakatci et al. unpublished data).

Examination of h2 estimates relative to gene density builds upon a 

literature demonstrating that essential genes expressed in many tissues 

can occur in dense clusters of high expression, including instances of 

transcriptional colocalization64–66. Essential genes (those that when 

mutated cause lethality at or before birth) identified in mouse muta-

genesis screens show high linkage conservation67, and intergenic 

regions in humans have higher SNP densities than in introns, along 

with higher rates of neutral polymorphisms68,69. Our observations 

seem concordant with these reports, whether selection directly inhib-

its heritability in gene-dense regions or the inhibition is due to the 

relative paucity of genotype variation in such regions.

The ability of h2 estimates to predict OMIM and NHGRI designa-

tions may suggest new approaches to augment association mapping, as 

current approaches generally focus on the sequence context of associ-

ated SNPs rather than the genes themselves. The ability to detect herit-

ability only in expressed genes somewhat complicates interpretation, 

given the higher average expression in high-density clusters and the 

lack of information for genes not expressed in this tissue. Critically, 

full elucidation of these relationships may be possible only with careful 

cross-tissue eQTL analysis of a large number of individuals15.

URLs. The fundamental data for this report (Affymetrix 6.0 and 

U219) are available by application to the database of Genotypes and 

Phenotypes (dbGaP; http://www.ncbi.nlm.nih.gov/gap/). Summary 

results are available in the seeQTL browser (http://gbrowse.csbio.

unc.edu/cgi-bin/gb2/gbrowse/seeqtl/) or in downloadable GFF3 files 

(https://pgc.unc.edu/). deCODE sex-averaged standardized recom-

bination maps, http://www.decode.com/addendum/; phased geno-

type calls on 379 European samples from the 1000 Genomes Project,  

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521; 

GENCODE, http://www.gencodegenes.org/.

METHODS
Methods and any associated references are available in the online 

version of the paper.

Accession codes. Expression data and genotypes are available in 

dbGaP under accession phs000486.v1.p1.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Subjects and biological sampling. Subjects were ascertained and sam-

pled using harmonized protocols from two longitudinal cohort studies, the 

Netherlands Twin Registry (NTR)70 and the Netherlands Study of Depression 

and Anxiety (NESDA)71. NTR is an observational, 25-year longitudinal study 

of twins and their families72–74. The study protocol was approved by the Central 

Ethics Committee on Research Involving Human Subjects of the VU University 

Medical Center70. NESDA is a cohort study to investigate the long-term course 

and consequences of depressive and anxiety disorders and includes persons 

both with and without emotional disorders71,73,74. The study protocol was 

approved by the Ethical Review Board of the VU University Medical Center 

and, subsequently, by the local review board of each participating center71. 

Informed consent was obtained from all participants in both studies.

Peripheral venous blood samples were drawn in the morning (NTR, 

7:00—11:00 a.m.; NESDA, 8:30–9:30 a.m.) after an overnight fast. For fertile 

women in NTR, samples were obtained on days 3–5 of their menstrual cycle 

or in the pill-free week if on oral contraception. Heparinized whole blood 

was transferred into PAXgene Blood RNA tubes (Qiagen) within 20 min  

(60 min for NESDA), incubated and stored at −20 °C or −30 °C (NTR). High-

molecular-weight genomic DNA was isolated using PureGene DNA isolation 

kits (Qiagen).

Gene expression assays. Gene expression assays for NTR and NESDA were 

conducted at the Rutgers University Cell and DNA Repository. Total RNA 

was extracted at Rutgers (for NESDA, at the VU Medical Center) using the 

PAXgene Blood RNA MDx kit protocol in 96-well format with the BioRobot 

Universal System (Qiagen). RNA quality and quantity were assessed by Caliper 

AMS90 with HT DNA 5K/HT RNA LabChips. Samples were randomized to 

plates, with checks to ensure sex and zygosity balance. Co-twins were ran-

domized without respect to relationship to avoid bias in family correlation 

estimates. For cDNA synthesis, 50 ng of RNA was reverse transcribed and 

amplified in a plate format on a Biomek FX liquid-handling robot (Beckman 

Coulter) using Ovation Pico WTA reagents (NuGEN). Products purified from 

single-primer isothermal amplification (SPIA) were fragmented and labeled 

with biotin (Encore Biotin Module, NuGEN), and size distributions were veri-

fied (Caliper AMS90, HT DNA 5K/RNA LabChips). Samples were hybridized 

to Affymetrix U219 array plates (Supplementary Note) to enable expression 

profiling in 96-sample sets. Array hybridization, washing, staining and scan-

ning were carried out in an Affymetrix GeneTitan System according to the 

manufacturer’s protocol.

Quality control was conducted on NTR and NESDA data in parallel. 

Expression data were required to pass standard Affymetrix Expression Console 

quality metrics before further undergoing quality control. The array superset 

consisted of 6,526 U219 arrays (3,516 NTR samples, 2,783 NESDA samples, 

divided into baseline samples and a smaller portion after 2-year follow-up, 

and 227 controls) on 69 plates, including 417 samples that were identified as 

having reduced quality (D < −5.0) and were rehybridized. Expression values 

were obtained using RMA normalization (Affymetrix Power Tools, v1.12.0). 

Probe sequences were mapped to the human genome (hg19) using Bowtie75, 

and probes with sequences not mapping, mapping to multiple locations or 

intersecting a polymorphic SNP (HapMap 3 and 1000 Genomes Project data) 

were removed76,77. We mapped and annotated all Affymetrix U219 probe sets 

with reference to GENCODE (v14) gene models.

The large sample size enabled additional quality control metrics involv-

ing intersample comparisons. First, samples showing sex inconsistency were 

removed (on the basis of X-chromosome and Y-chromosome probe sets). 

Second, we examined the pairwise correlation matrix of expression profiles. 

Using rij as the correlation between arrays i and j, we computed

r r ni ij
j

= ∑ /

the average correlation of array i with all others of the total n arrays. Lower 

ri  values correspond to lower quality and were expressed in terms of median 

absolute deviations D r r r ri i i= − −( )/ (| |)median  to provide a sense of dis-

tance from the grand correlation mean r . Third, we verified sample iden-

tity on the basis of U219 gene expression data and Affymetrix 6.0 genotypes, 

having previously discovered genotype-expression mismatch rates of up to 

5% in published eQTL studies19. Briefly, 500 of the most significant SNP-

 transcript local eQTL pairs19 were used to estimate a posterior probability for 

a match between gene expression and genotype profile (similar to in ref. 78). 

This approach identified sex-mismatched samples and additional samples of  

poor quality.

Fourth, initial analysis using unrelated participants showed the potential 

for spurious eQTL identification owing to expression outliers. Thus, con-

servatively, we transformed expression values using inverse quantile normal 

transformation, which results in values that precisely fit a normal distribu-

tion. These values were used for all primary analyses. Fifth, we evaluated the 

effects of covariates on gene expression and found significant associations for 

plate, hybridization well position, age at blood sampling, sex, time interval 

between extraction and hybridization steps, total white and red blood cell 

counts, hematocrit and the top five expression principal components (similar 

to that of surrogate variables)79. Imputation was performed to estimate a small 

proportion of missing covariates (2.1%). All heritability and eQTL analyses 

corrected for these covariates (93 degrees of freedom), and eQTL analyses 

additionally corrected for the first 3 genotype principal components.

Sixth, we observed that D values and the posterior probability of mismatch 

were highly correlated, and we reasoned that D values might be useful in 

removing additional low-quality samples. To determine the optimal thresh-

old for D, we successively removed individual samples according to D value, 

and recomputed the intraclass correlation coefficient (ICC)-based estimate of  

heritability ̂ ( )ˆ ˆa2 r rMZ DZ−  and accompanying P values80 for all transcripts using 

covariate-residualized expression data. Benjamini-Hochberg FDR q values  

for transcripts were computed using p.adjust in R (v.2.14). Removal of 19 

samples with the lowest D values resulted in the largest number of significant 

transcripts (q < 0.10; Supplementary Note). The optimal choice of samples to 

remove was largely robust to the q-value threshold in the range q = 0.05–0.20 

and to the use of non-normalized expression data.

After expression quality control, the U219 gene expression set consisted of 

2,752 NTR subjects. An additional 1,895 NESDA subjects (representing the 

NESDA baseline set) were used for replication in this report. Expression qual-

ity control for NESDA followed the same steps as for NTR (except that zygosity 

did not apply). Expression distributions for monozygotic and dizygotic twins 

were compared for differing mean expression (t test) and differing variances 

(F test for normally distributed data), performed separately within twin sets 1 

and 2. No transcript showed significantly different mean expression between 

monozygotic and dizygotic twins, but four transcripts showed significantly 

different (FDR q < 0.05) variances. However, of these four transcripts, none 

showed q < 0.05 for h2 estimates.

Genome-wide SNP assays. Genomic DNA was tested using 96 TaqMan 

SNP Genotyping assays (RUID panel) with Fluidigm 96.96 GT Dynamic 

Array chips, a BioMark Genetic Analysis instrument and SNP Genotyping 

Analysis Software (v3.0.2). After the quality, sex and identity of genomic DNA 

samples were verified, all samples were randomized to plates. Genotyping 

was conducted using Affymetrix Genome-Wide Human SNP Array 6.0 

(Supplementary Note) according to the manufacturer’s protocol. Resulting 

data were required to pass standard Affymetrix quality control metrics (con-

trast QC > 0.4) before further analysis.

SNP quality control is detailed in the Supplementary Note. Briefly, qual-

ity control included the removal of SNPs for non-unique probes mapping 

to NCBI Build 37/UCSC hg19, low MAF (<0.005, determined empirically), 

substantial deviation from HapMap 3 CEU (Utah residents of Northern and 

Western European ancestry) founder allele frequencies, deviation from Hardy-

Weinberg equilibrium (P < 1 × 10−8) or high missingness (>0.05). Subjects 

were eliminated from analysis for high missingness (>0.05), outlying genome-

wide homozygosity or ancestry, discrepant genetic and phenotypic sex, or 

twin relatedness inconsistent with monozygosity or dizygosity. Resulting geno-

types were of high quality, with relatively low SNP and subject missingness 

(97.5 percentiles of 0.035 and 0.020, respectively). Among 714 monozygotic 

twin pairs, the intrapair agreement for 686,895 autosomal SNPs was 0.9985. 

Previous genome-wide genotyping using a Perlegen 4-chip platform was avail-

able for 2,219 subjects and 110,588 SNPs74 and showed 0.9996 agreement with 

Affymetrix 6.0 genotyping.

n
p
g

©
 2

0
1
4 

N
a

tu
re

 A
m

e
ri

c
a

, 
In

c
. 
A

ll
 r

ig
h

ts
 r

e
s

e
rv

e
d

.



NATURE GENETICSdoi:10.1038/ng.2951

Phased genotype calls on 379 European samples from the 1000 Genomes 

Project were used as the reference set for imputation. NTR samples were split 

into two unrelated sets. SNPs with call rate of <95% or Hardy-Weinberg equilib-

rium P < 1 × 10−9 were excluded. Imputation was performed using MACH. For 

each NTR set, MAF bins of (0.005, 0.1), (0.01, 0.03), (0.03, 0.05) and (0.05, 0.5)  

were defined, and within each bin an r2 threshold was defined such that aver-

age r2 = 0.8. The r2 thresholds were 0.55, 0.4, 0.3 and 0.3, respectively. The final 

SNP numbers were 8.4 million for each of the twin sets, with the intersection 

of 8.3 million SNPs used here.

Heritability. Three methods for estimating heritability are detailed in the 

Supplementary Note. The primary approach was twin-based heritability via 

an REML mixed model, with random additive genetic components of vari-

ation, along with shared and individual-specific environmental effects plus 

selected covariates as fixed effects. Random terms were assumed to be mutually 

independent and normally distributed with mean of 0 and variances sa
2, sc

2 

and se
2. This corresponds to a standard ACE model and assumes that dizygotic 

twins have an average IBD proportion of 0.5 (refs. 81,82). For each transcript, 

the twin-based heritability and shared environmental effects were estimated, 

respectively, as ˆ ˆ ˆ ˆ ˆ/( )a
a a c e

2 2 2 2 2= + +s s s s  and ˆ ˆ ˆ ˆ ˆ/( )c
c a c e

2 2 2 2 2= + +s s s s . The  

ACE model can be fit using either variance-component maximization, con-

straining â2 and ĉ2 to be non-negative or using an unconstrained general 

covariance structure. After establishing that results from the two approaches 

were highly concordant, we used the unconstrained approach to best match 

the intraclass correlation approach80 used for pathway analysis. Under additive 

assumptions, â2 is the heritability estimate h2, and P values are reported for 

the right tail (positive â2) except where noted. P values for the X chromosome 

were obtained using separate heritability analysis for males and females (using 

identical methods as for autosomes) and then combined using Fisher’s method. 

For the analyses in Supplementary Table 7, h2 values for the X chromosome 

were obtained by ignoring twin sex, producing an approximate average across 

the sexes. After calculating results for all 47,628 transcripts, a unique ‘best h2’ 

set used the most significant transcript for each of the 18,293 genes, with FDR 

control applied to the best h2 set in a manner accounting for all transcripts.

The second heritability estimation approach was dizygotic-only heritability 

following a constrained ACE mixed-model approach for full siblings83. For this 

approach, an REML mixed model was used to relate observed variation in true 

IBD proportions among dizygotic pairs to expression phenotypes. P values 

were obtained using likelihood ratio tests. The third approach was heritability 

estimated from the genetic relatedness matrix, as implemented in GCTA46. For 

this approach, we divided the NTR subjects into unrelated sets (twin set 1, n = 

1,370; twin set 2, n = 1,372) and averaged the h2 estimates from the 2 twin sets. 

Results showed almost no correlation with twin-based heritability (data not 

shown), and we reasoned that genome-wide IBD might have reduced power 

for those genes influenced largely locally. Thus, we ran GCTA again, using IBD 

estimation performed in the local region within 1 Mb of each transcript.

Local IBD analysis. Residualized expression data showed a nearly perfect nor-

mal distribution, and the bivariate normal model of Wright84 for sibling pair 

IBD mapping was therefore applied to the dizygotic pairs, offering a potential 

improvement over the Haseman-Elston approach8. MERLIN85 was run on the 

thinned set of markers used for stratification analysis, and probabilistic IBD 

estimates were produced at each marker closest to or within each gene. A full 

maximum-likelihood approach was applied for an additive model for the effect 

of each increment of IBD on dizygotic twin correlation as a function of IBD 

status, thus extracting maximum information. The approach in ref. 84 provides 

a regression coefficient, which was then converted to local h2 equivalents as the 

proportion of variation in the trait explained by local IBD status.

Heritability enrichment and pathway analysis. A primary question is whether 

heritability associates with gene sets, pathways or quantitative gene features, 

which we generically refer to as heritability enrichment. We employed DAVID/

EASE as a descriptive tool to investigate heritable gene clusters35. However, 

simple methods that ignore transcriptomic correlation produce very high false 

positive rates53. Furthermore, a large number of genes are heritable, necessitat-

ing ‘competitive’ enrichment testing86, contrasting the heritability of each set 

of genes with that of a complementary set. Accordingly, we devised a rigorous 

testing approach for each gene set. We used a covariate-residualized version 

of the expression data, computing the ICC-based estimate for complete twin 

pairs as ̂ ( )ˆ ˆah
2

2= −r rMZ DZ  for all genes using the transcripts with the best h2 

values. For the observed data, this approach was highly consistent with REML 

estimates (r = 0.992; Supplementary Note). Twin zygosity status was permuted 

1,000 times, and h2 was computed for all genes for each permutation, along 

with the difference in mean h2 for the gene set versus the complementary set. 

As this difference showed a nearly normal distribution, an enrichment z sta-

tistic was calculated as the observed difference divided by its permutation s.d., 

and a two-sided P value was computed assuming normality. A similar approach 

was used for continuous predictors in which the correlation between h2 and the 

predictor was computed (with z as the correlation divided by its s.d.). By per-

muting only zygosity status, the enrichment z-score approach preserves mean 

twin pair correlations, as well as gene-gene correlations. To control for the 

complicating effects of mean expression, some analyses (including all KEGG 

and GO pathway analyses) were performed in which h2 values were corrected 

for the effect of mean expression in the original and permuted data sets.

eQTL analysis. We refer to eQTLs as local (SNP-transcript associations within 

1 Mb of the transcription start and end sites) or distant (the remaining find-

ings). We prefer these terms to cis and trans designations, which connote a 

greater understanding of underlying mechanisms.

The REML twin-based model can be used for eQTL analysis by including 

SNP genotype (additive coding as copies of the minor allele) and computing 

the corresponding Wald statistic, in this manner properly handling covariates 

and twin correlation structure. This approach is computationally prohibitive 

for full eQTL analysis, so we used Matrix eQTL87 to rapidly screen for local 

or distant eQTL relationships. To account for dependence, the full REML 

model was then applied to all transcript-SNP associations with nominal P < 

1 × 10−5 (a liberal threshold for the ~3 × 1010 tests performed). Separate FDR 

q-value error control was performed for local and distant eQTLs. After FDR 

correction, it was apparent that all significant results with true REML q < 0.10 

had indeed been captured. Some of the eQTL findings are reported in terms of 

unique genes, i.e., the most significant transcript-SNP combination for each 

gene, and in such instances the full testing multiplicity was considered.
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