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phenotype as comprised of distinct components: e.g., addi-
tive genetic effects (A), common environmental effects (C), 
and unique environmental effects (E, also including error or 
unmodeled unexplained variance; Martin and Eaves 1977; 
Neale and Maes 2004). Specifically, in a linear mixed-effect 
(LME) regression model,

      Introduction

For over a century, researchers have relied on variance par-
titioning as a statistical method for estimating heritability 
(Carey 2003). Historically, twin studies provided an avenue 
by which researchers could model the variance of a given 
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Abstract
Twin and family studies have historically aimed to partition phenotypic variance into components corresponding to addi-
tive genetic effects (A), common environment (C), and unique environment (E). Here we present the ACE Model and 
several extensions in the Adolescent Brain Cognitive Development℠ Study (ABCD Study®), employed using the new Fast 
Efficient Mixed Effects Analysis (FEMA) package. In the twin sub-sample (n = 924; 462 twin pairs), heritability estimates 
were similar to those reported by prior studies for height (twin heritability = 0.86) and cognition (twin heritability between 
0.00 and 0.61), respectively. Incorporating SNP-derived genetic relatedness and using the full ABCD Study® sample 
(n = 9,742) led to narrower confidence intervals for all parameter estimates. By leveraging the sparse clustering method 
used by FEMA to handle genetic relatedness only for participants within families, we were able to take advantage of the 
diverse distribution of genetic relatedness within the ABCD Study® sample.
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yij = µ + x′ijβ + Aij + Cij + Eij  (1)

where yij is the trait value of individual j in family i; µ is the 
overall mean; xij denotes a vector of covariates; and Aij, Cij, 
Eij represent latent additive genetic, common environmen-
tal and unique environmental random effects (ACE model), 
respectively. For longitudinal datasets in which participants 
are followed over time, the LME is also the recommended 
analysis that takes into account the random effect of subject 
(Pinheiro 2014), e.g.:

yij = µ + x′ijβ + Aij + Cij + Sij + Eij  (2)

where Sij is the random effect of subject (e.g., subject ID), 
and the vector of covariates xij typically includes a fixed 
effect of time (e.g., age). In this way, the longitudinal LME 
assumes a linear combination of fixed and random effects to 
model the trajectory of the phenotype of interest over time.

Although the ACE model has often been implemented 
using structural equation model (SEM) software such as 
OpenMx (Neale et al. 2016), the SEM representation is 
mathematically equivalent to the LME regression model 
shown in Eq. 1 (Neale and Maes 2004; Visscher et al. 2004; 
McArdle and Prescott 2005). Indeed, prior applications of 
the ACE framework have been implemented using LMEs 
from R and Stata packages (Rabe-Hesketh et al. 2008) as 
well as SAS (Wang et al. 2011). For studies that incorporate 
extended family designs with several random effects, Viss-
cher and colleagues (2004) recommended implementation 
using a LME approach, though SEM methods also exist to 
model complex family structure (Truett et al. 1994; Keller 
et al. 2009).

With recent advances in genomic sequencing, there has 
been an influx of methods that use measured genetic data 
rather than inferred genetic similarity from twin status. For 
example, genome-wide complex trait analysis (GCTA; Yang 
et al. 2011) was developed to incorporate a pairwise genetic 
relatedness matrix (GRM) between individuals using infor-
mation from single nucleotide polymorphisms (SNPs). 
Twin studies have subsequently been adapted to incorporate 
empirical measures of genetic relatedness (Kirkpatrick et al. 
2021). However, incorporating a matrix of pairwise related-
ness values for each set of participants leads to an increase 
in the computational time when estimating these model 
parameters. Various subsequent adaptations have been 
developed to increase the processing speed of GCTA soft-
ware (Ge et al. 2015) and to incorporate effects of maternal 
and/or paternal genotype on the traits within GCTA (Eaves 
et al. 2014; Qiao et al. 2020; Eilertsen et al. 2021).

Comparison of heritability estimates derived from non-
twin versus twin analyses have found that non-twin studies 
consistently yield lower heritability estimates, an example 

of the so-called “missing heritability” in genetics research 
(Kim et al. 2015). Some researchers have suggested that this 
phenomenon may be due, in part, to inflated twin heritability 
estimates; for example, due to dominant genetic variation 
which might be masked by shared environment in twin and 
family studies (Chen et al. 2015). Indeed, twin and family 
studies have developed several ways of parsing “common 
environment”, including using geospatial location informa-
tion (Heckerman et al. 2016; Fan et al. 2018) and adding a 
random effect of twin status (T) when including twins and 
full siblings in the same study (Zyphur et al. 2013). It should 
also be noted that “SNP heritability” is a “narrow heritabil-
ity” that only takes into account the additive genetic effects, 
and can be an underestimation of true heritability depending 
on SNP coverage. For example, estimates of SNP heritabil-
ity tend to increase as SNP coverage increases from 300,000 
SNPs to whole genome sequencing, and as rarer genetic 
variants are included (Wainschtein et al. 2022).

The Adolescent Brain Cognitive Development℠ Study 
(ABCD Study®) provides a particularly appealing dataset 
for the estimation of heritability, not only due to its popu-
lation sampling framework, large sample size, and longi-
tudinal design, but also because it contains an embedded 
sub-sample of 840 pairs of same-sex twins recruited through 
birth registries at four sites (Iacono et al. 2018). The overall 
sample is thus enriched for genetic relatedness, with fami-
lies that include siblings, half siblings, dizygotic (DZ) twins, 
and monozygotic (MZ) twins. The ABCD Study® data 
therefore requires the application of modeling approaches 
that take repeated measures, family structure, and related-
ness into account.

In this study we implemented modeling strategies that 
account for family structure and pairwise genetic related-
ness using the recently developed Fast Efficient Mixed 
Effects Analysis (FEMA; Fan et al. 2021). We used FEMA 
to model participants nested within families, where random 
effects such as genetic relatedness were taken into account 
for each pair of subjects within a family, and set to zero 
for individuals who are not in the same family (Fan et al. 
2021). For longitudinal data FEMA also allows inclusion of 
the random effect of subjects, which is a common practice 
for repeated-measures designs (Pinheiro 2014). FEMA pro-
vides a flexible platform for users to specify a wide array 
of fixed and random effects, which makes it a useful tool 
for modeling variance components in the ABCD Study®. 
The ABCD Study® Data Analysis, Informatics & Resource 
Center (DAIRC) intends to incorporate FEMA into the Data 
Exploration and Analysis Portal (DEAP) so that investiga-
tors can easily specify and run LMEs through this online 
platform. This paper is therefore intended to serve as a ref-
erence point for users who are examining random effects 
estimates on behavioral phenotypes using FEMA.
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We first compared the basic ACE model implemented in 
FEMA versus OpenMx (Neale et al. 2016). Next, we tested 
the effect of including SNP-derived genetic relatedness 
(using genotype array data) compared to estimating related-
ness based on kinship (i.e., 1.0 for MZ twins, 0.5 for DZ 
twins and full siblings). We then progressively expanded 
our sample size, first going from “twins only” to the full 
ABCD Study® baseline sample (including non-twin sib-
lings and singletons), and finally to the full sample across 
multiple timepoints. We compared model estimates for the 
commonly used A, C, and E components, as well as a sub-
ject-level component (S) in the longitudinal data, and the 
twin component (T), which captured the variance attribut-
able to variance in the common environment of twin pairs. 
In addition, we explored the change in model estimates and 
model fit when adjusting for specific fixed effect covariates, 
and when excluding the twin sub-sample.

Methods

Sample

The ABCD Study® is a longitudinal cohort of 11,880 ado-
lescents beginning when participants were aged 9–11 years, 
with annual visits to assess mental and physical health 
(Volkow et al. 2018). The study sample spans 21 data acqui-
sition sites and includes participants from demographically 
diverse backgrounds such that the sample demographics 
approximate the demographics of the United States (Gara-
van et al. 2018). The sample includes many siblings as well 
as a twin sub-sample consisting of 840 pairs of same-sex 

twins recruited from state birth registries at four sites (Gara-
van et al. 2018). Exclusion criteria for participation in the 
ABCD Study® were: (1) lack of English proficiency in the 
child; (2) the presence of severe sensory, neurological, med-
ical or intellectual limitations that would inhibit the child’s 
ability to comply with the study protocol; (3) an inability 
to complete an MRI scan at baseline. The study protocols 
were approved by the University of California, San Diego 
Institutional Review Board. Parent/caregiver permission 
and child assent were obtained from each participant. The 
data used in this study were obtained from ABCD Study® 
data release 4.0.

Statistical analyses were conducted on a sample that 
included a total of 13,984 observations from 9,742 unique 
participants across two timepoints (the baseline and year 2 
visits). The twin sub-sample used in this study consisted of 
462 pairs of twins with complete data (258 DZ pairs, 204 
MZ pairs; total N = 924). Observations were included in 
the final sample if the participant had complete data across 
sociodemographic factors (household income, highest 
parental education), available genetic data (to provide ances-
try information using the top 10 principal components), 
and the phenotypes of interest. Table 1 shows the baseline 
demographics of the full sample as well as the twin sub-
sample. Compared to the full sample, the twin sub-sample 
had a higher percentage of parents with bachelor’s degrees 
or above (67.3% compared to 61.8% in the full sample), and 
household income was shifted higher (52.7% with income 
over $100,000 compared to 42.0% in the full sample).

Measures

Phenotypes of Interest

For the present study, we included height as a phenotype 
of interest due to its common use in twin and family stud-
ies (Silventoinen et al. 2003), as well as the availability of 
larger genetic studies from samples of unrelated participants 
(Yengo et al. 2022). Several cognitive phenotypes were 
included from the NIH toolbox cognition battery (Gershon 
et al. 2013): specifically, we analyzed the raw composite 
scores measuring fluid and crystallized intelligence, which 
have been validated against gold-standard measures of cog-
nition (Akshoomoff et al. 2013; Heaton et al. 2014). We also 
included the uncorrected scores from the flanker task, pic-
ture sequence memory task, list sorting memory task, pattern 
comparison processing speed, dimensional change card sort 
task (components of fluid cognition); and the oral reading 
recognition task and picture vocabulary task (components 
of crystallized cognition). In addition to the NIH Toolbox, 
we included the matrix reasoning test from the Wechsler 
Intelligence Scales for Children (WISC-V; Wechsler 2014), 

Table 1 Sample information at baseline. All samples include complete 
cases only. †Full sample included 241 pairs with SNP-derived relat-
edness > 0.9, implying 350 DZ pairs and 241 MZ pairs. ††Twin sub-
sample included 258 DZ pairs and 204 MZ pairs

Full sample Twin 
sub-sample

N 8239 924
 Number of families 7136 462
 Number of twin pairs 591† 462††

 Number of triplet pairs 8 0
Age (months; mean (SD)) 118.94 

(7.55)
121.79 (6.61)

Parental Education (%)
 < HS Diploma 320 (3.9) 18 (1.9)
 HS Diploma/GED 680 (8.3) 38 (4.1)
 Some College 2151 (26.1) 246 (26.6)
 Bachelor 2196 (26.7) 308 (33.3)
 Post Graduate Degree 2892 (35.1) 314 (34.0)
Household Income (%)
 < $50,000 2404 (29.2) 170 (18.4)
 >= $50,000 & < $100,000 2374 (28.8) 267 (28.9)
 >= $100,000 3461 (42.0) 487 (52.7)
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PC-Relate was run on the same pruned set of SNPs described 
above using the first two PCs computed from PC-Air.

Data Analysis

Pre-residualization

We used R version 3.6.3 for data processing. After obtaining 
the sample of complete cases for all variables, phenotypes 
were pre-residualized for age and sex using the lm function. 
For certain models (see Table 2), we additionally included 
the following covariates during this residualization step: site, 
parental education, income, and the first ten genetic princi-
pal components. The purpose of pre-residualization was to 
ensure that both FEMA and OpenMx implementations were 
fitting random effects to the same data. Because our models 
only fit random effects, and because FEMA implements an 
unbiased estimation of total variance, the FEMA implemen-
tation was therefore mathematically equivalent to OpenMx.

Previous work has found evidence for a practice effect 
in some of the cognitive measures from the ABCD Study® 
(Anokhin et al. 2022). Therefore, in models that included 
data from baseline and year 2, we included a “practice 
effect” as a dummy variable in the pre-residualization step. 
This variable was equal to 0 if the observation was the first 
instance of data for that participant (i.e., all participants had 
0 at baseline), and 1 if the participants were providing data 
for the second time at the year 2 visit. Most participants 
(N = 4242, 76.19%) had a value of 1 at the year 2 visit.

Model Specification

We ran a series of models, described in Table 2. For each 
model, we specified whether genetic relatedness was “SNP-
derived” (calculated using PC-AiR and PC-Relate; Cono-
mos et al. 2015; Conomos et al. 2016) or “kinship-derived”. 
For kinship-derived relatedness, we used the zygosity data 
from the twin sub-sample to assign a value of 1 for MZ 
twins, 0.5 for DZ twins, and 0.5 for all other siblings (under 
the assumption that there are only full siblings within a 
family).

Since each phenotype was pre-residualized, we only 
needed to estimate the random effects components in each 
LME run within FEMA and OpenMx. These included an 
effect of family ID (common environment, C), additive 
effect of genetic relatedness (A), subject (S), twin status (T, 
calculated by creating a variable “pregnancy ID” that was 
shared by any two individuals with the same family ID and 
same birth date), and unique environment/unexplained vari-
ance (E).

the total percent correct from the Little Man visuospatial 
processing task (Acker 1982), and the total number of items 
correctly recalled across the five learning trials of the Rey 
Auditory Verbal Learning Task (RAVLT; Schmidt 1996). 
See Extended Methods for a complete description of each 
phenotype of interest including data collection procedures.

Covariates

Unless otherwise specified, models were run on data that 
was pre-residualized for age and sex only, in keeping with 
common practice for twin studies (Neale and Maes 2004). 
In models that included pre-residualization for additional 
covariates, these were chosen based on common practices in 
cognitive and behavioral research, and included recruitment 
site, parental education, household income, and the first ten 
genetic principal components.

Genetic Principal Components and Genetic Relatedness

Methods for collecting genetic data have been described in 
detail elsewhere (Uban et al. 2018). Briefly, a saliva sample 
was collected at the baseline visit, as well as a blood sam-
ple from twin pairs. The Smokescreen™ Genotyping array 
(Baurley et al. 2016) was used to assay over 300,000 SNPs. 
Resulting genotyped and imputed SNPs were used for prin-
cipal components derivation as well as genetic relatedness 
calculation.

The genetic principal components were calculated using 
PC-AiR (Conomos et al. 2015). PC-AiR was designed for 
robust population structure inference in the presence of 
known or cryptic relatedness. Briefly, PC-AiR captures 
ancestry information that is not confounded by relatedness 
by finding a set of unrelated individuals in the sample that 
have the highest divergent ancestry and computes the PCs in 
this set; the remaining related individuals are then projected 
into this space. This method has been recommended by the 
Population Architecture through Genomics and Environ-
ment Consortium (Wojcik et al. 2019), which is principally 
concerned with conducting genetic studies in diverse ances-
try populations.

PC-AiR was run on using the default suggested parame-
ters from the GENESIS package (Gogarten et al. 2019). We 
used non-imputed SNPs passing quality control (516,598 
variants and 11,389 individuals). Using the computed kin-
ship matrix, PC-Air was then run on a pruned set of 158,103 
SNPs, which resulted in 8,005 unrelated individuals from 
which PCs were derived – leaving 3,384 related individuals 
being projected onto this space.

We then computed a GRM using PC-Relate (Conomos 
et al. 2016). PC-Relate aims to compute a GRM that is 
independent from ancestry effects as derived from PC-AiR. 
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OpenMx

We first ran an ACE model in the baseline twin sample, 
using the OpenMx package in R (package version 2.20.6; 
Neale et al. 2016). We elected to use OpenMx as the com-
parison software due to its widespread use in twin and 
family studies to estimate heritability. We chose to use the 
restricted maximum likelihood (REML) estimator within 
OpenMx, which differs from ML estimators by (a) using an 
unbiased estimation to calculate total variance, and (b) first 
estimating the random effects iteratively and then estimating 
the fixed effects coefficients, as opposed to alternating esti-
mation of variances and fixed effects. However, due to the 
preresidualization step described above, in our models we 
solely estimated random effects, such that the REML esti-
mator in OpenMx provided a good comparison for FEMA 
(a ML estimator that uses an unbiased estimation of total 
variance). We ran OpenMx using R version 3.6.3., using the 
default SLSQP optimizer. Because data were preresidual-
ized for age and sex, we did not fit any additional covariates. 
OpenMx provides likelihood-based confidence intervals by 
default (Neale and Miller 1997) which we used to compare 
with the likelihood-based confidence intervals calculated in 
FEMA.

Fast Efficient Mixed Effects Analysis (FEMA)

FEMA was developed for the efficient implementation of 
mass univariate LMEs in high-dimensional data (e.g., brain 
imaging phenotypes; Fan et al. 2021). Whereas the original 
version of FEMA used a method of moments estimator for 
increased computational efficiency, we modified the pack-
age to allow the user to select a ML estimator. When users 
specify ML as the estimator, FEMA arrives at parameter esti-
mates by minimizing the log likelihood function specified 
in FEMA_loglik. An updated version of FEMA, including 
the relevant code, is available at the time of this publica-
tion (https://github.com/cmig-research-group/cmig_tools). 
Because FEMA uses an unbiased estimation of total vari-
ance, and we were only fitting random effects and not fixed 
effects, the estimates from the FEMA implementation of 
ML regression were predicted to be mathematically equiva-
lent to the REML estimator used in OpenMx. To run FEMA, 
we passed a design matrix (the design matrix was “empty” 
because we were not fitting any fixed effects) as well as a 
file containing a matrix of (SNP- or kinship-derived) genetic 
relatedness values. FEMA then used a nested random effects 
design to create a sparse relatedness matrix, in which the 
relatedness values for all participants not assigned the same 
family ID was set to zero. For all models we reported the 
random effects variances as a percent of the total vari-
ance in the residualized phenotype that was explained by 
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to the likelihood ratio test statistic for model comparison 
because several comparisons were not between nested 
models.

Results

ACE Model (Model 1) in FEMA Versus OpenMx

A summary of heritability estimates (i.e., the A random 
effects) from all models is provided in Supplementary 
Table 1. To compare model estimates between OpenMx 
and FEMA, we fit the same ACE model in each, using the 
same sample of 462 complete twin pairs from the twin sub-
sample (i.e., pairs in which each twin had complete data for 
all phenotypes). Figure 1 shows a comparison of the two 
results as well as the parameter estimates using FEMA. The 
difference in heritability estimates between the two software 
packages was less than 0.001 for all phenotypes. On com-
paring these models (Fig. 1B), we found that the difference 
in AIC was less than 0.05 for all phenotypes, indicating that 
there was no difference in the model fit. Because the model 
estimates and model fits were practically the same, we con-
cluded that the two implementations were indeed math-
ematically equivalent, and therefore elected to use the LME 
implementation in FEMA for all further analyses.

Effect of Including Measured Genetic Relatedness 
(Model 2)

To test whether variance component estimates differ when 
including SNP- versus kinship-derived genetic relatedness, 
we fit two versions of the ACE model in the baseline twin 
sample. Model 1 (the ACE model described above, imple-
mented in FEMA) used a matrix of kinship-derived related-
ness values (1.0 for MZ twins and 0.5 for DZ twins) whereas 
Model 2 used a matrix of SNP-derived relatedness values.

The models provided equivalent heritability estimates, 
with differences in A estimates ranging from − 0.01 (Lit-
tle Man Task) to 0.03 (pattern comparison; Fig. 2A). On 
inspecting the differences in the AIC between the two mod-
els, we found that using SNP-derived GRM led to small 
improvements in the overall model fit. This improvement 
was most pronounced for height (ΔAIC = -1.04) but less so 
for the cognitive phenotypes (Fig. 2B). Random effects vari-
ance component estimates are presented in Fig. 2C; overall, 
using SNP-derived GRM did not lead to dramatically differ-
ent parameter estimates than using kinship-derived GRM.

variance in the random effect of interest. As a result, for a 
given model, the variance component estimates sum to 1 
(representing 100% of the variance in the residualized phe-
notype). For ease of interpretation and comparison to previ-
ous literature, in this paper the term “heritability estimate” 
refers to the percent of residualized phenotypic variance that 
is explained by variance in genetic relatedness, i.e., variance 
explained by variance in A.

Confidence Interval Calculation

To generate 95% confidence intervals around parameter 
estimates, we used the mxCI function within OpenMx. The 
likelihood-based confidence intervals returned using mxCI 
are obtained by increasing or decreasing the value of each 
parameter until the − 2 log likelihood of the model increases 
by an amount corresponding to the requested interval. The 
implementation of likelihood-based confidence intervals 
has been described in detail by Neale and Miller (1997).

FEMA used the same profile likelihood method to calcu-
late confidence intervals (see Sprott 2000). Code for calcu-
lating confidence intervals is available within the FEMA_fit 
function on the publicly available GitHub repository. 
Briefly, FEMA_fit calculates a log likelihood threshold cor-
responding to the requested confidence interval, then solves 
a quadratic equation that describes the change in likelihood 
as a function of change in parameter value. The solution 
to this equation is applied to the parameter value of inter-
est to achieve the specified confidence interval. Differences 
between FEMA and OpenMx confidence interval calcula-
tion are likely to be due to small differences in the specific 
implementations used.

Model Comparison

For comparing two models that used identical samples, 
we calculated the Akaike Information Criterion (AIC) as 
(Akaike 1974):

AIC = (−2)ln (likelihood) + 2k  (2)

where k represents the number of model parameters. There-
fore, the difference in AIC between two models (ΔAIC) can 
be calculated as:

∆AIC = −2 (∆LL) + 2 (∆k) (3)

where ΔLL represents the difference in log likelihood 
between the two models and Δk represents the difference in 
the number of parameters between the two models. In mod-
els that have the same level of complexity (Δk = 0), the ΔAIC 
is equal to -2(ΔLL). We chose to use the AIC as opposed 

1 3

174



Behavior Genetics (2023) 53:169–188

Fig. 2 ACE Model using kinship-derived (Model 1) versus SNP-
derived GRM (Model 2), twin sub-sample at baseline. (A) Compar-
ison of model estimates. Horizontal error bars represent confidence 
interval calculated in Model 2; vertical error bars represent confidence 

intervals calculated in Model 1. (B) Difference in Akaike Information 
Criterion in Model 2 versus in Model 1. (C) Random effects estimates 
from Model 2.

 

Fig. 1 ACE Model (Model 1) in FEMA versus OpenMx, twin sub-
sample at baseline. (A) Comparison of model estimates. Horizontal 
error bars represent confidence interval calculated in FEMA; verti-

cal error bars represent confidence intervals calculated in OpenMx. 
(B) Difference in Akaike Information Criterion in FEMA versus in 
OpenMx. (C) Random effects estimates from FEMA.
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the random effects variances from Model 3; results indicate 
that the total variance in the full sample was larger than that 
in the twin sample, and using the full sample led to smaller 
estimates of A and larger estimates of C compared to the 
twin sample.

Adding a Twin Random Effect (Model 4)

Given that the full sample analysis included singletons, half 
siblings, and adopted siblings, as well as twins and triplets, 
we next tested whether the addition of a random effect of 
twin status (T) led to a change in parameter estimates. We 
calculated a “pregnancy ID” that was shared by individu-
als who had the same family ID and the same birth date. 
We then used this “pregnancy ID” to code for the T random 
effect in an ACTE Model (Model 4). Supplementary Fig. 1 
shows the model estimates from Model 4 as well as a com-
parison to Model 3; the two models are equivalent with the 
exception of the T random effect.

For most phenotypes, the addition of the T random effect 
did not lead to a change in parameter estimates (i.e., T was 
estimated to be 0). The largest change in parameter estimates 
was in matrix reasoning (heritability estimate decreased 
by 0.05, T estimated at 0.05; Supplementary Fig. 1A). 
Model comparison found that the difference in the AIC 
was at or near 2.0 for all phenotypes except for the RAVLT 
(ΔAIC = 1.68) and matrix reasoning (ΔAIC = 1.35). Because 
the AIC was calculated as -2ΔLL plus double the difference 

Effect of Increased Sample size (Model 3)

To examine how the variance component estimates in the 
twin sample (n = 924) differ from the full ABCD Study® 
baseline sample (n = 8,239), we next compared the ACE 
model in these two groups. Model 2 (from previous analy-
sis) and Model 3 both used the SNP-derived GRM values 
and included A, C, and E random effects. The two models 
are therefore equivalent except for the much larger sample 
fit in Model 3. As described in Methods, the sparse cluster-
ing method within FEMA ignored the genetic relatedness 
among individuals with different family IDs. In practice, 
this meant that the sample of 8,239 unique subjects at base-
line was clustered into 7,136 families, and genetic related-
ness values were only used for individuals within families.

Figure 3 shows the estimates from Model 3 and their 
comparison to Model 2. The increased sample size led to 
smaller confidence intervals for most random effects esti-
mates calculated in Model 3 (Fig. 3A). The changes in heri-
tability estimates ranged from − 0.31 (NIH Toolbox Fluid 
Cognition) to + 0.04 (height). The estimated total variance 
was larger in Model 3 for most phenotypes (Fig. 3B), with 
the largest increase in variance in total composite cognition 
(24.36% increase in total variance), crystallized cognition 
(23.76% increase), and oral reading recognition (24.08% 
increase). Because the two models were fit to different 
samples, it was not possible to directly compare their AIC 
model fit from the likelihood statistics. Figure 3 C shows 

Fig. 3 ACE Model using full sample (Model 3) compared to twin sub-
sample (Model 2) at baseline. (A) Comparison of model estimates. 
Horizontal error bars represent confidence interval calculated in Model 

3; vertical error bars represent confidence intervals calculated in Model 
2. (B) Difference in total residual variance in Model 3 versus in Model 
2. (C) Random effects estimates from Model 3.
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the RAVLT (ΔAIC = + 1.72), and the Little Man Task 
(ΔAIC = + 2.00; Fig. 4E). Figure 4 C and 4 F show the ran-
dom effects variances from Model 5 and Model 6. Overall, 
the increased sample size led to increased total residual vari-
ance and narrower confidence intervals, increases in herita-
bility estimates for cognitive phenotypes, and a decrease in 
the heritability estimate for height, compared to the baseline 
only sample.

Effect of Using kinship-derived Genetic Relatedness 
in Large Samples (Model 7–9)

For the next set of models, we aimed to approximate a 
cohort study design in which genetic data were not avail-
able, to examine whether model estimates using several 
thousand subjects (Models 3,4,6) changed in the absence of 
SNP data. We used a matrix of kinship-derived genetic relat-
edness (assigning 1.0 for MZ twins from the twin sub-sam-
ple, and 0.5 for DZ twins from the twin sub-sample and all 
other individuals in the same family). The kinship-derived 
relatedness value therefore assumed that all non-twins in the 
same family, as well as twins who were not part of the twin 
sub-sample, were full siblings.

Figure 5 compares the ACSE longitudinal model with an 
equivalent model that used kinship-derived genetic relat-
edness. Supplementary Fig. 2 shows the same question of 
kinship-derived versus SNP-derived relatedness applied 
to Models 3 and 4. Overall, the random effects estimates 
were largely unchanged with the use of kinship-derived 
GRM, with the largest changes in the ACSE model occur-
ring in flanker (ΔA = 0.09) and pattern comparison (ΔA = 
-0.07; Fig. 5A, Supplementary Fig. 2A,D). Model com-
parison using ΔAIC found that the ACSE model using 
SNP-derived GRM had better model fit for height (ΔAIC = 
-36.36), crystallized cognition (ΔAIC = -17.59), oral read-
ing recognition (ΔAIC = -19.45), picture vocabulary (ΔAIC 
= -8.75), and pattern comparison (ΔAIC = -8.84) compared 
to the model using kinship-derived GRM; the difference in 
model fit was less pronounced for picture sequence memory 
(ΔAIC = + 0.46) and flanker (ΔAIC = + 0.45; Fig. 5B, Supple-
mentary Fig. 2B,E). Figure 5 C and Supplementary Fig. 2C 
and 2 F show the random effects variances for models 
using kinship-derived genetic relatedness; results indicate 
that using SNP-derived versus kinship-derived GRM led to 
small changes in heritability estimates, though model fit was 
better with SNP-derived GRM.

Residualizing for Additional Covariates (Models 
10–13)

While it is common in twin and family analyses to include 
only age and sex as fixed effects, behavioral scientists often 

in model parameters (Eq. 3), the consistent values of 2.0 
reflect that the − 2ΔLL statistic was approximately 0 before 
the penalization for the additional parameter in Model 4 
(Supplementary Fig. 1B). The random effects variances 
for Model 4 are shown in Supplementary Fig. 1C. Results 
indicate that T did not explain residual variance above and 
beyond the inclusion of A and C (matrix reasoning being a 
notable exception to this pattern).

Incorporation of Two Timepoints (Model 5, 6)

To compare the difference between cross-sectional and 
longitudinal samples, we next moved from examining the 
full sample at baseline (Model 3) to the full sample at base-
line and Year 2 (Model 5). Models 3 and 5 were equiva-
lent except for the difference in sample size (i.e., Model 5 
did not account for nesting of data within subjects, in order 
to directly assess this effect in Model 6). Because not all 
phenotypes were available at the Year 2 visit, models that 
included baseline and Year 2 data only included pattern 
comparison processing speed, flanker task performance, 
picture sequence memory, picture vocabulary, oral read-
ing recognition, crystallized cognition, RAVLT, Little Man 
Task, and height. To account for nesting of multiple visits 
within subjects, we added a random effect of subject (S) in 
Model 6. Figure 4 shows the change in random effects vari-
ances moving from Model 3 to Model 5 and from Model 5 
to Model 6.

Adding the second visit led to overall increases in the 
heritability estimates for the cognitive phenotypes, with 
changes ranging from − 0.06 (Little Man Task) to + 0.40 
(pattern comparison; Fig. 4A). Conversely, the heritability 
estimate for height decreased by 0.18. Expanding from the 
full sample at baseline to the full sample at baseline and 
Year 2 led to an increase in the total residual variance for 
several phenotypes; the most notable increase was in the 
Little Man Task (7928% increase in total residual variance). 
Adding the random effect of subject led to minimal change 
(< 0.02) in the heritability estimate for height, Little Man 
Task, and RAVLT, but a decrease in heritability estimates 
across the other cognitive phenotypes (changes ranging 
from − 0.19 to -0.05) compared to estimates from Model 
5. The total difference in heritability estimates going from 
Model 3 to Model 6 ranged from − 0.18 (height) to + 0.22 
(pattern comparison; Fig. 4D).

Model comparison between Model 5 and Model 6 found 
that the model was substantially improved for crystal-
lized cognition (ΔAIC = -5.19), oral reading recognition 
(ΔAIC = -7.45), picture vocabulary (ΔAIC = -5.61), flanker 
(ΔAIC = -11.33), and pattern comparison (ΔAIC = -25.60). 
However, the difference in the fit was smaller for height 
(ΔAIC = + 2.00), picture sequence memory (ΔAIC = + 0.89), 
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pre-residualization and model comparison applied to Mod-
els 2–4 and 6. In the classic ACE model, the A estimate 
tended to decrease and the C estimate tended to decrease 
in the models that included additional covariates (Fig. 6A). 
Residualizing for additional covariates led to a decrease 
in the total residual variance across all phenotypes, with 
decreases ranging from − 2.67% (RAVLT) to -26.02% in the 
ACE model (crystallized cognition; Fig. 6B). Because the 
two models were run on different datasets (pre-residualized 

include additional fixed effects such as sociodemographic 
variables or recruitment site as covariates. To test whether 
the inclusion of such variables led to changes in our ran-
dom effects estimates, we ran several of our original models 
with additional variables included in the pre-residualization 
step (i.e., site, parental education, income, and the first ten 
genetic principal components). Figure 6 shows the results 
of this model comparison applied to Model 1 (the “clas-
sic” ACE model). Supplementary Fig. 3 shows the same 

Fig. 4 ACE and ACSE Model in full sample, baseline only (Model 
3) versus baseline + year 2 (Models 5 and 6). (A) Comparison of esti-
mates from Model 5 versus Model 3. Horizontal error bars represent 
confidence interval calculated in Model 5; vertical error bars repre-
sent confidence intervals calculated in Model 3. (B) Difference in total 
residual variance in Model 5 versus in Model 3. (C) Random effects 

estimates from Model 5. (D) Comparison of estimates from Model 6 
versus Model 5. Horizontal error bars represent confidence interval 
calculated in Model 6; vertical error bars represent confidence inter-
vals calculated in Model 5. (E) Difference in Akaike Information Cri-
terion in Model 6 versus in Model 5. (F) Random effects estimates 
from Model 6.
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Fig. 6 ACE model in twin sub-sample at baseline, residualizing for all 
covariates (Model 10) versus age and sex only (Model 1). (A) Com-
parison of estimates from Model 10 versus Model 1. Horizontal error 
bars represent confidence interval calculated in Model 10; vertical 

error bars represent confidence intervals calculated in Model 1. (B) 
Difference in total residual variance in Model 10 versus in Model 1. 
(C) Random effects estimates from Model 10.

 

Fig. 5 ACSE model using SNP-derived (Model 6) versus kinship-
derived genetic relatedness (Model 9), full sample, baseline + year 2. 
(A) Comparison of estimates from Model 9 versus Model 6. Horizon-
tal error bars represent confidence interval calculated in Model 9; ver-

tical error bars represent confidence intervals calculated in Model 6. 
(B) Difference in Akaike Information Criterion in Model 9 versus in 
Model 6. (C) Random effects estimates from Model 9.
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of 8131 pregnancies, 2.14%) was less than the 3.11% twin 
birth rate reported in the general population of the United 
States (Osterman et al. 2021). We therefore assumed that the 
ABCD Study® sample excluding the embedded twin sub-
sample was a proxy for a population sample with a naturally 
occurring number of twins. We then fit an ACSE model, 
applied to the full sample excluding the twin sub-sample, at 
baseline and year 2, to represent the “best” model possible 
of those explored thus far, excluding the T random effect 
(Model 15). We compared this model to the same ACSE 
model applied to the full sample, inclusive of twins (Model 
14).

A comparison of the parameter estimates is shown in 
Fig. 7A. The model excluding the twin sub-sample led 
to a difference in A estimates of -0.19 (picture sequence 
memory task) to + 0.13 (pattern comparison). Excluding 
the twin sub-sample led to an increase in the total residual 
variance across all phenotypes, with changes ranging from 
+ 0.24% (pattern comparison) to + 17.55% (Little Man 
Task; Fig. 7B). Because the two models were fit to different 
samples, it was not possible to directly compare model fit 
from the likelihood statistics. Figure 7 C shows the random 
effects variances from the model that omitted the twin sub-
sample participants. Overall, excluding the twin sub-sample 
led to larger total residual variance, with varied effects on 
heritability estimates.

for different covariates), we did not calculate the difference 
in AIC between the two models. Figure 6 C and Supplemen-
tary Fig. 3C, 3 F, and 3I show the random effects variances 
for the models that were residualized for additional covari-
ates. In general, the inclusion of additional fixed effects led 
to lower residual variance being attributed to the random 
effects of interest, and a lower proportion of the remaining 
variance was attributed to A and C.

Effect of Removing the twin-enriched Sample 
(Models 14–15)

The size and structure of the ABCD Study® cohort, with its 
embedded twin sub-sample as well as the large number of 
related participants, led us to test the degree to which the 
model fit depended on having a large subset of MZ and DZ 
twins. This question was motivated by the fact that many 
large cohort studies do not include a specifically twin-
enriched sample; we aimed to explore whether such studies 
can realistically perform similar models to those tested in 
this paper.

As a proxy for the general population, we removed the 
twin sub-sample. This left a small number of twins and trip-
lets recruited through the general recruitment pipeline (168 
twin pairs and 6 sets of triplets, with 57 pairs of partici-
pants with genetic relatedness > 0.9 across the full sample). 
The number of twin and triplet sets in this sample (174 out 

Fig. 7 ACSE model in full sample omitting twin registry participants, 
baseline + year 2 longitudinal sample (Model 15). Comparison model 
is equivalent but includes the full sample inclusive of twin registry 
participants (Model 14). (A) Comparison of estimates from Model 15 
versus Model 14. Horizontal error bars represent confidence interval 

calculated in Model 15; vertical error bars represent confidence inter-
vals calculated in Model 14. (B) Difference in total residual variance 
in Model 15 versus in Model 14. (C) Random effects estimates from 
Model 15.

 

1 3

180



Behavior Genetics (2023) 53:169–188

We next tested the change in model fit and parameter 
estimation when using SNP-derived genetic relatedness 
rather than kinship-derived relatedness. Parameter estimates 
were largely unchanged, reflecting that in a twin sample, the 
kinship-derived relatedness values of 0.5 and 1 are sufficient 
to arrive at similar random effects estimates compared to 
models using SNP-derived relatedness (though the model 
fit was improved with the SNP-derived relatedness values 
for several phenotypes). Based on these results, researchers 
who are deciding between using SNP-derived or kinship-
derived relatedness data to model cognitive phenotypes may 
prefer to choose based on practical considerations (such as 
availability of different data types, or the relevance of each 
relatedness estimate to the research question of interest) 
rather than making a categorical decision based on model 
fit.

Perhaps one of the most exciting applications comes 
when extending the model to the full ABCD Study® sample. 
By leveraging the sparse clustering method used by FEMA 
to handle genetic relatedness only for participants within 
families, we were able to take advantage of the diverse dis-
tribution of genetic relatedness, ranging from 0 (e.g. adopted 
siblings) to 1 (i.e., MZ twins) for any pair of participants 
within a family. Unlike the large computational load gen-
erated by other similar genome-based REML regressions, 
the use of sparse clusters allowed FEMA to dramatically cut 
the computational time (Fan et al. 2021), allowing all the 
analyses in this paper to be fit on a single machine without 
the use of parallel computing. Using the full sample, first at 
baseline then with the addition of the Year 2 data, led to nar-
rower confidence intervals, as shown in Fig. 3. Inclusion of 
the full sample led to lower heritability estimates for several 
cognitive phenotypes, which may be related to the relative 
homogeneity of the twin sub-sample leading to potential for 
overestimation of heritability. Of note, though singletons 
(participants who are the sole members of their family clus-
ter) did not contribute to estimation of the random effects 
variances themselves, they did contribute to the estimation 
of the total variance, which allows the model to leverage the 
full ABCD Study® sample.

When including the full ABCD Study® sample, the total 
variance in the cognitive phenotypes was larger than the 
total variance in the twin sub-sample. In the full sample, 
C explained a greater proportion of the total variance than 
in the twin sub-sample where C was small for most phe-
notypes. This result would indicate that the twin sub-sam-
ple may be more homogenous compared to the full study 
sample with respect to common environment. The twin 
sub-sample consists of twins recruited via birth registries at 
the four “Twin Hub” sites (Iacono et al. 2018), whereas the 
full ABCD Study® sample was recruited across twenty one 
sites, primarily through demographically informed school 

Discussion

In this paper we present results from different modeling 
strategies for implementing the ACE model using LMEs, 
as implemented in FEMA. FEMA is capable of applying 
the ACE model as well as incorporating additional features 
such as using a sparse matrix of within-family genetic relat-
edness and a random effect of subject to model longitudinal 
data. Notably, the use of FEMA to incorporate relatedness 
across all subjects within a family allows for the flexibil-
ity to include the full ABCD Study® sample, rather than 
restricting analysis to the twin sub-sample. Future updates 
to the ABCD Study® Data Exploration and Analysis Por-
tal will incorporate an online implementation of FEMA so 
that users can specify mixed effects models of interest using 
the ABCD Study® dataset. In addition, future analyses will 
incorporate random effects estimates across the high-dimen-
sional brain imaging data present in the ABCD Study®.

We first applied the ACE model in the baseline twin sam-
ple. FEMA and OpenMx found nearly equivalent estimates 
for all random effects variances, demonstrating the equiva-
lence of the two models being fitted. We estimated the heri-
tability of height at 0.86, which is near the top of the range 
of twin heritability estimates reported by a comparative 
study of twin cohorts in eight countries (ranging from 0.68 
to 0.87; Silventoinen et al. 2003). Our twin heritability esti-
mate for height was higher than the SNP heritability, which 
was recently estimated to be 40% of phenotypic variance in 
European ancestry populations and 10-20% in other ances-
tries (Yengo et al. 2022). Of the cognitive phenotypes, we 
found the highest twin heritability estimate for total com-
posite cognition (0.61) and oral reading recognition (0.58), 
consistent with prior findings that heritability estimates tend 
to be higher for more “crystallized” and culturally sensi-
tive measures of cognition (Kan et al. 2013). Interestingly, 
the picture vocabulary test had a relatively lower heritabil-
ity estimate in this model (0.24) compared to the reading 
recognition test (0.58), which may reflect a difference in 
the cultural sensitivity of the two “crystallized” cognition 
tasks. The NIH Toolbox tasks comprising fluid cognition 
(flanker task, picture sequence memory task, list sorting, 
pattern comparison, and dimensional card sort) ranged in 
heritability estimates from 0.22 (flanker) to 0.41 (picture), 
which is within the wide range of heritability estimates for 
similar tasks in children (approximately 0-0.6; see Kan et al. 
2013). Interestingly, the RAVLT had near-zero estimates for 
all random effects variances in all models, indicating that 
this task may be exceptionally unreliable in this sample, or 
perhaps particularly prone to variance in measurement. For 
further information regarding the heritability of 14,500 phe-
notypes in the ABCD Study® baseline sample, see recent 
work by Maes and colleagues (2023).
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Height had a negligible S component, which may be due 
to the large amount of variance that was already explained 
by genetic and environmental effects. On the other hand, 
the NIH Toolbox tasks each had a variance component 
explained by subject-level variance, indicating that vari-
ance in these phenotypes may be relatively more stable for 
a given participant over time. For these tasks, including S 
in our model allows for better explanation of variance that 
would otherwise be unexplained in a cross-sectional study. 
The Little Man Task and the RAVLT did not exhibit subject-
specific variance, which may be related to higher noise in 
these measures as evidenced by the large E components for 
both tasks (0.79 and 0.97 in Model 6, respectively).

Of all the models described in this paper, the model 
including A, C, S, and E, fit across the full ABCD Study® 
sample and using all timepoints (Model 6), represented the 
“most complete” model. However, we employed a series 
of model comparisons to assess the effect of various study 
design considerations on the random effects variances. First, 
we examined the change in our model results when using 
only kinship-derived genetic relatedness, to approximate a 
study design in which genetic data are not readily available. 
We found that, as expected, the model fit was worse in this 
model, but the parameter estimates were generally similar. 
Of note, we deliberately used the twin sub-sample data to 
“assign” relatedness values, meaning that for these analy-
ses the twins recruited through the general population were 
assumed to have a relatedness value of 0.5 regardless of 
genetic zygosity. Despite this deliberate attempt to increase 
the error in our model, estimates remained relatively simi-
lar, with inflated estimates for the T variance component 
that seemed to compensate for the induced error in related-
ness values (Supplementary Fig. 2). These results indicate 
that when using kinship-derived relatedness, variance that 
would have been attributed to increased genetic relatedness 
is “shifted” into the T component.

We next tested whether including additional covariates in 
our pre-residualization step would lead to a change in ran-
dom effects estimates. In general, residualizing for sociode-
mographic and genetic ancestry covariates led to a decrease 
in the total residual variance as well as the common envi-
ronment (C) parameter estimate. This was expected, as 
adjusting for additional covariates led to a better model 
fit; the improved model fit was accompanied by a smaller 
amount of residual variance that was not accounted for by 
the fixed effects, and any variance that would have been 
partitioned into C was already attributed to the covariates 
such as household income or parental education. Notably, 
adjusting for genetic principal components is an attempt to 
include potential influences of population stratification in 
the model, and does not influence the estimation of genetic 
relatedness. Due to the nesting structure of the random 

selection (for details, see Garavan et al. 2018). A study of 
over 18 million births spanning 72 countries found twin 
birth to be associated with maternal health conditions, health 
behaviors, and socioeconomic characteristics (Bhalotra and 
Clarke 2016). It is possible that these differences result in 
the observed differences in total variance and variance com-
ponents. The underlying causes of this discrepancy, though 
beyond the scope of this paper, are a worthwhile topic for 
future research.

After expanding the model to include the full sample, we 
tested the effect of an added random effect of twin status 
(i.e., “pregnancy ID”). This T effect could include any com-
ponents of the environment that are shared between twins 
but not among siblings. Examples could include shared 
uterine environment and prenatal factors, such as gesta-
tional age; or the fact that twins experience the same envi-
ronmental events at exactly the same time. To illustrate this 
point, a pair of twins might experience a global pandemic at 
exactly the same age, causing them to experience any effects 
of the event in similar ways. In contrast, if two siblings are 
different ages at the time of the event, it might have a differ-
ent age-dependent effect on each of them (despite the fact 
that it is occurring as part of their “common environment”). 
Interestingly, although we found evidence for a T effect in 
matrix reasoning, with a compensatory decrease in the heri-
tability estimate when T was included in the model, the esti-
mated T effect for the other phenotypes of interest was small 
to none, as shown in Supplementary Fig. 1. One factor that 
may influence this result is potential overlap between C and 
T; in other words, the majority of participants with shared 
environment are twin pairs, rendering C and T cross-estima-
ble and hard to fit. Future studies, including those without 
access to a large twin sample, may still benefit from model-
ing the T effect when there are more similar amounts of twin 
pairs versus sibling pairs.

We next used the complete sample across multiple time-
points, for a total of over 13,000 observations (Fig. 4). Add-
ing the second timepoint led to a substantial decrease in 
the heritability estimate for height, with a similar increase 
in the E component for height. This may be due to several 
factors, including possible nonadditive genetic effects (e.g., 
Silventoinen et al. 2008). Conversely, many of the cognitive 
phenotypes (with the exception of the Little Man Task and 
the RAVLT) saw an increase in heritability estimates when 
modeled across multiple timepoints (Fig. 4D). It is possible 
that this phenomenon is related to the well documented 
increase in apparent heritability of cognitive traits with age 
(Davis et al. 2009; Haworth et al. 2010), which may be due 
in part to the gene × environment correlation (Loughnan et 
al. 2019). The S variance component, representing variance 
that is unexplained by the other random effects, but which 
remains stable for a given participant, varied by phenotype. 
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model and its extensions to a large sample with high related-
ness such as the ABCD Study® sample. Notably, the FEMA 
package provides a tool for mass univariate estimation of 
LMEs, and its current implementation does not allow for 
bivariate mixed models. The ability to incorporate multivar-
iate genetic analysis is a major strength of SEM including 
OpenMx (Neale and Maes 2004), and often these techniques 
are used for more complex models such as factor analysis 
or interactions among siblings (see Eaves 1976 for an in-
depth discussion of sibling interaction). SEM and other 
implementations of bivariate linear mixed models may 
therefore provide an avenue to address questions involving 
genetic and environmental correlations between variables, 
as well as changes in variance component estimates over 
time. Bivariate models may also provide some insight into 
questions of innovation, i.e., whether the set of genes that 
influence a given phenotype changes over time. In contrast, 
the mixed effects model used by FEMA leverages the mass 
univariate approach in a way that allows models to scale to 
very large datasets spanning multiple timepoints (Fan et al. 
2021).

The last several years have seen the development of sev-
eral new techniques that can be used to model additional 
relationships, such as random effect × time interaction (He 
et al. 2016), random effect × covariate interaction (Arbet 
et al. 2020), covariance among random effects (Zhou et 
al. 2020; Dolan et al. 2021), and allowing random effects 
estimates to vary as a function of the phenotype (Azzolini 
et al. 2022). The sparse clustering design employed in the 
FEMA package leads to improved computational efficiency 
compared to other LME implementation software (Fan et 
al. 2021); future work will investigate the use of FEMA to 
estimate random effects estimates in more high-dimensional 
datasets, such as the brain imaging data present in the ABCD 
Study®, and compare with other computationally efficient 
implementations of the ACE Model such as Accelerated 
Permutation Inference for the ACE Model (APACE; Chen 
et al. 2019) and positive semidefinite ACE (PSD-ACE; Risk 
and Zhu 2021). More broadly, as stated by Zyphur and col-
leagues (2013), “top down” heritability estimates should 
serve as just one piece of the puzzle connecting genes and 
the environment, where current techniques at the molecular 
and single-gene level may be useful in filling in the gaps 
from the bottom up.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s10519-
023-10141-2.
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effects, the FEMA package only uses the pairwise genetic 
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contrasts with the genetic principal components, which are 
used to estimate a fixed effect across the whole sample that 
may represent population stratification and other effects of 
genetic ancestry.

Finally, we tested whether omitting the twin sub-sample 
led to a difference in model results. This analysis was based 
on the fact that many large cohort studies do not contain 
a twin-enriched sample, and it is unclear whether these 
datasets can still provide estimates of heritability and other 
variance components. Overall, heritability estimates only 
slightly changed for several phenotypes, with two notable 
exceptions (the picture sequence memory task and pattern 
comparison processing speed, which decreased by 0.19 and 
increased by 0.13, respectively). The confidence intervals 
generated by the two models were similar. Notably, there 
were over a thousand families containing more than one 
participant, leading to several hundred families remaining 
after the removal of the twin sub-sample. The large number 
of siblings, perhaps in combination with the use of SNP-
derived relatedness covering a range of values, as well as 
the contribution from the twins that remained in this sample, 
were likely related to the similarity between these results 
and those obtained from the full ABCD Study® sample. 
Conversely, although large cohort studies such as the ABCD 
Study® are becoming increasingly common, these results 
also imply that a smaller twin study may be able to achieve 
similar heritability estimates to those generated through 
larger cohort studies.

The results from this study should be considered in 
light of certain limitations. Generally, LMEs are used to 
partition the variance in a phenotype of interest into com-
ponents modeled by random effects; however, models are 
often built with the assumption that the random effects are 
mutually independent and follow a normal distribution with 
mean 0 (Neale and Maes 2004; Wang et al. 2011). Addi-
tionally, LMEs represent a “top-down” heritability estima-
tion method that can be biased by several factors including 
gene–environment correlations, selection, non-random mat-
ing, and inbreeding (Zaitlen and Kraft 2012; Zhang and Sun 
2022). Furthermore, we did not explore non-additive genetic 
effects, which can attenuate bias of heritability estimates 
(Wang et al. 2011); nor did we model any gene × environ-
ment interactions, which are likely to exist for some of the 
phenotypes of interest (Loughnan et al. 2019). Finally, we 
did not consider sibling interaction in our models, which 
may interfere with model results due to the potential for dif-
ferent variances in MZ twins compared to DZ twins and full 
siblings (Eaves 1976).

This work describes many of the modeling techniques 
available for researchers interested in applying the ACE 
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