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Abstract 

 Human cortex is patterned by a complex and interdigitated web of large-scale functional 

networks. Recent methodological breakthroughs reveal variation in the size, shape, and spatial 

topography of cortical networks across individuals. While spatial network organization emerges 

across development, is stable over time, and predictive of behavior, it is not yet clear to what 

extent genetic factors underlie inter-individual differences in network topography. Here, 

leveraging a novel non-linear multi-dimensional estimation of heritability, we provide evidence 

that individual variability in the size and topographic organization of cortical networks are under 

genetic control. Using twin and family data from the Human Connectome Project (n=1,023), we 

find increased variability and reduced heritability in the size of heteromodal association 

networks (h2: M=0.33, SD=0.071), relative to unimodal sensory/motor cortex (h2: M=0.44, 

SD=0.051). We then demonstrate that the spatial layout of cortical networks is influenced by 

genetics, using our multi-dimensional estimation of heritability (h2-multi; M=0.14, SD=0.015). 

However, topographic heritability did not differ between heteromodal and unimodal networks. 

Genetic factors had a regionally variable influence on brain organization, such that the 

heritability of network topography was greatest in prefrontal, precuneus, and posterior parietal 

cortex. Taken together, these data are consistent with relaxed genetic control of association 

cortices relative to primary sensory/motor regions, and have implications for understanding 

population-level variability in brain functioning, guiding both individualized prediction and the 

interpretation of analyses that integrate genetics and neuroimaging.  
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Significance 

The widespread use of population-average cortical parcellations has provided important 

insights into broad properties of human brain organization. However, the size, location, and 

spatial arrangement of regions comprising functional brain networks can vary substantially 

across individuals. Here, we demonstrate considerable heritability in both the size and spatial 

organization of individual-specific network topography across cortex. Genetic factors had a 

regionally variable influence on brain organization, such that heritability in network size, but not 

topography, was greater in unimodal relative to heteromodal cortices. These data suggest 

individual-specific network parcellations may provide an avenue to understand the genetic basis 

of variation in human cognition and behavior.  
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Introduction 

 The cerebral cortex is organized into a tightly interdigitated set of large-scale functional 

networks. Seminal tract-tracing work in non-human primates first revealed the structural 

properties underlying the distributed and parallel organization of cortical networks1. Subsequent 

resting-state functional connectivity magnetic resonance imaging (fcMRI) analyses leveraged 

correlation patterns of intrinsic fMRI signal fluctuations in humans2 to establish a canonical 

network architecture that is broadly shared across the population3–8. Yet, many individual-

specific properties of brain network organization are lost when central tendencies are examined 

across large groups. The use of population-average network topographies has accelerated 

psychological and neuroscientific discovery, however there is growing recognition that the 

human brain is characterized by striking functional variability across individuals9–15. As 

individualized approaches become increasingly popular for the study of human behavior and 

psychopathology13,16–18, there is growing need to quantify the heritable bases of population-level 

variability in functional network size and topography. Despite the fact that individual differences 

result from the convergence of both genetic and environmental influences, the extent to which 

the size and spatial patterning of cortical networks may reflect heritable features of brain 

function has not yet been systematically investigated. 

 Population-based neuroimaging studies have revealed core principles that govern the 

evolution19, development20, and organization7,8 of large-scale brain networks. In particular, fcMRI 

has been widely utilized to generate group-average network templates through the joint 

analyses of data across vast numbers of individuals. The topography of these population-based 

network solutions are closely coupled to cognitive function, and a strong correspondence has 

been observed linking the spatial structure of intrinsic (fcMRI) and extrinsic (task-evoked) 

networks of the human brain21–23. Consistent with these observations, various connectivity 

patterns track behavioral variability in the general population24–26 and symptom expression in 

patients with psychiatric illness27. Suggesting genetic factors may influence the functioning of 

large-scale brain networks, patterns of intrinsic connectivity within population-average defined 

network templates are heritable28–30 and act as a trait-like fingerprint that can accurately identify 

specific people from a larger group31,32. These data have provided the empirical scaffolding 

necessary to examine how genetic, molecular, and cellular mechanisms shape human brain 

function33–35. Critically however, the use of population-based network templates can obscure 

individual-specific features of brain organization9, and there is growing evidence for substantial 

inter-individual variability in the size, location, and topographic arrangement of regions 

comprising spatially distributed functional networks across the cortical sheet. 
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The presence of individual differences in connectome organization presents a challenge 

for neuroscientists studying the functional architecture of the human brain. The identification of 

genetic and developmental cascades that underpin population-level variability in brain function 

is partly dependent on whether a group network atlas aligns to the particular functional 

topography of an individual. As one example, reports of population-level variability in 

connectivity strengths across participant groups may in fact emerge from the misalignment of 

underlying functional networks, obscuring the distinction between individual differences in 

network connectivity and topography36,37. Moreover, personalized network parcellations may be 

preferable for predictive modeling, graph theoretic, and imaging genetic approaches where the 

definition of an areal “unit” of cortex can influence downstream interpretations38. While the size 

and shape of individualized networks are stable across time39, predictive of behavior13,40 and 

refined over the course of development41, the molecular and genetic bases of this variability in 

network size, location, and spatial arrangement remain to be established. Recent studies have 

shown that individual differences in functional connectivity are heterogeneous across the cortex, 

with greater variability in association cortex relative to unimodal regions13,15,39,42. This distribution 

may have practical implications for the heritability of network topographies in association 

cortices, pointing to potential relationships linking the spatial distribution of inter-individual 

variation in functional connectivity, brain evolution, and development. Quantifying the heritability 

of individual-specific network topographies across the cortical sheet could provide new insights 

into the biological underpinnings of individual differences in human brain functions.  

 Although prior twin studies establish the heritability of functional connectivity strength 

within population-average network templates28,29,43,44, the role of genetics in sculpting the spatial 

topography of the functional connectome has yet to be quantified. To directly address this open 

question, we couple a multi-session hierarchical Bayesian model (MS-HBM) for estimating 

individual specific cortical networks13 with a novel non-linear multi-dimensional estimation of 

heritability. This approach allows us to establish the extent to which genetic and environmental 

factors influence individual differences in network size and topography across the cortical sheet. 

In doing so we provide evidence that inter-individual variability in both the spatial extent and 

topographic organization of cortical networks are under genetic control. 
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Results 

Inter-individual variability in network sizes is nonuniform across heteromodal and 

unimodal cortices  

 We first characterized inter-individual variability in the size of functional networks across 

the cortical sheet. Individual-specific network topographies for each HCP participant were 

obtained from the method of Kong and colleagues13, derived using a multi-session hierarchical 

Bayesian model (MS-HBM). For every participant, each vertex on the cortical surface was 

assigned to one of 17 canonical functional networks8, based on both intra-individual and inter-

individual patterns of cortical resting-state correlation (Figure 1a). Networks were broadly 

divided into those encompassing unimodal sensory and motor regions (i.e. Visual A/B/C, 

Somato/motor A/B, and Auditory), and those linked to heteromodal association cortex (i.e. 

Default A/B/C, Control A/B/C, Ventral Attention A/B, Dorsal Attention A/B, and Language). HCP 

cortical parcellations were identical to those of Kong and colleagues13, who first detailed the 

MS-HBM approach and demonstrated that individualized network topographies are predictive of 

behavior. Parcellations were derived from surface-based rsfMRI data aligned to a surface-mesh 

group template (fs_LR32k). For each participant, we masked out the midline and generated a 

59,412 vertex array of network labels, where each vertex is assigned to one of 17 networks. 

The spatial extent of each network within an individual was estimated as the summed 

surface area of all network labeled vertices, derived using each individual’s Freesurfer-

estimated vertex surface area. Differences in total cortical size across participants were 

adjusted by dividing summed network area by total surface area (separately for each 

hemisphere), resulting in a measure of relative network size across the HCP sample. Networks 

displayed non-uniform patterns of variability across individuals, as displayed in Figure 1b. 

Between-participants variability in network size was quantified using coefficient of variation (See 

Methods), which corrects for baseline differences in average network surface area. Overall, 

areal size was significantly more variable among heteromodal networks relative to unimodal 

(F(1,32)=6.03, p=0.019), an effect that remained if we used standard deviation as a measure of 

variability rather than coefficient of variation (F(1,32)=21.57, p=5.57e-05). These data are in line 

with prior reports indicating that inter-individual variability in the strength of functional 

connectivity is greatest in heteromodal cortex42, corresponding to territories with highest 

evolutionary cortical expansion and density of long-range functional connections45,46. 
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Figure 1. Individualized network size is more variable in heteromodal relative to unimodal 

cortex. (a) Individualized parcellations are composed of 17 canonical functional networks 

present in all HCP individuals, as defined by Kong and colleagues13. (b) The relative size of 

individualized networks was calculated for each participant, expressed as a fraction of total 

cortical surface area. The ridge plot shows distributions of network size across all individuals, 

separated by hemisphere (top ridge=right hemisphere, bottom ridge=left hemisphere). (c) 

Variability of individualized network size across all participants, measured with coefficient of 

variation, which corrects for differences in the total average size of each network. (d) Network 

sizes are significantly more variable within heteromodal (M=21.5, SD=5.19) relative to unimodal 

cortices (M=17.5, SD=3.06; F(1,32)=6.03, p=0.019). Hetero, heteromodal cortex; Uni, unimodal 

cortex; RH, right hemisphere; LH, left hemisphere. 
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Reduced heritability of network size in heteromodal relative to unimodal cortex 

           Inter-individual variability in network connectivity strengths are, in part, attributable to 

genetic variation across the population29. However, the majority of the literature on the genetic 

bases of network architecture relies on population-level motifs derived by averaging data across 

large groups of spatially normalized individuals28,30,44. To advance our understanding of the 

biological bases of network organization, it is important to move from group-level parcellations 

to a level of granularity that is only accessible when studying network organization within the 

individual. Given that both the size and shape of individualized functional networks are tied to 

behavior13,17,39,41, it is critical to determine heritable sources of variation that govern the amount 

of cortex occupied by a given functional network.   

Analyses revealed that the sizes of individualized networks were significantly heritable 

across all canonical large-scale functional networks (Figure 2a). Heritabilities (h2) were 

calculated using individualized network size (adjusted for total surface area) and ranged 

between 0.22-0.57 (M=0.37, SD=0.08). Heritability of normalized surface area for each network 

was estimated using SOLAR47, and covaried for age, age2, age * sex, age2 * sex, ethnicity, 

height, BMI, and Freesurfer-derived intracranial volume. Suggesting broad consistency in the 

influence of genetic factors on the size of cortical networks across hemispheres, a significant 

positive correlation between left- and right-hemisphere heritability estimates was evident across 

the 17 networks (Figure 2b; Pearson’s r(15)=0.74, p=7.4e-4; Spearman’s rs=0.71, p=0.002). 

Notably, heritability was significantly greater within unimodal networks (h2: M=0.44, SD=0.05) 

than networks within heteromodal (h2: M=0.33, SD=0.07) association cortices (Figure 2c; 

F(1,32)=6.03, p=5.52e-05). These data demonstrate the substantial influence of genetic factors 

on the spatial extent of cortical networks across individuals. The results are consistent with the 

hypothesis that late developing aspects of heteromodal association cortex are under relaxed 

genetic control relative to unimodal cortex48. It is important to emphasize, however, that 

heritability refers to genetic variance accounting for inter-individual differences in a given 

environmental context, not the degree to which an overall trait is evolutionary constrained or 

genetically encoded.  
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Figure 2. Heritability of individualized network size is greater in unimodal relative to 

heteromodal networks. (a) Heritability of individual network size (normalized for total surface 

area) was estimated across 17 canonical functional networks using SOLAR47, separately for 

each hemisphere. Error bars reflect 95% C.I. (b) The amount of variance explained by genetics 

(h2) for each network was consistent across hemispheres, as revealed by a correlation of left- 

and right hemisphere h2 values (r=0.74, p=7.5e-4). Each dot in the correlation plot is a 

functional network. (c) Heritability of normalized individual network size was higher among 

unimodal/sensory networks relative to heteromodal association networks (p=5.52e-05). Each 

dot represents one of 17 cortical networks, split by hemisphere (n=34). See Fig. 1 legend for 

explanation of abbreviations. 

  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.30.229427doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.229427
http://creativecommons.org/licenses/by-nc/4.0/


 11 

Heritability of individualized network topography across cortex 

 The connectivity strength and organizational properties of functional networks vary 

across individuals31,42. Individualized parcellation approaches have established similar patterns 

of inter-individual variation in terms of cortical network topography, operationalized here as the 

spatial configuration of a given network on the cortical sheet11,13. A number of factors may play a 

role in differentiating functional topography across individuals, including mechanical tension of 

neuronal projections49, cellular and molecular properties of cortex50, variations in early cortical 

arealization by embryonic molecular patterning centers51, and the fundamental role sensory 

input plays in shaping functional organization across the cortical sheet52. However, the extent 

that variability in the spatial organization of cortical networks may be genetically driven within 

the general population remains unknown.  

 Here, we establish that genetic factors influence individualized network topographies 

using a novel multi-dimensional estimator of heritability. In traditional heritability analyses, the 

variability of a continuous (e.g. height) or categorical (e.g. diagnosis) phenotype is decomposed 

into the relative effects of additive genetics (A), shared environment (C), and unique 

environment (E; ACE model53). Network topography, however, is inherently multi-dimensional, 

since any given cortical vertex is categorically assigned to one of a set of functional networks. 

To account for this property of network organization we developed a novel approach to estimate 

heritability from a linear or nonlinear phenotypic similarity matrix defined across individuals. 

Inter-individual covariance of network shape was measured using Dice coefficient, which 

quantifies the amount of spatial overlap for any given network and participant pair (See Figure 

3d for example). That is, higher Dice coefficients correspond to more similar network 

configurations. The observed Dice coefficients were variable across individuals, as well as non-

uniformly distributed across networks (Figure 3a). The unimodal networks were overall more 

similar across individuals (Dice: M=0.77, SD=0.05) relative to heteromodal association networks 

(Dice: M=0.55, SD=0.06; F(1,32)=112.4, p=5.35e-12).  The increased topographic variability of 

association networks is consistent with prior reports of greater inter-individual variation in 

accompanying patterns of long-range connectivity42. 

 Analysis of multi-dimensional heritability, denoted “h2-multi”, demonstrated that inter-

individual differences in network topography were significantly influenced by inherited genetics 

(Figure 3b; h2-multi: min=0.12, max=0.19, M=0.14, SD=0.015), after accounting for multiple 

testing correction (Bonferroni False-Discovery Rate correction, q’s<0.05). Figure 3c displays the 

distribution of Dice coefficients reflecting inter-individual similarity of network topography defined 

across all 17 cortical networks (i.e. “Overall” in Figure 3b). Dice similarity was greater for 
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monozygotic twins (LH: M=0.70, SD=0.026; RH: M=0.69, SD=0.024), relative to dizygotic twins 

(LH: M=0.66, SD=0.028; RH: M=0.65, SD=0.028), siblings (LH: M=0.66, SD=0.026; RH: 

M=0.65, SD=0.028), and unrelated individuals (LH: M=0.64, SD=0.027; RH: M=0.063, 

SD=0.026), corresponding to a h2-multi of 0.142 and 0.146 for left and right hemispheres, 

respectively. The degree of topographic heritability for each network was consistent across 

hemispheres (Spearman’s rho=0.69, p=0.0036). Contrary to estimates of individualized network 

size, the heritability of network topographies did not differ between unimodal and heteromodal 

cortices (F(1,32)=0.21, p=0.65). Overall, these data advance a novel heritability estimation 

technique to demonstrate that the spatial organization of functional networks is influenced by 

genetic factors.  

We next quantified local genetic control of network architecture across the cortical sheet. 

Our findings detailed above show that the heritability of network topography is broadly uniform 

across cortex when averaging within individual networks (Figure 3). Prior work, however, 

indicates significant spatial heterogeneity of heritable aspects of cortical anatomy54–56. Here, we 

demonstrate that genetic influences on local network topography are also spatially variable 

across cortex, with the greatest heritability observed within the precuneus as well as dorsal 

aspects of parietal, prefrontal, and posterior parietal cortices (Figure 4a). Multi-dimensional 

heritability estimates were calculated in the same manner as above, whereby a Dice coefficient 

matrix represented the participant to participant similarity of network topography. In this analysis 

however, we only consider individualized network labels falling within a given region of interest 

(ROI; radius=10 vertices) at each point on the cortical sheet. Figure 4b illustrates example 

participant pairs with high and low Dice coefficients for an ROI in the precuneus. Critically, some 

participant pairs possess almost entirely non-overlapping network assignments within a given 

patch of cortex (Figure 4b), highlighting the need for individualized parcellations to study of 

neurobiological variability across the population. Of note, we did not observe a clear dissociation 

between unimodal and heteromodal cortices in terms of local network heritability. That is, 

heritability estimates did not differ between regions canonically associated with sensorimotor 

networks (M=0.149, SD=0.038) relative to association networks (M=0.146, SD=0.037; 

F(1,32)=2.10, p=0.16). Together, these results indicate the heritable basis of network 

organization is variable across cortex and support further research into the biological 

determinants of network topography.   
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Figure 3.  Individualized network topography is heritable across all networks. (a) The 

ridge plot displays distributions of inter-individual Dice coefficients across each network. Higher 

Dice coefficients reflect higher spatial overlap of a network for a given pair of individuals. 

Topography of unimodal networks were overall more similar across individuals, relative to 

heteromodal cortex. (b) Significant heritability was observed across all examined 17 cortical 

networks (q<0.01; range=0.12-0.19, mean=0.14), which was symmetric across hemispheres 

(r=0.84, p=2.8e-5; rs=0.76, p=0.0006). (c) Boxplots show higher Dice similarity of overall 

network organization between MZ pairs, relative to DZ, sibling, and unrelated participant 

pairings. (d) Individual examples illustrate HCP participants with a high and low dice overlap for 

Default B (high=0.78; low=0.29) and Visual C (high=0.93; low=0.59) networks. MZ, 

monozygotic; DZ, dizygotic; SIB, sibling; UNR, unrelated.  
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Figure 4. Local Heritability of Individualized Network Topography. (a) Multi-dimensional 

heritability of network topography estimated for every vertex, using an ROI at each point on the 

cortical sheet (radius=10 vertices). Individualized network labels in each ROI were evaluated to 

compute a participant-to-participant Dice similarity matrix, reflecting the similarity of network 

assignments within a given cortical area. Warmer colors indicate higher heritability of network 

assignments, for instance reflecting greater similarity among twins and siblings than unrelated 

individuals. (b) Example participant pairs with high and low Dice overlap of network labels for an 

ROI in the precuneus. Dice similarity was higher between MZ twins, relative to DZ, sibling, and 

unrelated participant pairs. MZ, monozygotic; DZ, dizygotic; SIB, sibling; UNR, unrelated; LH, 

left hemisphere; RH, right hemisphere.  
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Discussion 

 The use of population-average network templates has provided foundational insights into 

the macroscopic functional organization of the human brain. However, individual specific 

features of brain network architecture are obscured when collapsing data across large groups of 

participants. Methodological advances make it possible to measure individualized features of 

functional networks in-vivo, promising to yield biological insight into the genetic, molecular, and 

cellular bases of cortical brain organization. Here, leveraging a novel form of multi-dimensional 

heritability analysis, we demonstrate that a substantial portion of the population-level variability 

in the size and spatial arrangement of cortical networks is under the influence of genetic factors. 

In Human Connectome Project data (n=1,023), the relative size (i.e. cortical surface area) of 

individualized networks showed considerable inter-individual variation, which was most 

pronounced in higher-order heteromodal relative to unimodal sensorimotor networks (Figure 1). 

We demonstrated that individualized network size was heritable for all 17 examined cortical 

networks, but was most pronounced within unimodal, relative to heteromodal cortices (Figure 2). 

Next, we established the heritability of individualized network spatial organization, or 

topography, for all cortical functional networks (Figure 3). Although topographic heritability was 

broadly consistent between cortical networks, we observed substantial spatial heterogeneity in 

the influence of genetic factors across the cortical sheet (Figure 4). Together, this work 

advances a novel analytic framework for measuring heritability of multi-dimensional traits to 

establish the extent that individual-specific features of functional network organization are 

influenced by inherited genetics.  

The estimation of the heritability of multi-dimensional traits, such as the brain’s functional 

network architecture, is challenging given that traditional approaches are designed for 

continuous (e.g. height) or binary (e.g. diagnosis) phenotypes (but see57). In the present study, 

we described a novel method for estimating heritability from any matrix of participant-wise 

similarity metrics. Dice coefficients were used to quantify between-participants similarity of 

network topography, but this approach is generalizable to other commonly studied 

neuroscientific phenotypes, such as patterns of anatomical similarity58 or morphometricity59. We 

have made the associated heritability code freely available to the community 

(www.github.com/kevmanderson/h2_multi), along with analytic pipelines for all analyses. This 

work provides the basis for further elaboration of multi-dimensional heritability techniques, such 

as genetic correlation, that could reveal patterns of shared genetic variance with psychological 

phenotypes13,41. Individualized network parcellations also hold promise for understanding 

psychiatric disorders16, which are often heritable60. Identifying shared genetic substrates 
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between individualized features of network organization and psychiatric illness will be important 

as individualized approaches become increasingly adopted in clinical neuroscientific research.   

 Here, we demonstrated that a significant proportion of the variance in network size and 

topography is explained by genetics, which could emerge through many possible biological 

pathways. For instance, the individual differences in cortical arealization that influence network 

organization may be determined early in neurodevelopment. That is, the cellular fate and areal 

identity of early cortical progenitor cells are specified in embryonic periods by spatial gradients 

of molecular transcription factors61,62, which may vary across individuals. The ability of genetic 

variation to shape these early developmental processes is supported by a recent Genome Wide 

Association Study (GWAS) documenting that common genetic polymorphisms linked to cortical 

surface area were enriched among regulatory elements of neural progenitor cells63. The 

topography of cortical functional networks may also be influenced by cortical neuroanatomy, 

such as cortical morphology and patterns of structural connectivity. In this context, 

biomechanical processes such as axonal tension, intracranial pressure, and the differential 

growth of cortical layers are thought to influence cortical folding49,64, which may in turn constrain 

the topography of functional networks. Further, the size and shape of functional network 

boundaries may be sculpted by thalamo-cortical connections that refine patterns of cortical 

arealization across development52. Experimentally modulating thalamic afferents can 

substantially impact cortical morphology and size in a pathway specific manner 65,66. Critically 

however, heritability analyses cannot disentangle the specific biological processes that influence 

cortical network size or topography. Rather, our data support the importance of future work 

utilizing statistical genetic approaches to identify the biological cascades that influence 

functional network topography across the cortical sheet63.     

The emergence of analytic frameworks for capturing individualized network architectures 

is both a technical and theoretical advance, providing the opportunity to link cognition and 

behavior to population-level variability in brain organization. Landmark research has shown that 

individuals can be identified by patterns of whole-brain functional connectivity, conceptualized 

as a functional “fingerprint”25,31. The analogy to a fingerprint is apt. For instance, broad classes 

of fingerprint types exhibit a high degree of heritability, despite ridge patterns of any fingerprint 

being entirely unique67. Likewise, the brain is organized into a core functional network 

architecture, that nevertheless exhibits distinctive features in a trait-like manner at the level of 

the individual39. Here, we demonstrate that the distinguishing topographic features of the brain, 

including variability in network organization and size, are influenced by inherited genetic factors 

(Figure 3). Such data provide a potential “upper-bound” on the explainable variance due to 
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additive genetic variation, and highlight the utility of future research probing the genetic 

mechanisms underlying inter-individual differences in functional network organization across the 

lifespan.  

Consistent with prior work examining population average network templates, the current 

study provides support for the genetic bases of core features of brain function28–30,44,68–70. The 

degree of heritability for functional network size is in line with prior estimates demonstrating that 

~40-60% of the variance in within-network connectivity is explained by genetics28,29. Of note, we 

emphasize that our data reflect a snapshot of heritability estimates for a given sample in early 

adulthood, and that the influence of genetic factors may vary across developmental periods71. 

Perhaps counterintuitively, phenotypic heritability generally increases from childhood through 

adulthood, possibly reflecting genotype-environment interactions as individuals engage in 

behaviors that reinforce genetically influenced traits72. Although, there is evidence that the 

reverse is true in late adulthood, such that heritability decrease with age73. Future work should 

also examine whether environmental factors such as early life stress or adversity may also 

impact cortical network topography and connectivity74. Experience is also critical for the 

emergence of functional selectivity in some brain regions, such as the face-responsive 

inferotemporal cortex, which may in turn influence patterns of network connectivity and 

affiliation75.  Given recent evidence of the developmentally dynamic nature of functional network 

organization41, it will be important to utilize imaging-genetic data, such as the Adolescent Brain 

Cognitive Development study76, to quantify the age-dependent influence of genetic factors on 

cortical network formation. 

Higher-order association networks are consistently more variable than unimodal 

sensorimotor networks, in terms of both relative network size (Figure 1c) and topographic 

network similarity (Figure 3). These observations are consistent with evidence that heteromodal 

cortex has greater inter-individual variance in functional connectivity42. The increased variability 

of heteromodal network size coincided with lower estimates of heritability, relative to the 

individualized size of unimodal networks (Figure 2c). These data are in line with theories 

positing that late-developing aspects of cortex are more sensitive to environmental influences 

and extrinsic sources of network sculpting48. That is, higher-order networks are the most distal 

(or “untethered”) from both early embryonic signaling gradients and thalamus-mediated sensory 

inputs48. However, we did not observe heteromodal versus unimodal differences in heritability 

for measures of network topography (Figure 3-4), as we did for individualized network size.  

 The present study should be interpreted in light of several limitations. First, our analyses 

assume that participants have been brought into a common anatomical space, but we cannot 
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rule out the role of inter-individual differences in alignment accuracy. Here, we used 

sophisticated surface-based alignment techniques from the HCP that rely on multi-modal areal 

features of cortex rather than cortical folding patterns and anatomical landmarks77. However, 

inter-individual alignment is still subject to error. We also emphasize that heritability estimates of 

network topography are dependent upon the accuracy and assumptions of the parcellation 

approach. We also note that our novel heritability estimation calculated from a linear or 

nonlinear phenotypic similarity matrix is equivalent to the heritability of the intrinsic 

multidimensional trait that generates the participant-wise phenotypic similarity (Ge et al. 2016; 

see Methods), and is thus different from traditional heritability analysis of a scalar phenotype 

(e.g., height) unless the similarity matrix is spanned by a one-dimensional vector. 

In conclusion, this paper advances a novel multi-dimensional heritability technique to 

establish the heritability of individualized cortical functional networks, in terms of both network 

size and topography. We found that the size of heteromodal cortical networks was more 

variable and less heritable relative to unimodal networks, in line with the protracted 

developmental maturation of higher-order cortex that may allow for increased influence of the 

environment. Individualized network topography was similarly more variable among 

heteromodal networks, but heritability was approximately equivalent for all cortical functional 

networks. However, heritability analysis of local network architecture revealed a non-uniform 

influence of genetic factors on network organization across cortex. Together, these data 

establish that the size and topography of cortical functional networks are influenced by genetic 

factors, providing a foundation for future work disentangling the biological mechanisms that 

govern individual variances in brain organization.    
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Methods 

Human Connectome Project 

The Human Connectome Project (HCP) is a large community-based sample of twins and 

nuclear family members, assessed on a comprehensive set of neuroimaging and behavioral 

batteries. HCP analyses initially comprised 1,029 participants that were successfully processed 

through the individualized network parcellation approach of Kong and colleagues (Kong et al., 

2019), known as the multi-session hierarchical Bayesian model (MS-HBM). HCP twin zygosity 

was determined by genotyped data when possible (n=410), otherwise self-report was used to 

identify pairs of monozygotic (MZ) and dizygotic (DZ) twins (n=76). If imaging data was not 

available for one twin in a pair, the usable participant was designated a “singleton” for later 

heritability analyses. The final sample consisted of n=1,023 individuals (nMZ=274; nDZ=160, 

nnot_twin=482, nsingleton=107). See Table 1 below for basic demographics across groups. 

 

 

  MZ DZ Non-Twin Singleton F p 

N 274 160 482 107   

Age 
29.0 

(SD=3.36) 
29.4 

(SD=3.61) 
28.2 

(SD=3.86) 
28.3 

(SD=3.71) 
F3,1019=4.62 0.003 

Sex F=59.9% F=61.2% F=49.6% F=48.6% F3,1019=4.10 0.006 

 

Table 1: Demographics of HCP participant groups. Heritability estimates were conducted on 

1,023 HCP participants, composed of 137 MZ twins (n=274), 80 DZ twins (n=160), non-twin 

siblings (n=482), and unrelated singletons (n=107). Although groups were nominally well-

matched demographically, ANOVAs revealed significant differences of age and sex. All 

heritability analyses included age and sex as covariates.  

 

 

Measuring individualized network organization and size 

 Individualized network parcellations were derived from HCP resting-state functional 

magnetic resonance imaging (rs-fMRI) surface data, aligned to the fs_LR32k group space using 

the MSMAll areal-feature-based registration78. Methodological details of the Multi-session 

Hierarchical Bayesian Model (MS-HBM) approach that produced the individualized parcellations 

have been previously published13, however we present key details here. Multiband rs-fMRI data 

collected on Siemens 3T Skyra scanners from the HCP S1200 release were analyzed. A key 
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feature of the MS-HBM approach is that it incorporates both intra-individual and inter-individual 

patterns of variability to define individualized network boundaries. HCP data is particularly suited 

for this method since rs-fMRI runs were collected across two separate sessions across 2 days, 

allowing for well-powered estimates of inter- and intra-individual variance. Individual resting 

state runs were 15 minutes in length and were acquired at an isotropic resolution of 2mm and 

TR of 0.72s79,80. Surface-based preprocessing of rs-fMRI data began with minimally 

preprocessed HCP MSMAll ICA-FIX data on a group surface template (fs_LR32k81). Additional 

preprocessing included nuisance regression, temporal censoring, and spatial smoothing.  

 A held-out training set of 40 HCP participants were used to derive the necessary group-

level parcellation (Figure 1a) and model parameters, such as inter-individual variability, for the 

MS-HSM method. For each participant, each of the 59,412 bi-hemispheric vertices on the 

cortical sheet was assigned to one of the 17 canonical functional networks8. The size of each 

cortical network within an individual was estimated as the summed surface area of all network 

vertices, obtained from midthickness fs_LR32k projected Freesurfer surface area data. Network 

size was calculated separately for each hemisphere, then divided by total hemispheric area to 

quantify proportional size of a network on the cortical sheet. All cortical surface figures were 

created using the HCP workbench82.    

 

Heritability of Individualized Network Size 

 The heritability of individualized network size was estimated using SOLAR 47, covarying 

for age, sex, age2, age*sex, age2*sex, ethnicity, height, BMI, and Freesurfer-derived intracranial 

volume. Bonferroni correction of significance thresholds was used to account for 34 

independent tests of heritability. Cross-hemisphere consistency (Figure 2b) was tested by 

correlating left- and right-hemisphere heritability estimates across all 17 cortical networks.  

 

Dice Similarity of Network Topography 

 Participant to participant similarity of individualized network topography was measured 

using the Dice Sørensen formula, where the coefficient for a given network reflects: 

 

Dice	Similarity	 = 	
2|X! ∩ Y!|
|X!| + |Y!|
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where X! and Y! are the network labels for network 𝑖 for participants 𝑋 and 𝑌, ∩ represents the 

intersection between participant network labels, and |∙| represents the total number of vertices in 

each set (i.e. cardinality).  

 

Multi-dimensional heritability analysis 

 Consider an 𝑀-dimensional trait 𝒀 = [𝒚", … , 𝒚#] = [𝑦!#]$×&, and a multivariate variance 

component model: 𝒀 = 𝑮 + 𝑬, where 𝑮 and 𝑬 are 𝑁 ×𝑀 matrices representing the additive 

genetic effects and unique environmental factors, respectively. Assume vec(𝑮)~N(𝟎, 𝚺'⨂𝑲), 

vec(𝑬)~N(𝟎, 𝚺(⨂𝑰), where vec(∙) is the matrix vectorization operator that converts a matrix into 

a vector by stacking its columns, ⊗ is the Kronecker product of matrices, 𝚺' is the genetic 

covariance matrix, and 𝚺( is the environmental covariance matrix. The genetic and 

environmental covariance matrices can be estimated using a moment-matching method: 𝚺O' =
"

)!
𝒀*(𝑲 − 𝜏𝑰)𝒀, 𝚺O( =

"

)!
𝒀*(𝜅𝑰 − 𝜏𝑲)𝒀, where 𝜏 = tr(𝑲)/𝑁, 𝜅 = tr(𝑲+)/𝑁, 𝑣, = 𝑁(𝜅 − 𝜏+) (Ge et 

al. 2016). The SNP heritability of a multidimensional trait 𝒀 is defined by ℎV+ = -.(𝚺1")

-.3𝚺1"4	6	-.(𝚺1#)
 (Ge et 

al. 2016). Note that	trW𝚺O'X =
"

)$
tr[(𝑲 − 𝜏𝑰)𝒀𝒀*] = "

789%
tr[(𝑲 − 𝜏𝑰)𝚺O:], where 𝚺O: = 𝒀𝒀*/𝑁 is the 

estimated phenotypic covariance matrix. Similarly, trW𝚺O(X =
"

789%
trY(𝜅𝑰 − 𝜏𝑲)𝚺O:Z. For any non-

negative definite phenotypic similarity matrix 𝚲O: derived from a nonlinear measure, we define 

heritability by replacing 𝚺O: with 𝚲O:. This is known as the kernel trick in machine learning. We 

note that for any 𝑁 × 𝑁 non-negative definite matrix 𝚺, there exists a 𝑁 × 𝑃 matrix 𝑽 (often 𝑃 ≪

𝑁) such that 𝚺 ≈ 𝑽𝑽*. Therefore, 𝚺 can be considered as a linear covariance matrix generated 

by a multidimensional trait. 

 To model covariates, consider a multivariate mixed effects model: 𝒀 = 𝑿𝑩 + 𝑮 + 𝑬, 

where 𝑿 is an 𝑁 × 𝑞 matrix of covariates, and 𝑩 is a 𝑞 ×𝑀 matrix of fixed effects. There exists 

an 𝑁 × (𝑁 − 𝑞) matrix 𝑼 satisfying 𝑼*𝑼 = 𝑰, 𝑼𝑼* = 𝑷; = 𝑰 − 𝑿(𝑿*𝑿)8"𝑿, and 𝑼*𝑿 = 𝟎. 

Applying 𝑼*to both sides of the model gives 𝑼*𝒀 = 𝑼*𝑮 + 𝑼*𝑬, where 

vec(𝑼*𝑮)~N(𝟎, 𝚺'⨂(𝑼*𝑲𝑼)), vec(𝑼*𝑬)~N(𝟎, 𝚺'⨂	𝑰). Therefore, we can replace 𝒀 with 𝑼*𝒀, 𝑲 

with 𝑼*𝑲𝑼, and 𝑁 with 𝑁 − 𝑞 in the SNP heritability estimator derived above to obtain an 

estimator that accounts for covariates. More specifically, trW𝚺O'X =
"

789%
tr[(𝑲 − 𝜏𝑰)𝑷𝟎𝚺O:𝑷;], 

trW𝚺O(X =
"

789%
trY(𝜅𝑰 − 𝜏𝑲)𝑷;𝚺O:𝑷;Z, 𝜏 = tr(𝑲𝑷;)/(𝑁 − 𝑞), and 𝜅 = tr(𝑲𝑷;𝑲𝑷;)/(𝑁 − 𝑞). For 

nonlinear phenotypic similarity matrix 𝚲O:, we replace 𝚺O: with 𝚲O:.  
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 Significance was measured using participant-based permutations, where the kinship 

matrix was randomly shuffled 1,000 times. Standard errors were calculated using a block 

jackknife procedure with a leave one family out strategy. That is, for a given iteration of the 

jackknife, all participants within a nuclear family unit were excluded and heritability was re-

calculated. Variability was then calculated from the resulting distribution of subsampled 

heritability estimates.       

 

Code and Data Availability  

 All custom code written to perform analyses are publicly available on github 

(https://github.com/kevmanderson/heritable_network_topography). We have also provided an 

open-access generalized implementation of our multi-dimensional heritability estimator 

(https://github.com/kevmanderson/h2_multi). Code to produce individualized MS-HBM 

parcellations is publicly available (https://github.com/ThomasYeoLab/CBIG). Human 

Connectome Project Data is available for download (https://db.humanconnectome.org).  
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Supplementary Figure 1. Density of individualized network topography across the 

cortical sheet.  At each vertex, we plot the proportion of individuals that are assigned to a given 

network (n=1,023). Warm red indicates that a vertex is assigned to a given network in a large 

percentage of participants. Darker purple/black identifies cortical territories with more variable 

network assignment across participants. Black borders outline territories where a given network 

is most common (i.e. highest modal network assignment at a given vertex). 
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