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The ankle-brachial blood pressure index (ABI) is a widely utilized measure for detecting peripheral arterial dis-
ease. Genetic contributions to variation in ABI are largely unknown. The authors sought to estimate ABI herita-
bility in a community-based sample. From 1995 to 1998, ABI was measured in 1,097 men and 1,189 women (mean
age ¼ 57 years; range, 29–85 years) from 999 families in the Framingham Offspring cohort. Correlation coeffi-
cients for sibling pairs were calculated using the family correlations (FCOR) procedure in S.A.G.E. (Case Western
Reserve University, Cleveland, Ohio). The heritability of ABI was estimated using variance-components methods
in SOLAR (Southwest Foundation for Biomedical Research, San Antonio, Texas). Analyses were performed on
normalized crude ABI and on normalized residuals from multiple linear regression analyses in SAS (SAS Institute,
Inc., Cary, North Carolina) that adjusted for age, sex, smoking, diabetes, hypertension, ratio of total cholesterol
to high density lipoprotein cholesterol, log triglyceride level, and body mass index. The mean ABI was 1.1 (range,
0.4–1.4). The age- and sex-adjusted and multivariable-adjusted sibling-pair correlation coefficients for normalized
ABI were 0.15 and 0.11, respectively, resulting in heritability estimates of 0.30 and 0.22. Crude, age- and sex-
adjusted, and multivariable-adjusted heritabilities for normalized ABI estimated using variance-components anal-
ysis were 0.27 (standard error, 0.06), 0.30 (standard error, 0.06), and 0.21 (standard error, 0.06), respectively (all
p values < 0.0001). A modest proportion of the variability in ABI is explained by genetic factors.

blood pressure; genetic predisposition to disease; peripheral vascular diseases

Abbreviations: ABI, ankle-brachial index; FCOR, family correlations; S.A.G.E., Statistical Applications for Genetic Epidemiology;
SOLAR, Sequential Oligogenic Linkage Analysis Routines.

Peripheral arterial disease is a highly prevalent condition
affecting more than five million persons in the United States
(1). The ankle-brachial blood pressure index (ABI) is a mea-
sure of subclinical peripheral arterial disease that is cor-
related with cardiovascular disease risk factors (2–7) and
measures of coronary and carotid atherosclerosis (8–10)

and is predictive of an increased risk of coronary and car-
diovascular mortality (11–18). Thus, ABI is a useful clinical
measure of generalized atherosclerotic burden and risk of
future cardiovascular disease events.

Small studies have suggested that a family history of pre-
mature onset of peripheral arterial disease is associated with
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subclinical atherosclerotic disease and cardiovascular events
in young adults (19, 20). In one twin study, Carmelli et al.
(21) estimated heritability for ABI to be nearly 50 percent.
However, ABI heritability has not yet been confirmed in
other populations, and the prior study was limited to elderly
male twins, raising concern about selective mortality bias. If
heritability of ABI can be established in a general population
sample, this noninvasive measure of atherosclerosis might
prove useful in subsequent genetic studies. We hypothesized
that ABI is a heritable phenotype, and we sought to estimate
ABI heritability among participants in the community-based
Framingham Offspring Study.

MATERIALS AND METHODS

Study sample

The Framingham Offspring Study is a prospective epi-
demiologic study of cardiovascular and other chronic dis-
eases initiated in 1971 when 5,124 offspring (and offspring
spouses) of the original Framingham Heart Study cohort
were recruited (22, 23). Offspring participants have been
examined approximately every 4 years since the study’s
inception. Written informed consent was obtained at the
time of each examination. The institutional review board
of the Boston Medical Center approved the content of each
examination.

Offspring participants who were members of one of the
1,643 Framingham Heart Study families and who attended
the sixth research examination in 1995–1998were eligible for
this study. The research examination included a standardized
medical history and physical examination, an electrocardio-
gram, noninvasive cardiovascular testing, and phlebotomy
for measurement of fasting levels of lipids and glucose. Of
the 3,489 participants attending the clinic examination, 86
had incomplete or missing data on ABI and seven were ex-
cluded because of prior lower-extremity bypass surgery. We
excluded additional participants for not being a biologic part
of a Framingham Study family (e.g., spouses) (n ¼ 1,062),
having anABI greater than 1.4 (n¼ 11), or having incomplete
data on cardiovascular disease risk factors (n¼ 37). Thus, our
final study sample comprised 2,286 offspring participants
from 999 extended families. Participants were contained in
sibships with the following distribution: 42 percent had one
member, 28 percent had two members, 14 percent had three
members, 10 percent had four or five members, and 6 per-
cent had at least six members. Our sample included 1,599
sibling pairs, four parent-offspring pairs, 102 avuncular
pairs, 45 half-sibling pairs, 855 first-cousin pairs, 88 first-
cousin-once-removed pairs, 18 second-cousin pairs, and three
double-first-cousin pairs.

Measurement of ankle and arm blood pressures

As part of the research examination, ankle-brachial sys-
tolic blood pressure measurements were routinely obtained
by trained technicians according to a standard protocol (2).
Systolic blood pressure was measured using an 8-MHz
Doppler pen probe and an ultrasonic Doppler flow detector
(Parks Medical Electronics, Inc., Aloha, Oregon). For each

limb (right arm, left arm, right ankle, left ankle), the cuff
was inflated quickly to the maximal inflation level and was
deflated at a rate of 2 mmHg per second until systolic blood
pressure became audible. All limb blood pressure measure-
ments were repeated in reverse order. ABI was calculated
for each leg as the ratio of average systolic blood pressure in
the ankle divided by average systolic blood pressure in the
higher arm.

Measurement of cardiovascular disease risk factors
and events

Risk factors were measured at the time of the examina-
tion. Height and weight were obtained by trained techni-
cians using standardized protocols, and body mass index
was calculated as weight in kilograms divided by height
in meters squared. Two blood pressure measurements were
taken at rest by the examining physician, and the mean of
the two readings was used to determine the presence of
hypertension. Hypertension was defined as a blood pressure
of 140/90 mmHg or greater or the use of antihypertensive
medication. A current smoker was defined as someone who
had smoked one or more cigarettes per day during the year
preceding examination. Blood was obtained in the fasting
state, and levels of total cholesterol, high density lipoprotein
cholesterol, triglyceride, and glucose were measured. The
presence of diabetes was defined by a fasting glucose level
of 126 mg/dl or greater or use of insulin or an oral hypo-
glycemic agent.

Cardiovascular events were identified at the time of each
research clinic examination, from hospital surveillance, and
from health history updates on participants who did not
attend an examination. Cardiovascular events included an-
gina pectoris, coronary insufficiency, myocardial infarction,
stroke or transient ischemic attack, and intermittent claudi-
cation. All cardiovascular disease events were adjudicated
by a panel of three senior investigators (or a panel of study
neurologists for cerebrovascular disease events) using stan-
dardized criteria previously reported (24).

Statistical analysis

ABI was examined as a continuous measure. The lower of
the two ABIs calculated for each lower extremity was used
for analysis. If ABI was missing for one lower extremity, we
used data from the nonmissing extremity. Since the distri-
bution of ABIs was skewed and estimation of heritability
requires the phenotype to be normally distributed, normal-
ization of ABI was performed using the SAS procedure (25)
PROC RANK, which computes normal scores from the
ranks of original ABI values. The resulting ABI values ap-
peared to be normally distributed by Blom’s (26) formula
yi¼U�1(ri� 3/8)/(nþ 1/4), whereU�1 is the inverse cumu-
lative normal (PROBIT) function, ri is the rank of the ith
observation, and n is the number of nonmissing observations
for the ranking of ABI. For age- and sex-adjusted ABI and
multivariable-adjusted ABI, we performed multiple linear
regression analysis on log-transformed ABI that adjusted for
covariates of interest and obtained studentized residuals (re-
siduals divided by their standard errors), which were also
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normalized because of their skewed distribution. Covariates
entered into the multivariable models included age, sex,
hypertension, smoking status, diabetes, ratio of total choles-
terol to high density lipoprotein cholesterol, log triglyceride
level, and body mass index. Thus, normalized crude, age-
and sex-adjusted, and multivariable-adjusted ABIs were
used as phenotypes in subsequent analyses.

Heritability was estimated using two methods (27). First,
we calculated intraclass correlation coefficients for sibling
pairs using the family correlations (FCOR) procedure in
S.A.G.E. (Statistical Applications for Genetic Epidemiol-
ogy) (28, 29). The FCOR procedure can estimate multivar-
iate family correlations for all types of pairs in a set of
pedigrees. For our data, the primary relationship was sibling
pairs. We specified equal weights for each pedigree as the
weights to be used to compute the correlations, since this is
a uniform weighting scheme such that the contributions
from each pedigree have the same weights regardless of the
number of pairs in the pedigree. A simple estimate of her-
itability is obtained by doubling the sibling-pair intraclass
correlation using the equation h2¼ 2r (h2 indicates heritabil-
ity and r indicates correlation among sibling pairs). Next,
heritability was estimated using variance-components meth-
ods as implemented in the SOLAR (Sequential Oligogenic
LinkageAnalysisRoutines) computer package,which simul-
taneously utilizes data on all family relationships (30, 31).
The variance-components model assumes that variation in
the trait, normalized ABI, can be partitioned into genetic
and environmental components. This method applies maxi-
mum likelihood estimation to a mixed-effects model that
incorporates fixed effects for known covariates and variance
components for genetic effects. Heritability is estimated as
the ratio of genetic variance to total phenotypic variance
using this maximum likelihood method.

RESULTS

Clinical characteristics

The baseline characteristics of our study sample are
shown in table 1. Among the 2,286 participants (mean
age ¼ 57.4 years; 48 percent men), the mean ABI was 1.12
(range, 0.4–1.4). Prevalent cardiovascular disease was pres-
ent in 11.9 percent of men and 7.4 percent of women. The
prevalences of hypertension, diabetes, and current smok-
ing were 38 percent, 10.4 percent, and 16 percent, respec-
tively, in the overall sample, with no important differences
between men and women.

Correlation coefficients

Intraclass correlation coefficients for sibling pairs were
calculated using the FCOR procedure in S.A.G.E. and are
presented in table 2. For age- and sex-adjusted and multi-
variable-adjusted analyses, the correlation coefficients for
normalized ABI were 0.15 and 0.11, respectively. Using
the multivariable-adjusted sibling correlation coefficients,
the estimate of heritability (h2 ¼ 2r) was 0.22.

Heritability estimates

Heritability estimates derived from SOLAR are presented
in table 3. Heritabilities for normalized crude, age- and
sex-adjusted, and multivariable-adjusted ABI were 0.27
(standard error, 0.06), 0.30 (standard error, 0.06), and 0.21
(standard error, 0.06), respectively. Therefore, 21 percent of
the interindividual variability in normalized ABI was attrib-
utable to genetic effects. Multivariable-adjusted heritability
estimates were slightly higher in men (0.29, p¼ 0.006) than
in women (0.23, p ¼ 0.02) and were similar in younger (age
<60 years) and older (age �60 years) persons.

TABLE 2. Intraclass correlation coefficients for ankle-

brachial blood pressure index (1,599 sibling pairs) obtained

using the family correlations (FCOR) procedure in S.A.G.E.,*

Framingham Offspring Study, Framingham, Massachusetts,

1995–1998

Model Coefficient
Heritability
(h2 ¼ 2r)

Age- and sex-adjusted 0.15 0.30

Multivariable-adjustedy 0.11 0.22

* S.A.G.E., Statistical Applications for Genetic Epidemiology (Case

Western Reserve University, Cleveland, Ohio).

yMultivariable model adjusted for age, sex, current smoking, diabe-

tes, hypertension, ratio of total cholesterol to high density lipoprotein

cholesterol, log triglyceride level, and body mass index.

TABLE 1. Baseline characteristics of the study sample,

Framingham Offspring Study, Framingham, Massachusetts,

1995–1998

Characteristic
Men

(n ¼ 1,097)
Women

(n ¼ 1,189)

Mean age (years) 57.0 (9.6)* 57.9 (9.95)

Mean ankle-brachial blood
pressure index 1.16 (0.1) 1.09 (0.10)

Cigarette smoking (%)

Current smoker 17 16

Former smoker 51 45

Hypertensiony (%) 40 37

Diabetesz (%) 11.8 9.2

Mean total:high density
lipoprotein cholesterol ratio 5.0 (2.1) 3.9 (1.4)

Mean triglyceride level (mg/dl) 148.8 (187.6) 132.6 (79.8)

Mean body mass index§ (kg/m2) 28 (4.4) 27 (5.8)

Intermittent claudication (%) 2.8 2.5

Cardiovascular disease (%) 11.9 7.4

* Numbers in parentheses, standard deviation.

yHypertension was defined as blood pressure �140/90 mmHg or

use of antihypertensive medication.

zDiabetes was defined as fasting blood glucose level �126 mg/dl

or use of insulin or oral hypoglycemic agents.

§ Weight (kg)/height (m)2.
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Components of variance analysis

The overall contributions of genetic factors and covari-
ates to ABI variability were examined. The contribution of
genetic factors to overall variation in ABI was 21 percent
(heritability), and the contribution of covariates was 14 per-
cent; this left a residual of 65 percent.

DISCUSSION

In our community-based sample of middle-aged adults,
we found that ABI is heritable, with a magnitude of herita-
bility suggesting that genetic effects are significant but mod-
est. In the only prior study estimating ABI heritability,
Carmelli et al. (21) examined elderly male monozygotic
(n ¼ 94) and dizygotic (n ¼ 90) twin pairs and found that 48
percent of the variability in ABI values could be attributed to
genetic effects. Carmelli et al. acknowledged that the esti-
mation of genetic effects may have been biased by selective
mortality and loss to follow-up of participants at high risk
for peripheral arterial disease (21). In that study, both twins
had to participate in the follow-up examination; however,
risk factors for peripheral arterial disease, such as smoking
and hypertension, were more common among those lost to
follow-up. Heritability may also be more evident in younger
persons, while traditional risk factors may play a greater role
in atherosclerosis as people age, as has been suggested by
a study of subclinical atherosclerosis defined using measures
of carotid intimal-medial thickness (32). Finally, our results
may be more modest than those of the prior twin study (21)
because twin studies may overestimate heritability. Herita-
bility estimates cannot effectively distinguish between ge-
netic factors and early environmental influences, which are
more common among twins (33).

Carotid intimal-medial thickness, another measure of sub-
clinical peripheral atherosclerosis, has been definitively de-
monstrated to be heritable. Genetic factors accounted for a
greater contribution to variation in carotid intimal-medial
thickness than our estimates of heritability for ABI (32, 34–
37). The differences in the genetic contribution to these two
subclinical disease measures may be partly related to differ-
ences in measurement variability and measurement error.
Carotid intimal-medial thickness measures are obtained by

ultrasound, and the images are read by a single trained
reader (35) or at central reading centers (38) with high cor-
relations between readers. Whereas Doppler systolic blood
pressure measurements have previously been reported to
be reliable (13), the ABI is a cruder measure than carotid
intimal-medial thickness, as it is calculated from the ratio of
the ankle and arm Doppler systolic blood pressure readings.
Prior studies have demonstrated that genetic factors contrib-
ute to coronary disease death and stroke (39, 40), as well as
variation in levels of cardiovascular disease-related vari-
ables, includinghypertension (41, 42), diabetes (43–45), cho-
lesterol levels (46), and measures of obesity (47, 48). To our
knowledge, our findings represent the first large, population-
based estimate of heritability for ABI. Our results suggest
that ABI may be a useful noninvasive measure with which to
further explore the genetics of atherosclerosis and clinical
cardiovascular disease. ABI is easily obtainable, inexpen-
sive, and clinically accessible, as opposed to other measures
of subclinical atherosclerosis that require expensive equip-
ment and may not be available for clinical use.

ABI may share common genetic determinants with indi-
vidual risk factors for cardiovascular disease. For example,
apolipoprotein E genotype is associated with an adverse
lipid profile and is linked to an increased risk of cardiovas-
cular disease. Investigators from the Honolulu-Asia Aging
Study demonstrated an association between apolipoprotein
E genotype and the prevalence of a low ABI in elderly non-
smoking Japanese-American men (49). Confirmation of the
apolipoprotein E-low ABI association in other populations,
as well as clarification of the role of diabetes in this associ-
ation, requires further investigation. Reports of an associa-
tion between fibrinogen and hemostatic factor genotypes
and risk of peripheral arterial disease have yielded inconsis-
tent results (50, 51). While an initial report demonstrated an
increased risk of peripheral arterial disease associated with
the beta fibrinogen gene (-455G/A) (50), a subsequent report
could not identify an association between the fibrinogen T/G
(þ1689) polymorphism and peripheral arterial disease (51).

Our study had several important limitations that merit
comment. Our sample was primarily Caucasian, limiting
the generalizability of our findings to other racial and ethnic
groups. Studies of racially diverse samples have observed
a higher prevalence of peripheral arterial disease among
non-Hispanic Blacks as compared with Whites (1). A single
ABI measurement was used in our study; however, several
ABI measurements taken over time may provide a more
stable estimate. Long-term blood pressure estimates have
been shown to be highly heritable, with significant linkage
to chromosome 17 (41). Finally, our results are limited to the
definition of ABI used in our study. Other investigators have
calculated ABI on the basis of right arm blood pressure
alone (1, 12, 14) or blood pressure in only one leg (52),
and a recent study examined the higher of two ABIs in
addition to lowest-leg ABI (53).

In conclusion, a modest proportion of the variability in
ABI is explained by genetic factors. Further studies of ge-
netic linkage and candidate gene association are warranted
to identify specific genetic variants associated with this
important predictor of cardiovascular disease events and
mortality.

TABLE 3. Estimated variance-components heritabilities for

normalized ankle-brachial blood pressure index (n ¼ 2,286),

Framingham Offspring Study, Framingham, Massachusetts,

1995–1998*

Ankle-brachial index
phenotype

Heritability

Mean Standard error

Crude 0.27 0.06

Age- and sex-adjusted 0.30 0.06

Multivariable-adjustedy 0.21 0.06

* All p values < 0.0001.

yMultivariable model adjusted for age, sex, current smoking, diabe-

tes, hypertension, ratio of total cholesterol to high density lipoprotein

cholesterol, log triglyceride level, and body mass index.
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