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Abstract 

In this paper, we explain the concept of heritability and describe the different methods 

and the genotype-phenotype correspondences used to estimate heritability in the specific 

field of human genetics.  

Heritability studies are conducted on extremely diverse human traits: quantitative traits 

(physical, biological, but also cognitive and behavioral measurements) and binary traits 

(as is the case of most human diseases). Instead of variables such as education and socio-

economic status as covariates in genetic studies, they are now the direct object of genetic 

analysis.   

We make a review of the different assumptions underlying heritability estimates and 

dispute the validity of most of them. Moreover, and maybe more importantly, we show 

that they are very often misinterpreted. These erroneous interpretations lead to a vision of 

a genetic determinism of human traits. This vision is currently being widely disseminated 

not only by the mass media and the mainstream press, but also by the scientific press. We 

caution against the dangerous implication it has both medically and socially. 

Contrarily to the field of animal and plant genetics for which the polygenic model and the 

concept of heritability revolutionized selection methods, we explain why it does not 

provide answer in human genetics.  
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Introduction 

Understanding how genes contribute to complex traits has been at the center of many 

researches in the last century and remains a major question today. This question was at 

the origin of the field of quantitative genetics that developed, a century ago, after the 

seminal work of Ronald Fisher. In this work, Fisher (1918) aimed at explaining the 

observations of Biometricians on trait measure correlations between relatives by the 

effects of a large number of Mendelian genetic factors. He introduced the concept of 

variance and its decomposition into a genetic and an environmental component that is at 

the basis of the concept of heritability. Indeed, genetic and environmental variations both 

contribute to the phenotypic variation of individuals. The phenotypic correlation between 

parents and their offspring only depends on the importance of the genetic variation part 

which is the so-called heritability. To estimate this heritability, it is necessary to specify 

the correspondence between genotypes and phenotype and this is what Fisher proposed in 

his work by suggesting that quantitative traits could be explained by a polygenic model. 

This polygenic model and the related mathematical concept of heritability revolutionized 

animal and plant selective breeding, previously made on a purely empirical basis. Indeed, 

the response to selection of a trait was shown to depend on the heritability through what 

is called the breeder’s equation proposed by Lush in 1937 (Lush 1937). 

With 20,911 occurrences in articles from PubMed since 1946 (search performed on 

February 2021), including 6,860 over the last five years, the term “heritability” is now 

commonly used in many studies although not always correctly. The concept is indeed a 

statistical concept that is often not well understood and misused. This is especially true in 

the field of human genetics where several authors have already warned against its 

misusage (see for example, Feldman and Lewontin 1975). Recently, with the 

development of novel technologies to characterize genome variations and the possibility 

to perform association tests at the scale of the entire genome, heritability computations 

have become even more used in human genetics. Novel methods have been developed to 

estimate heritability from genetic data in order to determine how much of the phenotypic 

variation could be explained by the associated loci that were discovered by Genome-

Wide Association Studies (GWAS). The game then consisted in comparing these 

genetically derived estimates against estimates of heritability based on pedigrees or twin 

studies to determine how much additional efforts were needed to capture all the genetic 

component of trait variability. The hope was that by finding the genetic factors 

contributing to this genetic component, it would be possible to make some predictions on 

expected traits values in individuals.  
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Birth of the concept of heritability 

History and definition 

The origin of the word heritability is difficult to trace. It is often attributed to Lush and 

his book entitled “Animal Breeding Plans” (Lush 1937) is referred. However, the word is 

not used in the first edition of Lush’s book. As explained by Bell (1977), the usage of the 

term has evolved from an initial stage in the middle of the nineteenth century when it was 

used to denote “the hereditary transmission of characteristics or material things, simply 

having the capability (legally of biologically) of being inherited”. Then, at the beginning 

of the twentieth century, Johannsen introduced the terms “gene”, “genotype” and 

“phenotype” and described phenotypic variation as arising from environmental and 

genotypic fluctuations (see Johannsen 1911). Lush himself suggested that Johannsen was 

probably the first who captured the idea of heritability. Lush wrote to Bell (see Bell 1977) 

“Wilhelm Johannsen deserves credit for distinguishing clearly between variance caused 

by differences among the individuals in their genotypes and variance due to differences in 

the environments under which they grew. This is close to what I call "heritability in the 

broad sense”. I take it that "Erblichkeit" can be translated fairly as heritability”. Although 

the term is not used in the first edition of his book “Animal Breeding Plan” published in 

1937, Lush was the first one to define heritability in its modern-day usage. In the second 

version of the book, published in 1943, the term “heritability” is used in several places 

and even appears in the index (Lush 1943). 

An important step in the formulation of the concept of heritability was the work of 

Ronald Fisher and his famous article, “The Correlation between Relatives on the 

Supposition of Mendelian Inheritance”, published in 1918, that marked a decisive step in 

the development of quantitative genetics. From a mathematical point of view, Fisher 

proposed to decompose the phenotypic variance P (note that Fisher introduced the 

concept of variance at that time) into the sum of the genotypic variance G and the 

environmental variance E:  

                      (Eq 1) 

Fisher did not use the word “heritability” in his 1918 paper but pointed out the 

importance of the ratio var(G)/var(P) that is precisely what we call the broad-sense 

heritability H
2
. Thus, 

   
      

      
  (Eq 2). 

H
2
 measures how much of the phenotypic variance is attributable to genotypic variance.  

The genotypic variance G can be further decomposed into its additive A, dominance D 

and epistasis Ep components. The ratio of the additive genetic variance (which 
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corresponds to the addition of the average effects of the two alleles of each genetic locus) 

over the phenotypic variance is called “narrow-sense heritability”, and noted h
2
: 

   
      

      
  (Eq 3). 

 

The first uses of heritability for animal and plant selection 

The ratio of the variance of the additive genetic effects over the phenotypic variance was 

shown by Fisher (1918) to be directly related to the correlation of phenotypes between 

relatives. For the special case of parent-offspring for example, he found that the 

phenotype correlation is simply ½ h
2
 and he derived similar equations for different 

degrees of kinship. Thus, the narrow-sense heritability measures the resemblance 

between relatives, and hence is also a way to predict the response to selection. 

Indeed, if we denote by R the response to selection defined as the difference in mean 

phenotype between offspring and parental generations, then, it could be shown that R 

depends on h
2
. This was first shown by Fisher (1930) when considering the evolution of 

fitness under natural selection, leading to the so-called “Fundamental Theorem of Natural 

Selection”. The same is also true under artificial selection with R being a simple function 

of h
2
 and the selection differential S defined as the difference between the phenotype 

mean in the parental population and the phenotype mean of the population that 

reproduces (among those that have been selected): 

      (Eq 4). 

This formula was first derived by Lush (1937) and later called “the breeder’s equation” 

(see Ollivier 2008). It can predict how successful artificial selection will be given the 

mean value of the selected individuals. 

 

The genotype-phenotype relationship model underlying the concept of heritability 

Underlying the concept of heritability is the idea that any quantitative trait can be 

described as the sum of a genetic and a non-genetic (or environmental) component, and 

that the genetic component involves a large number of Mendelian factors with additive 

effects. This model referred to as the “infinitesimal model” or “the polygenic additive 

model” has its roots in the observations made by Galton (1877), and their analysis by 

Pearson (1898), followed by the Mendelian interpretation made by Fisher (1918). Under 

this model, each locus makes an infinitesimal contribution to the genotypic variance and 

thus this latter variance remains constant over time even when natural selection is 

occurring. 
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The infinitesimal model was derived for quantitative traits such as height, weight or any 

other trait that is measurable and normally distributed in the population. Several human 

traits and in particular diseases are not quantitative but dichotomous (or binary) - e.g., 

affected or unaffected by the disease of interest. Some of these dichotomous traits can be 

explained by simple Mendelian models. It is for example the case for rare diseases that 

segregate within family. For most common diseases, however, this is not the case and the 

observed familial aggregation cannot be explained by a simple monogenic model. To 

study such traits, Carter (1961) proposed the so-called “liability model” that assumes that, 

underlying these binary traits, there is an unobserved normally distributed quantitative 

variable, the liability, that measures individual’s susceptibility to the disease. When the 

liability value exceeds a given threshold, the individual is affected and otherwise, the 

individual is unaffected.  

 

The uses of heritability in human genetics 

A short history 

Fisher's model was first applied to human measurable physical traits such as height or 

weight but also to another quantitative trait, intelligence quotient (IQ), using the results of 

IQ tests. The original test proposed by Binet and Simon as a measure of child's mental 

age was standardized and published in 1916 to become the standard intelligence test used 

in the U.S. It is from the end of the 1960s that the heritability of IQ becomes widely 

debated, in particular after publication of the work of Jensen (1969). Using data on IQ 

collected in different studies, Jensen estimated that the heritability of IQ was about 80%. 

He concluded that differences in intelligence between social groups are largely genetic in 

origin and that educational policies aiming at reducing inequalities would therefore be 

ineffective. This type of reasoning is notoriously extended in Herrnstein and Murray's 

The Bell Curve (1994) or in the work of Robert Plomin (2018). At the same time, the 

study of the heritability of IQ was the subject of a great deal of theoretical, 

methodological, moral and political criticism (see, among others, Kempthorne 1978; 

Jacquard 1978; Lewontin et al 1984). 

Studies of the heritability of cognitive and cultural traits have multiplied since the 1970s, 

notably through the development of a new research specialty, behavior genetics (see 

Panofsky 2011, 2014), which aims to study the nature and origin of individual behavioral 

differences. Heavily invested by psychologists, behavior genetics is interested, for 

example, in personality traits, social attitudes and mental illnesses. More recently, the 

study of the heritability of behavioral traits has been taken up in other disciplines of the 

human sciences, with the development of research currents in criminology (“biosocial 

criminology”, see Larrègue 2016, 2017, 2018a), political science (“genopolitics”, see 

Larrègue, 2018b), economics (“genoeconomics”, see Benjamin et al 2012) or sociology 

https://en.wikipedia.org/wiki/Mental_age
https://en.wikipedia.org/wiki/Mental_age
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(“sociogenomics” or “social science genetics”, see Robette 2021), and the study of traits 

as diverse as delinquency, electoral behavior, income, educational attainment, social 

mobility or fertility.  

Apart from quantitative traits, there have also been considerable interest in estimating the 

heritability of different common human diseases. Diabetes is an example of such disease 

that has been at the center of many studies to understand the genetic contribution and 

estimate heritability (for a review, see Genin and Clerget-Darpoux 2015b). As explained 

above, for these disease traits that are dichotomous, rather than the heritability of the 

binary trait, it is the heritability of this liability that is estimated (Falconer 1965). 

 

The evolution of the data used and the estimation method 

Human genetic studies on heritability are based on a variety of data and methods that 

have evolved with scientific and technological advances. 

Use of phenotypic covariance between relatives: twin studies 

Following on from Fisher (1918), Falconer shows in his book Introduction to 

Quantitative Genetics (1960) that the phenotypic covariance between relatives is a 

function of the additive variance according to the degree of kinship. The first heritability 

estimates were derived from empirical data on phenotype correlations between relatives 

and different approaches were proposed that compare these correlations between different 

types of relatives (see Tenesa and Haley 2013 for a review). Among the different types of 

relatives, the most exploitable in human genetics is the comparison of identical and 

fraternal twins. In 1876, Galton proposed the use of twins to distinguish between genetic 

and environmental factors in the expression of a trait. But it was not until the beginning 

of the twentieth century that the idea emerged that there are two kinds of twins: 

monozygotic (MZ) and dizygotic (DZ). In 1924, Siemens published the first study 

comparing the similarity between MZ and DZ twins and, in 1929, Holzinger gave 

formulas for studying the relative effect of nature and nurture upon mean twin differences 

and their variability.  

In 1960, Falconer showed that heritability may be simply estimated from the difference 

between MZ and DZ concordance rates, provided the following assumptions hold:  

1) environmental variance is identical for MZ and DZ twins and remains the same 

throughout life, 

2) variance of interaction could be neglected. 

Falconer first applied the method to quantitative traits such as height, weight and IQ 

using data on 50 MZ and DZ pairs from Newman et al (1937). Shortly afterwards, 
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Falconer (1965) proposed to calculate the heritability of diseases that do not have a 

simple monogenic determinism by relying on the polygenic additive model for liability. 

Christian et al (1974) recalls that in practice, heritability estimates cannot be done 

without simplifying assumptions : the most common of which are: (1) the effect of 

environmental influences on the trait are similar for the two types of twins; (2) hereditary 

and environmental influences are neither correlated in the same individual nor between 

members of a twin set; (3) there is no correlation between parents due to assortative 

mating; and (4) the trait in question is continuously distributed with no dominance and no 

epistatic effect (narrow sense heritability). 

Twin studies are widely used because of the wide availability of data from twin registries 

(see van Dongen et al 2012 for an inventory). Controversies about the heritability of 

intelligence have largely been based on twin studies since the work of Holzinger (1929). 

Social scientists have applied - and still apply - the same methods to many behavioural 

traits. To cite just two recent examples, using data on twin girls in the UK, Tropf et al 

(2015) find that 26% of the variation in age at first child is explained by genetic 

predisposition, 14% by the environment shared by siblings, and 60% by the non-shared 

environment or measurement error. Baier and Van Winkle (2020) find that the heritability 

of school performance is lower for children of separated parents and conclude that 

educational policies could specifically target children of separated parents to help them 

fulfill their genetic potential. 

Twin studies are also ubiquitous in the field of disease heritability. It is impossible to give 

even a very partial view of this work in the context of this article. However, we can 

illustrate it by mentioning the work on schizophrenia, where a meta-analysis concludes 

that the heritability of the liability is estimated to be around 80% (Sullivan et al 2003). 

Some authors even argue that twin studies are also “valuable for investigating the 

etiological relationships between schizophrenia and other disorders, and the genetic basis 

of clinical heterogeneity within schizophrenia.” (Cardno and Gottesman 2000). Similarly, 

a meta-analysis of a sample of 34,166 twin pairs from the International Twin Registers 

concluded that the heritability of the liability of type II diabetes was 72% (Willemsen et 

al 2015). 

 

From correlation between relatives to the use of genetic markers 

With the development of molecular techniques to detect variations in the human genome, 

methods were developed to gain information on individual relatedness from observed 

genotypes at genetic markers. Building on this idea, Ritland (1996,2000) first proposed a 

marker-based method for estimating heritability of quantitative traits from genetic and 

phenotypic data on individuals of unknown relationship. The method however could not 

really be used at that time as there were not enough genetic markers covering the human 

genome. After the first sequence of the human genome was released (McPherson et al 
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2001), efforts were put on characterizing the distribution of common genetic variants in 

different worldwide populations, their frequency and correlation patterns - see Hapmap 

project launched in 2002 (Couzin 2002). Hundreds of thousands of Single Nucleotide 

Polymorphisms (SNP) spanning the entire human genome were characterized and the 

first SNP-arrays were developed to easily genotype them. These SNP-arrays were used in 

large samples of cases and controls to perform Genome-Wide Association Studies 

(GWAS) and to find the genetic risk factors involved in common diseases. Using these 

GWAS data, it was possible to directly quantify the contribution of genetic variants to 

phenotypic variance. This was first done by Visscher et al (2006) for the case of sibpairs 

where instead of using the expected identity-by-descent (IBD) sharing, they used the 

observed IBD sharing among the sibs to estimate the heritability of height. The method 

was further extended to allow estimation of heritability from unrelated individuals by 

measuring the proportion of phenotype variance that can be explained by a linear 

regression on the set of genetic markers found significantly associated with the phenotype 

and used as explanatory variables. This was done for human height after the first GWAS 

were performed. The proportion of human height variance explained by the 54 genome-

wide significant SNPs however, was very low, around 5%, much smaller than the 80% 

heritability found from family and twin studies (see Visscher 2008). There was thus a 

problem of “missing heritability” (Maher 2008; Manolio et al 2009) that led investigators 

to suggest different explanations for this missing heritability (see Genin 2020 for a 

review). Among these different explanations was the possibility that there were some 

other loci contributing to the heritability than the GWAS top signals. This led Yang et al. 

(2010) to propose to estimate heritability based on the information from all SNPs present 

on the SNP-array using a mixed linear model where SNP effects are treated as random 

variable. This method was latter implemented in the GTCA software (Yang et al. 2011) 

and referred to as Genomic Relatedness matrix restricted Maximum Likelihood 

(GREML). It was then extended to estimate heritability for dichotomous traits (Lee at al 

2011) and extensively used to estimate the so-called SNP-based heritability of many 

different common diseases (see Yang et al. 2017 for a review of the concept of SNP-

based heritability and its estimation methods).  

 

Errors of interpretation and limitations of the models and methods 

While the concept of heritability may seem relatively simple, in practice it is subject of 

misuse and misinterpretation. It also relies on strong assumptions that are not always met 

in natural populations. 

Errors of interpretation of heritability 

First, the terminology itself is misleading. Indeed, as discussed by Stoltenberg (1997), 

terms such as “heritable”, “inherited” or “heredity” have folk meanings that are different 
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from the scientific notions they are supposed to represent. This contributes to 

misinterpretations. In particular, the term “heritability” is used in the common language 

as a synonym of “inheritance”, with the idea that something heritable is something that 

passed from parents to offspring. As we have seen, heritability is not an individual 

characteristic but a population measure. It does not tell anything on the genetic 

determinism of the trait under study. To avoid any ambiguity and insist on the fact that 

the primary use of heritability estimates is to predict the results of selective breeding, 

Stoltenberg (1997) suggested replacing the term “heritability” by “selectability”. 

Second, there is often a confusion between the contribution of genetic factors to the 

phenotype and their contribution to the phenotype variability. Heritability says nothing 

about the causes, the mechanisms at the origin of differences between populations, nor 

about the etiology of diseases. As Lewontin (1974) reminded us, there is a crucial 

distinction between the analysis of variance and the analysis of causes. A strong 

heritability does not mean that the main factors involved in the trait are genetic factors. In 

a population where there is no environmental variability, the heritability is 100%. 

Similarly, in a homogeneous social environment, heritability estimates may be high for 

traits which are mainly due to social environmental factors. This error of interpretation is 

also prevalent in the literature on GWAS and the discussion around the so-called missing 

heritability. It is present in the famous paper by Manolio et al (2009) when they list a 

number of diseases, for which the proportion of heritability currently explained by the 

loci detected by GWAS is low and conclude that other relevant genetic loci remain to be 

detected (see discussion by Vieneis & Pearce (2011)). 

Third, heritability is often reported as if it were a universal measure for the trait under 

study. This is wrong as heritability is a local measure in space and time, specific to the 

studied population. Two groups of individuals, with exactly the same genetic 

background, will have, for a given trait, a different heritability according to whether they 

are placed in a context where the environment is constant or variable. Heritability can 

also vary through time with environmental changes. Differences in heritability can be 

found depending on the age of the individuals under study. This is well illustrated for 

Body Mass Index (BMI) with estimates that are systematically larger in children than in 

adults and also larger when derived from twin studies than from family studies (Elk et al 

2012). Note however that in this latter meta-analysis of BMI heritability studies, 

estimates were found to vary of almost two folds, ranging from 0.47 to 0.90 in twin 

studies and from 0.24 to 0.81 in family studies. It clearly shows that the measure is not 

universal and does not have much utility in human populations. It also seriously 

questioned the missing heritability problem that makes the underlying assumption that 

heritability should remain the same for a given trait whatever the population context and 

the sample on which it is measured. 
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Validity of the assumptions underlying heritability estimates  

Heritability estimates rely on strong assumptions that could not be tested and are 

disputable in human genetics. 

A first assumption that is inherent in the polygenic additive model is the existence of 

many genetic and environmental factors that each have a small contribution. It is assumed 

that there are no single genetic or environmental factor that makes a major contribution. 

This is not true for many diseases where major genetic and/or environmental factors have 

been found. Examples include the contribution of specific HLA heterodimers in celiac 

disease or other autoimmune disease and diet and physical activity in obesity and type-2 

diabetes (for a review on the limit of these assumptions in the context of diabetes, see 

Génin and Clerget-Darpoux 2015b). For a trait such as IQ, even if Herrnstein & Murray 

(1994) suggested a limited malleability by schooling, it is now well recognized that 

school attendance plays an important role. Different studies have shown that education 

has a direct role on IQ and that it is not reverse causation due, for example, to the fact that 

people with higher IQ tend to have higher school attendance (see for example the study 

by Brinch & Galloway (2012) where compulsory schooling in Norway in the 1960s was 

found to have an effect on IQ scores of early adult men.  

A second assumption is the absence of interaction between genetic and environmental 

factors. It would mean that genetic variance could be estimated without any knowledge 

on the environment. Yet, contemporary biology has demonstrated that traits are the 

product of interactions between genetic and non-genetic factors at every point of the 

development (Moore and Shenk 2017). Genes are part of a “developmental system” 

(Gottlieb 2001). Moreover, epigenetic phenomena - imprinted genes, methylation, etc. - 

cannot be ignored. As outlined by Burt (2015) : “the conceptual (biological) model on 

which heritability studies depend—that of identifiable separate effects of genes vs. the 

environment on phenotype variance—is unsound”.  

Another assumption is that of random environment. For most human behavioral traits, 

this hypothesis is of course not valid (Vetta et Courgeau 2003; Courgeau 2017). Parents 

pass on alleles to their children with whom they also share environmental factors that can 

be involved in studied traits, leading to some “co-transmission” of genetic and 

environmental factors. This is for example the case of educational level for cognitive 

traits or dietary habits for traits linked to BMI. As shown by Cavalli-Sforza and Feldman 

(1973), ignoring the co-transmission of genetic and environmental factors could lead to 

strong bias in heritability estimates. Vertical cultural transmission has a profound effect 

on correlations between relatives and this effect can be misinterpreted as being due to 

genetic variation. 

The additivity assumption is also not relevant both at the level of the alleles within a 

genotype but also between genes. Indeed, for many traits and in particular diseases, there 

exist dominance effects as well as epistasis. The effect of a genotype on phenotype often 
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depends on the genetic background and on the genotypes at other loci (Carlborg and 

Haley 2004; Mackay and Moore 2014). 

Another underlying assumption is random mating and Hardy-Weinberg equilibrium that 

is not true, especially for cognitive and cultural traits where homogamy is often the rule 

(Courgeau, 2017). 

Besides these assumptions that are inherent to the model underlying heritability and thus 

to all the methods to estimate heritability in twin studies, it is further assumed that 

environment is similarly shared between monozygotic and dizygotic twins. This equal 

sharing of environment is probably the most debated hypothesis. Since the 1960s, 

empirical evidence has accumulated that monozygotic twins live in more similar social 

environments than dizygotic twins. For example, they are more likely to be treated the 

same by their parents, have the same friends, be in the same class, spend time together, be 

more attached to each other through their whole life, etc. (Joseph 2013; Burt and Simons 

2014). Furthermore, the prenatal (intrauterine) environment of monozygotic and 

dizygotic twins is different: the prenatal environments of MZ twins (who often share the 

same placenta) are more similar than those of DZ twins (who never share the same 

placenta). Most advocates of twin studies recognize that the environments of MZ twins 

are more similar than those of DZ twins. However, they suggest that, for the model to 

remain valid, it is only necessary that the environmental factors directly related to the trait 

under study are the same in MZ and DZ twins (“trait-relevant equal environment 

assumption”). In doing so they divert potential criticism on the very strong hypothesis of 

equal environment.  

Finally, we see that none of the hypotheses inherent in heritability estimates are verified 

in humans. More fundamentally, if heritability is used routinely and usefully for plant and 

animal breeding (to predict the effectiveness of this selection), it is in the context of 

experimental devices that allow the environment to be controlled, which is impossible in 

nature and in the case of humans.  

 

From heritability to risk prediction: polygenic risk scores 

Besides the questions raised on the usefulness of heritability estimates in human genetics, 

they continue to be reported in many articles published in major journals and they are 

sometimes even required by reviewers and/or editors. Even worst, in 2007, a new impetus 

was given to heritability estimates. It was proposed to extract the genetic variability from 

the phenotypic variability with, at the end of the day, a phenotypic prediction. 

Wray et al (2007) promoted a new predictive tool for clinicians: the polygenic risk score 

(PRS). They proposed the use of SNP associations to estimate the genetic variance of 

multifactorial diseases. The underlying idea was that each SNP association reflects a 
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genetic risk variability in its neighborhood. Assuming an intrinsic value of the disease 

heritability under study, they claimed that the best predictor of the disease is obtained 

when all genetic variations, i.e., the whole heritability, is captured and pooled. This 

triggered a long search for “missing heritability” (Manolio et al 2009), together with an 

endless extension of GWAS sample sizes. Different methods were developed to better 

estimate heritability from genome-wide association studies (see Speed, Holmes, Balding, 

2020 for a review): Lasso (Tibshirani, 1996), Ridge regression (Meuwissen et al 2001), 

Bayesian mixed -model (Loh et al, 2015, Moser et al, 2015), and MegaPRS, a summary 

statistic that allows the user to specify the heritability model (Zhang et al. 2020). The 

number of papers praising the benefits of using PRS for different complex diseases has 

grown exponentially during the last decade (1,684 results on Pubmed when searching for 

“Polygenic Risk Score(s)” on April 28, 2021). Software applications computing 

individual PRS for numerous diseases and intended to help clinical decision, were also 

developed.  

However, all the limits given for heritability estimation also apply to PRS estimation. The 

validity of PRS estimations depends on the validity of the polygenic additive liability 

under which they are computed. Let us just recall that adopting this simple model implies 

that the genetic variance can be extracted from the phenotypic variance without any 

knowledge on the environment. The shift from genetics to genomics and from family 

studies to population studies has led to a shift in causal inference. Once again, association 

does not mean causation. Indeed, associations may reflect the indirect effect of associated 

traits or environmental factors. For example, SNPs associated to breast cancer may 

include SNPs associated to BMI, some of them reflecting environmental factors and 

socio-cultural stratification. As underlined by Janssens (2019), PRS are not independent 

of observed clinical factors, they contain indirect information on clinical, familial and 

environmental factors. Associations can also be due to the effect of ubiquitous genes, 

such as regulator or transcriptor genes having trans effect on causal genes (Boyle et al 

2017).  

Besides, like heritability, PRS are not universal measures. Even in a population 

considered as genetically homogeneous, such as the UK biobank, a simple change on a 

variable such as age, sex, socio-economic status may impact PRS (Mostafavi et al 2020; 

Abdellaoui et al 2021). 

Nevertheless, the most important misconception comes, here again, from the confusion 

between gene effect on the trait and effect of gene polymorphism on the trait variance. 

Many consider that the polygenic risk score of an individual for a given disease 

represents the genetic part of his liability. In fact, the PRS curve measures the relative 

risk of each genotype compared to the genotype without any risk allele (often extremely 

rare and unobserved when the number of SNPs including in the PRS is large) whereas the 

liability curve is meant to measure absolute risk. Some researchers have claimed that the 

risks of high PRS individuals are equivalent to the one of rare disease mutation carriers 

(Khera et al 2018). This statement is wrong because the absolute risks are very different 
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in the two situations. Even for high PRS value, the absolute risk may be very low. This 

makes PRS a very poor predictor test in terms of specificity and sensitivity, as shown and 

well-illustrated on coronary artery disease by Wald and Old (2019). 

In a recent paper, Wray et al (2019) pointed out the similarity between the Estimated 

Breeding Value (EBV) in livestock and PRS in human. In their comparison, they 

considered that both PRS and EBV are estimates of the additive genetic value of a trait. 

They explained why genetic variance is easier to estimate in a livestock than in humans 

and called for an increase in GWAS sample sizes to maximize the accuracy of PRS. 

However, they did not raise the most important and critical points: 

- the validity of the assumptions made for human diseases or traits in PRS estimation. 

- the simplistic interpretation of SNP associations as reflecting the effect of genetic 

factors 

- the different potential uses of EBV and PRS estimates. While EBV offers reliable 

classification to predict a global improvement of a trait in the next generation, PRS 

classification could not be used to predict an individual disease risk.  

 

Conclusion 

Acknowledging the limitations of the notion of heritability, many authors have pointed 

out the impasse it constitutes for human genetics. Lewontin suggested as early as 1974 

“to stop the endless search for better methods of estimating useless quantities” (Lewontin 

1974), while Jacquard emphasized in 1978 that “the complexity of the mathematics used 

to answer is not enough to give meaning to an absurd question [...], devoid of any 

meaning” (Jacquard 1978). The centrality of heritability in human genetics research more 

than forty years later could thus be a manifestation of the “Garbage In, Garbage Out” 

syndrome (Génin and Clerget-Darpoux 2015a). 

There are growing voices calling for revising and moving beyond the polygenic additive 

model (Nelson et al 2013; Génin and Clerget-Darpoux 2015b). The “omnigenic model” 

of Boyle et al (2017) stands as a proposal in this direction. The authors build on the 

observations that, in genome-wide association studies, statistical associations between 

genetic variants and disease identify a large number of genes scattered throughout the 

genome, including many genes with no obvious link to disease. This is in contrast to the 

expectation that causal variants would be clustered in major disease-related pathways. 

Boyle et al suggest that gene regulatory networks are so interconnected that all genes are 

likely to influence the functions of the core disease genes. Thus, a distinction is made 

between regulatory genes and core genes. But above all, according to the omnigenic 

model, most of the heritability is explained by the effect of genes located outside the 

central pathways. 
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Confusion between measuring a genetic effect on the trait or on its variance is the basis of 

erroneous interpretations of heritability and PRS. In many articles, PRS is confused with 

genetic liability and average PRS with average liability. This resulted in the development 

of a very deterministic view of human traits with false and dangerous predictions of our 

medical and social future. 

In animal or plant populations, where crossbreeding and environment can be controlled, 

information on genetic variance is central to improving a trait from one generation to the 

next. Fortunately, human populations are not subject to these same constraints and the 

objectives of geneticists are totally different. Regarding diseases of complex aetiology, 

geneticists seek to identify the responsible factors and to understand the complex and 

heterogeneous interactions between these factors. There is a huge gap between observing 

associations in a population and understanding the role of genes in the disease 

development process (Bourgain et al 2007). Sticking to a very simplistic model for all 

diseases will not allow to reach this goal. 
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