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ABSTRACT 

Consistent differences in human behaviour are often explained with reference to personality traits. Recent 
evidence suggests that similar traits are widespread across the entire animal kingdom and that they may 
have substantial fitness consequences. One of the major components of personality is the shyness–
boldness continuum. Little is known about the relative contributions of genes and the environment in the 
development of boldness in wild animal populations. Here, we bred wild-caught fish (Brachyraphis 
episcopi) collected from regions of highand low-predation pressure, reared their offspring in the laboratory 
under varying conditions and tested boldness utilising an open-field paradigm. First-generation 
laboratory-reared fish showed similar behaviour to their wild parents suggesting that boldness has a 
heritable component. In addition, repeated chasing with a net increased boldness in both high- and low-
predation offspring, showing that boldness is also heavily influenced by life experiences. Differences 
between males and females were also sustained in the laboratory-reared generation indicating that sex 
differences in boldness are also heritable. We discuss these results with reference to the potential 
underlying genetic and hormonal mechanisms as well as the environmental influences that may be 
responsible for expression of boldness in wild animals. 

 

 

Introduction 

In recent years, it has emerged that personality traits used to describe and quantify behavioural variation 
in humans also exist in the rest of the animal kingdom (Boissy 1995; Gosling 2001; Sih et al. 2004). One 
major component of personality is the shyness–boldness continuum. Bold individuals tend to be risk 
takers and are quick to approach novel objects and explore novel environments. In contrast, shy 
individuals tend to be risk averse and are generally neophobic (Wilson et al. 1994). Behaviour of shy 
individuals in novel situations is often accompanied by fear responses, such as freezing (Brown and 
Smith 1996; Budaev et al. 1999a, b; Templeton and Shriner 2004). But how do such traits arise? 

Recent investigations suggest that variation in individual behaviour may not be randomly scattered 
around a locally adaptive behavioural average, rather, they represent adaptive individual behavioural 
strategies (Dall et al. 2004; Brown et al. 2007). Individual variation in the behaviour of animals can often 



be predicted by examining demographic variables (e.g. size, age or sex) or intrinsic factors (or states) 
including hunger or reproductive status (Wilson et al. 1994). Nevertheless, even after such variables are 
considered, individuals display consistent behavioural differences across a range of circumstances or 
contexts which is characteristic of personality traits (Gosling 2001). The fitness value of expressing 
alternative behavioural strategies is already widely accepted by evolutionary biologists (e.g. sneaky 
mating tactics in guppies, Evans et al. 2003; satellite males in frogs, Leary et al. 2005), yet the expression 
of personality traits is seldom investigated within a similar evolutionary framework (Dingemanse et al. 
2003). The expression of particular personality traits may have considerable ecological and evolutionary 
consequences, especially when the fitness of an individual is strongly dependent on the expression of a 
behavioural phenotype within a given environmental context. We have already shown that fishes in high-
predation areas tend to behave more boldly than their low-predation counterparts (Brown et al. 2005b), 
and the position of an individual along the shyness–boldness axis is highly correlated with fitness (i.e. 
condition factor; Brown et al. 2007). Other experiments suggest that boldness is also associated with 
variance in parasite load, foraging behaviour, mate choice, parental care, reproductive success, 
dispersal, anti-predator behaviour, invasion or colonisation ability and speciation potential (Coleman and 
Wilson 1998; Godin and Dugatkin 1996, Budaev et al. 1999a, b; Reale et al. 2000; Godin and Davis 
1995; Martin and Fitzgerald 2005). 

Human personality traits are known to have both heritable and environmental components, although the 
exact proximate causes of the expression of different personality traits are still regularly debated (McGue 
and Bouchard 1998). The ultimate causes are seldom discussed and rarely investigated (Groothuis and 
Carere 2005). Recent observations suggest that traits such as boldness may also have a heritable 
component in animals (van Oers et al. 2004). Given its association with fitness traits, the expression of 
boldness is likely to be under heavy selective pressure and ought to change depending on the 
environment an animal occupies. One would expect, therefore, that boldness is shaped by gene–
environment interactions, and relative strength of each component is likely to vary between populations. 
Little is known about how early experience influences the development of boldness in wild animals, 
although early work on captive populations of primates and rodents suggests that it is likely to be 
substantial (Harlow and Harlow 1965; Hinde 1974; Cameron et al. 2005). For example, a selection 
pressure as unforgiving as predation is likely to influence the distribution of bold and shy individuals, but 
do these differences arise through heritable differences or because of the environment the animals 
experience as they develop? 

We have been working on a series of studies with a small tropical poeciliid, the Panamanian bishop 
(Brachyraphis episcopi), that is naturally distributed between sites that differ in predation pressure. B. 
episcopi are live-bearers that primarily feed on terrestrial insects and are widely distributed in the 
headwater streams of Panama. These fish provide an excellent system in which to investigate how 
boldness varies under contrasting levels of selection pressure (Brown and Braithwaite 2004; Brown et al. 
2005b; Brown et al. 2007). Fish from high-predation areas emerge from shelter sooner, are more likely to 
leave shoal mates investigate novel objects and are, therefore, generally bolder than those from low-
predation areas, and this difference is most pronounced in males (Brown et al. 2005b, Brown et al. 2007). 
Fish in high-predation areas must be able to carry on with normal activities (e.g. foraging and courtship) 
despite the present risk of death by predators; hence, selection favours bold individuals in these regions. 
No such selective pressure exists in low-predation areas. There is, however, some debate as to the exact 
causal factor responsible for behavioural shifts between high- and low-predation areas (Arendt and 
Reznick 2005) so controlled experimental studies are warranted. Here, we use a controlled rearing 
approach to determine to what extent these population and sex difference arise during ontogeny as a 
result of experience and whether they have heritable genetic components. 



Materials and methods 

We captured fish from sites of high- and low-predation pressure in each of three geographically separated 
streams (QJG, RM and RL) using hand-held dip nets (ANAM permit# 31503). Each stream contains a 
waterfall barrier that prevents the upstream movement of the majority of the fish fauna. Above the falls, 
the fauna consists almost entirely of our study species, B. episcopi and the occasional killifish (Rivulus 
brunnei). Both B. episcopi and R. brunnei exist below the falls; however, these areas are mostly 
dominated by a variety of piscine predators and tetras (family Charicidae; see Brown and Braithwaite 
2004 for further details). The three streams run independently into the Panama Canal, and the distribution 
of B. episcopi does not extend to the lower reaches of the streams. Fifty females and ten males from 
each site (6 populations: 360 fish total) were transported to our laboratories at the University of 
Edinburgh, where they were established in separate 90×30 cm aquaria for each site. Each aquarium was 
furnished with river gravel, rocks, artificial plants and an internal power filter. The room was heated to 
25°C, and lighting was maintained on a 12-h light/dark cycle. Owing to the aggressive nature of both 
males and females, only two males could be housed with the females at any one time. All ten males were 
given an opportunity to court and mate with the females from their population. Fish were maintained on a 
commercial tropical flake food diet supplemented with live food (blood worm, brine shrimp, tubifex and 
daphnia). Pregnant females were removed from the general population and isolated in small aquaria 
equipped with fry-traps. Most females produced offspring in this way and contributed to the lab-reared 
generation. Fry were housed in tanks similar to those of the adults and maintained on live-bearing liquid 
fry food and finely crushed flake food. Juvenile males were removed and housed separately as soon as 
they were identified by the developing gonopodium. 

Upon reaching 25-mm standard length, lab-reared females were exposed to one of two treatments. In the 
first treatment, the fish remained undisturbed in their home tanks, whilst in the second, they were housed 
in small groups in plastic aquaria (25 cm long×40 cm wide×20 cm deep) and exposed to simulated 
predator attack by chasing them with a dip net for 2 min, every day for 2 weeks. The net was moved in 
such a way as to ensure that every fish was chased during the 2-min time period. Lab-reared males were 
left undisturbed in their home tanks. At the end of the 2-week period (2 h after the final net chase for fish 
in the chased treatment), the fish were gently transferred from their respective aquaria to a box in the 
experimental arena. The arena consisted of a glass aquarium (60×60 cm), the outer sides of which were 
wrapped in black plastic, although the top was open to allow access and light to penetrate. Lighting was 
provided by over-head fluorescent tubes; however, the light did not shine directly into the test arena. 
Water depth was maintained at 10 cm. The arena was furnished with river gravel, plastic plants, rocks 
and a corner air stone. A start box (19 cm high×8 cm wide×10 cm long) constructed from grey plastic was 
positioned upon a white plastic semi-circle on one side of the arena. The box was equipped with a 
vertically sliding trapdoor (3×3 cm) that could be opened and closed via a remote pulley system (Fig. 1; 
see Brown et al. 2005b for more details). On the opposite wall of the arena to the start box, a small slit 
was made in the outer plastic to enable us to observe the fish, without disturbing them. 

Each fish was placed into the start box and allowed to settle for 2 min before the sliding door was raised 
remotely. The time taken for the fish to emerge from the box and explore the novel arena was recorded 
as an assay of boldness (Brown and Braithwaite 2004; Brown et al. 2005b; Brown et al. 2007). This 
measure of boldness is analogous to the widely utilised open-field test (e.g. Kilgour 1975; Yoshida et al. 
2005) and is highly correlated with other assays of boldness (Brown et al. 2007). We tested a total of 81 
F1 females from high- and low-predation areas (30 undisturbed and 51 chased by the net). In addition, a 
further 48 undisturbed males were tested to enable a comparison of boldness between sexes. In total, we 
utilised 66 fish from QJG, 37 from RL and 26 from RM. The data from each of the three streams were 
pooled owing to an incomplete matrix because some of the populations proved more difficult to breed 



than others (we lacked lab-reared fish in the RL, low-predation, undisturbed treatment). However, an 
analysis of variance (ANOVA) on the complete data set showed no effect of river on time to emerge from 
the box (F2, 126=0.497, p=0.609). Due to deviances from normal, the data were logged transformed before 
analysis using ANOVA. 

 

 

Fig. 1 A diagrammatic representation of the test arena on the left and details of the start box on the right 

 

Results 

Our ANOVA revealed that laboratory-reared fish with parents from high-predation areas emerged 
significantly faster from shelter to explore the novel environment than lab-reared fish with low-predation 
parents (F1, 77 = 5.85, p = 0.018; Fig. 2). Fish that had been repeatedly chased by a net were significantly 
bolder than those that remained undisturbed (F1, 77 = 42.74, p < 0.001; Fig. 2). The interaction between 
the disturbance and predation regimes was not significant (F1, 77 = 0.31, p = 0.579). Note that more 
variance in boldness score was generated by chasing the fish with the net rather than the parental 
predator regime. This is confirmed by an effect size analysis based on pooled standard deviations (Oakes 
1986), where the effect size of parental origin was 0.25 compared to 1.01 due to disturbance regime. 
Examination of undisturbed lab-reared males and females revealed that males emerge from shelter 
significantly faster than females (F1, 76 = 280.75, p < 0.001; Fig. 3). 

Discussion 

Population differences in boldness traits between high- and low-predation fish appear to have both 
experiential and heritable components, although maternal effects cannot be ruled out. Laboratory-reared 
females bred from wild-caught, high-predation fish were significantly bolder than lab-reared females with 
parents from low-predation areas. Although our methodology did not allow the estimation of heritability, 
the difference between the lab-reared high- and low-predation juveniles was of a similar magnitude to that 
observed in the wild-caught parental generation in previous studies (Brown et al. 2005b; Brown et al. 
2007). In addition, lab-reared females that had experienced being chased by a net before testing were 
bolder than fish that remained undisturbed, indicating that boldness is also influenced by experience 
during ontogeny. In addition, boldness of both high- and low-predation lab-reared fish was equally 
susceptible to environmental influences, with both high- and low-predation fish increasing their boldness 



after being repeatedly chased by a net. The open-field test utilised here is a widely used assay of 
boldness (Kilgour 1975; Yoshida et al. 2005), and previous experiments have shown that there is a high 
correlation between this and other boldness assays such as the propensity to approach novel objects in 
B. episcopi (Brown et al. 2007). When taken together, these results show that an individual’s position on 
the boldness–shyness continuum is influenced by both environmental and genetic factors. 

 

 

Fig. 2 The mean (±SE) time to emerge from the shelter and begin to explore a novel environment for 
laboratory-reared F1 females of parents captured in high- and low-predation sites and F1s that were chased 
with a net or not. *p < 0.05, ***p < 0.001, ANOVA performed on log transformed data (see text for details). 
Numbers in each column represent n values 

 

Fig. 3 The mean (±SE) time taken for females and males that had not been chased to emerge from shelter and 
enter a novel environment. ***p < 0.001, ANOVA performed on log transformed data (see text  for details). 
Numbers in each column represent n values 



Previous experiments (Brown et al. 2005a, 2007) conducted on fish collected in the wild revealed that 
males were faster to emerge from cover (bolder) than females. Here, we show that these differences 
between the sexes are maintained in the first laboratory-reared generation. This suggests that boldness–
shyness differences between the sexes can be partially explained by genetic influences and are probably 
mediated via hormonal expression. Similar differences between the sexes have been made in rats using 
a novelty-seeking paradigm (Ray and Hansen 2004). Experiments conducted on quail have revealed that 
the level of testosterone present in the embryo can have a significant influence on behaviour phenotype. 
Quail chicks that had 50 ng of testosterone injected into their yolk were more likely to approach novel 
objects compared to sham injected chicks, and the treatment affected both sexes equally (Daisley et al. 
2005). In the future, QTL mapping may identify genes strongly associated with boldness in our 
experimental populations (Wright et al. 2006). This approach has been used successfully by Gershenfeld 
et al. (1997) where markers associated with a number of different exploratory behaviours in mice have 
been identified on several different chromosomes. We hypothesise that the candidate genes for 
boldness–shyness are likely to be associated with stress responses (such as the hypothalamic–pituitary–
interrenal axis in fish and the homologous mammalian hypothalamic–pituitary–adrenal axis). Evidently, 
further progress could be gained by conducting hormone analyses. 

If individual differences in behaviour are linked to variation in the levels of circulating hormones, it is 
possible that the differences observed in our lab-reared fish may result from maternal effects (Cameron et 
al. 2005). B. episcopi are ovoviviparous, so the potential for maternal effects on behavioural variance is 
high and can potentially inflate estimates of heritability (Kruuk et al. 2000). We are unable to separate 
variance due to maternal effects from that directly influenced by an individual’s genes. Recent analysis of 
salt water tolerance in guppies found no evidence of maternal effects (Shikano and Fujio 1998); however, 
Reznick et al. (1996) found evidence for the effects of maternal provisioning on offspring quality. Pedigree 
analysis or cross-classified breeding experiments involving multiple matings between individual males 
and females would enable the variance between these two factors to be partitioned and remains an 
objective for future work. 

Whilst our understanding of the potential genetic influences of the expression of boldness steadily grows, 
less is known about experience on the development of behavioural phenotypes. It is evident from our 
experiments that repeated exposure to potentially threatening stimuli (in the form of repeated chasing with 
a dip net) over a relatively short time frame had a significant influence on individual’s position on the 
shyness–boldness continuum. Similar observations have been made in lizards repeatedly exposed to 
simulated predator attacks (Lopez et al. 2005). Early experiences in domesticated animals, particularly 
before or during the weaning process, can have substantial long-term influences on individual behaviour. 
For example, both breed and pre-weaning social conditions influence the expression of fear in sheep and 
horses (Romeyer and Bouissou 1992; Lansade et al. 2004). These results with domestic animals mirror 
those obtained in lab strains of mice and rhesus monkeys (Clarke 1993; Caldji et al. 2000). Mice that are 
repeatedly handled for 15 min in the first 14 days of life show reduced stress responses as adults (Caldji 
et al. 2000). Whilst the behaviour of the fish in response to being repeatedly frightened by either a net, as 
was the case here, or by predators, as would be the case in the wild, seems counter-intuitive, our results 
fit well with previous studies, particularly those conducted on rodents. Whilst frightening or stressful 
experiences that occur very rarely might have the effect of increasing shyness, long-term, repeated 
exposure seems to have just the opposite effect. Over time, the animals learn to adjust to these 
situations, and adjustments probably occur at both the psychological and physiological levels (Caldji et al. 
2000; Cameron et al. 2005). We have already shown that our populations differ dramatically in their 
response to mildly stressful stimuli as indicated by opercula beat activity (Brown et al. 2005a), although 
we are yet to determine how these population differences are maintained and if stress responses are 
heritable. 



While a great deal is known about the proximate causes of individual differences in model organisms 
such as rodents (Cameron et al. 2005), we still know relatively little about the ultimate explanations of 
individual differences. We have recently shown that the expression of boldness influences a fitness-
related trait in body condition (Brown et al. 2007) which indicates that the behavioural strategies 
individuals adopt are under heavy selective pressure that varies depending on the environment the 
animals occupy. However, boldness may have other, more subtle fitness-related consequences that have 
yet to be explored. For example, research conducted on guppies has shown that females prefer to mate 
with bold males (as defined by their tendency to approach predators) and that male boldness is highly 
correlated with bright pigmentation (Godin and Dugatkin 1996). Both pigmentation pattern and boldness 
are heritable and may be linked in some way. Thus, boldness may be an honest indicator of an  
individual’s fitness. From this, and based on the results presented herein, we predict that it may be more 
important for females to select bolder male partners in high- rather than low-predation environments. 
Moreover, bold males are likely to gain greater access to females than shy males particularly in high-
predation locations and thus obtain higher reproductive success (Evans et al. 2003). 

One of the fundamental problems with studies of boldness–shyness in animals has been the lack of 
accepted terminology and methodology. For example, there are a wide number of assays that have been 
used to record boldness in fishes, and boldness itself has been variously described to match the imposed 
methodologies (a kind of circularity; e.g. tendency to inspect predators, Godin and Dugatkin 1996; 
foraging under predation risk, Magnhagen 2006; response to a novel object, Sundstrom et al 2004; open-
field test, Budaev 1999b). One of the greatest benefits behavioural ecology can provide to the study of 
personality is the imposition of a rigorous comparative method. One of the things that this approach 
stresses is that the assay employed must be equally applicable to all test subjects. With this in mind, it is 
clear that one could not legitimately measure boldness traits by, for example, examining the behaviour of 
individuals in the presence of predators owing to differential perception of threat. Predator allopatric 
individuals, for example, may not categorise predators as a threat, whereas predator sympatric 
individuals would. Such comparisons examine variation in threat recognition, but they cannot measure 
boldness (a behavioural response to a set level of risk). Issues such as these highlight the need for a 
well-defined approach to studying personality traits in animals and explain the widespread use of neutral 
tests such as the open-field assay. 

A recent meta-analysis conducted on the environmental influences of personality differences in humans 
concluded that such influences are likely to be highly complex (Turkheimer and Waldron 2000). 
Nevertheless, studies based on the analysis of homozygotic twins and adoption studies have made 
considerable advances in recent years (Bouchard and McGue 2003). Studying environmental influences 
on human personality traits is, for obvious reasons, a complicated matter. Unlike humans, individual 
animals can easily be reared under controlled conditions. Individual experiences can be manipulated, 
selective crosses can be performed and populations monitored for multiple generations. The fitness 
benefits associated with certain personalities can also be assessed by directly measuring reproductive 
success. In this manner, we can approach the study of personality within an evolutionary framework and 
begin to understand the fitness consequences of expressing different personality traits in a range of 
environmental contexts (Brown et al. 2007). Thus, in many ways, animal model systems are superior to 
their human counterparts and have a lot to offer in terms of investigating the environmental and genetic 
influences on the development of personality traits (Gosling 2001). 
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