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Abstract

Background: Variation in the human fecal microbiota has previously been associated with body mass index (BMI).

Although obesity is a global health burden, the accumulation of abdominal visceral fat is the specific cardio-metabolic

disease risk factor. Here, we explore links between the fecal microbiota and abdominal adiposity using body

composition as measured by dual-energy X-ray absorptiometry in a large sample of twins from the TwinsUK cohort,

comparing fecal 16S rRNA diversity profiles with six adiposity measures.

Results: We profile six adiposity measures in 3666 twins and estimate their heritability, finding novel evidence for

strong genetic effects underlying visceral fat and android/gynoid ratio. We confirm the association of lower diversity of

the fecal microbiome with obesity and adiposity measures, and then compare the association between fecal microbial

composition and the adiposity phenotypes in a discovery subsample of twins. We identify associations between the

relative abundances of fecal microbial operational taxonomic units (OTUs) and abdominal adiposity measures. Most

of these results involve visceral fat associations, with the strongest associations between visceral fat and Oscillospira

members. Using BMI as a surrogate phenotype, we pursue replication in independent samples from three

population-based cohorts including American Gut, Flemish Gut Flora Project and the extended TwinsUK cohort.

Meta-analyses across the replication samples indicate that 8 OTUs replicate at a stringent threshold across

all cohorts, while 49 OTUs achieve nominal significance in at least one replication sample. Heritability analysis of the

adiposity-associated microbial OTUs prompted us to assess host genetic-microbe interactions at obesity-associated

human candidate loci. We observe significant associations of adiposity-OTU abundances with host genetic variants in

the FHIT, TDRG1 and ELAVL4 genes, suggesting a potential role for host genes to mediate the link between the fecal

microbiome and obesity.

Conclusions: Our results provide novel insights into the role of the fecal microbiota in cardio-metabolic disease with

clear potential for prevention and novel therapies.
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Background
Obesity has rapidly become a global public health prob-

lem, with obesity-related disease now one of the leading

causes of preventable death worldwide [1]. Although

overall obesity poses a global health epidemic, it is the

accumulation of excess abdominal fat that is a critical

risk factor for cardiovascular and metabolic disease [2].

Changes in diet and a sedentary lifestyle can partly ex-

plain the rise in obesity, and family and twin studies also

show a genetic influence, with obesity heritability esti-

mates of 0.60–0.70 [3–6]. Genome-wide association

studies (GWASs) have identified genetic risk factors

[7–9], but genetic variants detected to date explain

less than 3 % of the heritability of obesity, with a pre-

diction ability of up to 20 %, suggesting a role for

other mechanisms [10].

Recent insights show that the gut microbiota may play

a crucial role in obesity and cardio-metabolic disease
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risk. Many studies have linked different aspects of the

fecal microbiome to obesity [11–17]. However, in most

cases the causal mechanisms leading to these associa-

tions are unclear, although several theories have been

suggested, including alterations in energy harvest from

food [18] and an increase in potential inflammatory

microbes [19]. There are also inconsistencies in the taxa

associated with obesity [16] that may be explained in

part by study design differences such as control of diet

and sequencing platforms, but could also be due to dif-

ferences in collective bacterial gene function rather than

the species community composition [20]. Another compli-

cating factor that varies among studies is the quantifica-

tion of obesity. While most human studies consider body

mass index (BMI) as the measure of obesity [11, 21, 22],

mouse studies typically use epididymal fat weight [23] or

dual-energy X-ray absorptiometry (DXA)-derived mea-

sures of total body fat [18, 24]. BMI is an imprecise meas-

ure of adiposity and measures overall mass without

distinction between lean and fat mass [25]. Estimates of

visceral fat, however, have stronger associations with

obesity-related cardio-metabolic diseases, such as type 2

diabetes and cardiovascular disease [26–28], but have typ-

ically been difficult to measure in humans and have yet to

be linked with variation in the human fecal microbiome.

Previous studies have attempted to tackle heritability

of attributes of the microbiome. Zoetendal et al. [29]

found that monozygotic (MZ) twins had more similar

microbiomes than marital partners or unrelated individ-

uals, suggesting either a role for host genotype in gut

microbiome colonisation or mother-to-child transmission

of microbes. In addition, a study of Methanobrevibacter

carriage concordance rate in twins showed higher con-

cordance in MZ twins [30]. A recent study by Goodrich et

al. [31] was the first large-scale analysis to report heritabil-

ity of the human fecal microbiota, with the relative abun-

dance of 16S rRNA gene sequences belonging to the

family Christensenellaceae showing the most variance

attributed to host genetic effects. Christensenellaceae was

also enriched in abundance in the microbiomes of low-

BMI individuals. Here, we build upon these findings to

explore the association between the human fecal micro-

biome and abdominal adiposity as the main risk factor for

cardio-metabolic disease risk. We obtained DXA-based

measures of abdominal adiposity, specifically, visceral fat

mass, subcutaneous fat mass and previously reported

trunk fat measures [32], as well as body fat distribution, in

a larger dataset of twins, including a subset of the twin

sample profiled by Goodrich et al. [33] and a subset of the

twin sample profiled by Jackson et al. [34]. We show

that heritable components of the human fecal micro-

biome [31, 33] are significantly associated with vis-

ceral fat, confirming the key role of the microbiome

in cardio-metabolic disease risk. We further identify a

link between fecal microbiome profiles, visceral fat

and subcutaneous fat with genetic variants in obesity

candidate genes, providing potential insights into

mechanisms to relate the fecal microbiome to cardio-

metabolic disease risk.

Results
Measures of adiposity were obtained from an unselected

sample of 3666 predominantly female twins from the

TwinsUK cohort (TUK-D), which included 1044 MZ

and 789 dizygotic (DZ) twin pairs (average age 63 years

(range 32–87); 96.4 % female). Fecal microbiome profiles

were available for 1313 of these individuals (496 MZ, 594

DZ and 223 unrelated individuals; average age 63 years

(range 32–87); 96.4 % female). The demographics for

these samples can be found in Table 1 and Additional

file 1: Table S7. Fecal microbiome profiles included 601

previously published profiles from Goodrich et al. [33], an

additional 671 profiles recently reported within Jackson et

al. [34] and 41 additional twin profiles [33]. All fecal sam-

ples underwent 16S rRNA profiling (V4 region) gene se-

quencing on the Illumina MiSeq platform, providing 2135

operational taxonomic units (OTUs) at 97 % sequence

identity.

Adiposity and visceral fat heritability

We studied six adiposity measures in total, and these in-

cluded three measures of abdominal adiposity (visceral fat

mass (VFM), subcutaneous fat mass (SFM), percentage

trunk fat (pTF)), two measures of body fat distribution

(android/gynoid ratio (AGR) and waist/hip ratio (WHR))

Table 1 Description of the TwinsUK discovery sample

Full dataseta Microbiome subsetb

No. of samples 3666 1313

Sex

Female 3296 1266

Male 370 47

Zygosity

MZ 2088 496

DZ 1578 594

Unrelated 0 223

Age (mean (range)) 63 (32–87) 63 (32–87)

BMI (mean (range)) 26.1 (15.7–49.9) 26.1 (16.2–45.9)

Ethnicity

European 3511 1295

Other 102 9

Unknown 53 8

aSummaries are shown for both the extended dataset of 3666 twins used in

the phenotype heritability analyses and for the microbiome sample subset of

1313 individuals. bAdditional file 1: Table S7 includes extended descriptions of

the microbiome data subset
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and one measure of overall obesity, BMI. Adiposity was

estimated using DXA-derived measures, which have been

shown to be reliable alternatives [35–38] to traditional

computed tomography (CT) and magnetic resonance im-

aging scan-based measures of adiposity. The majority of

these adiposity measures have been previously explored in

the TwinsUK cohort; however, VFM and AGR are newly

obtained phenotypes. The new measure of VFM was

highly correlated with other abdominal and overall adipos-

ity measures, including BMI (Fig. 1a). Twin-based herit-

ability analysis of VFM showed evidence of a significant

additive genetic component, or heritability (h2), contribut-

ing to 0.70 (95 % CI = 0.58–0.74) of the total variance in

VFM. The VFM heritability estimate remained high after

adjustment for BMI (0.64, see Additional file 2). We

obtained comparable estimates for the heritability of SFM

(h2 = 0.72 (95 % CI = 0.60–0.77)), pTF (h2 = 0.66 (95 %

CI = 0.55–0.77), AGR (h2 = 0.65 (95 % CI = 0.55–0.76)),

BMI (h2 = 0.75 (95 % CI = 0.68–0.80) and a slightly lower

estimate for WHR (h2 = 0.32 (95 % CI = 0.24–0.40)), in

line with previous studies [39–41] (Fig. 1b).

The twin fecal microbiome and its heritability

The human fecal microbiome in the dataset of 1313

twins comprised Firmicutes as the most dominant

phylum (51 %), followed by Bacteroidetes (39 %) and

Proteobacteria (4 %). These estimates are comparable

to previously published results [33] and reflect a typ-

ical Western fecal microbiome. Using twins, we then

explored evidence for heritability in the gut microbial

profiles (relative abundances of OTUs), extending the

results of Goodrich et al. [33] in the larger sample of

1313 twins using the same methods for OTU herit-

ability. Altogether, OTU heritability in this dataset

ranged between 0 and 0.42, and the average estimate

over all OTUs was 0.07. The most heritable microbe was

an OTU classified as Clostridium perfringens (h2 = 0.42

(95 % CI 0.23–0.51)) (Additional file 1: Table S1). The

family Christensenellaceae was the most heritable family

reported in Goodrich et al. [33], and while OTUs

representing Christensenella were not the top ranked

in this larger dataset, Christensenella OTU heritability

remained high with one OTU, Greengenes OTU

176318, showing a heritability of 0.31 (95 % CI 0.21–0.41).

The microbial heritability estimates presented here are

overall consistent with the original microbial twin-based

heritability findings from Goodrich et al. [31] and with re-

cent extended heritability estimates from the extended

TwinsUK cohort [33]. For example, at the genus level,

heritability estimates across studies show a correlation

of 0.67 between this TUK-D dataset and the results

in Goodrich et al. [31] (Additional file 3: Figure A)

and 0.77 between TUK-D and Goodrich et al. [33]

(Additional file 3: Figure B). Approximately 6 % of

the dataset (122 OTUs) had evidence for at least

moderate heritability (h2 > 0.2), and these were

present in at least 25 % of individuals (Additional

file 1: Table S1).
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Fig. 1 Distribution and heritability of adiposity phenotypes. a Scatterplot matrix showing the distribution and correlation between six adiposity

measures in 3666 twins. The distribution of each phenotype (prior to normalisation) is shown along the diagonal. The lower panel shows scatterplots

for each pair of adiposity phenotypes, and the upper panel denotes the coefficients of determination. b Heritability of six adiposity measures in the

TwinsUK cohort, as well as visceral fat measures in three independent cohorts: Framingham [39], Quebec [41] and Heritage [40]. The total variance of

each adiposity phenotype is decomposed into variance components attributed to additive genetics (A) or narrow-sense heritability (h2), common

environment (C) and unique environment (E)
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Fecal microbiome diversity is strongly linked to obesity

and central adiposity

Microbial diversity (alpha diversity) in obese individuals

has been reported to be lower than that of lean individuals

[15, 31]. Here we compared estimates of Shannon diver-

sity for the subjects’ fecal microbiomes with all adiposity

measures using a linear mixed effects model, adjusting for

diet (see Methods), age, sex and family relatedness. As in

previous reports [15, 31, 42], we observed a significant

negative association between Shannon diversity and all

adiposity phenotypes (Fig. 2, Additional file 4). VFM

showed the most significant association with alpha diver-

sity (beta = −0.14, se = 0.27, P = 4.13 × 10−7) and WHR

showed the least significant association (beta = −0.05,

se = 0.031, P = 0.097). All measures but WHR were signifi-

cantly associated with diversity; therefore, alpha diversity

measures in our sample are not only negatively associated

with obesity but are also significantly lower in individuals

with greater abdominal adiposity and visceral fat.

Fecal microbiome profiles associate with central adiposity

across twins

We investigated the association of each OTU with all

adiposity traits, including BMI, across individuals. Of the

approximately 12,000 OTU-phenotype associations consid-

ered, 3217 were nominally significant, and 149 OTU re-

sults surpassed the Bonferroni correction (P = 3.90 × 10−6).

The 149 significant microbial-adiposity associations in-

volved 97 unique OTUs (Additional file 1: Table S2), and

these fell within either the Firmicutes or Bacteroidetes

phylum, and most within the Ruminococcaceae family.

Visceral fat (VFM) associations made up the highest pro-

portion of significant results surpassing the Bonferroni

threshold (45 %, Fig. 3a). The peak result was an OTU

classified as Oscillospira (Greengenes OTU 372146),

which was associated with VFM (P = 1.93 × 10−12).

Ruminococcaceae OTUs featured prominently in the top

significant results, along with a number of other OTUs

within the Lachnospiraceae family. Given the importance

of VFM and AGR in cardiovascular risk, we were inter-

ested in determining potential microbial markers of car-

diovascular risk. OTUs within Oscillospira, Lachnospira

and Ruminococcus all showed negative associations with

VFM and AGR, suggesting a potential protective role for

these bacteria in cardiovascular risk (Fig. 3, Additional

file 1: Table S2). Blautia OTUs showed a positive as-

sociation with VFM and AGR and may be a microbial

marker candidate for cardiovascular risk (Fig. 3a, Additional

file 1: Table S2). These results support the crucial role of

the microbiome towards visceral fat as a marker of adipos-

ity and cardio-metabolic disease risk.

Due to the large number of OTUs in the top-ranked as-

sociation results belonging to the same genera and families,

we also explored the peak results with respect to collapsed

taxonomies, whereby we combined sequences from OTUs

with the same taxonomy. We first tested the association

between the 8 genera, to which the 97 adiposity-significant

OTUs were assigned, and adiposity. Altogether, 11 associa-

tions passed Bonferroni correction (P = 0.001), and 27

genus-adiposity associations were nominally significant.

These comprised 6 of the genera and included Blautia,

Oscillospira, Lachnospira, Ruminococcus (within both

Lachnospiraceae and Ruminococcaceae) and Clostridium.

The two most significant associations were obtained be-

tween Oscillospira and VFM (P = 3.29 × 10−07, Additional

file 1: Table S3) and Blautia and VFM (P = 3.65 × 10−06).

We considered a similar approach at the family level where

the most significant bacterial-adiposity association was a

Fig. 2 Alpha diversity of the fecal microbiome in individuals with high and low fat content. For each phenotype, individuals who were more

than 1.5 standard deviations from the mean of the phenotype were assigned to high and low phenotype groups respectively. Alpha diversity

measures (using Shannon diversity) were compared between the high and low phenotype groups (Wilcoxon test * = 0.05 ** = 0.001 *** = 0.0001)
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negative relationship between Christensenellaceae and

VFM (P = 1.48 × 10−10), supporting prior findings from

Goodrich et al. [31].

We then explored fecal microbiome associations with

obesity within a subsample of 247 MZ twin pairs to

identify potential environmental or stochastic effects.

MZ twins are matched for sex and age, and have nearly

identical genomes and very similar early life environ-

ments. Therefore, microbiome differences observed

within MZ twin pairs are likely to be a result of environ-

mental and stochastic influences or effects that are sec-

ondary to the phenotype. We estimated differences in

fecal OTU relative abundances within 247 MZ twin

pairs and compared these to differences in adiposity, for

each of the six adiposity phenotypes using a Pearson

correlation. Although no results surpassed Bonferroni

significance for multiple testing across the six pheno-

types, potentially in part due to the smaller sample size,

many of the observed effects were consistent with those ob-

served across 1313 individuals (Additional file 1: Table S2).

The peak association in MZ twin pairs was observed

between an unknown Clostridiales OTU (Greengenes

OTU 331113) and AGR (Pearson coefficient = −0.24,

P = 9.68 × 10−05).

We performed two additional follow-up analyses of

the association between fecal microbiome OTUs and

adiposity phenotypes. Because of the high correlation

across multiple obesity measures, we explored the asso-

ciation between fecal microbiome OTUs and adiposity

measures independent of BMI. Following adjustment for

BMI, 133 of the 149 significant associations remained

nominally significant with the same direction of effect

(Additional file 1: Table S2). Because of the strong asso-

ciation that we observed between alpha diversity and

adiposity, we also wanted to assess if the strongest

adiposity-OTU associations were with OTUs that were

markers of diversity, or whether these taxa associated

with adiposity were independent of species richness. To

this end we repeated the adiposity-OTU analyses at the

149 significant OTU-phenotype associations now includ-

ing alpha diversity as a covariate in the linear model as

previously described [34]. All of the reported significant

associations remained nominally significant after adjust-

ment for alpha diversity.

Replication of microbial-obesity associations

We pursued replication of the 97 significant OTUs asso-

ciated with visceral fat in 4286 independent samples

from three additional population-based replication sam-

ples, including samples from the American Gut, Flemish

Gut Flora Project (FGFP) and extended TwinsUK co-

horts. Due to the lack of cohorts with both visceral fat

measurements and gut microbiome data available, BMI

was used as a surrogate phenotype for visceral fat in

these analyses. In each replication cohort, individuals se-

lected were of European descent, over the age of 20, and

had a BMI ranging between 18.5 and 30 units, resulting

in 2338 individuals from the American Gut cohort

(USA), 917 individuals from the FGFP cohort (Belgium)

and 1031 individuals from the extended TwinsUK

cohort (UK) who were not included in the discovery

TwinsUK sample. To account for the difference between

the 16S rRNA gene sequences between the TwinsUK

discovery sample and the replication datasets, OTUs in

each replication dataset were picked using closed refer-

ence in the software Quantitative Insights Into Microbial

Ecology (QIIME) [43] at 97 % using UCLUST [44] against

the representative sequences for the 97 Bonferroni-

b

a

Fig. 3 Associations between fecal microbiome 16S OTUs and

visceral fat in the TwinsUK and replication datasets. a The inner circle

denotes the phylogenetic tree of OTUs, produced using iTOL [93]

based on Greengenes May 2013 tree filtered for the OTUs in the sample.

Tree leaves are coloured according to the direction of association with

visceral fat, where blue indicates a negative association, while red

indicates a positive association. The outer circle denotes the significance

of each OTU-visceral fat association, where P values are plotted as –log10
(P value), and the red line shows the Bonferroni significance threshold.

The figure highlights the most-associated OTU in the sample (OTU

372146), as well as the two closed-reference OTUs that were significantly

associated with host genetic variants in genes FHIT (OTU 181702) and

ELAVL4 (194733). It also highlights the heritable Christensenellaceae OTU

176318. The figure also denotes the tree branches containing members

of Clostridiales, Bacteroides and Christensenellaceae to accompany results

and discussion in the main text. b Forest plot of beta coefficients

with confidence intervals of eight OTUs that replicated robustly in

a meta-analysis of three independent cohorts (TUK-R, AG and FGFP)
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significant OTUs associated with adiposity measures, to

maximize similarity in datasets during replication. Further

processing and downstream analyses took into account

technical and lifestyle cohort-specific covariates to match

as closely as possible the discovery sample and account

for differences across cohorts (see Methods).

The 97 OTU-BMI associations were tested within each

replication sample (Additional file 5), and the results were

combined in a meta-analysis across the three replication

samples (Additional file 1: Table S4). At a stringent

Bonferroni significance threshold (P = 0.05/97), 8 OTUs

robustly replicated with the same direction of effect across

the three replication cohorts (Fig. 3b, Additional file 1:

Table S4), excluding results with evidence for heterogen-

eity. Furthermore, 13 OTUs showed evidence for associ-

ation with BMI that was stronger in the meta-analysis

across all four population-based cohorts, compared to the

discovery TwinsUK sample alone (Additional file 1:

Table S4). At a more relaxed significance threshold

(nominal significance and same direction of effect in

at least 1 cohort), 49 OTUs showed the same direc-

tion of effect and nominally significant evidence for

association with BMI in at least one of the replication

samples (Additional file 1: Table S4). The 8 OTUs

with robust evidence for replication included mem-

bers of Lachnospiraceae and Ruminococcaceae, while

the 49 OTUs included not just members of the

Lachnospiraceae and Ruminococcaceae families, but also

of Christensenellaceae, Clostridiales, Bacteroidaceae and

Rikenellaceae.

Microbial functional alterations in obesity

Given the strong associations observed between fecal

microbiome variation and obesity phenotypes, we next

wished to assess potential functional differences that

may be the result of a fecal microbiome dysbiosis in

obesity. To this end, we aimed to infer KEGG functions

of the fecal microbes by using the software Phylogenetic

Investigation of Communities by Reconstruction of

Unobserved States (PICRUSt) to predict metagenomes

for each sample based on the closed-reference 16S rRNA

gene sequences. The PICRUSt analyses resulted in

altogether 233 Kyoto Encyclopedia of Genes and Ge-

nomes (KEGG) pathways and 6909 KEGG orthologies

(KOs) within our sample. We next aimed to determine

the relationship between the inferred KEGG functions

and adiposity. We adjusted the KEGG pathway scores

obtained for each individual in our sample for technical

covariates (see Methods) and performed association ana-

lyses of these functions with the adiposity measures

using a linear mixed effects model as previously de-

scribed. We also assessed KO differential abundance in

high and low visceral fat individuals using Statistical

Analysis of Metagenomic Profiles (STAMP) [45].

Of the 233 KEGG pathway associations with six adi-

posity measures, 13 associations surpassed Bonferroni

correction (P = 3.6 × 10−5), and 218 associations were

significant after false discovery rate (FDR) correction

(FDR 5 %). Four of the 13 Bonferroni-significant associa-

tions were with KEGG functions related to metabolism,

as well as 98 of the FDR 5 % significant results (Fig. 4a).

Functions within carbohydrate metabolism were posi-

tively associated with adiposity, in particular, glyoxylate

and dicarboxylate metabolism, which had a Bonferroni-

significant association with VFM (P = 1.19 × 10−06) and

FDR 5 % significant associations with the remaining adi-

posity measures. Five groups within the glyoxylate and

dicarboxylate metabolism pathway were significantly dif-

ferentially abundant in high visceral fat and low visceral

fat individuals (Fig. 4b). Two of these five groups

remained significant following Bonferroni correction,

and these were K03779 (ttdA, Q = 2.87 × 10−3) and

K03780 (ttdB, Q = 1.79 × 10−3); both increased in sub-

jects with high visceral fat. The remaining 3 pathways

that surpassed Bonferroni correction were obtained be-

tween pTF and dioxin degradation, prenyltransferases

and N-glycan biosynthesis.

Host genetic influences on microbiome-obesity

associations

Twin-based heritability estimates supported a strong

genetic component for visceral fat, and our heritability

analyses of the fecal microbiome in this sample showed

wide variability in heritability between fecal microbial

taxa (0–0.42), with members of Firmicutes and Actino-

bacteria being most heritable. The average heritability of

the overall fecal microbiome sample was 0.07, while the

average shared environment component was 0.046 and

the average unique environment was 0.93. The peak 97

Bonferroni-significant OTUs associated with abdominal

adiposity in our sample had a median heritability of 0.16

and an average OTU heritability of 0.16. The average her-

itability of the 97 adiposity-associated OTUs was signifi-

cantly greater than the overall average heritability over all

OTUs at 0.07 (Wilcoxon rank test, P = < 2.2 × 10−16). In

addition the average unique environmental compo-

nent of the 97 is significantly lower than the overall

average for all OTUs (0.79 versus 0.93, Wilcoxon rank

test, P < 2.2 × 10−16). These estimates suggest host genetics

impacts both the fecal microbiome and adiposity.

To explore the hypothesis that host genetics may in-

fluence the observed microbial-adiposity associations,

we performed candidate gene analysis comparing host

genetic variants at human obesity candidate loci with

the adiposity-associated fecal microbiome profiles. We

selected single nucleotide polymorphisms (SNPs) within

human loci previously associated with obesity as re-

ported by Locke et al. [8], using common genetic
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variants within 97 50-kb regions, centred around the

peak BMI-associated GWAS SNP in each region. At a

Bonferroni-corrected P-value threshold (P = 5.31 × 10−06)

taking into account the total number of genomic regions

and adiposity OTUs considered, OTU associations with

genetic variants in three genomic regions surpassed

multiple testing. The strongest association between

host genotype and adiposity-associated OTUs was ob-

served between an OTU within the Clostridiales order

(Greengenes OTU 181702) and a host genetic variant

within an intron of the FHIT gene (rs74331972 with

OTU 181702, P = 2.49 × 10−06, Fig. 5a). FHIT encodes

the fragile histidine triad protein and is a tumour

suppressor gene that has been linked to cancers of

the digestive tract. Although the most significant FHIT as-

sociation was obtained with OTU 181702 (h2 = 0.13),

which we identified as significantly associated with SFM

and VFM (P = 1.18 × 10−06 and 1.27 × 10−06 respectively),

the same genetic variant was also associated with another

VFM- and SFM-associated OTU (rs74331972 with OTU

287790, P = 5.38 × 10−05). The second ranked significant

genetic association was obtained between variants near

gene TDRG1 (peak SNP rs1433723, P = 4.32 × 10−06) with

an open reference unknown Clostridiales OTU (h2 = 0.14),

a

b

VFAT SFM PTF BMI WHR AGR

Fig. 4 Microbial functional analysis in obesity. a Microbial PICRUSt-predicted KEGG functions relevant to metabolism in the twin dataset, and their

association with the six adiposity measures. The heatmap denotes the direction of association between each microbial PICRUSt-predicted KEGG

function and adiposity measures, where blue indicates a negative association, while red indicates a positive association. Bonferroni-significant

associations are highlighted (*). b Five KO genes that are differentially abundant between high and low visceral fat individuals in glyoxylate and

dicarboxylate metabolism, as tested by a two-sided Welch’s t test. FDR-adjusted P values are reported at the right of the image, and stars indicate

Bonferroni-significant associations. Figure was produced using STAMP [45]
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which we had identified as significantly associated with

VFM (P = 4.97 × 10−07, Fig. 5b). The final significant gen-

etic association was observed at a variant in an intron of

the gene ELAVL4 (rs2480677, P = 4.95 × 10−06, Fig. 5c)

with an unknown Blautia OTU, 194733 (h2 = 0.02), which

we had identified as significantly associated with

VFM (P = 1.27 × 10−07), SFM (P = 2.26 × 10−06) and

AGR (P = 3.11 × 10−07) in the peak 149 adiposity-OTU

results. When we considered the genetic-OTU association

results at a less conservative significance threshold

(P = 5 × 10−4), there were in total 412 suggestive OTU-

genetic associations located within or near 48 unique

genes, including obesity genes such as FTO, RPTOR and

TMEM18.

Fig. 5 Peak genetic associations between obesity human genetic variants and adiposity-associated OTUs in the twin fecal microbiome. a Association

between OTU 181702 and FHIT SNP rs74331972. The boxplot indicates change in OTU 181702 abundance with genotype at SNP rs74331972. The

LocusZoom plot denotes the strength of association of OTU 181702 with SNP rs74331972, as well as the SNPs in the surrounding region. b Association

between open reference OTU 25576 and TDRG1 SNP rs1433723. The boxplot indicates change in open reference OTU 25576 abundance with genotype

at SNP rs1433723. The LocusZoom plot denotes the strength of association of open reference OTU 25576 with SNP rs1433723, as well as the SNPs in

the surrounding region. c Association between OTU 194733 and ELAVL4 SNP rs2480677. The boxplot indicates change in OTU 194733 abundance with

genotype at SNP rs2480677. The LocusZoom plot denotes the strength of association of OTU 194733 with SNP rs2480677, as well as the SNPs in the

surrounding region. SNPs in all LocusZoom plots are coloured according to their strength of linkage disequilibrium with the peak SNP plotted
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Functional characterization of host genetic variants

associated with adiposity-OTU markers in the gut

We next focused on the three significant host genetic as-

sociations in FHIT, TDRG1 and ELAVL4 with adiposity-

associated OTUs. The transcriptomic profiles for these

genes from the Genotype-Tissue Expression (GTEx) re-

source [46] indicated that all three genes are expressed

in tissues that form part of the gastrointestinal tract. FHIT

is expressed across a wide range of tissues, including

stomach, colon (transverse and sigmoid), small intestine

(terminal ileum), oesophagus (muscularis and mucosa)

and oesophagus-gastro-oesophageal junction. TDRG1 is

expressed at highest levels in testis, in multiple brain tis-

sues, as well as oesophagus (mucosa), while ELAVL4 is

expressed at highest levels in multiple brain tissues, testis,

pituitary gland, colon (sigmoid and transverse), pancreas,

small intestine (terminal ileum), oesophagus (muscularis)

and oesophagus-gastro-oesophageal junction.

We next explored the functional impact of the SNPs

in these three genes that we identified as most signifi-

cantly associated with adiposity-related fecal OTUs. The

GTEx expression quantitative trait locus (eQTL) analysis

results indicate that rs1433723 in TDRG1 is an eQTL

for TDRG1 expression specifically in oesophagus mucosa

in the GTEx dataset. We then tested the associations of

this variant on TDRG1 gene expression and DNA

methylation levels in adipose biopsies available for 542

individuals from the TwinsUK cohort [47, 48]. We found

that rs1433723 also is significantly associated with DNA

methylation levels in TDRG1 (peak association: rs1433723

with TDRG1 cg10553343, P = 1.53 × 10–17; Additional

file 1: Table S5), but not with gene expression profiles in

these samples in adipose tissue [47]. The remaining two

associated SNPs with adiposity OTUs (rs74331972 in

FHIT and rs2480677 in ELAVL4) were not associated with

the corresponding gene’s expression levels in GTEx across

multiple tissues. However, both variants showed modest

effects on DNA methylation levels in adipose tissue

(rs74331972 on FHIT cg15570148, P = 3.4 × 10−4; and

rs2480677 on ELAVL4 cg00322486, P = 1.4 × 10−3), but

not on gene expression profiles in adipose tissue in our

dataset.

Discussion

Here, in the largest microbiota-obesity study to date

using detailed adiposity and visceral fat measures, we

have shown that fecal microbial diversity and specific

members of the human fecal microbiota are strongly

associated with obesity-related phenotypes, specifically

abdominal adiposity. The majority of microbial associa-

tions were obtained with visceral fat, a key metabolic

disease risk factor, which we also show is strongly herit-

able in our extended sample of more than 3000 twins. In

addition to obtaining novel heritability estimates for

visceral fat, we show that android/gynoid ratio is highly

heritable in this same cohort, and confirm high herit-

ability estimates for the remaining adiposity phenotypes.

Using BMI as a measure of obesity, we robustly replicate

eight obesity-associated fecal microbes in three inde-

pendent samples from the American Gut, FGFP and

extended TwinsUK dataset. We also demonstrate that

host genes have an effect on components of the fecal

microbiota, including the 97 adiposity-associated OTUs,

although the mechanism remains unclear. Given the im-

pact of host genetics on both obesity and fecal microbes,

and our findings of strong association between adiposity

and fecal microbiome variation, our results therefore

support the hypothesis that heritable microbes play a

role in determining components of obesity relevant to

cardio-metabolic disease and may be one potential

source contributing to missing heritability in obesity.

Heritability and importance of visceral fat

Visceral fat, the type of adipose tissue with the most im-

portant implications for metabolic health [2], was highly

heritable (0.70) and showed the most significant associa-

tions with the fecal microbiota. Previous studies, for

example, from the Framingham [39], Quebec [41] and

Heritage [40] family-based cohorts, used CT scans to es-

timate visceral adiposity and found heritability estimates

of visceral fat to be between 0.36 and 0.55, which is

lower but comparable to our estimates in twins. Given

the strong correlation between multiple adiposity pheno-

types, we sought to assess if the high heritability ob-

served in visceral fat is due to high heritability of BMI.

Heritability of visceral fat remained high after adjust-

ment for BMI (0.64, see Additional file 2), suggesting

that the high heritability we report here for VFM is inde-

pendent of its association with BMI.

Several microbiome studies have linked increased

overall abdominal adiposity, for example, using body fat

distribution measures such as waist/hip ratio, to fecal

microbiome profiles [15, 49]. However, although specific

probiotic intake has been reported to lower visceral fat

[50], to date there has not yet been a systematic com-

parison of visceral fat and variation in the fecal micro-

biome across human subjects. Our results are therefore

the first, to our knowledge, to link visceral fat with

changes in the fecal microbiota variation in humans.

The findings suggest that visceral fat mass is more im-

portant for differences in the obese microbiome, rather

than overall body mass. This is also demonstrated in the

recent Clarke et al. study [51], where elite rugby union

players, who due to their greater muscle mass were de-

fined as overweight and obese (BMI = 29 ± 3), had a

more diverse microbiota than those of both low BMI

and high BMI controls. We also report a novel android/

gynoid ratio heritability estimate of 0.65, higher than
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previous family-based estimates of 0.43 [52]. Android/

gynoid ratio, like visceral fat, is also a risk factor for

cardio-metabolic disease, and accordingly our results

show consistent direction of association effects for

OTUs associated with both phenotypes.

Visceral fat has widespread associations with the human

fecal microbiome

Due to its importance in cardio-metabolic disease risk,

direct measures of visceral fat are much more inform-

ative than BMI in assessing the metabolic consequences

of obesity. Most microbiome obesity studies to date have

used BMI as a biomarker, with some mouse studies

using epididymal fat. We therefore present a novel dual

approach, using visceral fat to find novel metabolic asso-

ciations in a sample of twins, and BMI to confirm asso-

ciations across independent samples. The power of this

design was apparent in the number of peak associations

observed with visceral fat. All of the reported adiposity

OTUs reported in this study were significantly associ-

ated with visceral fat, while only 7 of these OTUs were

significantly associated with BMI, suggesting that micro-

bial studies that only use BMI as a measurement of

obesity may be limited.

Altogether, we identified 97 OTUs that were strongly

significantly associated with the adiposity phenotypes,

and all of these were significantly associated with visceral

fat. Although the 97 OTUs were not the most abundant

OTUs within the gut, OTUs within the Firmicutes

phylum showed the most significant adiposity associa-

tions, perhaps in part reflecting the dominant frequency

of Firmicutes in the human gut. However, the direction

of association differed for different genera within the

Firmicutes. For example, Oscillospira OTUs often

showed protective associations with VFM, while Blautia

OTUs commonly showed adverse associations that could

be used as potential markers of cardiovascular risk. Our

findings also confirm the importance of fecal micro-

biome diversity in obesity, as we are able to replicate

strong association between adiposity phenotypes and

alpha diversity. Furthermore, the majority of the ob-

served 97 VFM associations are independent of alpha di-

versity and BMI, suggesting that the OTUs significant in

this analysis are not just markers of diversity, but form

real associations with adiposity and cardio-metabolic

disease risk.

To explore the factors underlying the variation in the

97 adiposity-associated OTUs, we used twin modelling

and determined that these 97 OTUs showed significantly

greater average heritability (0.16) compared to all OTUs

in the larger dataset. The average shared environment

component was also higher, but the average unique

environment component was lower than the overall

dataset average. We therefore infer that host genetics in

particular, as well as early shared environmental factors,

play an important role in the variation of obesity-

associated microbes. However, although the estimate

(including measurement error) is approximately 0.80,

the average unique environment component in the 97

OTUs was lower than the overall dataset average. This is

consistent with findings from previous work [31] that en-

vironmental factors are key drivers of the microbiome,

and they strongly contribute to variation at the obesity-

microbiome associations.

As our results consisted of OTU associations within the

same families and genera of bacteria, we also explored

associations of adiposity at the collapsed taxonomic level

(family and genus) for the top OTU associations.

Lachnospiraceae and Ruminococcaceae continue to dis-

play opposing directions of effect at the family level. We

also see that the heritable family Christensenellaceae is

strongly associated with visceral fat, as previously reported

for BMI in Goodrich et al. [31]. Christensenellaceae was

previously found to be protective of obesity both in mice

and in human twins in our previous work [31]. We extend

the findings here, showing strong protective associations

between Christensenellaceae and visceral fat, in particular

suggesting that individuals with Christensenellaceae have

less cardiovascular risk than those without. Further work

to elucidate the mechanism of protection is required.

Partial replication of adiposity associations using BMI in

independent cohorts

We pursued replication of the fecal microbial adiposity

associations in a large sample of 4286 Caucasian individ-

uals from three population-based cohorts. Due to the

lack of cohorts with both visceral fat measurements and

gut microbiome data available, BMI was used as a surro-

gate measure for visceral fat. Therefore, the findings in

this section do not capture strict replication, but rather

validation of the visceral fat fecal microbial associations.

At a stringent Bonferroni threshold 8 OTUs replicated

across all cohorts, and at a more relaxed threshold 49

OTUs replicated at nominal significance in at least one

cohort with the same direction of effect as in the discov-

ery sample. The replication results included OTUs clas-

sified within Lachnospiraceae and Ruminococcaceae. A

higher relative abundance of Firmicutes has previously

been associated with obesity in some but not all studies,

and several of these studies show an increase in

Firmicutes in obese subjects [12, 53, 54]. For example,

Ruminococcus gnavus has been shown to be significantly

enriched in low microbial gene count individuals who

were prone to obesity in one study [15]. However, the

phylum Firmicutes contains more than 270 genera with

many different and diverse functions. Because changes

may occur at finer-grained taxonomic resolution, and

because the baseline abundance of different genera
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differs among human populations, opposing selection

processes at different phylogenetic levels may in part ex-

plain differing results in studies determining microbiota

differences in obesity [55, 56], including recent meta-

analyses across multiple obesity microbiota datasets [16,

57]. This difference in directional effects in genera of the

same family has been noted in animal models. Mice con-

suming a Western diet have previously been reported to

have increased levels of Eubacterium dolichum [58],

while another study has shown that mice consuming a

high-fat diet have decreased levels of Allobaculum OTUs

[59]. Both of these microbes are members of the

Erysipelotrichaceae family, and yet they show opposite

directions of effect in our data.

We observe a small number of robust associations

across all cohorts, but more than half of the findings val-

idated in at least one of the replication cohorts. The rea-

sons for the partial replication of our results are unclear

and are likely in part to capture differences in protocols,

genetics, geography, lifestyle and diet, which are difficult

to account for in full during the analysis. The American

Gut dataset used the protocols developed for the Earth

Microbiome Project [60], which are largely the same as

those used in Goodrich et al. [31], except that the

American Gut dataset is filtered to remove Gammapro-

teobacteria sequences increased following transit. FGFP

protocols are most similar to those of TUK-D and TUK-

R, however, with similar sample collection methods and

sequencing protocols. Analysis of the American Gut data

adjusted for more covariates than TUK-R, TUK-D and

FGFP, and the cohort itself included a different age

range (average 50, 21–94) and gender ratio (53 %

female). The age range and gender ratio of the FGFP

cohort were similar to those of AG (average age = 51

(21–85), 55 % female), while TUK-R was expectedly

more similar to TUK-D (average age = 57.3 (20–89),

80 % female). Additionally, the American Gut samples

were primarily from the USA (84 %), unlike the discov-

ery and replication TwinsUK samples from the UK and

the Belgian FGFP samples. The majority of the 97 OTUs

show the same direction of association in the TwinsUK

discovery, TwinsUK replication and FGFP samples, but

this is not the case in the American Gut sample results

(Additional file 5). This observation may partly reflect

potential differences in OTU associations in different

populations and geographical locations, specifically be-

tween European and American samples. Previous studies

have shown some differences at the OTU level between

countries [42, 61]. The sample collection methods also

differed between the European studies with greater

quantities collected in TUK-D, TUK-R and FGFP com-

pared to swabs in American Gut, although neither used

fixatives. These factors highlight the on-going difficulty

in replicating OTU level results between studies and

cohorts. Additional standardisation of both technical

and analytical methods will help distinguish features

common across populations, those sensitive to technical

influence and those unique to a particular region or

group.

Microbial metabolism is altered in obese individuals

Our findings of strong association between particular

microbes along with their directional effect in obesity

can provide insights into functional impacts. It has been

suggested that the dysbiosis of microbial species in

obesity is not as important as the resulting functional

dysbiosis [62]. Using the PICRUSt method to predict

metagenomes and functions, we find an enrichment of

metabolism-related KEGG functions associated with

adiposity, in particular, carbohydrate metabolism and

N-glycan biosynthesis. We see a strong positive associ-

ation between visceral fat and glyoxylate and dicarboxylate

metabolism, particularly with the genes ttdA and ttdB.

The glyoxylate cycle, a pathway that until recently was

thought to be absent in most animals [63], is able to me-

tabolise fatty acids into glucose, thus contributing to insu-

lin resistance in the event of fatty acid abundance [64].

More recently glyoxylate has been highlighted as a bio-

marker of type 2 diabetes, even as much as 3 years prior

to diagnosis of diabetes [65]. Here we show a potential

mechanistic impact of the microbial dysbiosis observed in

individuals with increased visceral fat. We cannot assess

whether the heritable microbes are driving the differences

observed in these pathways; however, it would be interest-

ing to determine the heritability of the inferred microbial

functions, particularly in future studies with metagenomic

datasets.

Host genetics influences the human fecal microbiome

and its link to central adiposity

Our new OTU heritability estimates in this larger twin

sample remain largely similar to those in the original

Goodrich et al. [31] twin-based heritability analysis re-

sults, although peak heritable OTUs are slightly differ-

ent. Comparison of the heritability results at the genus

level show that consistent estimates were obtained

across the two datasets (r = 0.67, Additional file 3: Figure

A), and these were also consistent with a recent herit-

ability analysis of the extended TwinsUK dataset [33] (r

= 0.77, Additional file 3: Figure B). The most heritable

taxon in our dataset is an OTU classified as Clostridium

perfringens (h2 = 0.42). The heritability estimate for the

most heritable OTU reported in the Goodrich et al. [31]

study, OTU 176318 assigned to Christensenellaceae (ori-

ginal heritability estimated at 0.36), remained similar in the

extended dataset, with a new heritability of 0.31. The most

heritable OTUs in our dataset were relatively frequent, be-

ing present in at least 25 % of individuals. A potential
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mechanism that underlies fecal microbial heritability is the

ability of the host genome to impact the gut environment,

for example, by altering acidity of the gut or by host con-

trol of microRNAs that can enter bacterial cells and affect

bacterial growth [66]. Therefore, the likely mechanism of

microbial heritability is host genetic manipulation of mi-

crobes [67].

The OTUs that we identified as significantly associated

with adiposity phenotypes displayed significantly greater

estimates of heritability compared to all OTUs profiled

in the gut, which therefore prompted us to test if spe-

cific human genetic variants may explain the observed

microbial heritability at these 97 adiposity-associated

OTUs. To explore how human genes could influence

these microbes in the context of obesity, we pursued host

genetic association analyses of the adiposity-associated

OTUs using a candidate gene analysis approach at host

obesity GWAS loci. The most significant genetic associ-

ation was obtained with a variant in the gene FHIT, which

encodes the fragile histidine triad protein. Significantly re-

duced FHIT gene expression levels have been reported in

cardiac tissue from obese compared to lean subjects [68].

Although this genetic variant is not an eQTL itself, it does

show moderate evidence for genetic impacts on DNA

methylation levels in adipose tissue, specifically at a CpG

site in a CpG island shore in the promoter of the FHIT

gene. Therefore, it may have an indirect impact on FHIT

adipose tissue gene expression in obesity through epigen-

etic regulation of FHIT expression. FHIT also appears to

act as a tumour suppressor in several types of cancer [69],

and its abnormal function has been linked to cancers of

the digestive tract [70]. The FHIT-associated OTU is

strongly associated with abdominal adiposity in our data,

including SFM and VFM, suggesting that it plays a role in

cardio-metabolic disease risk in the host.

Human genetic variants in or near two other genes,

ELAVL4 and TDRG1, were also significantly associated

with adiposity OTUs. Although these genes currently lack

a clear biological link to obesity, they are expressed in tis-

sues that are part of the GI tract. Furthermore, rs1433723

in TDRG1 is an interesting candidate for follow-up, as it

exhibits strong genetic influences on TDRG1 gene expres-

sion in parts of the GI tract (oesophagus mucosa). This

genetic variant also impacts TDRG1 DNA methylation

levels in adipose tissue, specifically at a CpG site in an

intra-genic CpG island in the gene body, which could

mark an alternative transcription start site. GTEx sum-

mary expression profiles of this gene correspondingly

show exon bias in expression levels across different

tissues, consistent with alternative transcript usage.

The four significantly associated host genetic variants in

FHIT, ELAVL4 and TDRG1 were not the same as the lead

SNPs for each candidate obesity locus reported in Locke

et al. [8], and are in low to moderate linkage disequlibrium

(LD) with the corresponding lead SNPs (r2 = 0.014–0.25).

This could be attributed to several reasons, including sam-

ple size and imputation differences. Compared to our

sample of 1313 twins, the sample size in Locke et al. [8] is

more than 300,000 individuals, resulting in excellent

power to detect phenotypic associations with particular

lead SNPs. There were also differences between the im-

putation strategies used by the two studies; whereas in

Locke et al. [8] SNPs were imputed to the HapMap 2

reference panel, our dataset was imputed to the 1000

Genomes reference panel. These and other factors may

impact the association of the lead SNP from Locke et al.

[8] with OTUs in this dataset.

Our heritability and host genetic association results

show that human genetic factors have a role both in

determining obesity and in influencing the host fecal

microbial composition. The strong associations that we

detect between fecal microbes and obesity phenotypes

suggest that host genetics may influence these microbial-

obesity associations. Using a candidate gene approach, we

identified host genetic variants in three obesity human loci

which show associations with adiposity-associated fecal

microbes in our dataset. These variants are promising

candidates for further follow-up studies to assess their

potential role in obesity-microbial interactions. Although

human obesity is highly heritable, human genetic variants

detected to date explain only a small proportion of the

heritability in obesity. Given our observation that the aver-

age microbial heritability is greater at the most associated

adiposity OTUs, our results are therefore consistent with

the hypothesis that a proportion of the heritability in obes-

ity may be explained by heritable fecal microbes.

Limitations and considerations

Due to the cross-sectional and observational nature of the

study, we are unable to determine causal relationships be-

tween the fecal microbiota, host genetics and visceral adi-

posity. Furthermore, to determine more robust genetic

associations, we require a much larger sample size than is

represented here. Lack of metagenomic data limits our

functional interpretation of the microbial dysbiosis ob-

served in obesity, although predictions from PICRUSt do

provide some interesting insights for further investigation.

Some research has shown that in individuals who are diet-

ing, there is an increase in Bacteroidetes and, conversely,

individuals who are over-eating show an abundance of

Firmicutes [53]. It is therefore important to know whether

the individuals in the study were calorie restricted. This is

one limitation of the present study, and future work

should focus specifically on how the interaction of diet

affects visceral fat associations with the fecal microbiome.

Other considerations that should be taken into account in

the future are stool consistency [71] and antibiotic and

other drug use [72, 73].
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Due to the novelty of visceral fat measurement and

lack of adiposity measurements other than BMI in other

microbiome datasets, we lacked true replication in inde-

pendent cohorts, which would likely have improved our

results, as would have having a better balance of genders

in discovery and replication samples.

Conclusions

We have found strong associations between fecal micro-

bial profiles with total and visceral fat, in the largest fecal

microbiota-obesity study to date using multiple mea-

sures of human adiposity, some of which are robustly

replicated. We identify novel and confirm previously

established fecal microbe associations with overall

obesity. Additionally, our study can help distinguish pro-

tective and risk microbes in human cardiovascular and

metabolic disease risk by using visceral fat as risk pheno-

type. We obtain novel high heritability estimates for vis-

ceral fat and android/gynoid ratio in a large twin sample,

and confirm previously reported heritability estimates

for other adiposity measures. Furthermore, we identify

promising host genetic variants that may influence the

interaction between the human fecal microbiome and

obesity and its metabolic consequences. Our findings

support the hypothesis that heritable microbes play a

major role in the components of adiposity that are most

relevant to cardio-metabolic disease risk.

Methods

Subjects and sample collection

All subjects included in the study were healthy volun-

teers from the TwinsUK Adult Twin Registry [48, 74].

Adiposity phenotype data were collected on the ex-

tended sample of 3666 twins (Table 1). These included

1044 monozygotic (MZ) and 789 dizygotic (DZ) pre-

dominantly female twin pairs. The sample participants

were predominantly of European descent and the aver-

age age was 63 (Table 1). Fecal microbiome data were

obtained for a subset of 1313 individuals from the sam-

ple 3666 twins. The microbiome dataset included 496

MZ, 594 DZ and 223 unrelated individuals, who were

also predominantly female and European, and the

average age was also 63 (Table 1 and Additional file 1:

Table S7). Fecal samples from all individuals followed

the same collection protocol as previously reported

[31, 33, 34]. Briefly, fecal samples were refrigerated or

kept on ice for 1–2 days prior to arriving at the la-

boratory at the Department for Twin Research, King’s

College London, at which point they were immedi-

ately stored for up to 8 weeks at −80 °C before DNA

extraction. Frozen samples were shipped to Cornell

University for DNA extraction, PCR amplification and

sequencing. The study was approved by the local

research ethics committee, and signed and written con-

sent was obtained from all participants.

Fecal microbiome profiles

This manuscript explores 16S gut microbial profiles from

a total of 1313 twin stool samples. Of these, 601 16S fecal

microbiome profiles were previously described by Good-

rich et al. [33], 671 profiles were recently published in

Jackson et al. [34] and additional 16S microbial profiles

were generated in a further 41 twin stool samples [33],

giving us altogether 1313 individuals for whom both 16S

gut microbial data and adiposity measures were available.

The sequence data for the discovery TwinsUK fecal

microbial sequence dataset used in this study are

available from the European Nucleotide Archive

(ERP006339, ERP006342, ERP015317. Sample acces-

sions can be found in Additional file 1: Table S8).

Briefly, all samples underwent the same laboratory proto-

col and data processing steps, following the quality control

procedure outlined by Goodrich et al. [33]. DNA extracted

from fecal samples underwent amplification of the V4 region

of the 16S rRNA gene using the 515F and 806R primers,

followed by 250-bp paired-end sequencing on the Illumina

MiSeq platform. Processing of sequencing and OTU pick-

ing was carried out as previously described [34]. In brief,

paired-end sequences were merged with at least a 200-bp

overlap, and those longer than 275 bp were filtered from

the dataset. The remaining sequences were analysed using

QIIME 1.7.0 (Quantitative Insights Into Microbial Ecology)

[43]. Sequences containing ambiguous or low quality reads

(Phred score ≤25) and uncorrectable barcodes were re-

moved from the dataset and open-reference OTU picking

was performed against the Greengenes May 2013 database.

OTUs not found in at least 25 % of individuals were then

discarded, and their counts were converted to relative

abundances within samples, followed by the addition of a

pseudocount (10−6) to remove zero counts. Mixed effects

models were fitted to these data to control for technical

and batch effects. The regression included sequencing run,

depth of sample sequencing and technician who extracted

and loaded the DNA for sequencing, as well as sample col-

lection method (by post or in person) as predictors with

OTU abundances as the response. Residuals from these

models were then used in subsequent downstream analyses.

The adiposity OTU and OTU candidate gene downstream

analyses also included further adjustment for covariates

such as age, gender and five long-term (10-year) summary

broad dietary profiles (see following subsection on pheno-

type data). The final dataset contained 2135 OTUs.

In estimating collapsed taxonomy quantifications,

OTUs from the complete set (including those in <25 %

of individuals) were collapsed into genera and families

based on shared taxonomic assignment. Taxa found in

fewer than 10 individuals were then discarded and the
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counts converted to relative abundances. We applied the

OTU quality control regression framework to correct for

technical covariates and batch effects as described above,

and then used the resulting residuals in subsequent

downstream analyses.

Phenotype data

Obesity phenotype data were collected during each

participant’s annual clinic visit. We explored six obesity-

related phenotypes in this work for a complete dataset

of 3666 phenotyped twins. The adiposity phenotypes

included a number of measures from total body dual-

energy X-ray absorptiometry (DXA) whole-body scan-

ning. During the DXA procedure participants were

asked to lie flat and straight while a full body scan took

place, as previously reported [75], taking measures for

percentage trunk fat and visceral fat mass (g) [32].

Visceral fat mass was calculated from one cross section

of the whole body at L4–L5, the typical location of a CT

slice. Other phenotypes collected were subcutaneous fat

mass, percentage trunk fat, BMI, android/gynoid ratio

and waist/hip ratio. Subjects were asked to remove their

shoes and height (cm) was measured using a stadi-

ometer. Weight (kg) was measured on digital scales.

Waist circumference was measured using a tape, halfway

between the lower border of the ribs and the iliac crest

in a horizontal plane. Hip circumference was measured

at the widest point over the buttocks.

Covariates for phenotypic analyses included age and

gender in all 3666 individuals and dietary profiles in 1313

individuals. We did not have detailed dietary information

at the time of fecal sample donation for this dataset; how-

ever, we had available previously collected and reported

dietary profiles [76]. Teucher et al. collected food fre-

quency questionnaires and performed a principal compo-

nent analysis on these data. The proportion of variance

explained by the first five principal components was 22 %,

and they corresponded broadly to the following approxi-

mate diets: Fruit and Veg, Traditional English, High

Alcohol, Dieting and Low Meat (see [76]). We used these

five variables as long-term stable dietary profiles in the

downstream microbiome association analyses.

Statistical analysis

To assess the evidence for association between fecal

microbiome composition and obesity-related and meta-

bolic phenotypes, we performed two principal analyses.

First, we compared microbiome OTUs and phenotypes

by fitting a linear mixed effects regression (LMER)

model using the R package lme4 [77] across all 1313 in-

dividuals. In this model the phenotype was the response

variable, and the OTU was a fixed effect predictor. Add-

itional factors included family and zygosity taken into

account as random effects, and sex, age and dietary

profiles (principal components) considered as fixed ef-

fects. Each phenotype was normalised to a standard

normal distribution prior to analysis. To assess the sig-

nificance of the associations, we compared the full re-

gression model described above to a null model that

excluded the OTU predictor using an analysis of vari-

ance (ANOVA) test in R. We report associations that

passed nominal significance (P = 0.05), as well as

those that passed a Bonferroni threshold for multiple

testing (P = 3.90 × 10−06).

Heritability, the proportion of total variance in a trait

attributed to genetics, was assessed using the ACE

model. Under the assumption that the dominance effects

are negligible, the ACE model can estimate the additive

genetic (A), common environment (C) and unique envir-

onment (E) components of the trait variance. Narrow-

sense heritabilities were estimated from the proportion

of the total phenotypic variance explained by estimated

additive genetic effect. To estimate parameters of the

ACE model, a maximum likelihood method was ap-

plied under multivariate normality assumptions using

OpenMx software [78], a structural equation model-

ling package in R. We also provide 95 % confidence

intervals for both phenotype and OTU heritability

estimates in this study.

Functional analysis was performed using PICRUSt

v1.0.0. Counts of KEGG functions were obtained and

then transformed into relative abundances. The values

were then transformed using the Hellinger transform-

ation prior to adjustment for the following technical co-

variates: sequencing run, technician who performed the

DNA extraction and technician who loaded the plate.

The functional residuals from this adjustment were then

fit into a linear mixed effects regression as predictor var-

iables, where adiposity phenotypes were the response.

Further covariates in the regression included age, sex, zy-

gosity and family structure as described above. Differential

abundance analysis was performed on the residuals using

STAMP [45], whereby a two-sided Welch’s t test was used

to test the difference in KO counts between high and

low visceral fat groups. A Benjamini-Hochberg FDR

correction [79] was applied to the association P values

from the linear mixed effects regression and the differ-

ential abundance analysis.

Host genomic analyses

Host genotype data were available in 1059 individuals from

the microbiome dataset (see Additional file 2). Briefly,

genotyping in TwinsUK was performed with a combination

of Illumina HumanHap300, HumanHap610Q, 1MDuo and

1.2MDuo 1 M chips, and genotypes were called as previ-

ously described [48]. Imputation was performed using the

IMPUTE software package (v2) [80] using as reference

panel the 1000 Genomes haplotypes (based on SHAPEIT2)
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Phase I integrated variant set release (v3, September 2013).

See Additional file 2 for further details.

In the candidate gene analysis the list of human candi-

date obesity GWAS SNP associations was obtained from

Locke et al. [8]. The reported SNPs in Locke et al. were

taken as the lead SNP, and candidate gene regions were

extended to include additional SNPs within a 25-kb re-

gion either side of the lead SNP. SNPs were included in

downstream analysis if they had a minor allele frequency

(MAF) of 5 % and an info score of more than 0.4 in our

imputed sample. Overall, there were 8876 SNPs across

97 unique genomic regions that were included in down-

stream association analyses. Host genetic association

analysis was performed using the software Genome-wide

Efficient Mixed Model Association (GEMMA) [81] at

the variants included in the 97 human obesity candidate

loci. GEMMA implements a univariate linear mixed

model to perform association tests, using a kinship

matrix to take into account twin relatedness.

DNA methylation profiles were obtained in 542 female

Caucasian twins using the Infinium HumanMethyla-

tion450 BeadChip assay (Illumina 450 k). The DNA

methylation Illumina 450 k dataset was obtained from

adipose tissue biopsies in the twins, as previously de-

scribed [48] (ArrayExpress E-MTAB-1866). DNA methy-

lation levels were first normalised using BMIQ [82], and

adjusted for covariates including age, smoking, alcohol,

zygosity, family, plate, bisulphite-sequencing (BS) con-

version efficiency and BS conversion concentration (see

Additional file 2). The resulting residuals were normal-

ised, and methylation QTL analysis was performed using

Matrix eQTL [83]. The analysis considered genetic asso-

ciation under the additive model between genetic vari-

ants at rs74331972, rs1433723, rs2480677 and 467,928

DNA methylation probes that passed quality control.

Gene expression quantitative trait locus (eQTL) results

were available from a large-scale study of human gene ex-

pression in multiple tissue samples including subcutane-

ous fat, lymphoblastoid cell lines and whole skin, derived

from 856 monozygotic (MZ) and dizygotic (DZ) female

twins from the TwinsUK cohort, as part of the MuTHER

project [47]. We interrogated the candidate SNPs for

eQTL results in adipose tissue (subcutaneous fat) using

the Genevar software [84]. The functional impact of the

candidate SNPs was also explored using GTEx results

across multiple tissues, using GTEx Analysis Release v6

(dbGaP Accession phs000424.v6.p1) [46].

Replication of obesity-microbial associations in

independent cohorts

American Gut cohort

Replication analyses were pursued in 2338 individuals

from the American Gut project (see Additional file 2).

American Gut (AG) participants were selected from

sequence rounds 1–21 (EBI: ERP012803) as Caucasian

over the age of 20 with a BMI between 18.5 and 30, and

living in the USA, UK, Australia or Canada (Additional

file 1: Table S7). Sequencing protocols of the AG

samples have previously been described [60, 85, 86].

Additionally, the fecal sample had to have at least 1000 se-

quences when picked closed reference using SortMeRNA

[87] against the August 2013 release of Greengenes [88].

AG samples were pre-processed to remove candidate

overgrowth sequences, as described elsewhere [89]. OTUs

were picked using closed reference in QIIME [43] at 97 %

using UCLUST [44] against the 97 replication OTUs, and

96 OTUs were successfully identified. Regression was per-

formed in Statsmodels [90] using a three-step model.

OTUs were power transformed and offset by 1. The power

transform was regressed to control for technical covariates

(see Additional file 2). Residuals from this were regressed

against lifestyle covariates, including age, last antibiotic

use, IBD diagnosis, flossing frequency and country. Nor-

malised BMI was regressed against the residual from the

second regression, with sex as a covariate. In the AG

BMI-OTU association results we observed that 26 associ-

ations had the same direction of effect while 18 were

nominally significant and had the same direction effect as

the TwinsUK discovery sample.

Flemish Gut Flora Project cohort

Replication analyses were pursued in 917 individuals

from the Belgian Flemish Gut Flora Project (FGFP) (see

Additional file 2), selected as Caucasians over the age of

20 with a BMI between 18.5 and 30 [17]. Prior to OTU

picking, sequencing depth was downsized to 10,000

reads per sample. OTUs were picked in QIIME [43] at

97 % using UCLUST [44] by closed reference picking

against the 97 replication OTUs, and 96 OTUs were

successfully detected in FGFP. OTU abundances were

power transformed and offset by 1. The power transform

was regressed to control for age, gender, alcohol average

consumption in the week prior to sampling and smoking

(yes/no). Normalised BMI was then regressed against the

residual from the first regression, with gender and dietary

restrictions (None/Vegetarian, Vegan, Macrobiotic/Other)

as covariates.

In the FGFP BMI-OTU association results we observed

that 83 associations had the same direction of effect while

34 were nominally significant and had the same direction

effect as the TwinsUK discovery sample.

TwinsUK replication dataset

The extended TwinsUK fecal microbiome dataset was

recently described [33] and included a set of 1031 indi-

viduals (not overlapping with the 1313 TwinsUK dis-

covery sample here) for whom both fecal microbial

profiles and BMI, but not visceral fat, were available. We
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therefore included these additional data as a third repli-

cation sample (TwinsUK (TUK-R)), where all individuals

were of European descent over the age of 20 with a BMI

between 18.5 and 30. Read data were closed-reference

clustered using the representative sequences for the rep-

lication OTUs as a reference, using UCLUST [44] at

97 % in QIIME v1.9.0 [43]. Counts for each OTU in

each individual were converted to relative abundances

by dividing by the total number of reads in the sample.

A count of 0.000001 was added to the relative abun-

dances to account for zeros, and these were then log

transformed. The transformed counts were then residua-

lised to adjust for sequencing run, collection method, per-

son who loaded the plate and person who performed the

DNA extraction. Lifestyle covariates included in down-

stream analyses matched those described for the TwinsUK

discovery sample. Altogether, 76 associations showed the

same direction of effect and 7 associations were nominally

significant in the TwinsUK replication sample.

Meta-analysis across cohorts

Random-effects meta-analysis was first performed across

the three replication samples (AG, FGFP and TUK-R). We

considered OTU-BMI results to replicate if they showed

the same direction of association with BMI in the meta-

analysis as in the discovery TwinsUK sample, and if the

significance level in the meta-analysis passed Bonferroni

adjustment for multiple testing (P = 5.15 × 10−4). We also

performed a meta-analysis across all four population

samples to identify additional OTUs at which the evidence

for association with BMI improved over the discovery

TwinsUK P value, even if they did not reach the Bonferroni

significance cut-off for replication. In each meta-analysis,

we assessed evidence for heterogeneity using Cochran’s Q

statistic and the I2 statistic [91], and only considered results

with no strong evidence for heterogeneity (Cochran’s Q

P > 0.05 and I2 < 0.75). The meta-analysis was performed in

R 3.1.2 with the R package ‘metafor’ [92] using as input beta

coefficients and standard errors from each independent

cohort.

Additional files

Additional file 1: Supplementary Tables. Table S1. OTUs showing at

least moderate (A >0.2) heritability in the extended TwinsUK 16S dataset.

Each variance component, additive genetics (A, or heritability), shared

environment (C) and unique environment (E) shown along with upper and

lower 95 % confidence intervals. Average relative abundance of the OTUs

in the overall dataset is also shown. Table S2. 149 Bonferroni-significant

OTU-adiposity associations. OTU-adiposity results are obtained from

linear mixed effects regression models and include the original results

(OTU-Adiposity) and results after adjustment for BMI (OTU-Adiposity

BMI-adjusted). We also provide the OTU heritability and average OTU

abundance in the cohort. The last two columns show the OTU results from

the within MZ twin-pair difference analyses (MZ Diff Beta), and whether the

MZ results were concordant with the linear mixed effects results. Reported

phenotypes are visceral fat (VFM), subcutaneous fat (SFM), android/gynoid

ratio (AGR), BMI, waist/hip ratio (WHR) and % trunk fat (pTF). Table S3.

Genus-level associations with adiposity, where the collapsed taxonomy OTU

genus was significantly associated with adiposity. Reported phenotypes are

visceral fat (VFM), subcutaneous fat (SFM), android/gynoid ratio (AGR) and

BMI. Table S4. Replication of TwinsUK (TUK-D) results in three independent

cohorts, the American Gut (AG), the Flemish Gut Flora Project (FGFP) and the

expanded TwinsUK dataset (TUK-R). The table lists the 97 OTUs forming 149

significant adiposity associations in TwinsUK and their association with BMI

in both the replication and discovery samples. In addition, the table outlines

the results of two meta-analyses that were performed across the studies,

the first of just the independent cohorts, and the second including the

discovery cohort. Finally, the last section of the table shows which OTUs

were replicated in at least one of the replication cohorts. Table S5. Human

genomic analyses at adiposity-related candidate host genes FHIT, TDRG1

and ELAVL4. The table shows significant genetic associations between the

adiposity-related candidate host genetic variants and adiposity-associated

OTUs. The final three columns summarize the results of the association

between the host genetic variants and DNA methylation at CpG sites

targeted by the Illumina 450 k array. DNA methylation association was

performed at the lead OTU-associated SNP in each locus; therefore,

rs1433722 was not tested (NA). Table S6. List of the 97 BMI-associated loci

reported in Locke et al. [8] that were used for analysis in this study. The

last column denotes the BMI GWAS P values from Locke et al. [8]. Table S7.

Demographics of the TwinsUK microbiome discovery sample and the

American Gut replication sample. Table S8. ENA accession IDs for samples

in this study currently available online and basic metadata. (XLSX 252 kb)

Additional file 2: Supplementary methods including expanded

methods for analyses and data collection performed within the discovery

cohort. (DOCX 168 kb)

Additional file 3: Genus-level heritability estimates between the TUK

discovery dataset and Goodrich. A) Scatterplot showing the genus-level

heritability between TUK-D and Goodrich et al. [31] (r2 = 0.67). B)

Scatterplot showing the genus-level heritability between TUK-D and

Goodrich et al. [33] (r2 = 0.76). (PDF 43 kb)

Additional file 4: Comparison of alpha diversity and human adiposity

phenotypes. Alpha diversity is measured using the Shannon metric. For

each adiposity phenotype considered in this study we present the r2 and

strength of association, and a trend line is shown in red. (PDF 693 kb)

Additional file 5: Concordance of OTU-BMI association results at the 97

OTUs between TwinsUK discovery sample and the three independent

replication cohorts. Points marked in red show no consistent effect

between the studies, while blue denotes consistent direction of association.

Blue points that are empty circles are not significant, while blue filled circles

indicate nominally significant results. A) Scatterplot between TwinsUK

discovery sample (TUK-D) and American Gut (AG). B) Scatterplot between

TUK-D and FGFP. C) Scatterplot between TUK-D and TwinsUK replication

sample (TUK-R). (PDF 146 kb)
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