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To the Editor:

Children of Latino ancestry have ~1.6-fold increased risk of

acute lymphoblastic leukemia (ALL) relative to non-Latino

white children [1], partly explained by the higher frequency
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of common heritable ALL risk alleles at ARID5B, GATA3,

and PIP4K2A in Latinos [2–4]. However, the etiologies of

the increased ALL risk in Latinos have not been fully elu-

cidated. We previously performed a large, multi-ethnic

genome-wide association study (GWAS) of childhood

ALL, including 3,263 cases of which ~60% were of Latino

ethnicity [5]. While we identified two novel risk loci, we did

not identify Latino-specific risk loci, unlike a recent report

from Qian et al. [6]. We have performed whole-genome

imputation of our Latino dataset and combined it with

GWAS data from two additional, non-overlapping Latino

childhood ALL case-control datasets to identify novel and/

or Latino-specific risk loci.

The GWAS meta-analysis included the following: (i)

1,949 ALL cases and 2,120 controls from the California

Cancer Records Linkage Project (CCRLP-LAT) study,

supplemented with 6464 Kaiser GERA study controls [5];

(ii) 38 cases and 49 controls from a Guatemalan ALL

case-control study (GTM); and (iii) 312 cases and 454

controls from the California Childhood Leukemia

Study (CCLS) [7] (Supplementary Material). Methods

for haplotype phasing, whole-genome imputation, and

quality-control of imputed genotypes are described

in Supplementary Material. Case-control association

analyses were performed separately in each study using

logistic regression in SNPTEST V2, adjusting for ten

ancestry-informative principal components, calculated

separately within each dataset. Within-study genomic

inflation factors were low (λCCRLP= 1.034, λGTM= 1.01,

λCCLS= 1.025). A fixed-effects meta-analysis was per-

formed, and QQ plots indicated adequate control of type I

error and minimal population stratification (λMeta= 1.029)

(Supplementary Fig. S1).

Our GWAS meta-analysis of 2,299 cases and 9,087

controls (Latino only) identified genome-wide significant

associations (P < 5.0 × 10–8) at seven well-established risk
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loci at ARID5B, CEBPE, IKZF1, PIP4K2A, GATA3,

CDKN2A, and BMI1 [4, 7–10], plus associations (P < 5.0 ×

10–4) at recently identified loci at 17q12/IKZF3, 8q24,

LHPP, and ELK3 [5, 11] (Supplementary Table S1). We

also identified genome-wide significant association at

rs8131436 on chromosome 21q22.2, in an intron of the

erythroblast transformation-specific (ETS)-related gene

(ERG) (P= 8.76 × 10–9; odds ratio [OR]= 1.23; 95% CI:

1.16–1.31) (Fig. 1a). Targeted re-imputation localized the

association to an ~100Kb locus between two recombination

peaks (Fig. 1b, Supplementary Table S2).

The effect of this locus on ALL risk was recently

reported to increase with increasing global Native American

(NA) ancestry [6]. Here we examined local ancestry at the

ERG locus (Supplementary Material, Supplementary

Fig. S2), and found a larger effect size for rs8131436 in

Latinos with ≥1 copy of the NA haplotype (OR= 1.30;

95% CI= 1.15–1.47; P= 2.4 × 10–5) than in Latinos with

zero NA haplotypes (OR= 1.15; 95% CI= 0.98–1.34; P=

0.09), further supporting a positive association between

NA ancestry and the effect of ERG heritable variation on

ALL risk. The frequency of NA haplotypes at rs8131436

was slightly higher in cases (42.7%) than controls (40.9%)

(Supplementary Fig. S3); however, taking into account

the proportion of global NA ancestry, the case-control

difference in local NA ancestry at ERG was not significant

(P= 0.44) (Supplementary Table S3).

Next, we investigated whether any ERG SNPs were

associated with ALL risk in non-Latino whites (n= 1184

cases, 3551 controls from CCRLP-EUR) [5]. Of the top 10

ERG SNPs in our discovery Latino ALL GWAS meta-

analysis, SNP rs2836371 was also associated with ALL in

non-Latino whites (P= 8.40 × 10–3), albeit with a smaller

effect size (OR= 1.15, 95% CI: 1.05–1.25) (Supplementary

Table S2).

ERG is within the Down syndrome (DS) critical region

on chromosome 21, and children with trisomy 21 have an

~20-fold increased risk of ALL [12]. Therefore, we

explored whether ERG variation may contribute to DS-ALL

risk. We genotyped rs2836371 (lead SNP across Latino

discovery and non-Latino white replication sets) using a

Taqman SNP genotyping assay in a Latino case-control

set (DS-ALL cases, n= 103 and DS non-leukemia controls,

n= 96) from the International Study of Down Syndrome

Acute Leukemia (IS-DSAL, Supplementary Material).

Trisomic genotypes were manually clustered to delineate

the two heterozygote genotypes (TTC or TCC) (Supple-

mentary Fig. S4). We found that rs2836371 was sig-

nificantly associated with risk of DS-ALL (P= 0.016) with

a per-allele OR of 1.44 (95% CI: 1.08–1.96), which was

noticeably but non-significantly higher than that in non-DS

Latinos (OR= 1.19, Supplementary Table S2) (Pinteraction=

0.21). Furthermore, subjects with three risk alleles at T
a
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rs2836371 (CCC genotype) had a 3.7-fold increased risk of

ALL compared to DS subjects harboring no risk alleles

(TTT), rather than the 2.99-fold increased risk predicted

under an allelic additive model (Table 1, Supplementary

Fig. S5). In a smaller set of non-Latino white DS-ALL cases

(n= 83) and DS controls (n= 78), rs2836371 was not

significantly associated with DS-ALL risk (OR= 1.07, 95%

CI: 0.77–1.49), reflecting similar inter-ethnic differences in

effect size observed in non-DS participants.

Observed inter-ethnic differences in SNP effect size

suggest potential interactions with environmental factors, or

with additional germline or somatic genetic alterations.

Intriguingly, several published GWAS loci for white blood

cell (WBC) traits in adults lie ~50Kb downstream of

rs2836371 within ERG [13]. These SNPs are in very low

linkage disequilibrium (LD) with our ALL-associated

SNPs, and are positioned on the other side of a strong

recombination peak (Supplementary Fig. S6). Novel ana-

lysis of selection signals across ERG in Latinos revealed no

evidence of positive selection for ALL risk SNPs, but

identified a strongly significant signal (population branch

statistic >99th percentile genome-wide; haplotype statistic

>97th percentile) at the downstream WBC trait locus

(Supplementary Fig. S6). SNP rs2836426 showed the

strongest selection signal (P= 2.2 × 10–4) and, though in

low LD with ALL risk SNP rs2836371 (D′= 0.16 in AMR,

1000Genomes), it is in high LD with several WBC trait-

associated SNPs (D′= 1 in AMR). No direct association

was detected between the low-frequency WBC trait-

associated SNPs and ALL risk; however, we found mar-

ginally significant synergistic interaction between ALL-

associated SNP rs2836371 and three perfectly linked WBC

trait SNPs (rs80109907, rs7275212, and rs58030288)

on ALL risk in Latinos (P= 0.079, OR= 2.00) but not in

non-Latino whites (P= 0.48, OR= 0.78) (Supplementary

Table S4), suggesting Latino-specific cooperation between

these two independent trait-associated loci in ALL

predisposition.

To explore potential functional effects of ALL-associated

SNPs in ERG, we assessed 32 SNPs with P < 5.0 × 10–5 in the

Latino meta-analysis, of which 19 replicated in the European

data (P < 0.05). ERG protein is expressed at low levels in

lymphoblastoid cell lines, which prevented accurate expres-

sion quantitative trait locus (eQTL) analysis within Genotype

Tissue Expression (GTEx) or GEUVADIS RNASeq datasets.

In silico analyses, using Haploreg, RegulomeDB, UCSC

Genome Browser, and Epigenome Browser, revealed no

protein-coding variants, nor any obvious functional candi-

dates based on overlap with putative regulatory elements and

transcription factor binding sites.

A recently identified ALL tumor subtype, “DUX4-

rearranged ALL”, is characterized by somatic DUX4

rearrangements that result in alternative splicing of ERG

using an alternative start site at “exon 6 alt” [14]. ALL-

associated SNPs at ERG did not alter known DUX4 binding

motifs, and TF-binding motif analysis did not reveal any

SNPs creating novel DUX4 binding motifs.

We assessed whether any SNPs overlapped ERG exon 6

alt and found that SNP rs2836361, in tight LD with

rs2836371 (R2
= 0.93 and D′= 0.97 in 1000 Genomes

individuals of Mexican ancestry; R2
= 0.99 and D′= 0.99

in Europeans), was located 3 bp upstream of the first exon 6

alt codon (Supplementary Fig. S7). SNP rs2836361 disrupts

a strong exonic splicing silencer (ESS), with the risk allele

reducing the score of a silencer motif “TCTCCCAA” [15]

from 88.1 (TCTGCCAA containing the rs2836361 protec-

tive allele) to 70.9 (TCTGTCAA containing the risk allele).

This ESS had the highest predicted score within a region

encompassing exon 6 alt+ /−100bp. Moreover, we found

that the rs2836361 risk allele may increase exonic splicing

enhancer activity by elevating the RNA recognition motif

score for serine/arginine-rich pre-mRNA splicing factor

(SRp40). Hence, the rs2836361 risk allele may increase

splicing of the non-canonical ERG exon 6 alt, conferring

dominant negative effects on wildtype ERG and increased

risk of ALL. Further analysis is needed to confirm the

causal variant at this locus and its functional effects.

In sum, we report the largest GWAS of childhood ALL

among Latinos to date, identifying a risk locus at chromo-

some 21q22.2, encompassing the hematopoietic transcrip-

tion factor ERG. This gene is frequently somatically

mutated in ALL, adding to a growing list of genes that both

predispose to ALL and drive tumorigenesis following

somatic mutations. Insufficient patient data were available

to investigate the relationship between ERG SNPs and

somatic alterations; however, during preparation of this

manuscript, Qian et al. reported that the ERG risk genotype

was negatively correlated with somatic ERG deletions [6],

supporting that the SNP may somewhat mimic effects of

somatic loss of ERG.

Novel to our study, we replicated the ERG association in

a case-control study of Down syndrome-ALL; this is the

first reported heritable risk factor for DS-ALL, and may

inform future risk stratification in this vulnerable popula-

tion. Current methods to accurately assess trisomic geno-

types using SNP arrays are sub-optimal; next-generation

sequencing strategies are warranted to elucidate the con-

tribution of heritable variation across chromosome 21 to

DS-ALL risk.

Our study highlights the importance of Latino subjects in

elucidating the germline genetic architecture of childhood

ALL, and suggests that larger sample sizes may reveal

additional important susceptibility loci that inform the

biology of leukemogenesis.
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To the Editor:

Chimeric antigen-receptor T-cell (CAR-T) therapy is safe and

effective in advanced B-cell acute lymphoblastic leukemia (B-

ALL) [1–4]. We report using humanized CD19-specific

CAR-T (hCART19) to treat two newly diagnosed untreated

adults with B-cell ALL. The trial was approved by the Ethics

Committee of the Affiliated Hospital of Xuzhou Medical

University. Both subjects gave written informed consent.

Subject 1: A 51-year-old female with B-cell ALL was

diagnosed in April 2016. The WBC was 2.7 × 10E+9/L with

1.4 × 10E+9/L lymphocytes 3% of which were lymphoblasts.

Subset analyses showed CD3+: 93%, CD4+: 54%, CD8+:

24%, and CD19+: 4% indicating persisting presumably nor-

mal T-cells along with the leukemia B-cells. All lymphoblasts

were CD19+. The bone marrow had 28% lymphoblasts which

were CD19+, CD79a+, CD13+, and HLA-DR+ and weakly

positive for CD10, CD20, and CyCD22. Cytogenetics were

normal and BCRABL1 was not detected.

Subject 2: A 69-year-old female diagnosed with B-ALL in

February 2017. The WBC was 1.7 × 10E+9/L with 1 × 10E

+9/L lymphocytes 18% of which were lymphoblasts. Pro-

portions of CD3+, CD4+, CD8+, and CD19+ cells were 68%,
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