
HERMES: Aggregative LBS via a Trajectory DB Engine

Nikos Pelekis, Elias Frentzos, Nikos Giatrakos and Yannis Theodoridis
Department of Informatics, University of Piraeus,

80 Karaoli-Dimitriou St, GR-18534 Piraeus, Greece

{npelekis, efrentzo, ngiatrakos, ytheod}@unipi.gr

ABSTRACT
We present HERMES, a prototype system based on a powerful
query language for trajectory databases, which enables the
support of aggregative Location-Based Services (LBS). The key
observation that motivates HERMES is that the more the
knowledge in hand about the trajectory of a mobile user, the
better the exploitation of the advances in spatio-temporal query
processing for providing intelligent LBS. HERMES is fully
incorporated into a state-of-the-art Object-Relational DBMS, and
its demonstration illustrates its flexibility and usefulness for
delivering custom-defined LBS.

Categories and Subject Descriptors: E.0 Data,
General

General Terms: Management.

Keywords: Trajectories, Moving Object Databases, Location-
Based Services

1. INTRODUCTION
Moving Object Databases (MOD) [4] being at the core of spatio-
temporal database research, have emerged due to the explosion of
mobile devices and positioning technologies. A MOD is the basic
component of any LBS-oriented application. However, although
LBS are already in the air for some years, the services currently
provided are rather naïve, not exploiting the current software
capabilities and the recent advances in MOD research field. We
argue that one of the reasons for this is due to the common
practice in existing approaches, which provides services to mobile
users by just taking into account the current location-time and
velocity information, arriving at the MOD server as a sequence of
updates [10]. Given this model and the fact that LBS applications
need to handle huge volumes of data, it rationally arises that
performance is a significant problem; therefore, efficient query
processing and indexing techniques should be applied. Moreover,
this model has limited applicability in real-world applications,
since safe estimations about future positions should involve past
positions as well.

For this purpose, we adopt the idea of maintaining a MOD
consisting of trajectories, i.e., a sequence of 3D points <(xi-1, yi-1,
ti-1), …, (xi-n, yi-n, ti-n)> for each mobile user oi. The construction
of the future trajectory of a user can be achieved by using the

distribution of the traffic patterns along a road network, the user’s
origin (i.e., the location of the LBS request) and destination (i.e.,
the target location) [12]. Then, the trajectory can be deducted by
using a time-dependent extension of the Dijkstra’s algorithm.
Thus, instead of maintaining a MOD storing only current
information, we invest on maintaining a so-called Trajectory
Database (TD), which allows us to support more efficient and
intelligent LBS [2].

t y

Q1

Q2

x

T1
T2

Q3

 T3
T4

Q5

Q4

t1

t4

t2

t6

t3

Q6

Figure 1. Querying trajectory databases

Technically speaking, maintaining a TD has several advantages.
First of all, this allows us to utilize specialized access methods for
trajectories [9], which not only achieve lower update costs, but,
more important, provide us with a strong query processing
background (i.e., support of trajectory-related queries [9], see Fig.
1) that can be the source of inspiration for advanced LBS. Second,
it supports advanced querying on trajectories, including
coordinate-based queries (e.g. range, nearest neighbor queries),
trajectory-based queries (e.g. topological, navigational, similarity-
based queries) or combinations [9], [11].

HERMES adopts the above ideas, proposes solutions, and
demonstrates their implementation taking advantage of extensible
ORDBMS software. Our contribution can be summarized as
follows:

• We describe the architectural aspects of our server-side
trajectory database engine, as well as the interface for
building advanced LBS applications on top this framework.

• We investigate the power, flexibility and efficiency of the
proposed query language for supporting aggregative LBS.

• We present the capability of HERMES for enabling LBS by
demonstrating a desktop as well as a mobile application,
which show the potential functionality of the prototype.

To the best of our knowledge, HERMES is the first work that
presents a complete set of state-of-the-art query processing
algorithms for TD, such as [1], [3], [6], [8], [9], which have been
packaged into a state-of-the-art ORDBMS, namely Oracle 10g.

Copyright is held by the author/owner(s).

SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.

ACM 978-1-60558-102-6/08/06.

2. HERMES ARCHITECTURE
The main goal of HERMES is to support modeling and querying of
continuously moving objects. Taking advantage of the
extensibility interfaces provided by modern ORDBMS, HERMES
DB engine [7], [8] is developed as a system extension that
provides trajectory functionality to Oracle ORDBMS. More
specifically, HERMES defines a trajectory data type and a
collection of operations [1], [3], [6] as an Oracle data cartridge,
which is further enhanced by a special trajectory preserving
access method, namely the TB-tree [9]. Figure 2 illustrates
HERMES three-tier architectural framework.

Figure 2. HERMES architecture

ORDBMS Tier: The Oracle ORDBMS Server enhanced with
trajectory data storage and query capabilities serves as the
infrastructure for LBS support. HERMES Moving Data Cartridge
(HERMES-MDC) is the heart of this tier. In order to implement
such a framework in the form of a data cartridge we exploit a set
of standard data types together with (static) spatial data types
offered by Oracle10g Spatial and appropriate temporal types [8].
Embedding this functionality offered by HERMES-MDC in
Oracle’s DML [5], one obtains an expressive and easy to use
query language for moving objects.

Application Tier: To take advantage of HERMES-MDC and, thus,
provide efficient LBS support, new applications should be written
and registered in a middleware tier. Incorporating new LBS is
straightforward since new functions implementing desired
operations are embodied in JSP/Java code and published in the
form of JSP pages, wsdl documents, executable jars etc. We adopt
Oracle AS, which constitutes a representative example of this tier
and can serve as a wap gateway, a web server and/or a wireless
platform. Furthermore, AS MapViewer module enables data
visualization.

Client Tier: Depending on the form that an LBS has been made
available, client software involves desktop/mobile browsers,
installed java application clients or registered J2ME stubs (mobile

browsers and J2ME stubs refer to PDAs, smartphones etc.). These
components enable the client side to post http requests and
receive corresponding responses.

Recalling Fig. 1, we discuss some indicative examples that show
how advanced query processing techniques may enhance existing
LBS applications. Let us assume a scenario with four taxi drivers
who have requested for routing services (i.e., trajectories T1, ...,
T4, represented as solid lines in Fig.1, are maintained in the TD).
HERMES users may pose various requests, which can be treated as
spatio-temporal queries. Consider, for example, the fleet
management operator posing a request of the form “find all taxis
located within a given area during a certain time interval”,
illustrated as Q2 in Fig.1. Such a request is a typical range query,
while a request of the type “find all taxis’ locations within a given
area at a certain time instance”, is a timeslice query (Q1 in
Fig.1). Another useful query type that can be directly used in
order to enable, e.g., car-pooling services, is the nearest neighbor
query, in the form “find the nearest taxi to a reference object
during a certain time interval”, where the reference object could
be a 2D static point (Q3 in Fig.1) or a trajectory (Q4 in Fig.1) [1].

Another useful type of trajectory queries is the result of the so-
called trajectory similarity problem, which aims to find similar
trajectories of moving objects. As an example, reference
trajectory Q6 in Fig.1, retrieves T1 as the most similar trajectory
[3]. Other similarity-based queries according to space, time and as
well as derivations of motion (such as speed or direction) [6]
could support a variety of LBS such as those based on a pattern of
motion (e.g. “find taxis that follow a direction similar to a given
direction pattern, e.g. NE during the first half of the route and
subsequently W”) or based on sub-trajectory matching (e.g. “find
the most similar portions between two, in general, dissimilar
trajectories”).

To sum up the previous discussion, HERMES power is not only on
supporting advanced LBS; more than that, it is designed to serve
the need that a user may construct his/her own service and pose or
even register it into the system.

3. DEMO SPECIFICATIONS
Throughout the demonstration, users will be able to test the
system using either a real dataset of a fleet of trucks or a synthetic
dataset simulating a fleet of taxis (for producing very large
datasets), both moving in Athens metropolitan area, Greece.
Taking the latter case, the scenario is the following: Each taxi is
located in a randomly selected location and requests routings to
an, also randomly generated destination. When it completes its
planned journey, i.e., it reaches its destination, the system
randomly generates a new destination point, routes the object
there, and so on. During each phase, the trajectory proposed by
the network analysis component is inserted into the TD; an
additional component is responsible for deleting the expired parts
of trajectories, i.e., those being in the far past, as time evolves.
Then users can pose either typical benchmark queries over
trajectories [11], following the classification of queries with
respect to the type of data / reference objects (static vs. moving
objects) [2], or even build their own query on either past, current
or estimated (future) locations of taxis. Queries are posed in a
GUI that provides essential capabilities including query predicate
selection and results projection. Graphical map interaction for
predicate definition is supported where appropriate.

Spatia

Network Data
Model Analysis

Services

Oracle Storage

http request

response

Client tier

JDBC
Preprocessor

Application Tier

Hermes MDC

TB-tree
operands

Temporal

PL/SQL Interface

Trajectories tbl
TB-Tree

ORDBMS Tier

spatial data network data

Java

WS

JSP

(a) HERMES desktop (b) HERMES mobile
Figure 3. Screenshots of HERMES user interface

Fig. 3(a) and 3(b) are two representatives snapshots of HERMES
(desktop and mobile, respectively) GUI, which illustrate the
process of a range query, where the reference object (the data
objects) is a static spatial (are moving points, respectively) – see
the user selection at the left part of the interface in Fig. 3(a)).
Having selected this query type, the user is able to define query
parameters (a temporal period and a spatial range, in this query)
using a graphical interface, if applicable).
HERMES demonstration consists of three basic stages:

1. Query Specification: This stage involves the selection of one
among predefined queries [11] or the formation of a custom
one using the query builder. The corresponding parameters are
presented to be filled in by the user.

2. Results Presentation: After forming the query, the system
processes the query and presents the results on the map.

3. Query Refinement: To facilitate interaction, the query can be
further refined or exploited by selecting among the visualized
results and building a new query.

This setting motivates the users to have an energetic apperception of
the power and advantages of our approach.

ACKNOWLEDGMENTS
Research partially supported by the FP6-14915 IST/FET Project
GeoPKDD (Geographic Privacy-aware Knowledge Discovery and
Delivery) funded by the European Union.

REFERENCES
[1] Frentzos, E., Gratsias, K., Pelekis, N., and Theodoridis, Y.

Algorithms for Nearest Neighbor Search on Moving Object
Trajectories. Geoinformatica, 11:159–193, 2007.

[2] Frentzos, E., Gratsias, K., and Theodoridis, Y. Towards the
Next Generation of Location-based Services. Proceedings of
W2GIS, 2007.

[3] Frentzos, E., Gratsias, K., and Theodoridis, Y. Index-based
Most Similar Trajectory Search. Proceedings of ICDE, 2007.

[4] Guting R. H. and Schneider M. Moving Object Databases.
Morgan Kaufmann Publishers, CA, 2005.

[5] Oracle 10g. URL: http://otn.oracle.com/pls/db10g/
[6] Pelekis N., Kopanakis I., Ntoutsi I., Marketos G., Andrienko

G., and Theodoridis Y.. Similarity Search in Trajectory
Databases. Proceedings of TIME, 2007.

[7] Pelekis N., Theodoridis Y., Vosinakis S., and Panayiotopoulos
T.. HERMES - A Framework for Location-Based Data
Management. Proceedings of EDBT, 2006.

[8] Pelekis N., Theodoridis Y. Boosting Location-Based Services
with a Moving Object Database Engine. Proceedings of
MobiDE, 2006.

[9] Pfoser, D., Jensen, C. S., Theodoridis Y. Novel Approaches to
the Indexing of Moving Object Trajectories. Proceedings of
VLDB, 2000.

[10] Sistla A. P., Wolfson O., Chamberlain S., and Dao S.
Modeling and querying moving objects. Proceedings of ICDE,
1997.

[11] Theodoridis, Y. Ten Benchmark Database Queries for
Location-based Services. The Computer Journal, 46, 6, 713-
725, 2003.

[12] Wolfson O., Cao H., Lin H., Trajcevski G., Zhang F., and
Rishe N. Management of dynamic location information in
domino. Proceedings of EDBT, 2002.

