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I. Pérez-Fournon,11,12 M. Pohlen,14 D. Rigopoulou,25,27 D. Rizzo,7 I. G. Roseboom,22

M. Rowan-Robinson,7 M. Sánchez Portal,3 B. Schulz,8,20 Douglas Scott,16

N. Seymour,24 D. L. Shupe,8,20 A. J. Smith,22 J. A. Stevens,28 M. Symeonidis,24

M. Trichas,7 K. E. Tugwell,24 M. Vaccari,15 I. Valtchanov,3 J. D. Vieira,8 L. Vigroux,23

L. Wang,22 R. Ward,22 G. Wright,18 C. K. Xu8,20 and M. Zemcov8,9

1Department of Astrophysical and Planetary Sciences, CASA 389-UCB, University of Colorado, Boulder, CO 80309, USA
2Institut d’Astrophysique Spatiale (IAS), bâtiment 121, Université Paris-Sud 11 and CNRS (UMR 8617), 91405 Orsay, France
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ABSTRACT

Dusty, star-forming galaxies contribute to a bright, currently unresolved cosmic far-infrared

background. Deep Herschel-Spectral and Photometric Imaging Receiver (SPIRE) images

designed to detect and characterize the galaxies that comprise this background are highly

confused, such that the bulk lies below the classical confusion limit. We analyse three fields

from the Herschel Multi-tiered Extragalactic Survey (HerMES) programme in all three SPIRE

bands (250, 350 and 500 µm); parametrized galaxy number count models are derived to a

depth of ∼2 mJy beam−1, approximately four times the depth of previous analyses at these

wavelengths, using a probability of deflection [P(D)] approach for comparison to theoretical

number count models. Our fits account for 64, 60 and 43 per cent of the far-infrared background

in the three bands. The number counts are consistent with those based on individually detected

SPIRE sources, but generally inconsistent with most galaxy number count models, which

generically overpredict the number of bright galaxies and are not as steep as the P(D)-derived

number counts. Clear evidence is found for a break in the slope of the differential number

counts at low flux densities. Systematic effects in the P(D) analysis are explored. We find that

the effects of clustering have a small impact on the data, and the largest identified systematic

error arises from uncertainties in the SPIRE beam.

Key words: cosmology: observations – submillimetre: diffuse background – submillimetre:

galaxies.

1 IN T RO D U C T I O N

The cosmic far-infrared background (CFIRB) provides unique in-

formation on the history of energy injection in the Universe by both

star formation and active galactic nuclei. First detected by the COBE

satellite (Puget et al. 1996; Fixsen et al. 1998), the CFIRB contains

a large amount of energy, indicating that the total luminosity from

thermal dust emission is comparable to the integrated UV/optical

energy output of galaxies (Guiderdoni et al. 1997).

Galaxy surveys, both from the ground [with Submillimetre

Common-User Bolometer Array (SCUBA), Large APEX Bolome-

ter Camera (LABOCA), Bolocam, AzTEC and Max-Planck Mil-

limeter Bolometer (MAMBO) at 850 µm, 870 µm, 1.1 mm, 1.1 mm

and 1.3 mm, respectively) and from space using IRAS (at 12, 25,

60 and 100 µm), Infrared Space Observatory (ISO; at 15, 90 and

170 µm) and Spitzer (at 3.6–160 µm), found high number counts

compared to non-evolving galaxy number count models. This im-

plied that strong evolution of the source populations must have oc-

curred, challenging contemporary galaxy evolution models (Saun-

ders 1990; Scott et al. 2002; Lagache, Dole & Puget 2003). Deeper

number counts test galaxy formation models more severely. By

stacking Spitzer MIPS 24-µm sources, at least 80 per cent of the

CFIRB was resolved at 70 µm and 65 per cent at 160 µm (Dole

et al. 2006; Béthermin et al. 2010a). A small fraction (10–20 per

cent) has been resolved in the submillimetre in blind sky surveys

from ground-based observatories, but it is possible to go deeper by

taking advantage of gravitational lensing. At 850 µm, this approach

has resolved 60 per cent or more of the background in small fields

(Smail et al. 2002; Zemcov et al. 2010).

A probability of deflection [P(D)] analysis of Bolocam obser-

vations of the Lockman Hole (Maloney et al. 2005) demonstrated

that a fluctuation analysis can provide more stringent constraints on

source number counts than those derived by extracting individual

sources, for which the threshold must be set high enough to ensure

a minority of false detections. P(D) techniques were first developed

for application to radio observations (Scheuer 1957), but have since

been widely applied to other regimes. P(D) was used to account for

the majority of the X-ray background long prior to the availability

of sufficiently deep imaging to resolve individual sources (Barcons

et al. 1994), to extend deep IR counts (Oliver et al. 1997), and in

the submillimetre to SCUBA (Hughes et al. 1998), LABOCA (Weiß

et al. 2009) and AzTEC (Scott et al. 2010) data. The depth of a P(D)

analysis is set by the flux density at which the number of sources

per beam becomes large. The resulting contribution to the P(D)

becomes that of a Poissonian distribution with a large mean, which

becomes difficult to distinguish from the nearly Gaussian instru-

mental noise. An often-used rule of thumb for the maximum depth

is one source per beam, but the precise limit depends on the sur-

vey area, the shape of the underlying counts and how precisely the

instrumental noise is known. In practice, for rapidly rising source

counts at faint fluxes, this is considerably deeper than the limits for

a source-extraction approach. Fluctuation analyses are well suited

to determination of source number counts in the case where the

dynamic range of detected sources is not large because of confu-

sion. Deep number counts are interesting because they allow us to

measure the sources responsible for the bulk of the CFIRB, and

because they probe intrinsically fainter galaxies which may have

better matching counterparts in the local Universe.

Recently, a P(D) analysis was performed on 250-, 350- and

500-µm observations of a 10 deg2 field (GOODS-S) with a 0.8

deg2 deep inner region from the Balloon-borne Large-Aperture

Submillimeter Telescope (BLAST), using duplicate SPIRE de-

tector technology (Patanchon et al. 2009, hereafter P09). Dif-

ferential number counts were estimated down to 20, 15 and 10

mJy in the three bands, respectively. Below these thresholds, up-

per limits were provided. Combined with 24-µm observations,
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Table 1. HerMES SPIRE SDP observations used in this paper.

Field Size RA Dec. Scan rate Repeats σ 250 σ 350 σ 500

(deg2) (deg2) (deg2) (arcsec s−1) (mJy beam−1) (mJy beam−1) (mJy beam−1)

GOODS-N 0.29 189.23 62.24 30 30 1.77 1.59 1.89

Lockman-North 0.41 161.50 59.02 30 7 3.58 3.16 4.41

Lockman-SWIRE 13.6 162.0 58.11 60 2 9.47 8.47 11.99

The σ values for each band and field are the instrumental noise per pixel before any filtering or smoothing is applied. The confusion

noise (the signal in this analysis) is ∼6 mJy beam−1 in all bands (Nguyen et al. 2010).

Devlin et al. (2009) concluded that a large fraction (>1/2) of the

CFIRB comes from galaxies with z > 1.2. Also from BLAST ob-

servations, Marsden et al. (2009) concluded that 24-µm-selected

galaxies can account for the entire CFIRB based on a stacking

analysis. These results confirm that fluctuation and stacking analy-

ses have substantial power in elucidating the sources of the CFIRB.

Such techniques will also be necessary for SPIRE observations be-

cause galaxy models predict that at the confusion limit, SPIRE is ex-

pected to resolve only a small fraction of the CFIRB (Lagache et al.

2003; Fernandez-Conde et al. 2008). A recent source-extraction-

based analysis of the SPIRE Science Demonstration Phase (SDP)

data – the same data used in this paper – directly resolved 15, 10 and

6 per cent of the CFIRB at 250, 350 and 500 µm, respectively (Oliver

et al. 2010). At shorter wavelengths, Berta et al. (2010) directly re-

solved 52 and 45 per cent of the CFIRB at 100 and 160 µm using

Herschel-Photodetector Array Camera and Spectrometer (PACS)

SDP data.

2 DATA

The observations used in this analysis were obtained with the SPIRE

instrument (Griffin et al. 2010) on the Herschel Space Observatory

(Pilbratt et al. 2010) as part of the HerMES programme1 (Oliver

et al., in preparation) during the SDP. SPIRE observes simulta-

neously in three passbands: 250, 350 and 500 µm. The on-orbit

beam sizes, including the effects of the scanning strategy, are 18.1,

25.2 and 36.6 arcsec, respectively, with mean ellipticities of 7–

12 per cent. The calibration is based on observations of Neptune,

and is described in Swinyard et al. (2010). Observations of five

fields were obtained during SDP, but only three are used in this

analysis: GOODS-N, Lockman-North and Lockman-SWIRE. Their

properties are summarized in Table 1. The Lockman-North regions

are contained within the shallower Lockman-SWIRE field. The

HerMES SDP fields omitted from this analysis are FLS, which was

left out because it is the same depth as the much larger Lockman-

SWIRE field and is significantly contaminated by IR cirrus, and

Abell 2218, because the strong lensing in this field complicates the

interpretation of the background number counts.

The detector (bolometer) timelines were processed using the stan-

dard SPIRE pipeline, which detects cosmic rays and removes in-

strumental signatures and temperature drifts (Dowell et al. 2010).

The maps were produced using the SMAP package (Levenson et al.

2010) using 1/3 beam full width at half-maximum (FWHM) pixels

(6, 8 1/3 and 12 arcsec); this is a compromise between adequately

sampling the beam and maintaining even coverage over the map.

Samples flagged as contaminated by cosmic rays were excluded.

Each map was masked to form an even-coverage region and was

mean subtracted. In addition to the even-coverage mask, a small

1 http://www.hermes.sussex.ac.uk/

Figure 1. Histogram of pixel flux densities for the three fields considered

in this paper in 5-mJy bins. The Lockman-SWIRE field is considerably

shallower than the others, but it is the only field large enough to probe the

bright end of the source distribution. The maps have been mean subtracted.

The binning here is for display purposes and does not correspond to the

binning used in the actual analysis, which is much finer. In all cases the

pixel histograms show clear non-Gaussianity despite the Gaussian nature of

the noise, indicating that a significant point-source contribution is present.

amount of additional masking was required as there are five resolved

sources in the Lockman-SWIRE field. These sources are relatively

bright, but are not the brightest in the field. Since the P(D) formal-

ism is based on unresolved point sources, we mask these objects

with a 2-arcmin circular mask, and then correct our final number

counts using the measured flux of each excluded source. Our in-

strumental noise estimates are based on the technique of Nguyen

et al. (2010) and are assumed to have 5 per cent uncertainty, which

represents only the uncertainty for a fixed calibration. The overall

SPIRE calibration error is discussed in Section 5.1. The resulting

pixel flux density histograms are shown in Fig. 1.

Smoothing the maps by the beam (via cross-correlation) is ben-

eficial for finding isolated point sources. For BLAST observations,

Chapin et al. (2010) show that the standard point-source-optimized

filter should be modified in the presence of confusion noise. How-

ever, there is no guarantee this will benefit a P(D) analysis. Smooth-

ing the map has the effect of broadening the effective beam, which

decreases the depth that the P(D) can probe, while also reducing

(but correlating) the instrumental noise. We empirically determined

if smoothing is beneficial for our analysis by fitting simulated data

with and without smoothing and comparing the scatter in the recov-

ered model parameters to the error estimates, and found that it helps

for all but our deepest map (GOODS-N); note that our GOODS-N

data are several times deeper (relative to the confusion noise) than

the deepest BLAST observations. It is likely that some amount of

spatial deconvolution would be beneficial for the GOODS-N field,

but since this would significantly complicate the instrumental noise

properties of our maps, and hence require extensive testing, we

do not pursue deconvolution here, but do beam-smooth the two

shallower fields. In addition, we have applied a 6-arcmin high-pass

spatial filter to our maps to reduce the effects of clustering on our

results. The motivation for this is discussed in Section 3.3.
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A P(D) analysis is critically dependent on measurements of the

effective beam (which includes the effects of the map making and

reduction, as well as any smoothing applied). Our beam map is

based on in-flight fine-scan (highly oversampled) observations of

Neptune with a large number of repeats and small offsets between

each scan. These observations allowed us to measure the beam with

finer resolution than our data maps to properly match the SPIRE

calibration (which is timestream rather than map based), and to

build beam maps for the individual bolometers. We corrected these

observations for the relative motion of Neptune during the scans

using the HORIZONS2 ephemeris computation service at the orbit

of Herschel. The Neptune observations are deep enough that the

third Airy ring is clearly detected for the array-averaged beams.

As discussed later (Section 5.1), beam uncertainties are our largest

identified systematic.

3 M E T H O D

We first describe the basic P(D) framework, then discuss our par-

ticular implementations and the filtering we have applied to limit

the effects of clustering.

3.1 Description of P(D)

If dN/dS (S) is the differential number counts per solid angle and S

the flux density, then the mean number density of sources per unit

solid angle with observed flux densities between x and x + dx is

R (x) dx =
∫

�

dN

dS

(x

b

)

b−1 d� dx, (1)

where b is the beam function (not necessarily peak normalized).

Ignoring clustering, the probability distribution of sources is Pois-

sonian. The probability distribution function (pdf) for the observed

flux in each sky area unit (usually a map pixel) is the convolution of

the pdfs for each flux interval over all fluxes; this quantity is called

the P(D). Rewriting the above in terms of characteristic functions

and denoting the inverse Fourier transform by F−1
ω ,

P (D) = F −1
ω

[

exp

(
∫ ∞

0

R (x) exp (iωx) dx −
∫ ∞

0

R (x) dx

)]

.

(2)

The mean of the P(D) is

μ =
∫

xR dx

and the variance is

σ 2
P =

∫

x2 Rdx.

For real observations, the instrumental noise contribution must also

be included. Our observations are not sensitive to the mean flux

in the maps. Therefore, it is useful to subtract off the mean of the

P(D) during construction. Only in the case of very simple models

for dN/dS combined with trivial beams is it possible to compute

the P(D) analytically – an example is given in Scheuer (1957), but

even this is only valid for a restricted range of parameters. For

an effective beam that is not strictly positive (due to filtering, for

example), the P(D) is the convolution of the individual P(D) values

for the positive beam and for the negative beam (P09). Azimuthally

2 http://ssd.jpl.nasa.gov/?horizons

averaging the beam does not preserve the P(D), so it is necessary to

use the full 2D beam map.

The log likelihood (logL) of a data set relative to a particular

model is given (to within an irrelevant normalizing constant) by

logL =
∑

i

log P (Di) ,

where Di is the value of the ith pixel. Usually it is more convenient to

bin the data. As long as the individual bins are small compared to the

width of the P(D), the two formulations are practically equivalent.

Then

logL =
∑

k

hk log P (xk) , (3)

where hk is the number of pixels in the histogram bin centred at

flux density xk. The alternative of using the χ 2 as the fit statistic

underweights bins with a small number of pixels in them because

the uncertainty in such a bin is not well modelled by
√

hk , and is

not recommended.

This treatment assumes that different pixels are uncorrelated,

which is not true unless the beam is much smaller than a pixel.

A source at one location will affect neighbouring values over an

area about equal to the area of the beam. The result is that, if ap-

plied naively, fits based on the above likelihood will underestimate

the model errors. Properly treating this effect requires developing

the P(D) formalism in terms of multivariate Poisson distributions,

which is computationally infeasible. P09 recommend dividing the

likelihood by the beam area in pixels (L �→ L/Ab) in order to cor-

rect for this effect, which amounts to approximately correcting the

likelihood for the number of independent samples in the map. This

is an ad hoc approach, but in the absence of a better alternative, we

have adopted a similar method. However, based on Monte Carlo

simulations of synthetic data sets, we find that this correction factor

is overly conservative, as discussed below.

Another approximation in the above treatment, which is not valid

for real data, is that the sources are not Poisson distributed due to

clustering. Our approach to this effect is described in Section 3.3.

3.2 Implementation

We have developed two independent P(D) analysis packages and

checked them against each other. Given the large number of pa-

rameters and the non-linear nature of the problem, both make use

of Markov Chain Monte Carlo (MCMC) methods. Overviews of

MCMC methods can be found in MacKay (2002), Lewis & Bridle

(2002) and Dunkley et al. (2005). The important aspects of an

MCMC implementation are the burn-in criterion and the proposal

density. The burn-in criterion is the rule used to determine whether

the fit has converged on the region of maximum likelihood. Once

the fit has converged, subsequent steps are drawn from the posterior

probability of the model given the data, and only these steps are

used to measure the errors and values of the parameters. The pro-

posal density is used to propose the next step in the Markov Chain

from the current step. Any proposal density that can visit all valid

parameters is correct, but a well-chosen density can dramatically

improve the efficiency of the fitting procedure.

The first code is written in Interactive Data Language (IDL)3 and

the burn-in criterion is based on the power spectrum of the single

chain (Dunkley et al. 2005). The first chain step within � logL = 2

of the best-fitting parameters is taken as the start of the converged

3 http://www.ittvis.com/ProductServices/IDL.aspx
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sampling. A Fisher-matrix approximation to the P(D) fit is used

for the proposal density. This code interpolates in log space from

a moderate number (∼80) of flux densities to calculate the P(D).

The other code is written in C++, and is explicitly parallel. It

uses the Gelman–Rubin criterion for burn-in (Gelman & Rubin

1992), which is based on computing the variance between chains

and directly provides the point of convergence. This code does not

use interpolation when computing the P(D), but supports a more

limited range of models. The proposal density is a multivariate

Gaussian estimated from the previous fit steps, and is frozen in

at burn-in. We have checked these codes against each other on

simulated data, and find good agreement.

Our P(D) methodology is almost identical to that described in

P09 except as follows. First, P09 explicitly fit for the mean of pixel

values in the map (μ). Since we can analytically predict the mean

of the P(D) for a given set of model parameters, we simply shift the

mean to zero explicitly during construction. The input map is also

mean subtracted, and the uncertainty in this subtraction contributes

negligibly to our error budget. Secondly, P09 fit to the instrument

noise explicitly for each field except for the deepest section of their

map. Instead, we marginalize over the noise for all fields in our full

fits, but use the measurements of Nguyen et al. (2010) as a prior,

assuming a Gaussian uncertainty of 5 per cent. At low flux densities,

the number of sources per beam is large, and hence the contribution

to the P(D) is almost Gaussian. Therefore, the values of dN/dS

for the faintest flux densities probed and the noise level are nearly

degenerate, and hence fixing the noise will tend to underestimate

the uncertainties in the model parameters at the faint end.

We have developed a simple simulation framework to test these

codes and their sensitivity to various effects such as 1/f noise. As

inputs we consider two types of catalogues that should be represen-

tative of the submillimetre sky: the P09 models, and the simulations

of Fernandez-Conde et al. (2008). The fits to the P09 models are

easier to compare with the inputs, but the Fernandez-Conde et al.

(2008) models include clustering effects.

A fake sky is generated from the input catalogue and scanned

using the pointing information from the actual SPIRE observations.

Different noise levels (white and 1/f ) can be specified. These data

are then run through the same map-making pipeline as the real

data. In addition to the simulated science data, we also simulate

observations of Neptune using the same framework to determine the

beams we use when fitting the simulated data. These simulations

use simple Gaussian beams with FWHMs similar to those measured

on-orbit, and account for characteristics of the data introduced by

the mapping pipeline, but do not simulate errors in the lower level

SPIRE pipeline (pointing errors, cross-talk corrections, etc.). We

use them to quantify the effects of 1/f noise, uneven coverage,

clustering and smoothing by the beam on our maps. The SPIRE 1/f

knee frequency is a few mHz, corresponding to a spatial scale of

approximately 3◦ for a scan speed of 30 arcsec s−1, and our map-

making algorithm reduces this already-small amount as discussed

in Levenson et al. (2010). We find that the remaining amount, as

well as the uneven coverage, introduces negligible bias in our fits,

but that clustering can have measurable effects on our largest maps,

as discussed in Section 3.3.

In addition, we have determined the appropriate correction for

pixel–pixel correlations using the same framework and a large

number of simulated HerMES data sets. We find that the correct

normalization factor varies with signal-to-noise ratio of the map,

and whether it has been additionally smoothed with the beam. If

the map is beam-smoothed, then the beam area factor is approxi-

mately correct, if slightly conservative for deeper fields; note that

all of the maps in P09 were beam-smoothed. However, for deep,

unsmoothed maps, this procedure clearly overestimates the uncer-

tainties (by about a factor of 2 for GOODS-N). Rather than de-

rive individual correction factors for each field, we have taken the

more conservative approach of finding the largest correction factor

(which therefore increases the uncertainties the most) for all of our

fields, and applying it to all unsmoothed data. For the GOODS-N

and Lockman-North observations, the correct normalization factor

(without smoothing) is less than Ab/3. Because we do not have

an exact formulation for this correction, we conservatively adopt

2Ab/5. For the smoothed observations, we adopt the Ab normaliza-

tion, also conservatively; this means that the two Lockman fields

have the same correction factors, but the (unsmoothed) GOODS-N

field has a different one.

3.3 Filtering

Clustering will affect the P(D) distribution in two ways. First, the

presence of clustering implies sample variance effects, so that the

SDP fields may not be representative of the all-sky number counts.

Secondly, the fact that the underlying counts are not Poisson dis-

tributed would change the shape of the P(D) distribution even if we

were somehow lucky enough to select a precisely average region

of sky. This effect can be modelled if all of the n-point statistics

of the source distribution are known (Barcons 1992). The effect on

the width of the P(D) is discussed in appendix A of P09, although

clustering is not purely limited to changing the width of the dis-

tribution. Only the two-point function has been measured for the

population sampled by SPIRE, and even this is not known at the

flux densities important for our results. The first issue is discussed

in Section 5.1, and the second here. There are two effects: cluster-

ing on small scales between individual galaxies, and clustering on

larger scales between groups of galaxies.

The framework for the clustering contribution to the P(D) is given

in Barcons (1992) and Takeuchi & Ishii (2004). The contribution

to the nth moment is proportional to
∫

Pn (k) b̃ (k)n d2
k, where

Pn (k) is the power spectrum of the n-point correlation function and

b̃ (k) is the Fourier transform of the beam. b̃ falls rapidly with |k|
(e.g. an 18-arcsec FWHM Gaussian beam has a 1/e value at k =
1.2 arcmin−1, and the higher powers fall off even more rapidly).

Thus, small-scale clustering, which is implied by the measurements

of, e.g. Blain et al. (2004), is filtered out by the beam on scales of

less than about 1–2 arcmin in our data.

Generically, Pn falls rapidly with |k|, suggesting that high-pass-

filtering the maps may mitigate large-scale clustering effects. In

particular, in the FIR the power spectrum of the two-point correla-

tion function (P2) shows excess power above Poissonian noise at

scales larger than 10 arcmin (Lagache et al. 2007; Viero et al. 2009;

Cooray et al. 2010). In order to reduce ringing, our filter consists

of a high-pass filter with a turn on at 6 arcmin convolved with a

σ = 1.8-arcmin Gaussian. Only the Lockman-SWIRE field is large

enough to be significantly affected because the other fields are not

much larger than this scale. Since the benefit of P(D) analyses is at

faint flux densities where most of the CFIRB arises, and the shal-

low Lockman-SWIRE field has little constraining power here, our

main scientific results are minimally affected by non-Poissonian

clustering effects even if we ignore them. In fact, we find that the

differences between fits to simulated data with and without cluster-

ing are well within the statistical errors even without filtering.

Analysis of simulated data from Fernandez-Conde et al. (2008),

which has linear clustering based on the assumption that IR galax-

ies are tracers of dark matter fluctuations, shows that a high-pass
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Figure 2. Comparison of the pixel histogram for simulated Lockman-

SWIRE data with and without clustering, in the absence of high-pass-

filtering (left-hand panels) and with a high-pass filter applied as described

in the text (right-hand panels). The top panels show the resulting pixel his-

tograms, and the bottom panels show the fractional difference between the

clustered and unclustered pixel histograms. The thick line in the bottom

panels show the average difference smoothed over a 3-mJy scale. Without

filtering, there is a clear trend in the fractional difference, but with filter-

ing the difference is consistent with zero for the bulk of the pixel fluxes.

Even without filtering, the effect on the measured counts is smaller than the

statistical errors.

filter is quite effective at removing clustering signal for this data

set. We construct two sets of simulated maps: one with clustering,

and another using the same catalogue but with clustering removed

by randomizing the source positions. We then compare fits and

pixel histograms for both maps. Because filtering will affect the

P(D) even in the absence of clustering, comparing these to unclus-

tered, unfiltered maps is not useful. The fits recover the input model

accurately in both cases, whereas if we do not filter dN/dS is slightly

underestimated at low flux densities for the largest maps. Smaller

maps show no evidence for bias. A pixel histogram from such a

simulation is shown in Fig. 2. Such filtering is also effective at

removing IR cirrus, although we have not tested this explicitly in

terms of the recovered fit parameters. However, it is possible that

clustering signal on scales between 1 and 6 arcmin could affect our

results. This regime is currently not well characterized and thus we

could not model it quantitatively in our analysis.

4 MO D EL

The best approach for comparing a particular model to SPIRE data

using P(D) is to generate pixel histograms as a function of the

model parameters and compare directly with our data. However,

not all models have smoothly adjustable parameters, and further-

more, if the model is a poor fit to the data this may provide little

insight as to at which flux densities the model disagrees with obser-

vations. Hence, we have followed P09 and fit simple, non-physical

parametric models to our data. These models are defined by the

values of the differential number counts dN/dS at a set of fixed flux

densities (knots). Observationally we can never do more than place

a lower limit on the total number of sources fainter than S, N(< S)

because we can never measure all the way down to zero flux density,

but dN/dS is better behaved because it only depends on the num-

ber of sources in some small range. The actual fit parameters are

log10dN/dS at the knot positions. The differential number counts

must become shallower than S−2 at low flux densities or else the

contribution to the CFIRB diverges. However, this turnover may

lie below the flux densities probed by our data. Therefore, in order

to avoid biasing our fits by excluding models which are too steep

within the range of our measurements (i.e. would overpredict the

CFIRB if integrated down to zero flux density), we assume that the

number counts outside the largest and smallest knots are zero; the

problem of choosing the limits is discussed below.

A P(D) fit requires that the number counts model is continu-

ous. Therefore, we must choose a method of interpolating between

the knots, and for a finite number of knots, the interpretation of our

results depends on the interpolation method. We consider two meth-

ods of interpolation in this paper: first, as in P09, using power-law

extrapolation between each knot (these are multiply-broken power-

law fits), and secondly, using a cubic spline in log–log space. The

first code supports both methods, and the second only the former.

We do not expect the fit parameters (i.e. dN/dS at the knot positions)

of these models to be identical, since they have different meaning.

It is important to understand that the results of this paper are

model fits. The fit results are not simply dN/dS at the flux densities

of the knots, but instead are effectively integral constraints over

some region surrounding each knot. Any excursion in the number

counts that lies entirely between two knots will affect at least both

neighbouring knots, and likely others as well. The flux density range

that each fit parameter is sensitive to depends on the interpolation

scheme, with the spline response more local to the knot. Therefore,

simply reading off the values predicted by a theoretical or empirical

number counts model at the knot positions and comparing that with

our fit parameters is wrong since they are integral constraints over

a region surrounding the knot. This is also true for more traditional

methods (i.e. simple number counts derived from individual galaxy

detections) because of the importance of the deboosting corrections

for low signal-to-noise ratio detections. A preferable approach is

to first find the best approximation to the differential counts of the

theoretical (or empirical) number counts model chosen for compar-

ison using either of our parametric models (for example, by fitting

a multiply-broken power law to the dN/dS of the theoretical model

giving equal weighting to all fluxes, not just the values at the knots)

and comparing the parameters of that approximation to our results.

The highest and lowest knot positions must be chosen with some

care because the differential number counts are assumed to be zero

outside this range. Our criterion is based on examining the effects of

cutting the number counts at a given level on a selection of galaxy

evolution models from the literature. We compare the predicted

P(D) for each literature model truncated below a specified flux

level with the P(D) without truncation, and find that our data are

not sensitive to a cut-off of less than 0.1 mJy at 250 µm. A similar

analysis shows that truncating the fit above 1 Jy is also undetectable,

with similar values for the other passbands. From simulations, we

find that we can obtain good constraints if the second knot lies

approximately at the 1 σ instrumental noise. Because the number

counts below our flux limit are unlikely to be well described by a

single knot all the way down to 0.1 mJy, the fit value for this point

should be treated with care; simulations indicate that this is not a

problem for the 2-mJy knot. In order to avoid overtuning our fits to

represent literature models, we adopt approximately logarithmically

spaced knots between these extremes. The choice of the number of

knots is somewhat arbitrary. Neighbouring knots are very strongly

correlated, and as the number increases the correlations increase.

We have tried to chose the number of knots to be as large as possible

while keeping the correlations reasonably small.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 409, 109–121



HerMES P(D) fluctuation analysis 115

Figure 3. Comparison of the GOODS-N pixel histograms (solid lines) to the best-fitting model to all three fields (dashed lines) using the multiply-broken

power-law fit and not including the FIRAS prior.

Table 2. Differential number count constraints for a multiply-broken power-law model.

250 µm 350 µm 500 µm

Knot log10 dN/dS Knot log10 dN/dS Knot log10 dN/dS

(mJy) (deg−2 Jy−1) (mJy) (deg−2 Jy−1) (mJy) (deg−2 Jy−1)

0.1 <11.08(1σ ) 0.05 <11.20(1σ ) 0.05 <11.28(1σ )

2 7.05+0.33
−0.57 ± 0.19 2 6.94+0.13

−0.27 ± 0.11 2 6.82+0.11
−0.25 ± 0.12

5 6.25+0.04
−0.13 ± 0.05 5 6.08+0.13

−0.25 ± 0.08 5 5.65+0.19
−0.38 ± 0.09

10 5.919+0.028
−0.063 ± 0.011 10 5.78+0.05

−0.11 ± 0.04 10 5.39+0.09
−0.18 ± 0.03

20 5.139+0.013
−0.035 ± 0.025 20 4.976+0.026

−0.061 ± 0.024 20 4.57+0.05
−0.12 ± 0.03

45 4.038+0.015
−0.033 ± 0.031 45 3.742+0.026

−0.061 ± 0.051 45 2.91+0.07
−0.16 ± 0.04

100 2.596+0.025
−0.058 ± 0.044 100 1.80+0.07

−0.16 ± 0.10 100 0.96+0.22
−0.38 ± 0.06

200 1.42+0.05
−0.14 ± 0.08 200 0.87+0.14

−0.28 ± 0.08 200 0.00+0.51
−0.92 ± 0.07

450 0.57+0.13
−0.24 ± 0.26 750 −0.65+0.39

−0.78 ± 0.30 600 −1.43+0.96
−2.09 ± 0.29

1000 −0.45+0.31
−0.60 ± 0.20

Marginalized fit parameters for a multiply-broken power-law model from a joint analysis of all three

fields without using the FIRAS CFIRB prior. The quoted uncertainties are the 68.3 per cent confidence

intervals for the statistical error followed by the estimated systematic uncertainty, except for the first

knot where the 1 σ upper limit is given.

5 R ESULTS

We fit all three fields simultaneously, but each band independently.

The uncertainty in the instrumental noise is modelled as a single

multiplicative factor having a Gaussian prior with σ = 5 per cent.

Note that we are making the assumption that the timestream instru-

mental noise is the same for all three fields as found in Nguyen et al.

(2010). In addition to the SPIRE data, we also explore the effects

of including the Far Infrared Absolute Spectrophotometer (FIRAS)

CFIRB prior (Fixsen et al. 1998) by integrating S dN/dS for our

model down to the lowest knot and adding a term to the likelihood

that compares that value with the FIRAS measurement and its error.

This assumes that the CFIRB is entirely due to discrete sources, and

that flux densities outside the range of our model contribute only

negligibly. We integrate the Fixsen et al. (1998) spectrum through

the SPIRE passbands and adopt the relative errors given in Marsden

et al. (2009). The uncertainty in the relative calibration between

FIRAS and SPIRE significantly affects the utility of this prior.

The best-fitting multiply broken power-law fit is compared with

the GOODS-N data in Fig. 3, and the parameters are given in

Tables 2 and 3, and for the spline interpolation fits in Tables 4

and 5. The correlations between adjacent knots are large and nega-

tive,4 with typical correlation coefficients of −0.5 to −0.8. The two

models are compared with each other in Fig. 4. The two interpolat-

ing models (spline and multiply-broken power law) produce very

similar results. As discussed previously, these are model fits, not

independent number counts, and since the parametrizations differ,

directly comparing the values at the knot positions is not entirely

correct. None the less, the agreement is clear. Also, because the

models were fitted to the same data their results should not be co-

added: they are both presented to demonstrate that similar results

are obtained with using independent codes.

Since the agreement is so good, we express no preference of one

model versus the other (multiply-broken power law versus spline).

However, we note that the spline model has a narrower flux density

window function about each knot, and thus represents the differ-

ential number counts of the knot position slightly more accurately

locally than the power-law model. For comparison to other num-

ber count models, one can either (i) select the fits with the FIRAS

4 Covariance matrices are provided at http://www.hermes.sussex.ac.uk/
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Table 3. Differential number counts constraints for a multiply-broken

power-law model with the FIRAS prior.

250 µm 350 µm 500 µm

Knot log10 dN/dS Knot log10 dN/dS Knot log10 dN/dS

(mJy) (deg−2 Jy−1) (mJy) (deg−2 Jy−1) (mJy) (deg−2 Jy−1)

0.1 <9.38(1σ ) 0.05 <5.42(1σ ) 0.05 <4.37(1σ )

2 7.39+0.06
−0.17 2 7.87+0.08

−0.19 2 7.70+0.09
−0.21

5 5.83+0.15
−0.25 5 5.24+0.32

−0.56 5 5.50+0.29
−0.52

10 5.978+0.027
−0.071 10 5.87+0.05

−0.10 10 5.13+0.10
−0.21

20 5.13+0.02
−0.04 20 4.960+0.028

−0.067 20 4.686+0.039
−0.094

45 4.041+0.014
−0.034 45 3.744+0.026

−0.062 45 2.82+0.07
−0.15

100 2.591+0.027
−0.062 100 1.82+0.07

−0.16 100 1.10+0.19
−0.35

200 1.42+0.06
−0.14 200 0.81+0.16

−0.29 200 −0.08+0.54
−0.97

450 0.58+0.12
−0.22 750 −0.69+0.16

−0.29 600 −1.45+0.99
−2.01

1000 −0.44+0.32
−0.62

Marginalized fit parameters for a multiply-broken power-law model from a

joint analysis of all three fields including the FIRAS CFIRB prior of Fixsen

et al. (1998). Quoted uncertainties are 68.3 per cent confidence intervals,

except for the first knot where 1 σ upper limits are given. The systematic

uncertainties are the same as in Table 2.

prior, which assumes that the remaining portion of the CFIRB unac-

counted for by our priorless fits is encompassed in the range between

the upper limit on dN/dS at the 0.1- and 2-mJy knots (at 250 µm) –

this method is simpler or (ii) select the fits without the CFIRB prior,

in which case the prior should be applied independently. The latter

does not require that the model share the same assumptions about

the number counts at low flux densities as our fits.

Our fits are compared with other measurements in Figs 5 and 6.

Ignoring the lowest knot (where only an upper limit is available),

our fits predict a CFIRB flux density of 0.54 ± 0.08, 0.39 ± 0.06

and 0.16 ± 0.03 MJy sr−1 from all sources down to 2 mJy in the

three bands; the dominant error in all cases is due to the 15 per

cent calibration uncertainty of SPIRE. The contribution from each

flux range is shown in Fig. 7. The CFIRB from Fixsen et al. (1998)

integrated over the SPIRE bands is 0.85 ± 0.19, 0.65 ± 0.19 and

0.39 ± 0.10 MJy sr−1, respectively, so our fits therefore account for

64 ± 16, 60 ± 20 and 43 ± 12 per cent in the SPIRE 250-, 350- and

500-µm bands, respectively. We expect to resolve a smaller fraction

Table 5. Differential number counts constraints for a spline model with the

FIRAS prior.

250 µm 350 µm 500 µm

Knot log10 dN/dS Knot log10 dN/dS Knot log10 dN/dS

(mJy) (deg−2 Jy−1) (mJy) (deg−2 Jy−1) (mJy) (deg−2 Jy−1)

0.1 <8.743(1σ ) 0.05 <7.63(1σ ) 0.05 <6.81(1σ )

2 7.281+0.067
−0.081 2 7.335+0.066

−0.077 3.4 6.578+0.064
−0.083

4.3 6.565+0.082
−0.094 4.3 6.26+0.23

−0.26 7.3 5.37+0.14
−0.22

9.1 5.817+0.049
−0.052 9.1 5.78+0.10

−0.11 15.5 4.91+0.090
−0.093

19.5 5.241+0.027
−0.028 19.5 4.983+0.058

−0.063 33.2 3.55+0.09
−0.10

41.8 4.023+0.033
−0.031 41.8 3.831+0.054

−0.055 71 1.82+0.15
−0.16

89.3 2.786+0.045
−0.049 89.3 2.13+0.10

−0.11 500 −0.63+1.11
−1.80

191 −0.08+0.26
−0.32 191 0.95+0.16

−0.18

408 0.957+0.065
−0.075 1000 −2.12+1.06

−1.83

1000 0.186+0.084
−0.088

Marginalized fit parameters for a spline interpolation model from a joint

analysis of all three fields including the FIRAS CFIRB prior of Fixsen et al.

(1998). The systematic uncertainties are the same as in Table 4.

of the CFIRB at longer wavelengths because the size of the SPIRE

beam is proportional to wavelength, and hence the 500-µm band is

more confused. Here the errors are dominated by the uncertainty

in the FIRAS measurement. We find marginalized values for the

instrumental noise that are 1.02, 1.1 and 1.01 times the values given

in Table 1 at 250, 350 and 500 µm, respectively, giving a χ 2 of 4.2

for three degrees of freedom. Hence, our instrumental noise values

are consistent with the Nguyen et al. (2010) prior.

5.1 Systematic effects

Our basic tool for estimating the importance of a particular system-

atic is to compute the � logL between the P(D) with and without

the effect for maps the same size and depth as our data. We use the

P09 best-fitting model as a basis for this computation. Recall that a

� logL of 0.5 corresponds roughly to a 1 σ statistical error.

Because different parts of the map are sampled by different

bolometers and the beam shape varies across the bolometer ar-

ray, the effective beam will vary over the map. We evaluated this

Table 4. Differential number counts constraints for a spline model.

250 µm 350 µm 500 µm

Knot log10 dN/dS Knot log10 dN/dS Knot log10 dN/dS

(mJy) (deg−2 Jy−1) (mJy) (deg−2 Jy−1) (mJy) (deg−2 Jy−1)

0.1 <10.29(1σ ) 0.05 <11.43(1σ ) 0.05 <10.91(1σ )

2 7.26+0.10
−0.17 ± 0.19 2 7.18+0.15

−0.28 ± 0.11 3.4 6.36+0.13
−0.18 ± 0.10

4.3 6.54+0.10
−0.12 ± 0.06 4.3 6.24+0.21

−0.21 ± 0.09 7.3 5.31+0.19
−0.21 ± 0.05

9.1 5.837+0.059
−0.056 ± 0.013 9.1 5.831+0.081

−0.090 ± 0.042 15.5 4.961+0.074
−0.085 ± 0.029

19.5 5.230+0.029
−0.032 ± 0.024 19.5 4.959+0.053

−0.061 ± 0.025 33.2 3.511+0.094
−0.095 ± 0.034

41.8 4.036+0.032
−0.036 ± 0.030 41.8 3.849+0.051

−0.050 ± 0.048 71 1.85+0.14
−0.16 ± 0.063

89.3 2.802+0.045
−0.050 ± 0.040 89.3 2.11+0.10

−0.11 ± 0.076 500 −0.64+1.25
−1.80 ± 0.028

191 0.20+0.24
−0.34 ± 0.080 191 0.96+0.16

−0.19 ± 0.075

408 1.002+0.064
−0.068 ± 0.26 1000 −2.34+1.82

−1.92 ± 0.31

1000 0.18+0.09
−0.10 ± 0.20

Marginalized fit parameters for a spline model from a joint analysis of all three fields. Quoted

uncertainties are as in Table 2. These fits do not include the FIRAS CFIRB prior.
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Figure 4. Comparison of the multiply-broken power-law (solid lines) and spline (dashed lines) P(D) fits for the differential number counts to the three SDP

fields simultaneously, without the FIRAS prior; 1σ upper limits are shown as arrows. For this comparison, only statistical errors are shown.

Figure 5. Comparison of Euclidean-normalized multiply-broken power-law differential number counts fits (solid lines and circles) with previous balloon-based

measurements from BLAST, not using the FIRAS prior. The BLAST P(D) analysis (P09) is shown as dashed lines and stars, the stacking analysis of Béthermin

et al. (2010b) as triangles and the source-extraction analysis from the same reference as squares. Here the combined statistical and systematic errors are shown.

Figure 6. Comparison of Euclidean-normalized SPIRE P(D) differential number counts (solid lines/circles and dashed lines/squares for the multiply-broken

power-law and spline models, respectively, not using the FIRAS prior in both cases) with other SPIRE number counts: first, an analysis of the same data

using source-extraction techniques (Oliver et al. 2010; red stars) and secondly the H-ATLAS source extraction on an independent field (Clements et al. 2010;

triangles). The errors are the combined statistical and systematic errors.

effect by choosing 200 random pixels in our maps and computing

the fractional contribution of each bolometer to each pixel. We then

built per-bolometer maps from our Neptune observations, and com-

bined these to find the effective beam at each of these locations.

The beam varies across the map in a complicated fashion because

even in our deepest map each pixel only samples a limited subset

of bolometers. This produces significant variation in the P(D) with

position. In general, the P(D) computed for the bolometer-averaged

beam does not have to be the same as the P(D) computed for each

bolometer and then averaged across the array (which is the P(D)

of the entire map). To evaluate the importance of this variation, we

compare the P(D) for the average beam to the P(D) computed for

all 200 pixels and then averaged. The � logL of this comparison is

<0.01, so for our analysis this is negligible.
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Figure 7. The contribution to the cosmic FIR background from each flux

range for the multiply-broken power-law model versus the log of the flux

density. The results for the spline interpolation model are almost identical.

The integral of the curve over the log flux density is proportional to the total

flux contribution in each band.

Although we masked each map to exclude the low-coverage

edges, the HerMES SDP observations were not dithered be-

tween repeats so there are significant variations in the number of

measurements per pixel even within the high-coverage regions

(∼20 per cent). This will introduce slight non-Gaussian tails to the

instrument noise distribution. We simulated this effect in two ways.

First, we generated random realizations of the instrument noise,

including the uneven coverage, and compared the P(D) using the

resulting noise to the P(D) assuming the noise is purely described by

the average σ , and found negligible � logL. Secondly, our end-to-

end simulations (also including 1/f noise) implicitly include uneven

coverage effects, and we found no bias in the recovered parameters.

Future HerMES observations will include dithering, which will also

have the benefit of improving the homogeneity of the maps.

Nguyen et al. (2010) explore the noise characteristics of the SDP

maps by carrying out ‘jackknife’ tests on the data. Their findings

are generally consistent with the expected noise properties, but it

is difficult to rule out some additional level of non-Gaussian noise

beyond the 1/f behaviour we have simulated. Directly computing

the effects of the jackknife noise histograms on our model shows

that any additional non-Gaussianity has negligible effects for the

SDP data, down to our lowest constrained knot (2 mJy). This may

not be true for future observations where the larger field sizes will

reduce the statistical error considerably.

To test the sensitivity to the beam model, we use an alternative set

of Neptune observations with a much smaller number of repeats and

coarser sampling. Furthermore, the pointing of these observations is

not corrected for the small offset between the Herschel and SPIRE

clocks, and hence they suffer from pointing drift relative to the

maps of the science fields.5 The pipeline nominally corrects for this

offset. However, to be conservative, we allow for the possibility

that the pointing drift might not affect the beam maps in the same

way as the science maps: we repeat the fits using the alternative

beam, and use the difference in the results as an estimate of the

beam systematic. This is the dominant identified systematic effect,

5 The SPIRE clock speed differs by a very small amount from the Herschel

clock, resulting in a cumulative pointing drift with time in SPIRE maps. The

magnitude of the effect is 0.7 arcsec h−1, with rephasing occurring when

‘PCAL’ internal calibrations are made.

with �L ∼ 0.3. We take the differences between the recovered

parameters between the two beams as the systematic error on each

knot as given in Tables 2 and 4. As our understanding of the SPIRE

beams improves, it should be possible to decrease this error.

To further explore issues of pointing drift, we have constructed a

simple drift model for the GOODS-N field using jackknife compar-

isons. We then generate simulated maps with and without applying

this model. Because the effect of the model is largely to twist suc-

cessive observations relative to each other, this has very little effect

on the P(D), amounting to ∼ 0.1σ relative to the statistical errors.

While our results should represent the number counts in our fields

quite well, sample variance means that they may not perfectly rep-

resent the number counts we would obtain with an infinitely large

field. If we make the strong assumptions that the SPIRE clustering

properties measured in Cooray et al. (2010) apply equally at all

flux densities (and, in particular, to depths 10 times greater than

they were measured), that the redshift distribution of our sources is

independent of measured brightness and that the source population

peaks at z = 1.5, then a simple analytic computation suggests that

sample variance could be a 20 per cent effect on the total number

counts in GOODS-N. More empirically, if we split the Lockman-

SWIRE field into subregions there is evidence for variation in the

pixel histogram from subfield to subfield. However, after applying

our high-pass filter the variations are no longer statistically signifi-

cant; that is, the difference between subfields lies in the mean rather

than the shape of the histograms. Alternatively, mean subtracting

each subfield produces the same effect. This suggests that the fact

that our measurements are not sensitive to the mean map values (and

therefore are mean subtracted) may provide some protection against

sample variance effects. Since estimating the size of this effect is

highly model dependent, we have not attempted to include this in

our error budget. We do, however, fit the three fields independently

at 250 µm and compare the results, although the different depths

complicate this somewhat. For simplicity, we do not marginalize

over the instrument noise in this fit, since the only purpose is to

compare the three fields. This is shown in Fig. 8. Within the uncer-

tainties, the fits are consistent. The post-SDP HerMES observations

will allow sample variance effects to be better quantified.

We do not include the effects of the SPIRE calibration uncertainty

(∼15 per cent across all bands) in our error budget, except when

using the CFIRB prior or computing the fraction of the FIRAS

Figure 8. Comparison of 250 µm differential number counts derived from

the three fields for the multiply-broken power-law model. Only statistical

errors are shown and the FIRAS prior is not included.
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measurement accounted for by our model. However, any updates

to the SPIRE calibration are easily incorporated into our results

without refitting: if the flux scale is multiplied by a factor α the knot

positions Ki �→ αKi and the knot values decrease by −log10α.

6 D ISCUSSION

In general, our results agree well with those of P09, except for the

faintest fluxes fully constrained by their analysis. For example, at

250 µm they find log10dN/dS = 5.58+0.07
−0.11 at 20 mJy, while our result

is 5.139+0.012
−0.033 ± 0.025. However, as discussed earlier, they did not

marginalize over the instrumental noise for their deepest field, so

their errors may be somewhat underestimated here. There is also

some evidence from simulated data that the small number of knots

and knot placement right at the break in the number counts may

have biased this knot in the P09 analysis. We find good agreement

with the stacking analysis of the BLAST data, but see some mild

disagreement at higher fluxes for direct counts of the same data

(Béthermin et al. 2010b) as shown in Fig. 5.

The deepest number counts available at these wavelengths are

the result of a semitraditional source-extraction method on the same

HerMES data set (Oliver et al. 2010). These are compared in Fig. 6.

Where there is overlap, the agreement is good. A similar analysis

was carried out using Herschel Astrophysical Terahertz Large Area

Survey (H-ATLAS) SDP data by Clements et al. (2010); this is also

shown. Unlike the HerMES source-extraction and P(D) analysis,

the H-ATLAS counts are 250 µm selected at all wavelengths, and

hence may not entirely probe the same point-source population.

None the less, again the agreement with the HerMES results is

good.

A few features are worth noting. First, we clearly detect a break in

the number counts around at 20 mJy in all bands at high significance.

However, the SPIRE data alone do not detect the change in slope in

dN/dS necessary to keep the CFIRB finite, as the differential counts

continue to rise to the lowest limit of our analysis more steeply than

S−2. When the FIRAS prior is added, a break is present, but this

mostly affects the lowest flux knot, for which we can only provide

an upper limit (the effects on the other knots are mostly due to

the strong correlations between knots; the FIRAS prior changes

the structure of the correlations significantly at low flux densities).

Secondly, there is possible weak (∼1σ ) evidence for a ‘bump’ in the

differential counts around 400 mJy at 250 µm. There is no evidence

at 350 and 500 µm around this flux density, but the error bars are

large. However, this bump is present in the independent H-ATLAS

field (Clements et al. 2010) at 250 µm. The cause is unclear; lensing

is an intriguing possibility, but we would expect the signature of

lensing to be larger at 500 µm due to stronger negative K-correction

effects (e.g. Negrello et al. 2007).

We can compare our model fits to the confusion noise estimates

of Nguyen et al. (2010) measured using a different technique. The

often-used criterion of one source per every n beams is difficult to

use, since its translation into the effects on observations depends

strongly on the underlying model (Takeuchi & Ishii 2004). Hence,

we adopt the square root of the variance of the source contribution

to the pixel distribution (σ conf) as our measure. We find values of

6.5/6.4/6.1 ± 0.2 mJy in the three bands, slightly higher than the

Nguyen et al. (2010) values, but by less than 2 σ .

Our fits are compared with a selection of literature models in

Fig. 9. No currently available model entirely fits our counts, es-

pecially when all three bands are considered. There is a general

discrepancy in the galaxy number count models in that the theoret-

ical models generically overpredict the number of bright galaxies

(in the several ×10 to several ×100 mJy range, limited at the up-

per end by uncertainties in the P(D) number counts) compared to

the number counts from the P(D) analysis. The best match overall

across all three SPIRE bands is given by the model of Valiante et al.

(2009).

We interpret the discrepancy in the context of the theoretical

models of Lagache et al. (2003) and Fernandez-Conde et al.(2008;

Fig. 9). In Fig. 10 the redshifts and FIR luminosities of galaxies are

plotted versus their observed flux densities for the Fernandez-Conde

et al. (2008) simulations. The transitions from luminous to ultra-

luminous infrared galaxies (LIRGs to ULIRGs, at 1012 L⊙) with

increasing observed flux densities occur at approximately 12, 6 and

3 mJy, in the 250-, 350- and 500-µm SPIRE bands, respectively.

Thus, the discrepancy at the bright end likely results from the pres-

ence of too many ULIRGs in the theoretical models. It should be

noted that the intrinsic luminosities of the underlying galaxy pop-

ulation that contribute to any given bin in observed flux density

depend on the redshift distributions and spectral energy distribu-

tions; however, the very brightest galaxies are likely either intrin-

sically extremely luminous (ULIRGs or brighter), low redshift or

strongly lensed. There is a large dispersion in redshifts represented

by galaxies in each observed flux density bin, with means in the

Figure 9. Comparison of our Euclidean-normalized differential number counts fits (as in Fig. 6, and not using the FIRAS prior) to a selection of models from

the literature. The error bars are the combined statistical and systematic errors.
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Figure 10. The intrinsic redshifts (upper panels) and IR luminosities (lower

panels) of galaxies as a function of the observed flux densities in the SPIRE

250-, 350- and 500-µm bands (left-hand, middle and right-hand panels,

respectively) for the Lagache et al. models (Lagache et al. 2003; Fernandez-

Conde et al. 2008). The error bars give the interquartile range for each

bin.

range z = 1 − 2, with the average flux densities only mildly in-

versely correlated with redshifts (due to the negative K-correction).

In all three bands at and below 2 mJy, the P(D)-derived number

counts are consistent with the theoretical galaxy number count mod-

els. This is not surprising because (i) the theoretical galaxy number

count models are constrained not to overpredict the CFIRB, which

arises, in large part, from numerous faint galaxies and (ii) the upper

limits of the lowest flux density knot in each band lie well above

the theoretical number count models.

Another subtler feature also seems apparent in the measured

counts. The results from both fitting methods – lending some con-

fidence to their credence – have depressions at the third lowest flux

density knots with respect to the theoretical number count models at

low-to-moderate significance (depending on the theoretical model),

which are exclusively concave down in this range (a few mJy to

a few times 10 mJy). The stacking analysis of Béthermin et al.

(2010a) is not deep enough at 250 or 350 µm to verify this feature,

although the turnover in S2.5 dN/dS from the peak at approximately

10 mJy downwards is clear at 250 µm. At 500 µm, the stacking

analysis does not display the depression. This flux density range

is approximately at the confusion limit (where the flux density is

equal to the confusion noise, σ conf = 6 mJy) and multiple galaxies

contribute to the flux density in each beam. Thus, referring to the

Fernandez-Conde et al. (2008) models (Fig. 10), this flux density

range corresponds to the transition from ULIRGS to LIRGs, sug-

gesting that LIRG number counts may also be overrepresented by

the theoretical galaxy number count models.

7 C O N C L U S I O N S

We have measured the differential galaxy number counts from

Herschel-SPIRE SDP HerMES observations at 250, 350 and

500 µm using P(D) techniques and two simple parametric models.

The number counts were measured down to 2 mJy, approximately

a factor of 3 below the 1σ confusion noise. We find that 64 ± 14

per cent of the measured CFIRB is accounted for by point sources

at 250 µm falling to 43 ± 12 per cent at 500 µm. The errors on the

fraction of the CFIRB accounted for by these sources are now dom-

inated by those of the FIRAS measurement. However, because of

the remaining fraction not accounted for by our fits, this is still not

a competitive method for measuring the total CFIRB. We find clear

evidence of breaks in the slope of the differential number counts at

approximately 10–20 mJy in all bands, which have been hinted at

by previous analyses.

Where they overlap, our fits agree well with other Herschel re-

sults. Comparing with a selection of literature models, however, we

find that no model entirely reproduces our observed number counts.

As found by Oliver et al. (2010) and Clements et al. (2010), most

published models significantly overpredict the number of bright

sources at these wavelengths and have shallower slopes. We find

somewhat better agreement at fainter fluxes, at or below the break,

but the agreement is still not perfect.

Our main systematic uncertainties arise from our understanding

of the SPIRE beams. We find that a high-pass filter is effective in

removing the signature of clustering from our counts, but in the

future it may be preferable to attempt to directly marginalize over

clustering using simple models.

These observations represent only ∼60 h of the 900 h of observa-

tions that HerMES will ultimately obtain (although not all of these

are with SPIRE). The final data set will cover a wide range of depths

and areas. This will significantly increase our ability to constrain

dN/dS. Having a number of well-separated deep fields will also

allow a direct measurement of sample variance.
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