
Hermes: Latency Optimal Task Assignment for

Resource-constrained Mobile Computing

Yi-Hsuan Kao and Bhaskar Krishnamachari

Ming-Hsieh Dept. of Electrical Engineering

University of Southern California

Los Angeles, CA, USA

Email: {yihsuank,bkrishna}@usc.edu

Moo-Ryong Ra

AT&T Research Lab

Bedminster, NJ, USA

Email: mra@research.att.com

Fan Bai

General Motors Global R&D

Warren, MI, USA

Email: fan.bai@gm.com

Abstract—With mobile devices increasingly able to connect
to cloud servers from anywhere, resource-constrained devices
can potentially perform offloading of computational tasks to
either improve resource usage or improve performance. It is of
interest to find optimal assignments of tasks to local and remote
devices that can take into account the application-specific profile,
availability of computational resources, and link connectivity,
and find a balance between energy consumption costs of mobile
devices and latency for delay-sensitive applications. Given an
application described by a task dependency graph, we formulate
an optimization problem to minimize the latency while meeting
prescribed resource utilization constraints. Different from most of
existing works that either rely on an integer linear programming
formulation, which is NP-hard and not applicable to general task
dependency graph for latency metrics, or on intuitively derived
heuristics that offer no theoretical performance guarantees, we
propose Hermes, a novel fully polynomial time approximation
scheme (FPTAS) algorithm to solve this problem. Hermes pro-
vides a solution with latency no more than (1 + ǫ) times of
the minimum while incurring complexity that is polynomial in
problem size and 1

ǫ
. We evaluate the performance by using

real data set collected from several benchmarks, and show that
Hermes improves the latency by 16% (36% for larger scale
application) compared to a previously published heuristic and
increases CPU computing time by only 0.4% of overall latency.

I. INTRODUCTION

As more embedded devices are connected, lots of resource

on the network, in the form of cloud computing, become ac-

cessible. These devices, either suffering from stringent battery

usage, like mobile devices, or limited processing power, like

sensors, are not capable to run computation-intensive tasks

locally. Taking advantage of the remote resource, more sophis-

ticated applications, requiring heavy loads of data processing

and computation [1], [2], can be realized in timely fashion

and acceptable performance. Thus, computation offloading—

sending computation-intensive tasks to more resourceful sev-

ers, is becoming a potential approach to save resources on

local devices and to shorten the processing time [3], [4], [5].

However, implementing offloading invokes extra communi-

cation cost due to the application and profiling data that must

be exchanged with remote servers. The additional communi-

cation affects both energy consumption and latency [6]. In

general, an application can be modeled by a task graph, as

an example shown in Fig. 1. A task is represented by a node

whose weight specifies its workload. Each edge shows the data

split

start

final

10.5

3

1.2

2 10

3.3

5

1

10

3

5.5 5.5

5

10

3

5

15 9.7

8.5
8.5

3

1.2 1.2
5

5 5

15.5
10

10

5 5

5
8

Fig. 1: A task graph of an application, where nodes specify

tasks with their workloads and edges imply data dependency

labeled with amount of data exchange.

dependency between two tasks, and is labelled with the amount

of data being communicated between them. An offloading

strategy selects a subset of tasks to be offloaded, considering

the balance between how much the offloading saves and how

much extra cost is induced. On the other hand, in addition to

targeting a single remote server, which involves only binary

decision on each task, another spectrum of offloading schemes

make use of other idle and connected devices in the network

[7], [8], where the decision is made over multiple devices

based on their availabilities and multiple wireless channels. In

sum, a rigorous optimization formulation of the problem and

the scalability of corresponding algorithm are the key issues

that need to be addressed.

In general, we are concerned in this domain with a task as-

signment problem over multiple devices, subject to constraints.

Furthermore, task dependency must be taken into account in

formulations involving latency as a metric. The authors of

Odessa [11] present a heuristic approach to task partitioning

for improving latency and throughput metrics, involving iter-

ative improvement of bottlenecks in task execution and data

transmission. However, this greedy heuristic does not provide

any performance guarantee, as we show that it can be further

TABLE I: Comparison between existing works and Hermes

Existing Works MAUI [9] min k-cut [10] Odessa [11] Hermes

Task Dependency Graph serial DAG general subset of DAG

Objectives energy consumption communication cost latency & throughput latency

Constraints latency none none cost

Task Assignment 2 devices multiple devices 2 devices multiple devices

Algorithm Complexity exponential exponential no guarantee polynomial

Performance optimal optimal no guarantee near-optimal (ǫ-approximate)

improved by 36% in some cases. Of all optimization formula-

tions, integer linear programming (ILP) is the most common

formulation due to its flexibility and intuitive interpretation

of the optimization problem. In the well-known MAUI work,

Cuervo et al. [9] propose an ILP formulation with latency

constraint of serial task graphs. However, the ILP problems

are generally NP-hard, that is, there is no polynomial-time

algorithm to solve all instances of ILP unless P = NP [12].

Moreover, it does not address the problems of general task

dependency, which is often described by a directed acyclic

graph (DAG). In addition to ILP, graph partitioning is another

approach [10]. The minimum cut on weighted edges specifies

the minimum communication cost and cuts the nodes into two

disjoint sets, one is the set of tasks that are to be executed

at the remote server and the other are ones that remain at

the local device. However, it is not applicable to latency

metrics. Furthermore, for offloading across multiple devices,

the generalized version of the minimum cut problem, called

minimum k-cut, is NP-hard [13]. Compared with the existing

formulations and algorithms, we propose a formulation that

aims to minimize the latency subject to a cost constraint. We

show that our formulation is NP-hard and propose Hermes1,

an algorithm that is a fully polynomial time approximation

scheme (FPTAS). That is, the solution given by Hermes

performs no more than (1+ǫ) times of the minimum objective,

where ǫ is a positive number, and the complexity is bounded

by a polynomial in 1
ǫ

and the problem size [14]. Table I

summarizes the comparison of our formulation and algorithm

to the existing works. To the best of our knowledge, for

this class of task assignment problems, Hermes applies to

more sophisticated formulations than prior works and runs in

polynomial time with problem size but still provides near-

optimal solutions with performance guarantee. We list our

main contributions as follows.

1) A new formulation of task assignment considering

both latency and resource cost: Our formulation is

practically useful for applications with a general task

dependency described by a directed acyclic graph and

allows for the minimization of total latency (makespan)

subject to a resource cost constraint.

2) Hermes, an FPTAS algorithm: We show that our

formulation is NP-hard and provide Hermes that runs in

O(dinNM2 l2

ǫ
) time and admits a (1+ǫ) approximation,

1Because of its focus on minimizing latency, Hermes is named for the
Greek messenger of the gods with winged sandals, known for his speed.

TABLE II: Notations

Notation Description

mi workload of task i

dij the amount of data exchange between task i and j

rj CPU rate of device j

G(V, E) task graph with nodes (resp. edges) described by set V (resp. E)

C(i) set of children of node i

l the depth of task graph (the longest path)

din the maximum indegree of task graph

δ quantization step size

x ∈ [M]N assignment strategy of tasks 1 · · ·N

T
(j)
ex (i) latency of executing task i on device j

T
(jk)
tx (d) latency of transmitting d units of data from device j to k

C
(j)
ex (i) cost of executing task i on device j

C
(jk)
tx (d) cost of transmitting d units of data from device j to k

D(i) accumulated latency when task i finishes

where N is the number of tasks, M is the number of

devices, din is the maximum indegree over all tasks and

l is the length of the longest paths.

3) Comparative performance evaluation: We evaluate

the performance of Hermes by using real data sets mea-

sured in several benchmarks to emulate the executions

of these applications, and compare it to the previously-

published Odessa scheme considered in [11]. The result

shows that Hermes improves the latency by 16% (36%
for larger scale application) compared to Odessa and

increases CPU computation time by only 0.4% of overall

latency, which implies the latency gain of Hermes is

significant enough to compensate its extra CPU load.

II. MODELS AND NOTATIONS

In this section, we formulate our optimization problem to

solve for the optimal task assignment strategy.

A. Task Graph

An application profile can be described by a directed graph

G(V, E) as shown in Fig. 1, where nodes stand for tasks and

directed edges stand for data dependencies. A task precedence

constraint is described by a directed edge (m,n), which

implies that task n relies on the result of task m. That is, task

n cannot start until it gets the result of task m. The weight

on each node specifies the workload of the task, while the

weight on each edge shows the amount of data communication

between two tasks. In addition to the application profile, there

are some parameters related to the graph measure in our

complexity analysis. We use N to denote the number of tasks

and M to denote the number of devices. For each task graph,

there is an initial task (task 1) that starts the application and a

final task (task N) that terminates it. A path from initial task

to final task can be described by a sequence of nodes, where

every pair of consecutive nodes are connected by a directed

edge. We use l to denote the maximum number of nodes in a

path, i.e., the length of the longest path. Finally, din denotes

the maximum indegree in the task graph.

B. Cost and Latency

We use the general cost and latency functions in our

derivation. Let C
(j)
ex (i) be the execution cost of task i on

device j and C
(jk)
tx (d) be the transmission cost of d units of

data from device j to device k. Similarly, the latency consists

of execution latency T
(j)
ex (i) and the transmission latency

T
(jk)
tx (d). Given a task assignment strategy x ∈ {1 · · ·M}N ,

where the ith component, xi, specifies the device that task i is

assigned to, the total cost can be described as follows.

Cost =

N
∑

i=1

C(xi)
ex (i) +

∑

(m,n)∈E

C
(xmxn)
tx (dmn) (1)

As described in the equation, the total cost is additive over

nodes (tasks) and edges of the graph. On the other hand, the

accumulated latency up to task i depends on its preceding

tasks. Let D(i) be the latency when task i finishes, which can

be recursively defined as

D(i) = max
m∈C(i)

{

T
(xmxi)
tx (dmi) +D(m)

}

+ T (xi)
ex (i). (2)

We use C(i) to denote the set of children of node i. For

example, in Fig. 2, the children of task 6 are task 4 and task

5. For each child node m, the latency is accumulating as the

latency up to task m plus the latency caused by transmission

data dmi. Hence, D(i) is determined by the slowest branch.

C. Optimization Problem

Consider an application, described by a task graph, and a

resource network, described by the processing powers and link

connectivity between available devices, our goal is to find a

task assignment strategy x that minimizes the total latency and

satisfies the cost constraint, that is,

P : min
x∈[M]N

D(N)

s.t. Cost ≤ B.

The Cost and D(N) are defined in Eq. (1) and Eq. (2),

respectively. The constant B specifies the cost constraint,

for example, energy consumption of mobile devices. In the

following section, we propose an approximation algorithm

based on dynamic programming to solve this problem and

show that its running time is bounded by a polynomial of 1
ǫ

with approximation ratio (1 + ǫ).

start

finish

1 2 3

4 5

6

Fig. 2: A tree-structured task graph, in which the two sub-

problems can be independently solved.

cost

latency

y = t

x = B

Fig. 3: The algorithm solves each sub-problem for the min-

imum cost within latency constraint t (the area under the

horizontal line y = t). The filled circles are the optimums

of each sub-problems. Finally, it looks for the one that has the

minimum latency of all filled circles in the left plane x ≤ B.

III. HERMES: FPTAS ALGORITHMS

In the appendix, we prove that our task assignment problem

P is NP-hard for any task graph. In this section, we first

propose the approximation scheme to solve problem P for

a tree-structure task graph and prove that this simplest version

of the Hermes algorithm is an FPTAS. Then we solve for

more general task graphs by calling the proposed algorithm for

trees a polynomial number of times. Finally, we show that the

Hermes algorithm also applies to the dynamic environment.

A. Tree-structured Task Graph

We propose a dynamic programming method to solve the

problem with tree-structured task graph. For example, in Fig.

2, the minimum latency when the task 6 finishes depends on

when and where task 4 and 5 finish. Hence, prior to solving

the minimum latency of task 6, we want to solve both task

4 and 5 first. We exploit the fact that the sub-trees rooted by

task 4 and task 5 are independent. That is, the assignment

strategy on task 1, 2 and 4 does not affect the strategy on task

3 and 5. Hence, we can solve the sub-problems respectively

and combine them when considering task 6.

We define the sub-problem as follows. Let C[i, j, t] denote

the minimum cost when finishing task i on device j within

latency t. We will show that by solving all of the sub-problems

for i ∈ {1, · · · , N}, j ∈ {1, · · · ,M} and t ∈ [0, T] with

sufficiently large T , the optimal strategy can be obtained by

combining the solutions of these sub-problems. Fig. 3 shows

Algorithm 1 Hermes FPTAS for tree-structured task graph

1: procedure FPTAStree(N) ⊲ min. cost when task N finishes at devices 1, · · · ,M within latencies 1, · · · ,K
2: q ← BFS (G,N) ⊲ run Breadth First Search of G from node N and store visited nodes in order in q

3: for i← q.end, q.start do ⊲ start from the last element in q

4: if i is a leaf then ⊲ initialize C values of leaves

5: C[i, j, k]←

{

C
(j)
ex (i) ∀k ≥ qδ(T

(j)
ex (i))

∞ otherwise

6: else

7: for j ← 1,M , k ← 1,K do

8: Calculate C[i, j, k] from Eq. (4)

9: end procedure

our methodology. Each circle marks the performance given

by an assignment strategy, with x-component as cost and y-

component as latency. Our goal is to find out the red circle, that

is, the strategy that results in minimum latency and satisfies

the cost constraint. Under each horizontal line y = t, we

first identify the circle with minimum x-component, which

specifies the least-cost strategy among all of strategies that

result in latency at most t. These solutions are denoted by the

filled circles. In the end, we look at the one in the left plane

(x ≤ B) whose latency is the minimum.

Instead of solving infinite number of sub-problems for all

t ∈ [0, T], we discretize the time domain by using the uniform

quantization function

qδ(x) = k, if (k − 1)δ < x ≤ kδ. (3)

It suffices to solve all the sub-problems for k ∈ {1, · · · ,K},
where K = ⌈T

δ
⌉. We will analyze how the performance is

affected due to the loss of precision by doing quantization and

the trade-off with algorithm complexity after we present our

algorithm. Suppose we are solving the sub-problem C[i, j, k],
given that all of the preceding tasks have been solved, the

recursive relation can be described as follows.

C[i, j, k] = C
(j)
ex (i)

+ min
xm:m∈C(i)

{
∑

m∈C(i)

C[m,xm, k − km] + C
(xmj)
tx (dmi)},

km = qδ
(

T
(j)
ex (i) + T

(xmj)
tx (dmi)

)

.

That is, to find out the minimum cost within latency k at task

i, we trace back to its child tasks and find out the minimum

cost over all possible strategies, with the latency that excludes

the execution delay of task i and data transmission delay. As

the cost function is additive over tasks and the decisions on

each child task is independent with each other, we can further

lower down the solution space from Mz to zM , where z is the

number of child tasks of task i. That is, by making decisions

on each child task independently, we have

C[i, j, k] = C
(j)
ex (i)

+
∑

m∈C(i)

min
xm∈[M]

{C[m,xm, k − km] + C
(xmj)
tx (dmi)}. (4)

After solving all the sub-problems C[i, j, k], we solve for the

optimal strategy by performing the combining step as follows.

min k s.t. C[N, j, k] ≤ B.

As the application should always terminate at the local

machine, it is reasonable to fix j and solve for the minimum

k. We summarize our algorithm for tree-structure task graph

in Algorithm 1. Since the algorithm will be used as a basic

block function for more general task graph, we neglect the

combining step and simply focus on solving C[i, j, k].

Theorem 1. Algorithm 1 runs in O(dinNM2 l2

ǫ
) time and

admits a (1 + ǫ) approximation ratio.

Proof. From Algorithm 1, to find C[N, j, k] needs to solve

NMK sub-problems, where K depends on the maximum

dynamic range of the latency. Given a task i with workload

mi, if it is executed at device j, the execution delay can be

expressed as
T (j)
ex (i) = c

mi

rj
,

where rj is the CPU rate of device j and c is a constant. The

largest single stage delay is determined by the slowest device

executing the most intensive task. That is,

Tmax = c
mmax

rmin

.

Hence, the maximum latency over all assignment strategies

can be bounded by lTmax, where l is the longest branch of

the tree. If we set δ = ǫTmax

l
, then

K = ⌈
lTmax

δ
⌉ = O(

l2

ǫ
).

Let din denote the maximum indegree of the task graph. For

solving each sub-problem in Eq. (4), there are at most din
minimization problems over M devices. Hence, the overall

complexity is

O(NMK × dinM) = O(dinNM2 l
2

ǫ
).

Since both the depth and the maximum indegree of a tree

can be bounded by a polynomial of N , Algorithm 1 runs in

polynomial time of problem size and 1
ǫ
.

For a given strategy x, let L̂(x) denote the quantized latency

and L(x) denote the original one. Further, let x̃ denote the

strategy given by Algorithm 1 and x∗ denote the optimal

strategy. As x̃ is the strategy with minimum latency solved

by Algorithm 1, we have L̂(x̃) ≤ L̂(x∗). For a task graph

Algorithm 2 Hermes FPTAS for serial trees

1: procedure FPTASpath(N) ⊲ min. cost when task N finishes at devices 1, · · · ,M within latencies 1, · · · ,K
2: for root il, l ∈ {1, · · · , n} do ⊲ solve the conditional sub-problem for every tree

3: for j ← 1,M do

4: Call FPTAStree(il) conditioning on j with modification described in Eq. (7)

5: for l← 2, n do

6: Perform combining step in Eq. (8) to solve C[il, jl, kl]

7: end procedure

chain tree tree

i1 i2 i3

Fig. 4: A task graph of serial trees

with depth l, only at most l quantization procedures are taken.

By the quantization defined in Eq. (3), it always over estimates

by at most δ. Hence, we have

L(x̃) ≤ δL̂(x̃) ≤ δL̂(x∗) ≤ L(x∗) + lδ (5)

Let Tmin = cmmax

rmax
, that is, the latency when the most

intensive task is executed at the fastest device. As the most

intensive task must be assigned to a device, the optimal

latency, L(x∗), is at least Tmin. From Eq. (5), we have

L(x̃) ≤ L(x∗) + lδ = L(x∗) + ǫTmax ≤ (1 + ǫ
rmax

rmin

)L(x∗). (6)

For a realistic resource network, the ratio of the fastest CPU

rate and the slowest CPU rate is bounded by a constant c′.

Let ǫ′ = 1
c′
ǫ, then the overall complexity is still bounded by

O(dinNM2 l2

ǫ
) and Algorithm 1 admits a (1+ ǫ) approxima-

tion ratio. Hence, Algorithm 1 is an FPTAS.

As chain is a special case of a tree, Algorithm 1 also

applies to the task assignment problem of serial tasks. Instead

of using the ILP solver to solve the formulation for serial

tasks proposed previously in [9], we have therefore provided

an FPTAS to solve it.

B. Serial Trees

Most applications start from a unique initial task, then split

to multiple parallel tasks and finally, all the tasks are merged

into one final task. Hence, the task graph is neither a chain

nor a tree. In this section, we show that by calling Algorithm

1 in polynomial number of times, Hermes can solve the task

graph that consists of serial of trees.

The task graph in Fig. 4 can be decomposed into 3 trees

connecting serially, where the first tree (chain) terminates in

task i1, the second tree terminates in task i2. In order to find

C[i3, j3, k3], we independently solve for every tree, with the

condition on where the root task of the former tree ends. For

example, we can solve C[i2, j2, k2|j1], which is the strategy

that minimizes the cost in which task i2 ends at j2 within delay

k2 and given task i1 ends at j1. Algorithm 1 can solve this

sub-problem with the following modification for the leaves.

C[i, j, k|j1] =
{

C
(j)
ex (i) + C

(j1j)
tx (di1i) ∀k ≥ qδ(T

(j)
ex (i) + T

(j1j)
tx (di1i)),

∞ otherwise
(7)

To solve C[i2, j2, k2], the minimum cost up to task i2, we

perform the combining step as

C[i2, j2, k2] = min
j∈[M]

min
kx+ky=k2

C[i1, j, kx] + C[i2, j2, ky|j].

(8)
Similarly, combining C[i2, j2, kx] and C[i3, j3, ky|j2] gives

C[i3, j3, k3]. Algorithm 2 summarizes the steps in solving the

assignment strategy for serial trees. To solve each tree involves

M calls on different conditions. Further, the number of trees

n can be bounded by N . The latency of each tree is within

(1 + ǫ) optimal, which leads to the (1 + ǫ) approximation of

total latency. Hence, Algorithm 2 is also an FPTAS.

C. Parallel Chains of Trees

We take a step further to extend Hermes for more com-

plicated task graphs that can be viewed as parallel chains of

trees, as shown in Fig. 1. Our approach is to solve each chains

by calling FPTASpath with the condition on the task where

they split. For example, in Fig. 1 there are two chains that can

be solved independently by conditioning on the split node.

The combining procedure consists of two steps. First, solve

C[N, j, k|jsplit] by Eq. (4) conditioned on the split node. Then

C[N, j, k] can be solved similarly by combining two serial

blocks in Eq. (8). By calling FPTASpath at most din times,

this proposed algorithm is also an FPTAS.

D. Stochastic Optimization

The dynamic resource network, where server availabilities

and link qualities are changing, makes the optimal assignment

strategy vary with time. For Hermes, which solves the opti-

mal strategy based on the profiling data, it is reasonable to

formulate a stochastic optimization problem of minimizing

the expected latency subject to expected cost constraint. If

both latency and cost metrics are additive over tasks, we

can directly apply the deterministic analysis to the stochastic

one by assuming that the profiling data is the 1st order

expectations. However, it is not clear if we could apply our

deterministic analysis for parallel computing as the latency

metric is nonlinear. For example, for two random variables

X and Y , E{max(X,Y)} 6= max(E{X},E{Y }) in general.

In the following, we exploit the fact that the latency of a

single branch is still additive over tasks and show that our

deterministic analysis can be directly applied to the stochastic

optimization problem.

Let C̄[i, j, k] be the minimum expected cost when task

i finishes on device j within expected delay k. It suffices

to show that the recursive relation in Eq. (4) still holds for

expected values. As the cost is additive over tasks, we have

C̄[i, j, k] = E{C(j)
ex (i)}

+
∑

m∈C(i)

min
xm∈[M]

{C̄[m,xm, k − k̄m] + E{C
(xmj)
tx (dmi)}}.

The k̄m specifies the sum of expected data transmission delay

and expected task execution delay. That is,

k̄m = qδ

(

E{T (j)
ex (i) + T

(xmj)
tx (dmi)}

)

.

Based on the fact that Hermes is tractable with respect to

both the application size (N) and the network size (M),

we propose an update scheme that is adaptive to dynamic

resource network. The strategy is updated every period of

time, which aims to minimize the expected latency in the

following coherence time period. We will show how the

proposed scheme adapts to the changes of network condition

in Section IV.

E. More General Task Graph

The Hermes algorithm in fact can be applied to even

more general graphs, albeit with weaker guarantees. In this

section, we outline a general approach based on identifying the

“split nodes” — nodes in the task graph with more than one

outgoing edge. From the three categories of task graph we have

considered so far, each split node is only involved in the local

decision of two trees. That is, in the combining stage shown

in Eq. (8), there is only one variable on the node that connects

two serial trees. Hence, the decision of this device can be made

locally. Our general approach is to decompose the task graph

into chains of trees and call the polynomial time procedure

FPTASpath to solve each of them. If a split node connects

two trees from different chains, then we cannot resolve this

condition variable and have to keep it until we make the

decision on the node where all of involved chains merge. We

use the task graph in Fig. 1 to show an example: as the node

(marked with split) splits over two chains, we have to keep it

until we make decisions on the final task, where two chains

merge. On the other hand, there are some nodes that split

locally, which can be resolved in the FPTASpath procedure.

A node that splits across two different chains requires O(M)
calls of the FPTASpath. Hence, the overall complexity of

Hermes in such graphs would be O(MS), where S is the

number of “global” split nodes. If the task graph contains

cycles, similar argument can be made as we classify them

into local cycles and global cycles. A cycle is local if all

of its nodes are contained in the same chain of trees and is

global otherwise. For a local cycle, we solve the block that

contains it and make conditions on the node with the edge that

enters it and the node with the edge that leaves it. However,

if the cycle is global, more conditions have to be made on the

0.20.30.40.5123456

1

1.5

2

2.5

3

ε

ra
ti
o

bound

Hermes

optimal

Fig. 5: The evaluation result shows that Hermes performs

much better than the worst case bound. When ǫ = 0.4, the

objective value has converged to the minimum.

global split node and hence the complexity is not bounded by

a polynomial.

The structure of a task graph depends on the granularity of

partition. If an application is partitioned into methods, many

recursive loops are involved. If an application is partitioned

into tasks, which is a block of code that consists of multiple

methods, the structure is simpler. As we show in the following,

Hermes can tractably handle practical applications whose

graph structures are similar to benchmarks in [11].

IV. EVALUATION OF HERMES

First, we verify that indeed Hermes provides near-optimal

solution with tractable complexity and performance guarantee.

Then, we measure the CPU time for Hermes to solve the

optimal strategy as problem size scales. Finally, we use the

real data set of several benchmark profiles to evaluate the

performance of Hermes and compare it with the heuristic

Odessa approach proposed in [11].

A. Algorithm Performance

From Section III, the Hermes algorithm runs in

O(dinNM2 l2

ǫ
) time with approximation ratio (1 + ǫ).

In the following, we provide the numerical results to show

the trade-off between the complexity and the accuracy.

Given the task graph shown in Fig. 1, the performance of

Hermes versus different values of ǫ is shown in Fig. 5.

When ǫ = 0.4 (K = 98), the performance converges to

the minimum latency. Fig. 5 also shows the bound of worst

case performance in dashed line. For our simulation profile,
rmax

rmin
= 4, the actual performance is much better than the

worst case bound in Eq. (5).

Fig. 6 shows the performance of Hermes on 200 samples

of application profiles. Each sample is selected independently

and uniformly from the application pool with different task

workloads and data communications. The result shows that

for every sample, the performance is much better than the

worst case bound and converges to the optimum, that is, the

approximation ratio converges to 1. On the other hand, if we

fix the application profile and simulate the performance of

Hermes under dynamic resource network, Fig. 7 shows that

the solution converges to the optimal one, which minimizes

the expected latency and satisfies the expected cost constraint.

0.20.30.40.513
0.8

1

1.2

1.4

1.6

1.8

2

ε

ra
ti
o

optimal

bound

Fig. 6: The performance of Hermes over

200 samples of application profiles

20

25

30

35

40

a
v
g
 l
a
te

n
c
y

123456
0

20

40

60

ε

a
v
g
 c

o
s
t

Hermes

optimal

Fig. 7: The expected latency and cost

over 10000 samples of resource network

12 13 14 15 16 17 18 19 20
10

2

10
3

10
4

10
5

10
6

10
7

number of tasks

C
P

U
 t
im

e
 (

m
s
)

Brute−Force

Hermes

Fig. 8: The CPU time overhead for Her-

mes as the problem size scales (ǫ = 0.01)

B. CPU Time Evaluation

Fig. 8 shows the CPU time for Hermes to solve for the

optimal strategy as the problem size scales. We use Apple

Macbook Pro equipped with 2.4GHz dual-core Intel Core i5

processor and 3MB cache as our testbed and use java man-

agement package for CPU time measurement. As the number

of tasks (N) increases in a serial task graph, the CPU time

needed for the Brute-Force algorithm grows exponentially,

while Hermes scales well and still provides the near-optimal

solution (ǫ = 0.01). From our complexity analysis, for serial

task graph l = N , din = 1 and we fix M = 3, the CPU time

of Hermes can be bounded by O(N3).

C. Benchmark Evaluation

In [11], Ra et al. present several benchmarks of percep-

tion applications for mobile devices and propose a heuristic

approach, called Odessa, to improve both makespan and

throughput with the help of a cloud connected server. They

call each edge and node in the task graph as stages and record

the timestamps on each of them. To improve the performance,

for each data frame, Odessa first identifies the bottleneck,

evaluates each strategy with simple metrics and finally select

the potentially best one to mitigate the load on the bottleneck.

However, this greedy heuristic does not offer any theoretical

performance guarantee, as shown in Fig. 9 Hermes can im-

prove the performance by 36% for task graph in Fig. 1. Hence,

we further choose two of benchmarks, face recognition and

pose recognition, to compare the performance between Hermes

and Odessa. Taking the timestamps of every stage and the

corresponding statistics measured in real executions provided

in [11], we emulate the executions of these benchmarks and

evaluate the performance.

In dynamic resource scenarios, as Hermes’ complexity is

not as light as the greedy heuristic (86.87 ms in average) and

its near-optimal strategy needs not be updated from frame

to frame under similar resource conditions, we propose the

following on-line update policy: similar to Odessa, we record

the timestamps for on-line profiling. Whenever the latency

difference of current frame and last frame goes beyond the

threshold, we run Hermes based on current profiling to update

the strategy. By doing so, Hermes always gives the near-

optimal strategy for current resource scenario and enhances

the performance at the cost of reasonable CPU time overhead

due to resolving the strategy.

As Hermes provides better performance in latency but larger

CPU time overhead when updating, we define two metrics

for comparison. Let Latency(t) be the normalized latency

advantage of Hermes over Odessa up to frame number t. On

the other hand, let CPU(t) be the normalized CPU advantage

of Odessa over Hermes up to frame number t. That is,

Latency(t) =
1

t

t
∑

i=1

(

LO(i)− LH(i)
)

, (9)

CPU(t) =
1

t

(

C(t)
∑

i=1

CPUH(i)−
t

∑

i=1

CPUO(i)
)

, (10)

where LO(i) and CPUO(i) are latency and update time of

frame i given by Odessa, and the notations for Hermes are

similar except that we use C(t) to denote the number of times

that Hermes updates the strategy up to frame t.

To model the dynamic resource network, the latency of

each stage is selected independently and uniformly from a

distribution with its mean and standard deviation provided by

the statistics of the data set measured in real applications. In

addition to small scale variation, the link coherence time is

20 data frames. That is, for some period, the link quality

degrades significantly due to possible fading situations. Fig.

10 shows the performance of Hermes and Odessa for the face

recognition application. Hermes improves the average latency

of each data frame by 10% compared to Odessa and increases

CPU computing time by only 0.3% of overall latency. That is,

the latency advantage provided by Hermes well-compensates

its CPU time overhead. Fig. 11 shows that Hermes improves

the average latency of each data frame by 16% for pose

recognition application and increases CPU computing time by

0.4% of overall latency. When the link quality is degrading,

Hermes updates the strategy to reduce the data communication,

while Odessa’s sub-optimal strategy results in significant extra

latency. Considering CPU processing speed is increasing under

Moore’s law but network condition does not change that fast,

Hermes provides a promising approach to trade-in more CPU

for less network consumption cost.

0 20 40 60 80 100 120 140 160 180 200
20

25

30

35

40

45

frame number

la
te

n
c
y

Odessa

Hermesavg: 36.0095

avg: 26.4896

Fig. 9: Hermes can improve the performance by 36% com-

pared to Odessa for task graph shown in Fig. 1.

0 20 40 60 80 100 120 140 160 180 200
300

400

500

600

700

800

900

1000

1100

la
te

n
c
y
 (

m
s
)

0 20 40 60 80 100 120 140 160 180 200
10

0

10
1

10
2

10
3

frame number

ti
m

e
 (

m
s
)

Odessa

Hermes

Odessa extra latency

Hermes extra CPU overhead

avg: 621

avg: 682

Fig. 10: Top: Hermes improves the average latency of each

data frame by 10%. Bottom: the latency advantage of Hermes

over Odessa (Latency(t)) is significant enough to compensate

its CPU time overhead (CPU(t)) of solving the strategy.

0 50 100 150 200
0

2000

4000

6000

8000

10000

12000

la
te

n
c
y
 (

m
s
)

0 50 100 150 200
10

1

10
2

10
3

frame number

ti
m

e
 (

m
s
)

Odessa

Hermes

Odessa extra latency

Hermes extra CPU overhead

avg: 6261

avg: 5414

Fig. 11: Hermes improves the average latency of each data

frame by 16% and well-compensates its CPU time overhead.

V. RELATED WORK ON MACHINE SCHEDULING

To the best of our knowledge, no prior work has studied

the polynomial time algorithm to solve the task assignment

problem on multiple devices, taking both latency and costs

into account. The integer linear programming is a common

formulation, however, it is NP-hard to solve in general.

In this section, we compare our task assignment problem

with machine scheduling problems, which are mostly NP-hard.

Theoretically, researchers have become interested in better

understanding their approximability. That is, the existence of

polynomial time approximation algorithm and corresponding

approximate ratio. In [15], Schuurman et al. study the ap-

proximability of scheduling problems and propose ten open

problems. The most related category to our problem, called

the makespan minimization problem, is defined as

Definition 1. Given a set of machinesM = {1, · · · ,m} and a

set of jobs J = {1, · · · , n}, and pij specifying the processing

time for job j being executed at machine i, the goal is to

assign each job to one of machines such that the makespan is

minimized. That is,
minmax

i∈M

∑

j∈Si

pij

s.t. ∪i∈M Si = J .

If the job processing time does not depend on machines,

that is, pij = pj for all ij, then the problem is called

the makespan minimization on identical machines. On the

other hand, if pij =
pj

si
, where si is the speed metric of

the ith machine, like our assumption in the formulation, then

we call them uniform machines. The precedence constraints

make the problem more interesting and harder to solve. In

general, the task precedence can be described by a DAG,

which is equivalent to our task graph. In the following, we

use the standard three-field notation P |prec|Cmax to denote

the problem of makespan minimization on identical machines

under precedence constraints. Similarly, Q|prec|Cmax denotes

the case for uniform machines.

There are some positive and negative results. We only list

the most related results to our problem and direct the readers

to more relevant literature [15], [16]. The negative results

disprove the existence of the polynomial time approximation

algorithm under the assumption P 6= NP. For example, a

strongly NP-hard problem remains NP-hard even if the num-

bers in its input are unary encoded. Garey et al. [17] show

that if P 6= NP, a strongly NP-hard problem cannot have an

FPTAS. For simpler problem where the precedence constraints

are chains, Du et al. [18] show that Q|chain|Cmax is strongly

NP-hard. On the positive side, Graham et al. [19] design the

list scheduling algorithm for Q|prec|Cmax and show that it

is a (2 − 1
m
) approximation algorithm. There also have been

some improved results recently [20], [21].

We further compare our task assignment problem with

a specific category of machine scheduling problems,

Q|prec|Cmax. From complexity respective point of view, the

number of quantization levels, K = lTmax

δ
, can be encoded in

polynomially many unary bits, hence, the overall complexity

O(dinNM2K) implies that our problem is not strongly NP-

hard. On the other hand, our task graph is a subset of general

DAG, in which the application starts from an initial task and

terminates at a single task. Moreover, we do not consider the

maximum number of available processors on each device. That

is, the number of tasks being executing at the same time must

not exceed the number of processors on the device. If our

offloading strategy leads to this situation, some tasks must

have to be queued, which results in longer latency. Considering

the modern mobile devices have up to 8 cores of processing

cores [22] and is applicable to multi-threading computing,

and the observation that the task graphs are in general more

chain-structured with narrow width, we argue that Hermes is

applicable to real-world applications.

VI. CONCLUSIONS

We have formulated a task assignment problem and pro-

vided an FPTAS algorithm, Hermes, to solve for the optimal

strategy that makes the balance between latency improvement

and energy consumption of mobile devices. Compared with

previous formulations and algorithms, to the best of our

knowledge, Hermes is the first polynomial time algorithm to

address the latency-resource tradeoff problem with provable

performance guarantee. Moreover, Hermes is applicable to

more sophisticated formulations on the latency metrics con-

sidering more general task dependency constraints as well as

multi-device scenarios. The CPU time measurement shows

that Hermes scales well with problem size. We have further

emulated the application execution by using the real data

set measured in several mobile benchmarks, and shown that

our proposed on-line update policy, integrating with Hermes,

is adaptive to dynamic network change. Furthermore, the

strategy suggested by Hermes performs much better than

greedy heuristic so that the CPU overhead of Hermes is

well compensated. Existing works have been using pipelining

techniques to improve both makespan and system throughput.

It would further improve the performance if we can extend

Hermes to also make decisions on pipelining strategies.

APPENDIX

PROOF OF NP-HARDNESS OF PROBLEM P

We reduce the 0-1 knapsack problem to a special case of

P, where a binary partition is made on a serial task graph

without considering data transmission. Since the 0-1 knapsack

problem is NP-hard [23], problem P is at least as hard as the

0-1 knapsack problem.

Assume that C
(0)
ex (i) = 0 for all i, the special case of

problem P can be written as

P
′ : min

xi∈{0,1}

N
∑

i=1

(

(1− xi)T
(0)
ex (i) + xiT

(1)
ex (i)

)

s.t.

N
∑

i=1

xiC
(1)
ex (i) ≤ B.

Given N items with their values {v1, · · · , vN} and weights

{w1, · · · , wN}, one wants to decide which items to be packed

to maximize the overall value and satisfies the total weight

constraint, that is,

Q : max
xi∈{0,1}

N
∑

i=1

xivi

s.t.

N
∑

i=1

wivi ≤ B.

Now Q can be reduced to P′ by the following encoding

T
(0)
ex (i) = 0, ∀i

T
(1)
ex (i) = −vi,

C
(1)
ex (i) = wi.

By giving these inputs to P′, we can solve Q exactly, hence,

Q ≤p P′ ≤p P.

ACKNOWLEDGMENT

This work was supported in part by NSF via award number

CNS-1217260.

REFERENCES

[1] M. Kolsch et al., Vision based hand gesture interfaces for wearable

computing and virtual environments. University of California, Santa
Barbara, 2004.

[2] E. Miluzzo, T. Wang, and A. T. Campbell, “Eyephone: activating mobile
phones with your eyes,” in ACM SIGCOMM. ACM, 2010, pp. 15–20.

[3] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mobile Networks and Applications,
vol. 18, no. 1, pp. 129–140, 2013.

[4] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in ACM Computer

systems. ACM, 2011, pp. 301–314.
[5] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:

Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in IEEE INFOCOM. IEEE, 2012, pp. 945–
953.

[6] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to
offload? the bandwidth and energy costs of mobile cloud computing,”
in IEEE INFOCOM. IEEE, 2013, pp. 1285–1293.

[7] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity:
enabling remote computing among intermittently connected mobile
devices,” in ACM MobiHoc. ACM, 2012, pp. 145–154.

[8] M. Y. Arslan, I. Singh, S. Singh, H. V. Madhyastha, K. Sundaresan,
and S. V. Krishnamurthy, “Cwc: A distributed computing infrastructure
using smartphones,” Mobile Computing, IEEE Transactions on, 2014.

[9] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in ACM MobiSys. ACM, 2010, pp. 49–62.

[10] C. Wang and Z. Li, “Parametric analysis for adaptive computation
offloading,” ACM SIGPLAN, vol. 39, no. 6, pp. 119–130, 2004.

[11] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govin-
dan, “Odessa: enabling interactive perception applications on mobile
devices,” in ACM MobiSys. ACM, 2011, pp. 43–56.

[12] G. L. Nemhauser and L. A. Wolsey, Integer and combinatorial opti-

mization. Wiley New York, 1988, vol. 18.
[13] O. Goldschmidt and D. S. Hochbaum, “A polynomial algorithm for the

k-cut problem for fixed k,” Mathematics of operations research, vol. 19,
no. 1, pp. 24–37, 1994.

[14] G. Ausiello, Complexity and approximation: Combinatorial optimization

problems and their approximability properties. Springer, 1999.
[15] P. Schuurman and G. J. Woeginger, “Polynomial time approximation

algorithms for machine scheduling: Ten open problems,” Journal of

Scheduling, vol. 2, no. 5, pp. 203–213, 1999.
[16] K. Jansen and R. Solis-Oba, “Approximation algorithms for scheduling

jobs with chain precedence constraints,” in Parallel Processing and

Applied Mathematics. Springer, 2004, pp. 105–112.
[17] M. R. Garey and D. S. Johnson, ““strong”np-completeness results:

Motivation, examples, and implications,” Journal of the ACM (JACM),
vol. 25, no. 3, pp. 499–508, 1978.

[18] J. Du, J. Y. Leung, and G. H. Young, “Scheduling chain-structured
tasks to minimize makespan and mean flow time,” Information and

Computation, vol. 92, no. 2, pp. 219–236, 1991.
[19] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM

Journal on Applied Mathematics, vol. 17, no. 2, pp. 416–429, 1969.
[20] M. Kunde, “Nonpreemptive lp-scheduling on homogeneous multiproces-

sor systems,” SIAM Journal on Computing, vol. 10, no. 1, pp. 151–173,
1981.

[21] D. Gangal and A. Ranade, “Precedence constrained scheduling in
optimal,” Journal of Computer and System Sciences, vol. 74, no. 7,
pp. 1139–1146, 2008.

[22] S. Knight, “Mediatek’s new octa-core processor will be powered by the
new arm cortex-a17,” February 2014, online; accessed 3-March-2014.

[23] R. M. Karp, Reducibility among combinatorial problems. Springer,
1972.

