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Hermite and Laguerre wave packet expansions
by

JAY EPPERSON (Albuquerque, N.Mex.)

Abstract. This paper describes expansions in terms of Hermite and Laguerre func-
tions similar to the Frazler—-Jawerth expansion in Fourier analysis. The wave packets occuz-
ring in these expansions are finite linear combinations of Hermite and Laguerre functions.
The Shannon sampling formula played an important role in the derivation of the Frazier—
Jawerth expansion. In this paper we use the Christoffel-Darboux formula for erthogonal
polynomials instead. We obtain estimates on the decay of the Hermite and Laguerre wave
packets by investigating two closely related oscillatory integrals.

1. The Hermite expansion. Let Hy(z) denote the kth Hermite poly-

nomial, defined by
k
— koot O —o? =
Hk(.’ﬂ)w—-(“*l) Cm Eﬁﬁw, .’cuO,l,...,
and let
ho(z) = 7w H42REN Y2 H () /2

denote the kth L?-normalized Hermite function. Recall that the collection
{h#}72, forms a complete orthonormal basis for L2(R). The kth Hermite
function hy is an eigenfunction of the Hermite operator H = —d?/dz? + 2
with corresponding eigenvalue 2k + 1. If m: R — C is a bounded function
and A € R, then we let m(AH) denote the bounded linear operator on L*(R)
defined by the property m(AH)hg = m(A(2k + 1)) hg.

Now suppose ¢, : R — C are C°° and satisfy

(i) supp o, supp ¥ C [1/2,2],

(ii) |p(x)] 2 ¢ > 0 if x € [3/4,7/4],

(i) 57 B2 He)p(2 4z) = 1 for all £ > 1.

Then for every f € L*(R) we have f = 370 @(27AH)¢(27#H) f, with
convergence in the L? sense. We will decompose F(2~*H)f in a particular
way.

1991 Mathematics Subject Classification: Primary 42C15.
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200 J. Epperson

For N > 0 let 1%, denote the Hilbert space of maps s : {0,...,N} - C

with inner product (s,) = s(0)t(0) + ... 4 s{N)t(IV). Also, for N > 1 let
Zy1 < ... < zn,n denote the N distinct real zeros of Ay (z). According to
the Christoffel-Darboux formula for Hermite polynomials (see [5]),

N N+1 1/2 by {2)hn(y) — har(y)ha ()
(1) %hk(m)hk(yh( 5 ) T -y

It follows that

N
> halanrag)be(znng) =0 i1 .
k=0
Therefore, the functions ay41,1, ..., an+1,5+1 € I3, defined by

N —-1/2
an+1,i(k) = (Z hi(zzwl,j}) hi(2n41,7) = ena1,ihe (2N 41,5)
e}

form an orthonormal basis for ;.
Now we return to
24—1
RTEH)f = Y P27 (2k A D), b)) P
k=0
Regard fi(k) = B(27#(2k + 1))(f, hx) as an element of [3.. Then

2r—1 2+

PRH) =Y }_jl(fma'?“,n)lgp agu,n (k) i
Since F(2~*H) and w(z-HH;zi;nute,
B H)p(2HE)f = Zf i(fm Ban )13, 02, (R)D(27H (28 + 1)) .

Form=1,...,2" define o

Pun(2) = carn 2"2—1 ©(27(2k + 1))h (220 n )1k (2),

o

hun () = Cann Y W(27H(2k + 1)) b (228 n) ().

Then we have. -
PRTHW(2THH)f = 2Zpl(f, Pun) L2 (R Y-

Hermite and Luguerre wave packet exponsions 201

Therefore, if f € L3(R),

oo 2¢

(2) f= Z Z(.f: %n)w(m%n

p=0n=1

with the sum over u converging to f in L?. This identity is an analogue of
the Frazier-Jawerth expansion [2] in Fourier analysis. It will be shown in

Section 3 that the wave packets @, and 1, are essentially localized near
the point zou p.

We conclude this section with the L* theory associated with (2). Note
that condition (ii) on ¢ has not been used yet.

PROPOSITION 1. Let @ satisfy conditions (i), (ii). Then there exist con-
stants c1,ce > 0 such that

co  2¢

Cl”ﬂ’%2 S ZZ ](f:‘P,un)lz < c2”f”%2

p=0n=]

If © also satisfies the condition

o0
Z P2 F))? =1 forallz >1,
w=0

I
then || £l13. = Y00y Ta_, 1(F, @un) .

Prooi (The author thanks Michael Frazier for explaining this simple
method of proof.) Conditions (i) and {ii) on ¢ imply that there exist c1,ep
> 0 such that e; < 372, [¢(27#2)]? < ¢ for all 3 > 1. It follows that

o0

oQ o =] .
17122 = Do 1F Bl = 30 > @272k + D)(F Rl = D Ul
h=0 k=0 p=0 u=0
where we define f,, € 1. by fu(k) = B(27#(2k+1))(f, hx). Since {agu » }2;
is an orthonormal basis for 2., || fﬁ,,H?%u = Zi‘;”(f#,agnm)lgup_ But
( fﬂ,azn,n)lg“ = (f,®un)r2m, which proves the first part of the proposi-
tion. If 3570 [p(27#2)|* = 1 for all z > 1, then ||f||F: = 352, ﬂfFH?gp,
which proves the second part of the proposition. m

2. The Laguerre expansion. The Laguerre polynomials L (z) of order
o > —1 are defined by
1 d*

o — - - Y o —m ke —
L (z) = ez k!dm’“(e "7, k=0,1,...
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They have the orthogonality properties

oo

a Gf N — Mk+a+1
| L8 (2) L (@)e ™2 du = ( - )5jk.
0
We define the standard Laguerre functions £f(z) of order & > —1 by

Lile) = (F(k+a+1
and we define the Laguerre functions M§ () of order @ > ~1 by
M(x) = (22)2L8(z?), >0,

The standard Laguerre functions {£§}%, and the Laguerre functions
{MEI2, both form complete orthonormal bases for L2(R.., dz). The kth
Laguerre function M is an eigenfunction of the operator L = —d?/dz? 4+
t? + (a® — 1/4)/2? Wl'th corresponding eigenvalue 4k + 2o ++ 2. If m :
R — C is a bounded function and A € R, then we let m({)\L) denote the
bounded linear operator on L*(R; ) defined by the property m(AL)ME =
m(A(4k + 20 + 2)) M.
Now suppose @,% : R — C are C° and satisfy

(i) supp @, suppt C [a + 1, 4(e + 1],
i) lp(z)| 2 c>0if z € [Bla+ 1)/4, T{c + 1)/2],
(i) 3500 o B(2H2)(27#z) = 1 for all & > 2a + 2.

Then for every f € L?(R) we have f = Ym0 B(27HL)Y(27# L) f, with
comvergence in the L? sense. As in the Hermite case we further decompose
the terms in this sum. Let 0 < zZya < ... < zy,n denote the NV distinct real

zeros of M%(z). According to the Christoffelearboux formula for Laguerre
polynomials (see [5]),

Kl Ve 2,.a/2
)> e~ g2 12 (5,

N
3) > M@)ME()

k=0

N
D M (ana )M (vas ) =0 i Qo g

k=0
Therefore, the functions axt1,1,...,an 41,841 € 1% 1 defined by
N N o —L/2
an+1,;(k) = (Z(Mn (2N-+1,4)) ) M (23 41,5) = en41,i MR (2v41,5)
na==(
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form an orthonormal basis for I3, ;. Now for n = 1,...,24[a + 2] define
2#[ae-2) 1
Bun (z) = €28 [a+2],n Z 90(2-”(4]6 + 200 4 2))M$(z2u[a+2},n)Mg(ﬂ:),
k=0
28 [ +2]—1
wun(m) = Cax[a4-2],n Z 71[’(2_# (4k + 20 + 2))M% (32“[a+2],n)M£(m)’
k=0
Then, as in the Hermite case, if f € L2(R,.),
oo 2¥[a+2]
(4) F=Y 37 (£ 0un)ramy 1 ¥un
p=0 =l

with the sum over u converging to f in L2(R,.).

It will be shown in Section 4 that ¢, and 9., are localized near the
POIDt Zau[nt2),n- This involves the estimation of an oscillatory integral which
is very similar to the integral estimated in Section 3 for the Hermite case. It
has been recognized for some time now that expansions in terms of the AM$
functions behave in many ways like Hermite expansions. See for example
the comments in [6], p. 156, and the earlier reference {3].

We conclude this section with a proposition concerning the L? theory
associated with (4)}. Its proof is identical to that of Proposition 1.

PROPOSITION 2. Let ¢ satisfy conditions (1), (i) of this section. Then
there exist constants ¢, c3 > 0 such that
oo 2#[at2]

allflfagmy <Y, D (f un)ra@yl? < call I o m, )

p=0 n=1
If © also sotisfies the condition

Z lp2 )2 =1 for all x> 20+ 2,
H:O

2 [at2
then Hin“(l[{:_ﬂ Zy =0 Zn ;‘.H- ] ‘(f’ WHW)LZ(R+)|2'

3. Decay estimates (Hermite case). Let . : B — C be C® and
compactly supported. Suppose m(t) vanishes for all t > A > ¢. The purpose
of this section is to prove an estimate on the integral kernel of the operator
m(AH) for 0 < A < A. (If A > A, then m(AH) = 0.) This immediately leads
to decay estimates on the Hermlte wave packets ., ¥un since the integral
kernel of m{\H), denoted by m(\H)(z,y), is as follows:

m(AH)(z,y) Zm A2k + 1)) (2)h ().
k=0
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THEOREM 1, For every p > 0 and £ > 0 there exists & constant c < oo
independent of 0 < A < A such that

Sk D

) @9 S GI5mmE = T T e )

Reference [1] contains a proof with p = 4. The method there involved an
integral representation for m{AH)(z,y) which we review now for the sake of
keeping this paper self-contained. The classical Mehler formula states that
if z€C, |z| <1, then

- 11+ 22 2z
3 P ha(@hals) = H21-) " exp (2 T D (P b+ ey ).
£ 21—z 1—z
(Here (1 — 22)~1/2 is defined by cutting C along the negative real axis.) We
need an extension of this formula to the boundary of the disk |z| < 1.

Let L? denote the dense subspace of L*(R) consisting of finite linear
combmatlons of Hermite functions. Suppose g € L, |2| € 1, z # =1. Then

3" 2" (g, ha) b ()
k=0

= lim 3§ (rs) he(2)he(y)o(v) dy
k=0 —o0
= lm {3 (r2)*hu(@)he(y)o(y) dy

—oo k=0
= lim 7 Y31 — (rz)?)7/2

sl

P S exp (——12- %(m +yz)+——-2-zlz—2$y)9(y)dy

—0oo

2z
- wy) 9(y) dy.

The first equality is valid because the sum is a finite sum. The second equal-
ity holds by the dominated convergence theorem, since the Hermite functions
Ry are known to be uniformly bounded and g is integrable. The last equality
holds by another application of the dominated convergence theorem.

Now let m(£) = (27)7* {%_m(z)e~™ dz be our convention for the

icm
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Fourier transform, and continue to let ¢ € L. Then

o0 oD

| > I m(A2k + 1)hn(z)hily)gly) dy

—oo k=(

| M) DG R Vhy() de

-0

I

Il
s I

RS " (e2¥)E (g, g V() dE.

k=0

If we let z = z(£) = €™ then according to the extended version of Mehler’s
formula, the last integral equals
o142 S S ﬁ(g)ei,\g(l _ 24,2)—1/2

—0Q —00

1 1422 2z
xcxp( 5 T 2(;5-2 +y2)+1_zzmy)g(9)dyd€'

Finally, an application of Fubini’s theorem shows that this equals

oo

| Galz,v)o(w) dy,
—-00
where
Ga(z,y) =772 | m(&)e(1 - 2)~?
—oa

1 1+ 22 9 2z
i dt.
><e:cp< 5 1_zz(ﬂ: +y)+1_22$@;) 3

It will be useful to write G (=,

oo

| m(e/@n)e (1 -

— 0

¥) in the more concise form

(5) 71.—1/2(2)\)—-1 6125)“1/2

X exXp (W%((mz + %) cot & — 2my csc&)) dé.

We claim that Ga(z,y) = m(AH)(z,y) pointwise. So far we have
o0 (o]
| Galz,v)g(y) dy = X m{\H)(z,y)9(y) dy
—C0
for every g € L. We will prove below that the statement of Theorem 1
holds with G (z,y) in place of m{AH)(z,y). This implies, in particular,
that for every fixed @, Ga(z,-) € L2, Of course, it is also true that for every
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fixed z, m{\H)(z,-) € L?. Since L? is dense in L?, it follows that for every
fixed z, Ga(z,-) = m(AH)(z, } in the L? sense. Hence, for every fixed z,
Gi(z,y) = m(AH)(z,y) for a.e. y. But Gy(x,y) and m(AH)(x,y) are both
continuous functions of y, so Gx(z,y) = m(AH){(z,y) everywhere. ‘
In summary, to prove Theorem L it suffices to prove that the stotement
of Theorem 1 holds with Gx(z,y) in place of m(AH )}z, y).
The strategy is to integrate by parts repeatedly in (5) using

exp (m—;-((sa2 + %) cot € — 2wy cse E))

= —2isin® £ (¢® +1% — 2zy cosf)""gé exp (—%((nr;2 +4%) cot £ — 2xy csc:xf)) .

We assume for now that z # +y, so that (z? + y? — 2zycosé)™! is well
behaved as a function of £. Two integrations by parts were performed in [1]
to get a decay exponent p = 4. This involved the analysis of many separate
integrals. Here an inductive scheme is set up to allow integration by parts
arbitrarily many times. Define operators

Aof (&) = (&),
Af(E) = ;%f(&),

Bof(¢) = sin®E f(€),

Byf(€) = %s‘uﬂ £ (),

Cof(€) = (2* + ¥ — 2mycos&)~* F(£),
d

C1f(€) = ag(mz +y* — 2zycos &) F(E).
Let Ey denote the set of maps ¢ : {1,...,k} — {0,1}. If ¢ € Ejy, let
(o) = 21;10('5)' After doing k integrations by parts we get a sum of
integrals of the form

[«14]

6) A § Uoagiy -+ Ars 0/ V) Bty - By 2(1-¢%)712)

—00
X (Cayhy -+ Cag(1y1) exp (—%((mz +4/%) cot £ — 22y csc 5)) dé.

Here 01, 02,03 € E, and ¢ is some unimportant constant depending only on
k. The maps o1, 02,03 in (8) are required to have the property that for each
i = 1,...,k, exactly one of the numbers a1 (), o2(%), o3(i) equals one. (It
is easy to check that the points £ = nm present no obstacle to doing these
integrations by parts.) Now we consider the groupings of terms in (6).

icm
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Lemua 1. For every L > 0 there exists some ¢ depending only on m and
k such that

[Ao(ky - - Aey(E/(20)] € AT X+ 277"
Proof. This follows immediately from the fact that m is C°° and com-
pactly supported. =
LEMMA 2. There erists a constant ¢ depending only on k such that
{Bag) - - .Bo.(;)ewz(l — )12 < lsin g)2RT@)-1/2,
Proof. The proof is by induction on k. Note that
Boy - - - Boye™/?(1 — 26)71/2

can be written in a natural way as a linear combination of functions of the
form

(7) sin’ £ cos™ £ €4/ (1 — ¢i28) P/,

where [,m,n,p € Ny = {0,1,...}. The induction hypothesis is that each
such term in this Linear combination is bounded by cjsin £[2*~7(e)-%/2, It is
easy to check the truth of this hypothesis when k = 1. So let ¢ € Egyy,
k> 1. If o(k+ 1) = 0, then By(y.1) applied to (7) results in a function
bounded by

efsin €[22 (ke (9172 . gigin g2k —T(o)-1/2,
On the other hand, if o(k + 1) = 1, then Byz4.1) applied to (7) results in a
linear combination of functions each of which is bounded by
ClSiIl(f{2;‘:4-1—(0{1”—'"+a(k})_1/2 e C\Sina2(k+l)—‘r(a')—‘l/2. -

LEMMA 3. There exists u constant ¢ depending only on k such that
|Cotr) - - - Coyll S clé — 2|7 (@2 4 y? — 2wy cos£)
forall € € [-7/3+ 27n, /3 + 2mn}, n € Z.

Proof. By periodicity it is good enough to consider the n = 0 case. The
proof is by induction on k. Note that Ch) .- .Cy1)l can be written in a
natural way as a linear combination of functions of the form

(8) (wy)! sin™ £ cos™ £(a? + 3% — 2ay cos§) TRFY

where I,m,n € Ny. The induction hypothesis is that each such term in
this linear combination is bounded by ¢i&]"7(7}(2® + y* — 2@y cos £)7* for
£ € [—7x/3,m/3]. We rely on the fact that

(9) |y sin £](22 + y* — 2@y cos €)™ < el

for £ € [—w/3,w/8]. Using this, it is easy to check the truth of the hypothesis
when k = 1. So let o € By, k > L If o(k+ 1) = 0, then Cy(xy1) applied
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o (8) results in a function bounded by
Clé| oMb B (2 4 02 g o £) (D)
= clé| 7T (2" + 4 — 2ay cos ) 7+
for £ € [-7/3,7/3]. On the other hand, if o(k+1) = 1, then Cy(p1.1) applied

to (8) results in a sum of functions

(10) (;é(m +y? — 2wycosé)” ) (8) + (z* + y? — 2wy cos £)™* dg‘()

By (9} and the induction hypothesis, the first term in (10) is hounded by

clé ™ (& + 7 — 2wy cos ) THe[ <D+ (2 g2 2y cos )~
— clt[~" ) (a? 4 y? - 2ay cos )+,

The second term in (10) is bounded by a linear combination of functions
each of which has the same upper bound ¢|¢|~7() (2% 432 ~ 2zy cos £) ~(*+1)
for { € [—7/3,7/3]. =

LEMMA 4. There egists a constant ¢ depending only on k such that
1Cotiy - - - Coqyl] € (2?4 9 — 23y cos &)™
for all § € [=27/3 + 270, —7/3 + 27xn] U [7/3 + 270, 27 /3 + 27n], n € 2.

Proof The proof is similar to that of Lemma 3, except that we nse the
fact that |zy sin &|(x% + y? — 2zycos &)~ < ¢ for £ in the allowed region. m

LemMma 5. There exists a constant ¢ depending only on k such that
ICotry - - - Coyl] < el¢ — 7 — 20m| 77O (22 4 42
for all € € [27/3 + 2mn, 47w /3 + 27n), n € Z.

— 2zycos€)F

Proof. The proof is similar to that of Lemima 3, except that we use
the fact that |zysing| (@ + y? — 2aycos &)™ < ¢|f — v ~ 27n| ™' for £ €
[27/3 + 2om, 47 /3 + 27n]. =

Proof of Theorem 1. First note that for every L > 0 there exists
some ¢ < o¢ such that

Gaz,)] € A S (14 |€]/2)"F|sing|~ 2 de.

—00

It is not difficult to show that this has a bound of the form eA~/2, for
0 < A < A. This suffices to prove the desired estimate if A~Y/ Z[m y| < 1lor
ARz by € 1.

icm
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So assume A~Y?|z —y| > 1 and A=*|z 4 y| > 1. In this case we estimate
Gy (z,y) using (6). Define sets

Sy = U [-7/3 + 27n, /8 + 2mn],

nez

Sy = | J([-27/3 + 2mn, =7 /3 + 2rn) U [7/3 + 2, 2 /3 + 2mm)),
ncé

Sy = U (27 /8 + 270, 41 /3 + 27n).

nez
Note that R is the essentially disjoint union of S, 53, Sa. By Lemmas 1, 2,
and 3, the part of the integral (6) over S) is bounded by

w/3
AT AT A e+ 2y
NEZL wm/3
x [¢PRmlen =2 g ~mle8) (5P 4 o — 2oy cos€)H dE,

Since 22 +y? —2zy cos{ > (z—y)?/2 for ¢ € [—x/3,7/3] and (1) +7(02) +
(o) = k, the above guantity is bounded by

cA~L/2 x/3 » N s
T gk 2 ) (AT e 2en) TN A g
neZ—x/3

By taking I sufficiently large we see (with a little work) that this is bounded
by a quantity of the form eA=Y2(A~1/2|z —y)~%, for 0 < A < A. Next, by
Lemmas 1, 2 and 4, the part of the integral (6) over Sy is bounded by

-m/3 2w/3
cf‘\”l):( |+ )A"f(“”<1+/\-lle+zmn-b
nEL N -2x/3  «/3

% (% 4 y? — 2wy cos &) T8 dE.
Since 2% +y* — 2y cos £ > (w? +42)/2 for £ € [-2m/3, —n /3| U[n/3,2m/3],
we find that this is bounded by a quantity of the form eA® (2% +- )%, for
0 < A< A Here K can he taken as large as desired, by taking L sufficiently
large. Finally, by Lemmas 1, 2 and 5, the part of the integral (6) over S3 is
bounded by
4 /3
AR | AT A 2enl) 7
nEZ 2w /3
x |§ — 2Tl =12 | 7Te8) (97 4 o — 2my cos£)7F d.

Since 22 -+ 92 ~ 2aycosé > (z -+ y)?/2 for £ € [27/3,47/3] and 7(o1) +
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(o) + T(3) = k, the above quantity is bounded by

dr/3
Z S (1 +)\—1‘€+ zwnD—LM . W|k+1‘(m)—1/2 df-
nE% o /3

CA—I 'r(crl
IR

This is bounded by a quantity of the form ek lz + y| =2, for 0 < A < A
Here K can be taken as large as desired, by taking L sufficiently large.
These estimates suffice to prove the theorem, since k can be taken arbitrarily
large. m

COROLLARY 1. Let @un, %un be the Hermite wave packets from Section 1.
Also, let cap , and zan n be as in Section 1. Then for everyp > 0 and & > 0
there exists o constant ¢ < oo independent of 1, n such that

02”/2 62#/2
oun(@)], [Ypun (@)l < c2u, {(1 T 26/2|g — zgu )P | (L4 29F|z zz’,,nnp}

The constants cau , appearing in this estimate can be analyzed further.
Recall that for N > 1, cym = (Sn o b (ziv,n))~*/2. Using the Christoffel-
Darboux formula (1) and the relation H), = 2nH, _; it can be shown that

N-1

E h2(zn ) = Nhjy_1(2nn) forn=1,...,N.

k=0
Some information about hy..1(zn,») may be obtained from asymptotic for-
mulas for Hermite polynomials, such as those due to Plancherel and Rotach
(see [5]).

Remark. Another consequence of Theorem 1 is that the Hermite-
Triebel-Lizorkin spaces H}? introduced in [1] are well-defined for the whole
parameter range 0 < p < oo, 0 < ¢ € co. That is, the restriction p,g¢ > 1 in
Theorem 1.1 of [1] may be dropped. This leaves open the very interesting
problem of characterizing the “Hermite-Hardy” spaces HY?, 0 <p < 1.

4. Decay estimates (Laguerre case). Recall the Laguerre operator
L= —d?/da? 4z +(a? —1/4) /2* from Section 2. Let m : R — C be C™ and
compactly supported, and suppose m(¢) vanishes for all £ > A2+ 2) > 0.
The purpose of this section is to prove an estimate on the integral kernel of
the operator m(AL) for 0 < X < A. (If A = A, then m(AL) = 0.} Of course,
this kernel is given by

=5 m(M4k + 20 + 2))ME (z) ME(y).
k=0

THEOREM 2. Let oo > —1/2. Then for every p > 0 there exists o constant
¢ < oo independent of 0 < A < A sueh that
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c A—I/Z
(L A=22|z —g[je
As in the Hermite case, we begin by deriving an integral representation.
There is an old formula for Laguerre polynomials (see [4], Theorem 69)

which, when translated into the M$ functions, states that for z,y > 0,
7€C, |2z| <1,

m(AL)(z,y)] < z,y > 0.

(1) D FME(@IME(y) = 2y)*+2(1
k=0

_ Z)—1~ae—(1+z)(m2+y2)/(2(1—z))
y i (1132?]225)“
— ntl{n + o+ 1)1 — z)°

(Here (1 — 2)~1~® is defined by cutting C along the negative real axis.)
We need an extension of this formula to the boundary of the disk |2| < 1.
For the purpose of this section let L? denote the dense subspace of L?(R..)
consisting of finite linear combinations of M$ functions.

LEMMA 6. Let o > —1/2. Suppose z=¢'®, 2 £ 1, and let g € L. Then
o0

> 2 (g M) 2w, M3 (2)

k=0

= 2te(1 — ¢¥)~1=2(gin g2
0

x | (wy)'/? exp (—%(ﬂ?2 +1%) cot g) Ja(zylesc8/2])9(y) dy.

0

Proof. Let > 0 be fixed. According to (11) we have

(12) 29, M) par, ) ME (2)

k=0

| re) M ()M (y)g(y) dy

ES
il
=1

il
i
78
o8

P+l

(r2) M (z) M5 (y)g(y) dy

= fim
[ R

gk

2(my)a+1/2(1 _ ,,.eiﬁ)—1—416——(1+re"0)(:::ﬂ+yz)/(2(l——re“"))

o8 SR
X
it
(=)

I
Lg'

10y
(z2y?re’?)
XZ'I’L'F (n+a+1)(1

,r.e-i())Zn g(y) dy.
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The first equality is valid because the sum is a finite sum. The second equal-
ity holds by an application of the dominated convergence theorem. This is
allowed because the Laguerre functions M§ are uniformly bounded when
@ > —~1/2 (see [6], Section 1.5} and ¢ is integrable. Now we need to evaluate
the last limit in (12). Since g € L2 and & > —1/2, |g(y)| < ¢(1 + y*)e™v"/?
for some ¢ < oo and a > 0. Note that

E—'yz,/2‘6-—(1+1‘ei8)92/(2(1—7‘€i9))| < exp (—% min{l,1 — cos G}yz).

Also note that for every fixed x > 0 and every ¢ > 0 there exists some ¢ < 0o
such that

< cev’.

f: (x2yPrei)n
“nlln+a+1)(1- reif)2n

Therefore, by the dominated convergence theorem, the last limit in (12)
equals the value of the integral obtained by substituting r = 1. The proof is
finished by observing that

T RN S 10y v 1 1 e“’/z an
(ay)e e et +/20-) § ye
nll(n+a+1)\ 1—e

n=0

_ @ _3 2 2 ﬁ _._2....._.__ *
= (zy) exp( pla )C°t2> (o:ylcsc9/2)

y i (~1)» zylescf/2)\ FT
nl(n+a+1) 2

=0

= 2%sin 8/2|% exp (—%(mz + 9%) cot g)Ja(my[csceﬂ]). n

Now let (€)= (2n) > {7 _m(z)e™ "¢ dw, and continue to let o > ~1/2,
g € L#. Then according to Lemma 6,

J D mMdh + 20+ 2))ME (@) ME ()9 (y) dy
—oo k=0
oo . o
= | ()P ParREN (M (g, M) 12(m, ) MR (3) dE
—00 k=0
— S S m(f)eiA(2a+2)£21+a(1 . eitlAE)—l—nciSin 2A£|a
—oo 0

x (zy) /% exp (~—%(:c2 +y*) cot 2)\5) Ja(zy|csc 22E]) g (v) dy dE.
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Since @ > —1/2, there exists a coustant ¢ < co such that |J, (zy|esc 2A¢))| <
c(zylcse 22E]) /2. Tt follows by an application of Fubini’s theorem that the
last double integral equals Sg° Ga(z,v)9{y) dy, where

G)\(a:,y) — 21+a(wy)1/2 S Tfﬁ(g)eiA(Qa-f-z){(l _ eitlAs)—l—a'Sm 2/‘\Ela

X eXp (w%(wz + 4%} cot 2)\5) Jo(zy|ese 20E]) dE.

It will be useful to write G(z,v) in the more concise form
(13)  2%(zy) /2270 | g/ (2n))eot i1 - %) -1e

X |sin€|* exp (—%(mz + %) COtf) Ja(zylescé]) dE.

As in the Hermite case, in order to prove Theorem 2, it suffices to prove
that the statement of Theorem 2 holds with Gy (z,y) in place of m(AL)(z, y).
The analysis of (13) will be similar to the analysis of the integral (5) in
Section 3. Note that because we are assuming o > —1/2, we can write the
Bessel function in (13) in the form J. () = fi(t)e™ + fo(t)e™ %, where fi, fa
are complex-valued functions satisfying | fl(k)(t)|, | fz(k)(t)| < et~ (H2R)/2 for

t > 0. This splits (13) into two absolutely convergent integrals of the form

(4) (o) 270 | /()L — gl

x f(zy|csc é]) exp (~—;—((:c2 +y*) cot £ & 2xy|csc§|)> dg,

where f satisfies [f)(#)] € et~ (HH2R)/2 for ¢ > 0. We consider the inte-
gral with ~2axy|csc £| in the exponential. The other integral leads to similar
estimates.
Define sets
Ty == U (2mn, 2rn A7), Th = U {270 + w, 27n + 2ur).
ne&w : nEL

The strategy is to split (14} into separate integrals over T3, T3 and in both
cases to integrate by parts repeatedly using

exp (—-';'—((a:2 + ) coté ~ 2my|cscg|))

= ~2isin? ¢ (2% +y? = 22y cos ‘5)_1&% exp (—%((mz%yz) cot £— 2wy|cscﬂ))‘



214 J. Epperson

(We take the — sign if £ € 71 and the + sign if £ € T2.} Recall the notation
used for the integration by parts in Section 3. The only modification to be
made is that we define new operators

CLg(6) = (& + 7 + 2(=1) g cos€)g(6),
Cfglé) = g%w +y2+2(=1Yaycosé)Ng(é), §=1,2,

=12

in place of the old Cy, C) operators. After doing k integrations by parts on
the portion of (14) over T; we get a sum of integrals of the form

(15)  e(zg)® 27 | (Aoyry - - Aaa () UE/(2N)))
T
% (Baath) - - - Boyry €@ TIE(1 — 75) 71~ %(sin €| f (ay[csc £]))

¢

X {Cﬁs(k) . C’is(l)l) exp (-——2((w2 + y*) cot £ — 2wy|csc£|)) det.

As before, the maps ¢y, 02,03 are required to have the property that for
each i = 1,..., k, exactly one of the numbers oy (%), #2(i), o3 (i) equals one.
(Note that the integration by parts incurs no boundary terms.)

LEMMA 7. Let f satisfy |F®F)(t)] < cpt=(F2R)/2 k= 0,1,... Then there
exists o constant ¢ depending only on k such that
|Bory - - Boquy €' HE(L — €)1 % sin €1 f(mylesc ]|
< c(my)—lﬂ‘siné-IZk——T(a')—l/Z’
forallE e Th U, o,y > 0.

Proof. The proof is by induction on k. Note that the quantity to be
bounded can be written in a natural way as a linear combination of functions
of the form

(16) sin' ¢ cos™ £ e™é(1 — ™6) ™% gin £|* (zy)P F P (2y|csc £])

where I, m, n,p € Np, r € R. The induction hypothesis is that each such term
in this linear combination has the property [~n+4p+1/2 2 2k—r(0) —1/2.
(Note that this implies that (16) is bounded by c(zy)~/?|sin £|2k~T{7)-1/2)
It is easy to check the truth of the hypothesis when k = 1. So let o € Epy1,
k21 Xo(k+1)=0, then By(x+y) applied to (16) results in a function of
the form

sin'*2 £ cos™ £ € (1 — &) T sin ] ()P £ P (ayesc £)).

In this case we certainly have (1+2) —n+p+1/2 2 2(k+1) — (o) - 1/2.
We leave it to the reader to check the result of applying By to (16). m
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LEMMA 8. There exists a constant c depending only on k such that
[C'Clr(,c) . Cclr(l)1| <clé - 2mn| 7" (22 4 4% — 2zycos )
for all &€ € [—w/3 + 2rn, /3 + 20N Ty, n € Z, z,y > 0, and
|C'§(k) . Cfr(l)l\ < efe® + y? + 2zy cosg) ~F
for oll € € [—7/3 4+ 2man,7w/3+ 2mn]NTe, n e Z, z,y > 0.
Proof. The first inequality is just a special case of Lemma 3. The proof
of the second inequality is similar to that of Lemma 3, except that we use

the fact that [zy|(z? +y? + 23y cos &)™t < ¢ for £ € [—7/3+2an, w/3+2mn],
z,y >0 m

LeMMA 9. There erists o constant ¢ depending only on k such that
1G24y -+ Conll < ela® + 3% + 2(~ 1) aycos §) "
for all € € [-2m/3 4 27n, ~7/3 4 2mn] U [x/3 + 2mn, 2w /3 + 27n], n € Z.

Proof The proofis simila,.r to that of Lemma 3, except that we use the
fact that [zy|(x® + y? + 2(~1)7zycos €)™ < ¢ for ¢ in the allowed region. m

LeMMA 10. There emists o constant ¢ depending only on k such that
|Gl -+ Clayt] < ofa? +y* — 2wy cos €)™
for all € € [2n/3 + 270,47 /3 + 27n]NT, n € Z, %,y > 0, and
|C§‘(k) .. 03(1)1| < ol — 7 — 2mn| "7 (2? 4 4 4 2wy cos £)7F
Jor all & & [2m/3 + 2mn,4x /3 4+ 2rn) N1y, n € Z, z,y > 0.

Proof. The proof is similar to that of Lemma 3. For the first inequality
we use the fact that |2y| (22 +y% —2zy cosé) ™! < cfor £ € [2r /3427, 4/3+
27n), ©,y > 0. For the second inequality we use the fact that |y sin £|(z* +
¥: 4 2oycosé)™r <€ clf — 7w — 2an|7L for € € [2n/3 + 2mn, 4w /3 + 27n],
z,y >0

Proof of Theorem 2. First note that {14) is bounded by a quantity

of the form
[ao]

At | (L 1gl/A) Hsim g2 g
Here L can be taken as large as desired. As in the proof of Theorem 1, this
has a bound of the form cA™*/2, for 0 < A < A. This suffices to prove the
theorem if A~Y?|g — y| < 1.
So assume A~Y2|z — y| > 1. Let S1, 52,53 be the sets defined in the
proof of Theorem 1. By Lemamas 1, 7 and 8, the part of the integral (15)
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over 51 N7} is bounded by
/3
ezy) A~ 12 S ATTE) (1 4 ATHE 4 2nm)) T
neZ 0
* (my)—lfz\£|2k—r(uz)~l/2|£|—r(ag)(wz + y2 — 22y cos E)——k de.

As was observed in the proof of Theorem 1, this is bounded by a quantity
of the form eX™1/2(A1/2|z —y])2%, for 0 < A < A. The part of the integral
(15) over S1 N T3 is bounded by

e(xy) ATy \ AT 4 AT ¢ 4+ 2n|)E
neL —m/3
x (@y) TR 4y + 2wy cos§) TR de.
This is bounded by a quantity of the form cA~Y/2(A"1/23(z + y))~2*, for
0 < A < A. Next, by Lemmas 1, 7 and 9, the part of the integral (15) over
S2 N1 is bounded by

27/3
clog) P71y | AT AT g o+ 2y
nE%: /3
x (zy) "M (2% + y? — 2oy cos £) R dE.

This is bounded by a quantity of the form cA™ (z + y)=2*, for 0 < A < A.
Here K can be taken as large as desired, by taking L sufficiently large.
The part of the integral (15) over S N Th has the same hound. Finally, by
Lemmas 1, 7 and 10, the part of the integral (15) over Sy N1 is bounded by

33’y I/ZA i Z S

nEL 2 /3
x (zy) V3¢ — w|2R-rlon =252 4oy? L gy cos £) 7R d

This is hounded by a quantity of the form e\ (z 4+ y)~2", for 0 < X < A.

Here K can be taken as large as desired, by taking L sufficiently large. The

part of the integral (15) over 83N Ty is bounded by
4w /3

e(zy)/2 At Z S AN 4 AT - 27en|)
neL T
% (zy) Y2 — |~ (22 P 4 2y cos £)F dE.

This is bounded by cA\¥ |z — y|~?%, for 0 < A < A. Again, K can be taken
as large as desired, by taking L sufficiently large. These estimates suffice to
prove the theorem, since k can be taken arbitrarily large. w

AT 4 AT E 4 20en|)

|2k—'r{crg)—1/2‘§ .
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CorOLLARY 2. Let @ > —1/2, and let @un, Yun be the Laguerre wave
packets from Section 2. Also, let caujqrg)n and Zou[t2)n be a8 in Section 2.
Then for every p > 0 there exists a constant ¢ < oo independent of i, n
such that

CCou[a+2],n 2“/2

z)| < :
(1+ 282z — zgu[a191,n])?
As in the Hermite case, it is possible to analyze the cyuq42),» constants
further.

|LP;m( )] W)un
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