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1. Introduction

Following four important papers on Birkhoff interpolation by Turan and
his associates ([2], [3], [4], [14]), Kis ([8], [9]) proved the following theorems.

THEOREM 1. (Kis). Let f(z) be analytic in | z | < l and continuous on
| z | = 1. Let Rn(z) be the unique interpolation polynomial of degree ^2n — 1
in z such that

(1.1) RaiZkn) = / ( ^ ) , /(Z*J> R"n(.Zkn) = Pkn, * = 1,2, - , «

(1.2) z,n = exp - - , fc=l,2,-,n

(L3) p 0 (^L\,k=U2,...,n
v ' Hkn \ l og n / '

(1.4) co(<5)log5 = 0.

Then Rn(z) converges uniformly to f{z) in |z| g 1.

Here <w(<5) denotes the modulus of continuity of /(z). Theorem 1 is best
possible in the sense that the freedom of fikn cannot be improved. The above
theorem is surprising, in view of the arbitrariness of the numbers flkn which satisfy
only the order relation (1.3).

THEOREM 2. (Kis). Let /(x) be a In periodic continuous function satisfying
Zygmund's condition

(1.5) f(x + h)- 2/(x) +/(x - h) = o{h).

Let Rnix) be the unique trigonometric polynomial of order n satisfying the
conditions
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[2] Hermite-Birkhoff interpolation 229

(1.6) Rn(xkn) =f(xkn), K(xkn) = 8kn, k = 1,2, -,n,

n-l

[Un(x) = a0 + X (ak cos kx + bk sin kx) + ancos nx ]

(1.7) x*n = ^

Then Rn(x) will converge uniformly tof(x) on the real axis provided that

(1.8) 5kn = o(n).

Theorem 2 is best possible in the sense thatZygmund's condition cannot be
replaced by

(1.9) f(x + h)-2f(x)+f(x-h) =

For this result we refer to the work of Vertesi [20].
Theorem 2 of Kis has received the following generalization. Sharma and

the author [11] have considered the problem of (0,M) interpolation. Here the
interpolation trigonometric polynomial Rn(x) of order n is given by

7kjr

(1.10) Rn(xkn) = f(xkn), RiM\xkn) = pkn, xkn = - ^ - , k = 0,1, - , n - 1

(M being a fixed positive integer ^ 1). The trigonometric polynomial Rn(x) given
by (1.10) has the following form:

n - l

J?,(x) = ao+ T, (akcoskx + bksinkx) + bnsinnx (M-odd)
(1.11) k = 1

+ an cos nx (M-even).
The main theorem of the above paper is as follows.

THEOREM 3. (Sharma and Varma). Let f{x) be a 2n periodic continuous
function. Let M be any fixed odd positive integer. Suppose Pknas stated in (1.10)
satisfy

( U 2 ) A " =

ThenRn(x) as defined by (1.10) and (1.11) converges uniformly to f(x) on the real
line.

For the case M-even, letf(x) satisfy the Zygmundcondition (1.5) and

(1-13) Pkn = o(nM~1), fc = 0 , l , - , n - l .

ThenRn{x) will converge uniformly to /(x) on the real line.
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Motivated by the above theorem on trigonometric interpolation, the author
has considered the problem of (0,1,M) interpolation on the nodes xkn = Iknjn,
k — 0,1, —, n — 1. By (0,1, M) interpolation we mean the problem of finding
interpolatory polynomials of suitable form for which the values, first derivative
and Mth derivative, are prescribed at n distinct points. It turns out that these
interpolation polynomials exist uniquely only when M is an even integer. In this
case we proved that the interpolation polynomials converge uniformly to f(x),
provided/(x) 6 Lip a 0 < a ^ 1. For details we refer to Theorem 2.2 in [15].
Thus, by prescribing also the first derivative of the interpolation polynomials, one
obtains a convergence theorem for a much wider class of functions than in (0,M)
interpolation (for M-even). But, by doing so, we have increased the order of the
trigonometric polynomials. It is also interesting to compare the results of (0,2,3)
interpolation [12] with (0,3) case as well. We know from Theorem 3 that Rn(x),
obtained from the consideration of (0,3) interpolation, converges uniformly to
f(x) for just 2n periodic continuous functions, whereas, in the case of (0,2,3)
interpolation we need at least f(x) e Lip a, 0 < a < 1. Thus, by prescribing also
the second derivative of the interpolation polynomials one obtains convergence
theorems for much narrower class than in (0,3) interpolation.

2. Statement of results

The object of this paper is to consider the following problem: Let M be a
fixed odd positive integer k 3. Let Rn(x) be a trigonometric sum of order In (of
the form)

2n-l
(2.1) d0 + £ (djcosjx + ejs'mjx) + e2ns'm2nx.

We ask the following question; Does there exist a unique trigonometric sum of
order In which satisfies (2.1) and

(22s) Rn(Xin) = f(Xin)> R'n(Xkn) ~ ain> i=Q ••• H — 1 ?

«»"(*«») = Pin, RiM\Xin) = Sln,

Here xin are given by (1.7). It turns out that the answer to the above question is in
the affirmative. We call it (0,1,2,M) trigonometric interpolation. We will show
that under suitable restrictions on <*,„, /?,„, 8in and/(x)ec2 l t , Rn(x) will converge
uniformly to f(x) on the real line. We will also prove some inequalities on
trigonometric polynomials analogous to Fejer [7]. For the case when M is
even, the results are analogous to the case (0,1,2,4) trigonometric interpolation,
which has been dealt with already in my earlier work [17]. Now, we state the
main theorem of this paper.

THEOREM 4. Letf(x) e C27!. Then Rn(f) defined by (2.1) and (2.2) converges
uniformly to f(x) on the real line provided that
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The freedom of these numbers is best possible.

The main interest of the above theorem lies in the fact that as far as the
freedom of ftkn is concerned, we need only fikn = o(«2). See also the remarks at
the end of the paper.

THEOREM 5. Let <f>n(x) be any trigonometric polynomial of an order ^ 2n
and satisfying (2.1). Let further

(2.4) \$Xxin)\^aj, j = 0,1,2,M, i = 0,l,-,n - 1.

Then we have for 0 ̂  x :g 2n,

(2.5) | *„(*) | ̂  co(ao + fll ! ^ p + i f + i£log

Here c0 is a definite constant independent of n and x. (2.5) is best possible in the
sense that there exists a trigonometric polynomial gn(x) of the order 2n satisfying
(2.1) and \gJ

n(xin)\ = aj,j = 0,1,2,M, i= 0,l,---,n - 1, and for which

(2.6) \9JW\>

THEOREM 6. Let f(x)ec2n have co(d) as its module of continuity. Then un-
der the assumption <xin = /?,„ = 8in = 0,

(2.7) \RH(x)-f(x)\

THEOREM 7. Tfre explicit representation of Rn(x) is given by

n - l n - l

(2.8)

n - l n - l

w/iere A(x), B(x), C(x) and D(x) are defined in (2.15), (2.13), (2.11) and (2.9)
respectiuelj.

Here ^4(x), B(x), C(x) and D(x) are given by:

( 2 . 9 ) !,(,) = 2 ( - i r ^ ^ ( l - C o s , x ) F - s i n ^ sinnxl
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where

(2.10) a},M = (2n -j)M + (n +j)M - 3 {(n - j)M +jM},

( 1 — c o s n x ) [". . nZ} biM "I
( 2 . 1 1 ) C(x) = s 1 + 2 2- -LL— cosjx ,n ,_, a, M I

where

(2.12) bpM = (2n - j)M - 2(n - j ) M - A

(2.13) 5(x) = G(x) + C°.Snx' 2 2 •^^•sin/x + ^ - s i n n x ,
11 I t n • >* CL~ \M I

L 7 = 1 ^7»M ^n^M J

where

(2.14) ciM = (3B - 2y);M + 4(n - j ) M +1-(n- 2/) (2B - j ) M ,

o i < \ ^/ ^ c/ \ , 2 ( 1 - c o s nx) "Z,1 d,->M

where

(2.16) dJiU = j(n -j) {In -j) {(2n - j ) " " 1 - 2(B - J V " 1 + j * 1 " 1 } .

Here F(x) and G(x) are fundamental polynomials of Hermite interpolation
(see [11]) and they are given by

(2.17) F(x) = - [ l + - " l (n - j)cosjxl ,
n L " 7=1 J

(2.18) G(x) = 4 \2 S sinyx + sin nx 1 .
" L 7 = 1 J

REMARK 1. It is interesting to mention that for M = 3. the fundamental
polynomials A(x) and C(x) are nonnegative, but for the cases when M > 3, this
property, in general, breaks down. Indeed for M = 3 we have

(2.19) D(x) =

(2.20) C(x) =

3n2

(1 - cosnx)F(x )

(2.21) B(x) = F(x)G(x) - C(x) + ( "

and

(2.22) A(x) = F\x) + ( - ^ l^C(x) .
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3. Preliminaries

Here we state those results which we shall require in the proof of theorems
stated in Article 2.

Following identities are easy to obtain from (2.8):

(3.1) ZiKx-xJsl,

,_ „. nZ} _, . 1 — cosnx

(3.2) L C(x - xkn) ^ .

From (see Zygmund [21]) the known results due to Jackson we have:

(3.3) I F(x-xkn) = l, S | G ( x - x t B ) U — logn,
t=0 *=0 n

(3.4)

Following the arguments given in Jackson [5] we have for x # xkn:

(3.5)
n— 1 p

Z max ^ 4«logn.

Let 0 ^ at g a2 ^ • • • ^ ap then we have

(3.6) £ a;sin;x 2ap max

Similarly, if aj ^ a2 ^ a3 ^ ••• ^ ap then we have

(3.7) £ a,- sinjx ^ 2a! max

sinyx

sin^x

Proof of (3.6 and (3.7) follows easily from Abel's Lemma.

We denote the Fejdr-kernel by

(3.8) Xj.k(x) = 1 + 1 2 0" - 0cos i(x - x,J.
J i = l

It is easy to verify the following properties of Fejer-kernel:

(3.9)

and

n - l

^•,ii(x) = «, T M ( X ) = j
sin 2 J
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(3.10) 0' + l )^+i , tW - 2/rM(x) + 0' - 1)T^I ,* = 2cos7'(x - xkn).

Let aJyM be defined as given in (2.10). Denote a"jM, the second derivative of
aJtM, with respect to j . By using

(3.11) (2n - j)M ^ 2M(n - j)M + j M , {n + j)M ^ (n - j)M + 2MjM,

it follows that

(3.12) apM > 0, a'JtM > 0 for M ^ 3.

By using (3.12), we conclude that a'jM is an increasing function of j , for

j = 0 ,1 , ••-,«. But a^,M :£ 0 (n = 2m + 1), or(n = 2m). On account of

we finally obtain that ajM is a decreasing function of j , for j = 0,1, •••, m and an

increasing function of 7 for 7 = m + 1, ••-,«. From these observations we easily

conclude that:

(3.13) nQrnf-1 <ajM<(2nf,

(3-14) \a'JtM\<2M(2n)M-x,

(3.15) |<M|<M(M-l)(2n)M-2,

<3-16) fefSrs^-
4. Upper estimates of the fundamental polynomials

Here, we shall prove the following result:

LEMMA 4.1. The following estimates are valid:

(4.2) "'^ |C(x-xfcn)| z l

(4.3) "Z |B(x-x,n)| ^
k=O

n-l

(4-4) £ |^ (x-x f c n ) | ^ f3.

Heref1,f2,f3 are positive constants independent of n and x.

PROOF. We note that for M= 3, we have more precise constants. In this case,
we have:
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(4.1a)

(4.2a)

(4.3a)
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n - 1

s
fe = O

f \C(x-xkn)\ ^

n -

(4.4a) 1.
fc = 0

This follows immediately by using (2.19)-(2.22), (3.3) and (3.4).
First, we prove (4.1). We note that (4.l)-(4.4) are valid for x = xin, i = 0 , 1 , •• •,

n— 1. Let x 7̂  xln and let n = 2m (Proof for n = 2m+ 1 is similar). From (2.9) we
have

\D(x-xkB)\ ^ 4" [2 sinj(x - xkn)

J = l C I ; i

1
(2 M - 2)nM

"•£ sinj(x - xfen)
1 j = m + 1 UJ,M ]•

Since aJ>M is a decreasing function of j for _/ = 0,1, -••, and increasing
function of j for j = m + 1, ---.n (see Art 3), by using (3.6) and (3.7) we obtain

max (2M-2)nMJ-

Now, we note that for M ^ 3 we have

Therefore, by using (3.5) and the above estimates we obtain

25 log n

which proves (4.1). To prove (4.2) we need some estimates of the coefficients in-
volved in C(x - xkn). First we observe from (2.12) and (3.11) that

Next, we note that

f,J>M = (2n - j ) M - 2(n - j ) M - j M ^ 0.

;>M = M(M - l )bJ i M_2 ^ 0.
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From this it follows that b],M is a monotonic increasing function of j . It is easy to
check that b'j,M ^ 0 for j = 0 ,1 , •••, n. Therefore, bjM is a monotonic decreasing
function of j for j = 0,1, •••,«. Thus, we obtain the following estimates:

0 ^ fr,.M ^ 2nM, | b},M | < M(2nf-\

By using the estimates of aJM, a']tM, aJ<M, as given in (3.13)—(3.15), and the above
estimates of bj M, we finally obtain

KM

With the help of (3.10) and (3.8), C(x) (as stated in (2.11)) can be rewritten
in the form

7 y l

Let us write:

(4.6) p(j,M) = ^ - , g(j,M) = P(j + 1,M) - 2pO,M) + p(J - 1,M)

so that p(o,M) = 1 and p(n,M)= 0. Thus, C(x - xkn) can be expressed in the
form

(4.7) C(x - xkn) = l j 1 E g(),M)hjAx) + nrn,k(x)p(n - l.Af) .
" Ly = i J

From (4.5) it follows that

(4.8) \g(J,M)\ = | (f2-

where _/ — 1 < ^2 <J < f t < _/ + 1. Further, it is easy to verify that

(4.9) l ^ -
On using (3.9) and (4.7)-(4.9), we obtain

" I C(x - xkn) | ^ 4 [(n - 1)/4

This proves (4.2). The proof for (4.3) is similar to (4.1) and the proof for (4.4) is
similar to (4.2). We omit the proof.
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5. Lower estimates of the fundamental polynomials

The inequalities of Lemma 4.1 are, in a sense, best possible as is shown by
the following lemma.

LEMMA 5.1. There exist positive constants /7(M) and /8(M) for which the
following inequalities hold true for n = 2m + 1:

(5.1) "E \A(n-xkn)\ £ 1,
k=0

(5.2) "E \B(n-xkn)\ £ h
Jc

(5.3) " E |C(7r-xtn)| £ ~ ,
n

n - l

(5.4) E
* = o " • "

PROOF. We observe from (3.1) that
n - l B + l

E | A{n - xtB)| > E A(« - xkn) = 1
4 = 0 t=0

which proves (5.1). Similarly from (3.2) we have

- ll > * I Cf - , _ l - c o s n 7 i _ 2

which proves (5.3). Proofs for (5.2) and (5.4) are similar. We will only prove (5.4).
First, we note that

- xkn) «= 8( I } E
n J = \ aJ.M

Therefore, we have

~ ^ - D ( T C - xkn) = -•••• - c o s i^-A
2 n I auu

sin

From (2.10) it follows that

(5.6) aUM < 2MnM.

It is well known that
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(5.7) cot-
2

From (5.5)-(5.7) and (3.16) we obtain

= /9nlogn.

which proves (5.4) as well.

6. Proof of Theorems

The upper and lower estimates of fundamental polynomials obtained in
Articles 4 and 5 lead to the proof of theorems very easily.

PROOF OF THEOREM 4. From (3.1) and (2.8) we obtain

(6.1)

Let us denote the expression on the right-hand side by Ii,I2,13 and J4 respectively.

From (2.3) and (4.1) we have

Kix)

i =

-fix)

1

Z ccinB(
0

= "s [/(*,„)
i = 0

x — xin) + S
;=o

-f(x)-]A(x-

PinC(x-Xin)

xin)

From (2.3) and (4.2) we have

"E
i=0

From (2.3) and (4.3) we obtain

(6.3) IJ, I = o ( n
2 )"E I C(* - . , , ) I = ^

i0 n

(6.4) \I2\=O(JL) "i I B(x - xin) \=o{^\ / z ( M ) 1 ° g " = 0(1).
1 ^ 1 \ l o g n / j = 0 ' ' \logn/ n

For the estimation of 7j we use the fact that f(x) is continuous 2JT periodic
function. Given e>03<5 such that \f(x)—f(xin)\ <e whenever | x - x i n | = 5
= <5(e). Put max0gJcg2n|/(x)| = B. From (3.9), it follows that

= T ^
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By expressing A(x — xin) in terms of Fejer-kernel and using the above result, we
obtain

(6.5) E \A(x - xin) I g —^
|x-x,.|>a ' ' «sin

Next, we express It as

h= E [fix) -/(*,„)] A(x - xin)
\X-Xtn\ S*

+ E [/(*) -/(*,„)] A(x - xin).
|x-xin|>«

By using (6.5) and (5.4), we obtain

\h\ ^ s S \A{x-xin)\ + 2B
| | S « |

i = l

Since the second term on the right-hand side can be made as small as we please
by choosing n sufficiently large, we have

(6.6) h = o(l).

From (6.1)-(6.4) and (6.6) we have #n[x] -f(x) = o(l) which proves Theo-
rem 4.

PROOF OF THEOREM 5. From the uniqueness of (0,1,2,M) trigonometric
interpolation it follows that for an arbitrary trigonometric polynomial $n(x) of
the order 2n (satisfying (2.1.)) we have

4>n(x) = E <t>n(xin)Ain(x) + E <i>'n(xin)Bin(x)
i=O i = O

+ E 4>"n(xin)Cin(x) + E <j>iM\xtn)Din(x).
i=O i=O

Let <j>n(x) satisfy further the condition (2.4). On using (4.1)-(4.4) it follows that

\<j)n(x)\ ^^

25 log n

Therefore for 0 :g x ^ 2n, we have
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where c0 = max (/3, f2,fu 25).
To prove (2.6), we denote qn{x) to be the trigonometric polynomial

n - l

qn(x) = 2 a0A(x - xin) sign A(n-xin)
>=o
n - l

+ £ ajB^-XiJsignB^-XjJ
i = 0

n - l

+ E a2C(x-xiB)signC(7c-x,n)
i=0

n - l

+ S aMD(x-xin)signD(7t-xin).
{ = 0

Let x = 7t. By using (5. l)-(5.4) we can deduce (2.6) and this proves Theorem 5.

PROOF OF THEOREM 6. Let ain = fSin = Sin = 0. Then (2.8) reduces to

Rn(x) = "Z f(xin)A(x - xin).
1=0

By using (3.1) we have

(6.7) /(x) - Rn(x) = "S [/(x) - / ( x j ] A(x - xin).
i=0

Let us denote co(5) as modulus of continuity of /(x). From the result of
Shisha and Mond [12], we have for any 3 > 0 and all x, y

(6.8) |/(x) - /GO | S

By using (6.7) and (6.8) we obtain

(6.9) |/(x) - Kn(x)| :g " £ o>(6) ( l + ^ s i n 2 ( - ^ ^ - ) | A{x - xin)\.

Following [17], it can be shown that

(6.1) " l s ^ X - Z J ^ \ \ ^

Let ,5 = 1/̂ /n in (6.9) and use (6.10) and (4.4) to obtain

This proves Theorem 6 as well.
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REMARK. Let M be an even positive integer. Let Sn(x) be the unique trigo-
nometric polynomial determined by (0,M) interpolation. From Theorem 3 we
know that Sn(x) converges uniformly to /(x) (satisfying (1.5)) provided that the
freedom of S(

n
M)(x) at the points xk's is given by

This is best possible. In [15] the author has considered the problem of (0,1,M)
(M-even) interpolation. One of the main features of this result is that by pres-
cribing the first derivative, the freedom of S[M\xk) has considerably increased.

It may be noted that for M-odd (0,1, M) trigonometric interpolation does not
exist uniquely. This is shown also in [15].

Let Sn(x) be the unique trigonometric polynomial determined by (0,M)
interpolation (M-odd). From Theorem 3 we know that Sn(x) converges uniformly
to /(x) (/(x) e C2K) provided the freedom of S[M\x) at the points xt's is given by

Further, this is best possible. Let Rn(x) be the unique trigonometric polynomial
determined by (0,1,2,M) interpolation (M-odd). Here we prescribed Kn(x) and
R"n(x) at x = xk as well. One of the main features of Theorem 4 is that even with
these new restrictions, the freedom of R[M^(x) at x = xks can not be improved.

I take this opportunity to express my thanks to the referee and Professor
G. Szekeres for valuable comments.

References

[1] G. D. Birkhoff, 'General mean value and remainder theorems with applications to mechanical
differentiation and integration'. Trans. Amer. Math. Soc. 7 (1906), 107-136.

[2] J. Balazs and P. Turin, 'Notes on interpolation,' II. Acta Math. Acad. Sci. Hung. 8 (1957)),
201-215.

[3] J. Balazs and P. Turan, 'Notes on interpolation III Convergence,' ibid. 9 (1958), 195-214.
[4] J. Balazs and P. Turan, 'Notes on interpolation IV (Inequalities),' ibid. 9 (1958), 243-258.
[5] D. Jackson, 'Theory of approximation', AM.S Vol. 11.
[6] P. Erdos and P. Turan, 'On some extremal problems in the theory of interpolation,' Acta

Math. Acad. Sci. Hung. 12 (1961), 221-239.
[7] L. Fejer, 'Die Abschatzung eines Polynoms in einem Intervalle, wenn Schranken fur seine

Werte und ersten Ableitung-swerte in einzelnen Punkten des Intervalles'... Math. Z. 39
(1930), 426-457.

[8] O. Kis, 'Remarks on interpolation', Acta Math. Acad. Sci. Hung. II (1960), 49-64. (Russian)
[9] G. Pblya, 'Bemerkungen zur Interpolation und zur Naherungtheorie der Balkenbiegung,'

Zeitschr. fur Ang. Math, und Mech. II (1931), 445^49.

https://doi.org/10.1017/S1446788700012994 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012994


242 A. K.Varma [15]

[10] I. J. Schoenberg, 'On Hermite Birkhoff interpolation,' / . Math. Analysis and its Application
16 (1966), 538-592.

[11] A. Sharma and A. K. Varma, 'Trigonometric interpolation (O, M) case,' Duke Math. J.
32 (1965), 341-358.

[12] A. Sharma and A. K. Varma, 'Trigonometric interpolation (0, 2, 3) case,' Ann. Polonici,
Math. 21 H968), 51-58.

[13] O. Shisha and B. Mond, 'The degree of approximation to periodic functions by linear positive
operators,' J. of Approximation Theory 1 (1969), 335-339.

[14] J. Suranyi and P. Turin, 'Notes on Interpolation I' Ada Math. Acad. Sci. Hung. (1955),
67-79.

[15] A. K. Varma, 'Trigonometric Interpolation', Jour. Math. Analysis and its Application, 28
0969), 652-659.

[16] A. K. Varma, 'An analogue of a problem of J. Balazs and P. Turan III,' Trans, of the Ameri-
can Math. Society, 146 (1969), 107-120.

[17] A. K. Varma, 'Some remarks on trigonometric interpolation,' Israel J. Math. 7 (1969),
117-185.

[18] A. K. Varma, 'On a new interpolation process,' Jour. Approx. Theory, 4(2) (1971), 159-164.
[19] A. K. Varma, 'Some remarks on a theorem of S. M. Lozinski concerning linear process of

approximation of periodic functions', Studia Math, (to appear).
[20] P. Vertesi, 'On the divergence of the sequence of linear operators', Acta Math. Acad. Sci.

Hungar, 20 C1969), 299-408.
[21] A. Zygmund, Trigonometric Series Vol. //(Cambridge University Press, 1959).

Department of Mathematics
University of Florida
Gainesville, Florida, 32601
U.S.A.

https://doi.org/10.1017/S1446788700012994 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012994

