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Abstract. We consider the additive model: Z = X + ε, where X and ε are inde-
pendent. We construct a new estimator of the density of X from n observations
of Z. We propose a projection method which exploits the specific properties of
the Hermite basis. We study the quality of the resulting estimator by proving a
bound on the integrated quadratic risk. We show also that the results can be easily
extended to dependent variables. We then propose an adaptive estimation proce-
dure, that is a method of selecting a relevant model. We check that our estimator
reaches the classical convergence speeds of deconvolution. Numerical simulations
are proposed and a comparison with the results of the method proposed in Comte
and Lacour (2011) is performed.

1. Introduction

Consider the additive noise model:

Zk = Xk + εk, k = 1, . . . , n (1.1)

where
(H1) (Xk)k≥1 are independent and identically distributed (i.i.d.) with unknown

density f , with respect to the Lebesgue measure,
(H2) (εk)k≥1 are i.i.d. with known common density fε, with respect to the

Lebesgue measure,
(H3) (Xk)k≥1 and (εk)k≥1 are independent.

We observe n copies Z1, . . . , Zn. We want to estimate f , the distribution of X1,
using Z1, . . . , Zn only. Under (H3), if we denote by fZ the density of Z1, we can
write

fZ = f ∗ fε, (1.2)
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where g ∗ h(x) =
∫
R g(u)h(x − u)du is the convolution product of the functions g

and h under adequate assumptions. Formula (1.2) explains the term of "deconvo-
lution" for density estimation in model (1.1). The deconvolution problem has been
widely studied in the literature. It appears that two factors influence the rate of
convergence: the regularity of f and the asymptotic decay of the Fourier transform
of the errors fε, with slower rate of convergence if this decay is faster. Two types of
errors are usually considered: ”ordinary smooth" errors, when the Fourier transform
of fε is polynomially decaying near infinity, and ”super smooth” errors, when it is
exponentially decaying near infinity. The first works proposed kernel nonadaptive
estimators assuming that f is ordinary smooth and that fε is ordinary or super
smooth. We can cite Carroll and Hall (1988), Fan (1991), Fan (1993), among oth-
ers, see also the monograph of Meister (2009) on the topic. Adaptive estimation,
based on a wavelet method, was first considered by Pensky and Vidakovic (1999).
Butucea (2004) establishes the minimax rate in the case where f is super smooth
and fε is ordinary smooth while Butucea and Tsybakov (2007) study optimality
in the very difficult case where both functions are super smooth. Some more re-
cent works were dedicated to this problem: Comte and Lacour (2011) consider the
case where the noise density is unknown, and propose an adaptive estimator in
this setting, later improved by Kappus and Mabon (2014). Mabon (2017) builds a
projection estimator in Laguerre basis in the case where the variable of interest is
positive. Recently Comte and Genon-Catalot (2018) and Belomestny et al. (2019)
described nice properties of Hermite basis. Projection methods allow to summa-
rize the information available on the unknown function through a small number
of coefficients. This is why we go further in this direction, and we define a new
estimator taking advantage of these convenient properties of Hermite basis. We
propose also an adaptive model selection procedure. We obtain a simple, fast and
powerful procedure, which preserves standard deconvolution rates. Moreover, its
numerical performances are very good. The paper is organized as follows: we define
our estimator in Section 2.2. We prove a bound on the risk in both the independent
and β-dependent cases in Section 3, and discuss rates of convergence in Section 3.2.
In Section 4, an adaptive estimation procedure is proposed in the independent case
and a risk control of the resulting estimator is provided. We then illustrate the
performance and stability of the adaptive estimation procedure in Section 5, and
we compare our results with Comte and Lacour (2011). Proofs of most theoretical
results are gathered in Section 7.

2. Estimation procedure and Hermite basis

2.1. Useful tools.

2.1.1. Notations. For a, b ∈ R, let a ∨ b = max(a, b), and a+ = max(0, a). For
f , g in L2(R) ∩ L1(R), we denote by 〈f, g〉 =

∫
R f(u)g(u)du, ‖f‖2 =

∫
R |f(u)|2du,

f∗(x) =
∫
R e

ituf(u)du and f ∗ g(x) =
∫
R f(x − u)g(u)du ∀x ∈ R. Lastly, we recall

Plancherel-Parseval formula 〈f, g〉 = (2π)−1〈f∗, g∗〉.
Before proposing an estimator, we start by recalling the definition of the Hermite
basis.
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2.1.2. Hermite basis. The Hermite basis (ϕj)j≥0 is a basis on L2(R) defined from
Hermite polynomials (Hj)j≥0: Hj(x) = (−1)jex

2 dj

dxj (e−x
2

). The Hermite polynomi-
als are orthogonal with respect to the weight function e−x

2

:
∫
RHj(x)Hk(x)e−x

2

dx =

2jj!
√
πδj,k (see Abramowitz and Stegun, 1964, chap 22.2.14), where δj,k is the Kro-

necher symbol. Thus, we deduce that the basis:

ϕj(x) = cjHj(x)e−x
2/2, cj = (2jj!

√
π)−1/2,

is orthonormal in L2(R). The Hermite basis (ϕj)j≥0 is a bounded basis verifying

‖ϕj‖∞ = sup
x∈R
|ϕj(x)| ≤ φ0, with φ0 = 1/π1/4

(see Abramowitz and Stegun, 1964, chap 22.14.17 and Indritz, 1961). The Fourier
transform of (ϕj)j≥0 verifies:

ϕ∗j =
√

2π(i)jϕj . (2.1)

Moreover, according to Askey and Wainger (1965), we have

|ϕj(x)| < Ce−ξx
2

, |x| ≥
√

2j + 1, C > 0, (2.2)

where ξ is a positive constant independent of x, 0 < ξ < 1
2 .

2.1.3. Assumptions on the noise. For the definition of our estimator, we assume
the following:

(H4) the noise density fε is such that f∗ε 6= 0.
We also assume that fε satisfies:

There exist c1 ≥ c′1 > 0, and γ ≥ 0, µ ≥ 0, δ ≥ 0 (with γ > 0 if δ = 0) such
that

c′1(1 + t2)
γ
eµ|t|

δ

≤ 1

|f∗ε (t)|2
≤ c1(1 + t2)

γ
eµ|t|

δ

, for all t ∈ R. (2.3)

It is standard to assume a condition like (2.3) in the deconvolution setting. When
δ = 0 in (2.3), the function fε and the errors are called "ordinary smooth". When
δ > 0 (with the convention that δ > 0 if and only if µ > 0), they are called "super
smooth".

Remark 2.1. According to Lukacs (1970), Theorem 4.1.1, the only characteristic
function φ with φ(t) = 1 + o(t2), as t → 0, is the function φ(t) = 1 for all t. That
rules out characteristic functions of the form e−µ|t|

δ

with δ > 2. This implies that
in definition (2.3), when γ = 0, if |f∗ε (t)|2 = ce−µ|t|

δ

then necessarily δ ≤ 2. Indeed,
|f∗ε (t)|2 is also the characteristic function of a probability density function (it is a
characteristic function of ε1 − ε′1 where ε1 and ε′1 are i.i.d.).

2.2. Estimation procedure. We denote by Sm=span{ϕ0, . . . , ϕm−1}, the linear space
generated by (ϕ0, . . . , ϕm−1) in L2(R). Now, we construct an estimator of f relying
on the data Z1, . . . , Zn, from model (1.1). We suppose that f belongs to L2(R) ∩
L1(R), thus we can write f =

∑+∞
j=0 ajϕj with aj = 〈f, ϕj〉 and the orthogonal

projection of f on Sm is given by: fm =
∑m−1
j=0 ajϕj . In fact, we estimate fm and

therefore, we build m estimators âj of aj , j = 0, . . . ,m− 1. Under (H4) and using
(1.2), we have f∗ =

f∗Z
f∗ε

. Therefore, using Parseval’s Theorem and (2.1), we have:

aj = 〈f, ϕj〉 =
1

2π
〈f∗, ϕ∗j 〉 =

(−i)j√
2π
〈f∗, ϕj〉 =

(−i)j√
2π

∫
f∗Z(u)

f∗ε (u)
ϕj(u)du. (2.4)
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Thus, to estimate aj , we replace f∗Z by an estimate. As f∗Z(t) =
∫
eitufZ(u)du =

E[eitZ1 ], we set:

f̂∗Z(t) =
1

n

n∑
k=1

eitZk . (2.5)

Plugging (2.5) into (2.4), we can propose an estimator of fm, provided that ϕj/f∗ε
is integrable on R, for j = 0, . . . ,m− 1:

f̂m =

m−1∑
j=0

âjϕj , âj =
(−i)j√

2π

∫
f̂∗Z(u)

f∗ε (u)
ϕj(u)du. (2.6)

Note that the coefficients âj are real. Indeed, using that ϕj(−x) = (−1)jϕj(x), it
holds:

âj =
(i)j√

2π

∫
f̂∗Z(−u)

f∗ε (−u)
ϕj(u)du =

(i)j√
2π

∫
f̂∗Z(u)

f∗ε (u)
ϕj(−u)du = âj ,

where z denotes the complex conjugate of the complex number z. The Hermite
basis has the specificity of leading to integrable ϕj/f∗ε in a large number of cases.
This estimator is different from the one proposed by Comte and Genon-Catalot
(2018), who propose to take instead of âj , the estimator

ãj,
√
m = ((−i)j/

√
2π)

∫
|u|≤π

√
m

f̂∗Z(u)ϕj(u)/f∗ε (u)du.

The drawback of the latter estimator is that it is biased and the coefficients depend
on m, making the choice of m untractable in the sequel. Our estimator is an
unbiased estimator of fm and is easy to handle.

3. Risk study of the estimator

3.1. Risk of the estimator for fixed m. Under the additional assumption:
(H5) fZ is bounded,

we can study the risk of f̂m and the following proposition states our result.

Proposition 3.1. (i) Under (H1), . . . , (H5) and for f̂m given by (2.6), we
have for any l > 0

E[‖f̂m−f‖2] ≤ ‖f−fm‖2+
1

πn

∫
|u|≤
√
lm

du

|f∗ε (u)|2
+

2

n
‖fZ‖∞

m−1∑
j=0

∫
|u|>
√
lm

|ϕj(u)|2

|f∗ε (u)|2
du,

(3.1)
(ii) If in addition we choose l ≥ 2 and if fε satisfies (2.3) with 0 ≤ δ < 2 or

(δ = 2, with µ < ξ), where ξ is defined in (2.2), then

2

n
‖fZ‖∞

m−1∑
j=0

∫
|u|>
√
lm

|ϕj(u)|2

|f∗ε (u)|2
du = O(

1

n
). (3.2)

Note that the constant l does not depend on m or n. The first right-hand side
term of (3.1) is the bias term, it is decreasing with m as ‖f − fm‖2 =

∑
j≥m a

2
j .

The second term is the main variance term, it is clearly increasing with m. The
last term also comes from the variance computation, but we give in Proposition 3.1,
part (ii) conditions ensuring that it is negligible. Thus, choosing m that minimizes
the risk requires a bias-variance compromise.
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So under the assumptions of Proposition 3.1, part (ii), (3.1) becomes:

E[‖f̂m − f‖2] ≤ ‖f − fm‖2 +
1

πn

∫
|u|≤
√
lm

du

|f∗ε (u)|2
+
c

n
, c > 0, l ≥ 2.

Comment about (H5): We both have, ∀x ∈ R, |fZ(x)| = |f ∗ fε(x)| ≤
min(‖f‖∞, ‖fε‖∞) and |fZ(x)| ≤ ‖f‖. ‖fε‖. Therefore, the density fZ is bounded
if f or fε is bounded, or if both functions are square integrable. Condition (H5) is
not very strong.

3.2. Rate of convergence. To obtain rates of convergence, we have to evaluate the
order of bias and variance terms. In general, each basis is associated with a regu-
larity space: here, we consider Sobolev-Hermite spaces.

3.2.1. Rate on a Sobolev-Hermite space. For s > 0, the Sobolev-Hermite space of
regularity s (see Bongioanni and Torrea, 2006) is given by:

W s
H = {θ : R→ R, θ ∈ L2(R),

∑
k≥0

ksa2
k(θ) < +∞}, ak(θ) =

∫
θ(u)ϕk(u)du

and the Sobolev-Hermite ball by:

W s
H(D) = {θ ∈ L2(R),

∑
k≥0

ksa2
k(θ) ≤ D}, D > 0.

For s integer, θ belongs to W s
H if and only if θ admits derivatives up to order s and

the functions θ, θ′, . . . , θ(s), x(s−k)θ(k) belong to L2(R), with k = 0, . . . , s − 1. We
can compare this space with the classical Sobolev space with regularity s, defined
by:

W s = {θ ∈ L2(R),

∫
(1 + u2s)|θ∗(u)|2du < +∞}.

Actually, Bongioanni and Torrea (2006) prove that, for s > 0, W s
H  W s. It is also

proved therein and in Belomestny et al. (2019) that, for s integer,

W s =

{
θ ∈ L2(R), θ admits derivatives up to order s, such that

|||θ|||s,sob :=
∑s
j=0 |θ(j)|2 < +∞

}
.

Consequently, for s integer, it follows that W s
H ⊂ W s. For more details on these

regularity spaces, the reader is referred to Section 4.1 in Belomestny et al. (2019).

Thus, for f in W s
H(D), we have ‖f − fm‖2 =

∑
j≥m j

sa2
jj
−s ≤ Dm−s. Under

the assumptions of Proposition 3.1 and for f ∈W s
H(D), we get:

E[‖f̂m − f‖2] . Dm−s +
1

πn

∫
|u|≤
√
lm

du

|f∗ε (u)|2
, (3.3)

where, for two functions u, v, we denote u(x) . v(x) if u(x) ≤ cv(x), with c is
a constant independent of x. This inequality is similar to the one in Comte and
Lacour (2011), with m therein replaced now by

√
m. It is worth underlining that

the role of the dimension m in projection methods is played here by
√
m: this is

a specificity of the Hermite basis. The result is the similar in density estimation
when Xk are directly observed, (see Comte and Genon-Catalot, 2018, Belomestny
et al., 2019). Let us denote by mopt the value of m for which the bias-variance
compromise is obtained, relying on the same calculations as in Comte and Lacour
(2011), the rates and the dimension mopt are given in Table 3.1.
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δ = 0 0 < δ < 2 or δ = 2, µ < ξ

mopt [n
2

2s+2γ+1 ]

[
1
l

(
logn
2µ

) 2
δ

]
Rate n−

2s
2s+2γ+1 (log n)−

2s
δ

Table 3.1. Rate of convergence for the MISE if f ∈W s
H(D).

These rates coincide with the ones obtained by Fan (1993), Pensky and Vidakovic
(1999). They are known to be optimal: lower bounds corresponding to these rates
for fε verifying (2.3) are proved by Fan (1993) when f belongs to a Hölder class,
and by Pensky and Vidakovic (1999) for f in a Sobolev class.

3.2.2. Rates of convergence for specific function classes. We can obtain for some
specific classes of functions a bias term with much smaller order, for instance Gauss-
ian densities or mixtures of Gaussian. Indeed, then, we can explicitly compute the
coefficients aj and obtain smaller bias than previously on W s

H(D). Let

fµ,σ(x) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
, gp,σ(x) =

x2p

σ2pC2p
f0,σ(x), C2p = E

[
X2p

]
,

for X a standard Gaussian variable. We also define the class of mean mixtures,
respectively of variance mixtures of the Gaussian distribution by:

F(C) =

{
f : f(x) = φ ? Π(x) =

∫
φ(x− u)dΠ(u), Π ∈ P(C)

}
,

where P(C) :=
{
Π ∈ P(R), Π(|u| > t) ≤ C exp(−t2/C), ∀t ∈ R+

}
, respectively

G(v) =

{
f : f(x) =

∫ +∞

0

φ(x/u)

u
dΠ(u), Π

([
1/
√
v,
√
v
])

= 1

}
, v > 1,

with φ the density of standard Gaussian and P(R) the set of probability measures
on R. The following results are based on bias evaluation obtained in Belomestny
et al. (2019). The rate is given by the order of variance term, since in all these
cases, the bias term is exponentially small. We can prove the following proposition.

Proposition 3.2. Assume the assumptions (H1), . . . , (H5) hold and fε is ordinary
smooth. For the choice mopt = [log(n)/C1], with C1 = log(2) + eµ2 if f = fµ,1,

C1 = log
(
σ2+1
σ2−1

)2

if f = f0,σ, C1 = 1
(eC+1/ log(2)) if f ∈ F(C), C1 =

(
v2−1
v2+1

)
if

f ∈ G(v), we have

E
[
‖f̂mopt − f‖2

]
.

(log n)γ+ 1
2

n
,

where γ is given in (2.3).

The same result holds for f = gp,σ. This rate is similar to the one obtained in
Butucea (2004) for super-smooth functions f .

However in all previous cases the choice m = mopt depends on the regularity of
f and associated parameters, which are unknown. This is why we have to look for
another method to make the bias-variance compromise, in a data-driven way (see
Section 4).
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3.3. Comparison with the classical estimator in deconvolution. The ”standard” de-
convolution estimator (see Fan, 1991, and choose sinus cardinal kernel) is given
by:

f̌`(x) =
1

2π

∫ π`

−π`
e−ixu

f̂∗Z(u)

f∗ε (−u)
du, where f̂∗Z is defined by (2.5).

We mention that this estimator can be decomposed in an orthonormal basis namely
ψ`,j(x) =

√
`ψ(`x− j), ψ(x) = sinπx

πx (see Comte et al., 2008, Section 3.2), but the
development is infinite:

f̌`(x) =
∑
j∈Z

â`,jψ`,j , â`,j =
1

n

n∑
k=1

1

2π

∫
ψ∗`,j(−u)

f∗ε (u)
eiuZkdu

A finite (computable) development would require an additional approximation
(truncation of the sum as in Comte et al., 2008) to kn ≥ n coefficients. From
computation point of view, the low complexity of f̂m in the Hermite basis is an
advantage (see Belomestny et al., 2019, Section 4.5). The risk of f̌` verifies

E[‖f̌` − f‖2] ≤ 1

2π

∫
|t|>π`

|f∗(u)|2 du+
1

2πn

∫
|u|≤π`

du

|f∗ε (u)|2
.

In this context, the regularity spaces which are considered are Sobolev balls defined
by

W s(D′) =

{
f ∈ L2(R),

∫
(1 + u2s)|f∗(u)|2du < D′

}
, D′ > 0.

Note that it is proved in Belomestny et al. (2019) thatW s
H(D) ⊂W s(D′), forD and

D′ related constants. For f ∈W s(D) the bias term is such that 1
2π

∫
|t|>π` |f

∗(u)|2 du
≤ D

2π (π`)−2s = C`−2s, where C = D
2ππ

−2s. Therefore, for ` =
√
m, the risks of the

two estimators have the same order on W s
H(D). This implies that they have the

same rates of convergence.

3.4. Extension to the dependent case. Proposition 3.1 (and its consequences) may
be extended to the context of dependentXi’s. We first define the mixing coefficients.

Definition 3.3. Let (Ω,A,P) be a probability space, and U , V two σ-algebras of
A. The β-mixing coefficient is defined by

β(U ,V) =
1

2
sup{

I∑
i=1

J∑
j=1

|P(Ui ∩ Vj)− P(Ui)P(Vj)|}, (3.4)

where the supremum is taken over all pairs finite partitions {U1, . . . , UI} and
{V1, . . . , VJ } of Ω, such that Ui ∈ U and Vj ∈ V.

Let (Xk)k∈Z a strictly stationary process. Let F0 = σ(Xi, i ≤ 0) and Fk =
σ(Xi, i ≥ k) for all k ∈ Z, where F0 is the σ-algebra generated by the Xi for
i ≤ 0 and Fk generated by Xi for i ≥ k. The mixing coefficient βk is defined by
βk = β(F0,Fk), where β is defined by (3.4).

The process (Xk)k∈Z is β-mixing if the sequence βk tends to zero at infinity.

In this section, we still consider model (1.1), but we replace (H1) by:
(H′1) (Xk)k≥1 is strictly stationary and β-mixing.

The estimator is the same as in the independent case and we can prove a bound on
the risk.
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Proposition 3.4. Let assumptions (H′1), (H2), . . . , (H5) hold. Let 1 ≤ p, q < +∞
two real numbers such that 1

p + 1
q = 1. Then, if E[|X1|2q/3] < +∞ and the mixing

coefficient are such that
∑+∞
k=0(k + 1)p−1βk < +∞, we have

E[‖f̂m − f‖2] ≤‖f − fm‖2 +
1

πn

∫
|u|≤
√
lm

du

|f∗ε (u)|2

+
2

n
‖fZ‖∞

m−1∑
j=0

∫
|u|>
√
lm

|ϕj(u)|2

|f∗ε (u)|2
du+ c′

√
m

n
, (3.5)

where l ≥ 2 is a positive constant, and c′ is a constant depending on E[|X1|2q/3]

and
∑+∞
k=0(k + 1)p−1βk.

Now, we comment this bound of risk. We remark that we have the same bias
and variance terms as in the i.i.d. case with an additional term c′

√
m/n which is

clearly specific to the β-mixing case. As |f∗ε (u)| ≤ 1, we have, 1
π

∫
|u|≤
√
lm

du
|f∗ε (u)|2 ≥

2
√
l

π

√
m. Consequently,

√
m/n has smaller order than 1

πn

∫
|u|≤
√
lm

du
|f∗ε (u)|2 and In-

equality (3.5) implies that the risk of f̂m here has the same order as in the i.i.d.
case. We have therefore the same rates of convergence.

We compare the result given in Proposition 3.4 to Proposition 4.1 in Comte et al.
(2008). The first two right-hand side terms of (3.5) (‖f−fm‖2+ 1

πn

∫
|u|≤
√
lm

du
|f∗ε (u)|2 )

are the same as in Comte et al. (2008) with
√
lm replaced by πm (see Section 3.3).

Under the assumptions of Proposition 3.1 (ii) the other terms (residual terms) are
orderO(n−1)+O(

√
mn−1). This order is smaller than the order of the residual term

stated in (4.4) of Comte et al. (2008), which is n−1m2. Note that all estimators
of their collection require to compute kn ≥ n coefficients, which can make the
procedure slow when n is large.

4. Adaptive estimation and model selection

For sake of brevity and simplicity, we only study the independent case (i.i.d case)
hereafter.

From now on, l given in Proposition 3.1, part (ii) is assumed to be fixed. In this
section we propose an automatic selection of m which performs the bias-variance
compromise. The procedure does not depend on the regularity of the density f ,
but only on data Z1, . . . , Zn. Consider the contrast function defined by

γn(t) = ‖t‖2 − 2

n

n∑
k=1

φt(Zk), φt(x) =
1

2π

∫
t∗(u)

f∗ε (−u)
e−ixudu. (4.1)

It is easy to check that f̂m = argmin
t∈Sm

γn(t). Let

∆(m) =
1

π

∫
|u|≤
√
lm

du

|f∗ε (u)|2
.

We considerMn, the collection of models,

Mn = {m ∈ N\{0},∆(m) ≤ n} .
This collection is finite and contains models with bounded variance. More precisely,
as already noticed, |f∗ε (u)| ≤ 1, implies ∆(m) ≥ 1

π

∫
|u|≤
√
lm
du = 2

√
lm
π . Therefore,
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the elements m ofMn satisfy m . n2. The cardinal ofMn is therefore at most of
order O(n2). Our aim is to find the best model m̂ inMn, that is, to select m̂ such
that, the risk of f̂m̂ approximately performs the bias-variance trade-off, without
any information on f . We set:

m̂ = argmin
m∈Mn

{γn(f̂m) + pen(m)}, (4.2)

where pen(m) is an increasing function defined by:

pen(m) =

 κ∆(m)
n , if fε is ordinary smooth or super smooth with δ < 1

2 ,

2κ
(

1 + 24µlδ/2mδ− 1
2

)
∆(m)
n if fε is super smooth with 1

2 ≤ δ ≤ 2,

(4.3)
where κ > 0 is a numerical constant, µ is the constant given in (2.3) and l ≥ 2

given in Proposition 3.1, fixed. As γn(f̂m) = −‖f̂m‖2 = −
∑m−1
j=0 â2

j , it is worth
emphasizing that computing m̂ is numerically fast. Clearly the choice of m given
by (4.2) is entirely determined by the data. The constant κ is independent of
the data. The theoretical results show that κ > 17 is suitable (see the proof of
Lemma 7.2). In practice this value is too large and is calibrated by preliminary
simulation experiments. They confirm that (see Section 5) smaller practical values
must be chosen.

We can prove the following theorem.

Theorem 4.1. Assume (H1), . . . , (H5) hold and fε is square integrable. Let
pen(m) defined by (4.3), f̂m = argmin

t∈Sm
γn(t) and m̂ selected by (4.2). Then, there

exists a constant κ0 such that, for all κ > κ0 = 17, the estimator f̂m̂ satisfies

E
[
‖f̂m̂ − f‖2

]
≤ C inf

m∈Mn

(
‖f − fm‖2 + pen(m)

)
+
C ′

n
, (4.4)

where C is a numerical constants (C=4 suits) and C ′ a constant depending on fε.

Remark 4.2. Assume that the assumptions of Theorem 4.1 are satisfied. Then if
f ∈ W s

H(D) the estimator f̂m̂ converges to f with the rates obtained in Table 3.1.
Indeed, the term C ′/n in (4.4) does not change the order of the rate, and is negligible
compared to the term ‖f − fm‖2 + pen(m). Moreover, (4.3) induces a loss in the
order of pen(m) compared to the variance term when δ > 1/2, but this does not
change the rate which is governed by the bias term in this case (see Table 3.1 and
choice of mopt of order (log n)).

5. Simulation and numerical results

5.1. Implementation of the adaptive estimator. In this section, we propose some
illustrations of the theoretical results. More precisely, we implement the projection
estimator given by (2.6). To do this, we consider data simulated according to (1.1).
For the density f , we choose the distributions (following Comte and Lacour, 2011):

(i) Gaussian standard N (0, 1), I = [−4, 4]

(ii) Cauchy standard: f(x) =
(
π
(
1 + x2

))−1, I = [−10, 10]

(iii) Laplace density: f(x) = e−
√

2|x|/
√

2, I = [−5, 5]

(iv) Gamma density Γ(4, 1/
√

3)/
√

12, I = [0, 6]

(v) Mixed-Gaussian density (0.5N (−2, 1) + 0.5N (2, 1))/
√

5, I = [−3, 3]
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where I is the interval on which we compute the risks. Except the Cauchy density,
all the densities are normalized to have variance equal to 1. Note also densities (i)
and (v) belong to W s

H with s = +∞, (iv) has regularity s = 3− η, η > 0, (ii) and
(iii) admit a regularity s = 3/2 − η and s = 1 − η, η > 0, respectively (but (ii) is
infinitely differentiable).

For noise distributions, we consider two cases with the same variance 1/10 and
thus, except for the Cauchy density the signal to noise ratio is equal to 10.
• Case 1 : Laplace noise ("ordinary smooth")

We consider the density fε:

fε(x) =
λ

2
e−λ|x|; f∗ε (x) =

λ2

λ2 + x2
; λ = 2

√
5.

The penalty term is given by:

pen(m) =
κ

n
∆(m) =

κ

πn

∫
|u|≤
√
lm

(1 +
u2

λ2
)2du

=
2κ

πn

(
√
lm+

2

3λ2
(
√
lm)3 +

(
√
lm)5

5λ4

)
,

where l = 6.
• Case 2 : Gaussian noise ("super smooth")

We have:

fε(x) =
1√
2πσ

e−x
2/2σ2

ε ; f∗ε (x) = e−σ
2
εx

2/2, σ2
ε = 1/10.

The penalty proposed is:

pen(m) = 4κ
(

1 + 24σ2
ε lm

3/2
) √lm
πn

(∫ 1

0

eu
2σ2
ε lmdu

)
,

where l = 4 here and the integral is computed by a Riemann sum discretized in 300
points. Then, we have to calibrate the penalty constant κ. This constant is fixed
through preliminary simulations, by testing set of values on different densities f
with a large number of repetitions. The comparison of the risks for these different
values of κmakes it possible to make a reasonable choice. Finally, we choose κ = 0.4
for a Laplace noise, κ = 10−3 for a Gaussian noise.

The estimation procedure is described as follows:
• Form inMn, compute−

∑m−1
j=0 â2

j+pen(m) = Cr(m), with âj given by (2.6),
• Select m̂ such that m̂ = argmin

m∈Mn

Cr(m),

• Compute f̂m̂ =
∑m̂−1
j=0 âjϕj , and

∫
I
(f̂m̂(u)− f(u))2du by discretization.

5.2. Simulations results. Simulation results are given in Tables 5.2 and 5.3. The
columns of Table 5.2 indicate the values of the MISE (Mean Integrated Squared
Error) multiplied by 100 for a Laplace noise or a Gaussian noise, Table 5.3 gives the
ratio of the risk values obtained in Comte and Lacour (2011) divided by the risk
values obtained by our method: the larger it is, the better our method is. The errors
obtained by our method are computed by a discretization of the integral as Riemann
sums and averaged over 100 independent simulations. We remark that increasing
the sample size makes the error smaller and thus improves the estimation. Globally
the results of our simulations are satisfactory and our method is often better than
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Comte and Lacour (2011) for both noise densities. The main exception concerns
the Gamma density (iv). Some failures for Cauchy density (ii) and super smooth
noise are also observed, especially when n increases.

n = 100 n = 250 n = 500 n = 1000

f
Noise Lap. Gauss. Lap. Gauss. Lap. Gauss. Lap. Gauss.

Gaussian 0.44 0.37 0.12 0.06 9.5910−2 4.310−2 7.10−2 4.1.10−2

Cauchy 0.28 0.89 0.20 0.56 0.14 0.37 0.10 0.29
Laplace 1.65 2.18 1.06 1.34 0.75 1.16 0.57 0.87
Gamma 1.70 1.27 0.98 0.97 0.50 0.90 0.28 0.83

Mixed-Gaussian 2.82 1.91 1.09 0.87 0.66 0.69 0.41 0.53

Table 5.2. Empirical integrated mean squared errors computed
from (100 × E‖f̂m̂ − f‖2) over 100 independent simulations for
n = 100, 250, 500, 1000.

n = 100 n = 250 n = 500 n = 1000

f
Noise Lap. Gauss. Lap. Gauss. Lap. Gauss. Lap. Gauss.

Gaussian 1.95 1.27 5.67 5.00 5.01 5.11 2.41 3.41
Cauchy 4.07 1.07 2.45 0.79 2.43 0.70 1.40 0.52
Laplace 1.47 1.40 1.13 1.34 1.12 1.02 1.04 0.89
Gamma 0.67 0.88 0.66 0.73 0.82 0.49 1 0.37

M-Gaussian 1.26 2.17 1.45 2.24 1.17 1.68 0.95 1.15

Table 5.3. Ratio of the risks obtained in Comte and Lacour
(2011) divided by those of Table 5.2.

6. Concluding remarks

We proposed a projection estimator of the density of X in the convolution model
(1.1), relying on the Hermite basis. The estimator has the advantage to be kernel-
free, as the integral is over the entire real line and not truncated as in the previous
works by Comte and Genon-Catalot (2018). The method provides a parsimonious
description of the function under estimation: indeed the function is relevantly es-
timated thanks to a small number of coefficients. This has also the advantage of
making the method numerically fast and convenient. We prove a bound on the
quadratic risk in the independent and β-dependent cases which shows that the rel-
evant parameter is not the dimension m but rather

√
m. A data driven estimator

is proposed: the model can be automatically chosen and the resulting estimator
reaches optimal rates in most cases. We also provide numerical simulation results,
and the comparison with Comte and Lacour (2011) ensures the good performances
of our method.
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7. Proofs

7.1. Proof of Proposition 3.1. We start by the part (i). For f̂m given by (2.6), we
have:

E
[
‖f̂m − f‖2

]
= ‖f − fm‖2 + E

[
‖f̂m − fm‖2

]
= ‖f − fm‖2 +

m−1∑
j=0

Var(âj).

(7.1)
Now with the definition of âj given by (2.6) we have

Var(âj) = Var

(
(−i)j√

2πn

∫
R

n∑
k=1

eiuZk
ϕj(u)

f∗ε (u)
du

)

=
1

2πn
Var

(
(−i)j

∫
R
eiuZ1

ϕj(u)

f∗ε (u)
du

)
≤ 1

2πn
E

[∣∣∣∣(−i)j ∫
R
eiuZ1

ϕj(u)

f∗ε (u)
du

∣∣∣∣2
]
.

Plugging this in (7.1) yields

E
[
‖f̂m − f‖2

]
≤ ‖f − fm‖2 +

1

2πn

m−1∑
j=0

E

[∣∣∣∣∫
R
eiuZ1

ϕj(u)

f∗ε (u)
du

∣∣∣∣2
]
.

Using |a+ b|2 ≤ 2|a|2 + 2|b|2, we deduce

E

m−1∑
j=0

∣∣∣∣∫
R
eiuZ1

ϕj(u)

f∗ε (u)
du

∣∣∣∣2
 ≤ 2E

m−1∑
j=0

∣∣∣∣∣
∫
|u|>
√
lm

eiuZ1
ϕj(u)

f∗ε (u)
du

∣∣∣∣∣
2


+ 2E

m−1∑
j=0

∣∣∣∣∣
∫
|u|≤
√
lm

eiuZ1
ϕj(u)

f∗ε (u)
du

∣∣∣∣∣
2
 .

We evaluate the two right-hand side terms of the previous inequality. By Bessel
inequality we have, for the last term:

E

m−1∑
j=0

∣∣∣∣∣
∫
|u|≤
√
lm

eiuZ1
ϕj(u)

f∗ε (u)
du

∣∣∣∣∣
2
 =E

m−1∑
j=0

∣∣∣∣〈eiZ1•

f∗ε
1|•|≤

√
lm, ϕj〉

∣∣∣∣2


≤
∫
|u|≤
√
lm

du

|f∗ε (u)|2
. (7.2)

Moreover, let ψj(u) =
ϕj(u)
f∗ε (u)1|u|>

√
lm, we get for the other term

E

m−1∑
j=0

∣∣∣∣∣
∫
|u|>
√
lm

eiuZ1
ϕj(u)

f∗ε (u)
du

∣∣∣∣∣
2
 =

m−1∑
j=0

∫
R

∣∣∣∣∣
∫
|u|>
√
lm

eiuz
ϕj(u)

f∗ε (u)
du

∣∣∣∣∣
2

fZ(z)dz

≤‖fZ‖∞
m−1∑
j=0

∫
R

∣∣∣∣∣
∫
|u|>
√
lm

eiuz
ϕj(u)

f∗ε (u)
du

∣∣∣∣∣
2

dz
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=‖fZ‖∞
m−1∑
j=0

‖ψ∗j ‖2 = 2π‖fZ‖∞
m−1∑
j=0

‖ψj‖2.

(7.3)

Putting (7.2), (7.3) in (7.1), we have the part (i).
Let us prove the part (ii). We have, using (2.3), that:

m−1∑
j=0

∫
|u|>
√
lm

|ϕj(u)|2

|f∗ε (u)|2
du ≤ c1

m−1∑
j=0

∫
|u|>
√
lm

(1 + u2)γ |ϕj(u)|2 eµ|u|
δ

du.

By (2.2), we have |ϕj(x)| < Ce−ξx
2

if |x| ≥
√

2j + 1, for j ∈ {0, . . . ,m− 1}. Thus
it is in particular true for |x| ≥

√
lm, with l ≥ 2. Therefore, for j ≤ m− 1,∫

|u|>
√
lm

(1 + u2)γ |ϕj(u)|2 eµ|u|
δ

du ≤ C2

∫
|u|>
√
lm

(1 + u2)γe−2ξu2

eµ|u|
δ

du

≤ C2e−ξlm
∫
R

(1 + u2)γe−ξu
2

eµ|u|
δ

du.

And
∫
R(1 + u2)γe−ξu

2

eµ|u|
δ

du < +∞ if δ < 2 or if δ = 2, µ < ξ, which corresponds

to our assumptions. Therefore:
∑m−1
j=0

∫
|u|>
√
lm
|ϕj(u)|2
|f∗ε (u)|2 du = O(me−ξlm). Hence

the result. �.

7.2. Proof of Proposition 3.2. By (3.1) and (3.2), we have:

E[‖f̂m − f‖2] ≤ ‖f − fm‖2 +
1

πn

∫
|u|≤
√
lm

du

|f∗ε (u)|2
+
c

n
.

Using Lemma 2 in Comte and Lacour (2011) p.8, we have∫
|u|≤
√
lm

du

|f∗ε (u)|2
� mγ+ 1−δ

2 eµl
δ
2m

δ
2 . (7.4)

We denote for two functions u and v, u(x) � v(x), if u(x) . v(x) and v(x) . u(x).
From Belomestny et al. (2019) the bias term is exponentially small (see Proposi-

tion 7, 8 and 9), thus, the rate of convergence is given by the order of variance term.
As fε is ordinary smooth, δ = 0 in (7.4) and replacing m by mopt = [log(n)/C1],
with C1 is given in Proposition 3.2, we have the result. �

7.3. Proof of Proposition 3.4. As in the i.i.d. case, we have the bias-variance de-
composition given by (7.1). Now,

Var(âj) = Var

(
(−i)j√

2πn

∫
R

n∑
k=1

eiuZk
ϕj(u)

f∗ε (t)
du

)

=
1

2πn2

n∑
k=1

Var

(
(−i)j

∫
R
eiuZk

ϕj(u)

f∗ε (u)
du

)
+

1

2πn2

∑
1≤k, l≤n,k 6=l

Cov

(
(−i)j

∫
R
eiuZk

ϕj(u)

f∗ε (u)
du, (−i)j

∫
R
eiuZl

ϕj(u)

f∗ε (u)
du

)
.
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As Var(X) ≤ E|X|2, it comes

E
[
‖f̂m − f‖2

]
≤ ‖f − fm‖2 +

1

2πn

m−1∑
j=0

E

[∣∣∣∣∫
R
eiuZ1

ϕj(u)

f∗ε (u)
du

∣∣∣∣2
]

+
1

2πn2

m−1∑
j=0

∑
1≤k,l≤n,k 6=l

Cov

(
(−i)j

∫
R
eiuZk

ϕj(u)

f∗ε (u)
du, (−i)j

∫
R
eiuZl

ϕj(u)

f∗ε (u)
du

)
.

(7.5)

The first two right hand side terms are the same as in the independent case and
are dealt with as in Proposition 3.1. We compute the covariance term. First,

Cov

(
(−i)j

∫
R
eiuZk

ϕj(u)

f∗ε (u)
du, (−i)j

∫
R
eiuZl

ϕj(u)

f∗ε (u)
du

)
= E

[∫
R

∫
R
ei(uZk−vZl)

ϕj(u)

f∗ε (u)

ϕj(v)

f∗ε (−v)
dudv

]
− E

[∫
R
eiuZk

ϕj(u)

f∗ε (u)
du

]
E
[∫

R
e−ivZl

ϕj(v)

f∗ε (−v)
dv

]
. (7.6)

The first expectation is equal to

E
[∫

R

∫
R
ei(uZk−vZl)

ϕj(u)

f∗ε (u)

ϕj(v)

f∗ε (−v)
dudv

]
=

∫
R

∫
R
E
[
ei(uXk+uεk−vXl−vεl)

] ϕj(u)

f∗ε (u)

ϕj(v)

f∗ε (−v)
dudv

=

∫
R

∫
R
E
[
ei(uXk−vXl)

]
ϕj(u)ϕj(v)dudv, (7.7)

and the second to:

E
[∫

R
eiuZk

ϕj(u)

f∗ε (u)
du

]
E
[∫

R
e−ivZl

ϕj(v)

f∗ε (−v)
dv

]
=

∣∣∣∣∫
R
f∗(u)ϕj(u)du

∣∣∣∣2 . (7.8)

Thus, from (7.6), (7.7) and (7.8) we deduce

Cov

(
(−i)j

∫
R
eiuZk

ϕj(u)

f∗ε (u)
du, (−i)j

∫
R
eiuZl

ϕj(u)

f∗ε (u)
du

)
= Cov

(∫
R
eiuXkϕj(u)du,

∫
R
eiuXlϕj(u)du

)
.

As a consequence∑
1≤k, l≤n, k 6=l

Cov

(∫
R
eiuXkϕj(u)du,

∫
R
eiuXlϕj(u)du

)
≤ Var(

n∑
k=1

∫
R
eiuXkϕj(u)du).

Using Viennet (1997)’s covariance inequality and equality (2.1), we have

Var

(
n∑
k=1

∫
R
eiuXkϕj(u)du

)
= Var

(
n∑
k=1

ϕ∗j (Xk)

)
≤ 8πn

∫
R
b(u)ϕj(u)2f(u)du,

(7.9)

with b =
∑n
k=0 bk and bk, a sequence of measurable functions such that b0 = 1,∫

bk(u)f(u)du = βk (see Theorem 2.1 in Viennet, 1997 given here in Appendix).
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Lemma 7.1. Under the assumptions and notations of Proposition 3.4, there exists
a constant c∗ > 0 depending on E[|X1|2q/3] and

∑+∞
k=0(k + 1)p−1βk < +∞ such

that: ∫
R
b(x)ϕ2

j (x)f(x)dx ≤ c∗√
j
, ∀j ≥ 1.

By Lemma 7.1 and (7.9), we deduce
m−1∑
j=0

Var

(
n∑
k=1

∫
R
eiuXkϕj(u)du

)

≤ 8πn

∫
R
b(u)ϕ2

0(u)f(u)du+

m−1∑
j=1

∫
R
b(u)ϕj(u)2f(u)du

 (7.10)

≤ 8πn

φ2
0

∑
k≥0

βk +

m−1∑
j=1

c∗√
j

 . (7.11)

Using (7.11), Proposition 3.1 and in view of (7.5), we obtain the announced result
�.

7.3.1. Proof of Lemma 7.1. To prove this lemma, we first use the decomposition
formula of the Hermite basis in the Laguerre basis (see Comte and Genon-Catalot,
2018, Lemma 8.4, p. 287) given by:

ϕ2k(x) = (−1)k
√
x/2ψ

(−1/2)
k (x2/2), ϕ2k+1(x) = (−1)k

√
x/2ψ

(1/2)
k (x2/2), x ≥ 0

where (ψ
(δ)
k )k≥0 is the Laguerre function with index δ > −1 defined from the

Laguerre polynomial (L
(δ)
k )k≥0 with index δ > −1 and degree k given by:

ψ
(δ)
k (x) = 2

δ+1
2 (

k!

Γ(k + δ + 1)
)1/2L

(δ)
k (2x)x

δ
2 e−x, L

(δ)
k (x) =

1

k!
exx−δ

dk

dxk
(
xδ+ke−x

)
.

Note that (ψ
(δ)
k )k≥0 is an orthonormal basis on L2(R+). Next, using the asymptotic

formula of Askey and Wainger (1965) recalled in Section A.2, we get a bound of
(ψ

(δ)
k )k≥0, for k large enough. We distinguish two cases depending on the parity of

j and we study only the first term of the following decomposition:∫
R
b(x)ϕ2

j (x)f(x)dx =

∫ ∞
0

b(x)ϕ2
j (x)f(x)dx+

∫ ∞
0

b(−x)ϕ2
j (x)f(−x)dx,

since (ϕj)j≥0 is even for j even and odd for j odd. The study of the other term is
similar and its bound is the same as the one on the first term.
For j even, j = 2k, we have:∫ ∞

0

b(x)ϕ2
j (x)f(x)dx =

1

2

∫ ∞
0

x
(
ψ

(−1/2)
k (x2/2)

)2

f(x)b(x)dx :=

6∑
l=1

Jl,

where Jl are integrals on disjoint domains specified below, see also Section A.2.
Setting ν = 4k + 1, we have six terms to evaluate.

J1 =
1

2

∫ 1/
√
ν

0

x
(
ψ

(−1/2)
k (x2/2)

)2

b(x)f(x)dx
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≤ C

2

∫ 1/
√
ν

0

x
[
(x2ν)−1/4

]2
b(x)f(x)dx ≤ C

2
√
ν

∫
R
b(x)f(x)dx ≤ C

2
√
ν

∑
k≥0

βk.

J2 =
1

2

∫ √ν/2
1/
√
ν

x
(
ψ

(−1/2)
k (x2/2)

)2

b(x)f(x)dx

≤ C

2

∫ √ν/2
1/
√
ν

x[(x2ν)−1/4]2b(x)f(x)dx ≤ C

2
√
ν

∑
k≥0

βk.

J3 =
1

2

∫ (ν−ν1/3)1/2

√
ν/2

x
(
ψ

(−1/2)
k (x2/2)

)2

b(x)f(x)dx

≤ C

2

∫ (ν−ν1/3)1/2

√
ν/2

x
(
ν−1/4(ν − x2)−1/4

)2

b(x)f(x)dx

=
C

2

∫ (ν−ν1/3)1/2

√
ν/2

x1/3x2/3ν−1/2(ν − x2)−1/2b(x)f(x)dx

≤ C

2
√
ν

∫
R
|x|2/3b(x)f(x)dx.

Using the Hölder inequality, we have∫
R
|x|2/3b(x)f(x)dx ≤

(∫
R
|x|2q/3f(x)dx

)1/q (∫
R
bp(x)f(x)dx

)1/p

= E
[
|X1|2q/3

]1/q
E [b(X1)p]

1/p
,

with 1
p + 1

q = 1. By Lemma 4.2 in Viennet (1997), page 481, we have:

E [b(X1)p] ≤ p
∑
k≥0

(k + 1)p−1βk.

It comes: J3 ≤ C
2
√
ν
E
[
|X1|2q/3

]1/q
(p
∑
k≥0(k + 1)p−1βk)1/p.

J4 =
1

2

∫ (ν+ν1/3)1/2

(ν−ν1/3)1/2
x
(
ψ

(−1/2)
k (x2/2)

)2

b(x)f(x)dx

≤C
2

∫ (ν+ν1/3)1/2

(ν−ν1/3)1/2
x(ν−1/3)2b(x)f(x)dx

≤C
2

∫ (ν+ν1/3)1/2

(ν−ν1/3)1/2
x1/3x2/3ν−2/3b(x)f(x)dx ≤ C√

ν

∫
R
|x|2/3b(x)f(x)dx.

By the same computation as for J3 we deduce: J4 ≤ C√
ν
E
[
|X1|2q/3

]1/q
(p
∑
k≥0(k+

1)p−1βk)1/p.

J5 =
1

2

∫ √3ν/2

(ν+ν1/3)1/2
x
(
ψ

(−1/2)
k (x2/2)

)2

b(x)f(x)dx

≤ C

2

∫ √3ν/2

(ν+ν1/3)1/2
x1/3x2/3

(
ν−1/4(x2 − ν)−1/4e−γ1ν

−1/2(x2−ν)3/2
)2

b(x)f(x)dx
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≤ C

2

∫ √3ν/2

(ν+ν1/3)1/2
ν−1/2x1/3(x2 − ν)−1/2e−2γ1ν

−1/2(x2−ν)3/2x2/3b(x)f(x)dx

≤ C√
ν

∫
R
|x|2/3b(x)f(x)dx.

Again by the Hölder inequality we get:

J5 ≤
C√
ν
E
[
|X1|2q/3

]1/q
(p
∑
k≥0

(k + 1)p−1βk)1/p.

Finally, it holds

J6 =
1

2

∫ ∞
√

3ν/2

x
(
ψ

(−1/2)
k (x2/2)

)2

b(x)f(x)dx ≤ C

2

∫ ∞
√

3ν/2

xe−γ2x
2

b(x)f(x)dx

≤ C ′e−3
γ2ν
4

∫
R
b(x)f(x)dx = C ′e−3

γ2ν
4 E [b(X1)] ≤ C ′e−3

γ2ν
4

∑
k≥0

βk.

For j odd, j = 2k + 1, and setting ν = 4k + 3, we have:∫ ∞
0

b(x)ϕ2
2k+1(x)f(x)dx =

1

2

∫ ∞
0

x
(
ψ

(1/2)
k (x2/2)

)2

f(x)b(x)dx :=

6∑
l=1

Kl.

Only the first term changes, thus, we just compute K1 and the other terms are such
that the bounds coincide with the case where j is even for l = 2, . . . , 6.

K1 =
1

2

∫ 1/
√
ν

0

x
(
ψ

(1/2)
k (x2/2)

)2

b(x)f(x)dx ≤ C

2

∫ 1/
√
ν

0

x
[
(x2ν)1/4

]2
b(x)f(x)dx

≤ C

2
√
ν

∑
k≥0

βk

By gathering all these inequalities according to the parity of j, we have the an-
nounced result.

7.4. Proof of Theorem 4.1. By definition of m̂, we have: γn(f̂m̂) + pen(m̂) ≤
γn(fm) + pen(m). Moreover, for two functions s, t in L2(R), γn(t) − γn(s) =
‖t− f‖2 − ‖s− f‖2 − 2νn(t− s), where

νn(t) =
1

n

n∑
k=1

(φt(Zk)− 〈t, f〉),

where φt is defined in (4.1). Thus, for m any element ofMn, we have

‖f̂m̂ − f‖2 ≤ ‖fm − f‖2 + pen(m) + 2νn(f̂m̂ − fm)− pen(m̂)

As the function t 7→ νn(t) is linear, we deduce

‖f̂m̂ − f‖2 ≤ ‖fm − f‖2 + pen(m) + 2‖f̂m̂ − fm‖νn

(
f̂m̂ − fm
‖f̂m̂ − fm‖

)
− pen(m̂)

≤ ‖fm − f‖2 + pen(m) + 2‖f̂m̂ − fm‖ sup
t∈Sm+Sm̂,‖t‖=1

νn(t)− pen(m̂).

(7.12)
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For all x, y ≥ 0 we have: 2xy ≤ x2/4 + 4y2, therefore, we obtain

2‖f̂m̂− fm‖ sup
t∈Sm+Sm̂,‖t‖=1

νn(t) ≤ 1

4
‖f̂m̂− fm‖2 + 4 sup

t∈Sm+Sm̂,‖t‖=1

(νn(t))2. (7.13)

Now, ‖f̂m̂−fm‖2 ≤ 2‖f̂m̂−f‖2 +2‖fm−f‖2 and plugging this and (7.13) in (7.12),
we have

1

2
‖f̂m̂ − f‖2 ≤

3

2
‖fm − f‖2 + pen(m) + 4 sup

t∈Sm+Sm̂,‖t‖=1

(νn(t))2 − pen(m̂). (7.14)

We decompose the empirical process νn(t) in two processes. We set m? = m̂ ∨m.
For t ∈ Sm? , we have using Plancherel-Parseval

νn(t) =
1

n

n∑
k=1

(φt(Zk)− 〈t, f〉)

=
1

n

n∑
k=1

(
1

2π

∫
|u|≤
√
lm?

t∗(u)

f∗ε (−u)
e−iuZkdu− E

[
1

2π

∫
|u|≤
√
lm?

t∗(u)

f∗ε (−u)
e−iuZkdu

])

+
1

n

n∑
k=1

(
1

2π

∫
|u|>
√
lm?

t∗(u)

f∗ε (−u)
e−iuZkdu− E

[
1

2π

∫
|u|>
√
lm?

t∗(u)

f∗ε (−u)
e−iuZkdu

])

=
1

n

n∑
k=1

(φt,1(Zk)− E [φt,1(Zk)]) +
1

2π

∫
|u|>
√
lm?

t∗(u)

f∗ε (−u)
(f̂∗Z(u)− f∗Z(u))du,

(7.15)

with φt,1(x) = 1
2π

∫
|u|≤
√
lm?

t∗(u)
f∗ε (−u)e

−iuxdu. Therefore, we write νn(t) = νn,1(t) +

νn,2(t) where νn,1(t) = 1
n

∑n
k=1 (φt,1(Zk)− E [φt,1(Zk)])

and νn,2(t) = 1
2π

∫
|u|>
√
lm?

t∗(u)
f∗ε (−u) (f̂∗Z(−u) − f∗Z(−u))du. Using that (νn,1(t) +

νn,2(t))2 ≤ 2(νn,1(t))2 + 2(νn,2(t))2 and by (7.14), (7.15) we deduce
1

2
‖f̂m̂ − f‖2 ≤

3

2
‖fm − f‖2 + pen(m) + 8 sup

t∈Sm? ,‖t‖=1

(νn,1(t))2

+ 8 sup
t∈Sm? ,‖t‖=1

(νn,2(t))2 − pen(m̂).

We introduce the function p(m,m′) = κ
8

∆(m∨m′)
n if fε is ordinary smooth or super

smooth with δ ≤ 1/2 and p(m,m′) = 2κ(1 + ε(m,m′))∆(m∨m′)
8n otherwise, where

ε(m,m′) is given below, which verifies 8p(m,m′) ≤ pen(m) + pen(m′). We obtain:

‖f̂m̂ − f‖2 ≤3‖fm − f‖2 + 4 pen(m) + 16
∑

m′∈Mn

( sup
t∈Sm∨m′ ,‖t‖=1

(νn,1(t))2− p(m,m′))+

+ 16 sup
t∈Sm? ,‖t‖=1

(νn,2(t))2.

By taking expectation, we get

E
[
‖f̂m̂ − f‖2

]
≤ 3‖fm − f‖2 + 4 pen(m) + 16E

[
sup

t∈Sm? ,‖t‖=1

(νn,2(t))2

]

+ 16
∑

m′∈Mn

E

[(
sup

t∈Sm∨m′ ,‖t‖=1

(νn,1(t))2 − p(m,m′)

)
+

]
.
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The two followings lemmas lead to the result of Theorem 4.1:

Lemma 7.2. There exists a constant Σ1 such that∑
m′∈Mn

E

[(
sup

t∈Sm∨m′ ,‖t‖=1

(νn,1(t))2 − p(m,m′)

)
+

]
≤ Σ1

n
.

Lemma 7.3. There exists a constant Σ2 such that

E

[
sup

t∈Sm? ,‖t‖=1

(νn,2(t))2

]
≤ Σ2

n
.

Using Lemmas 7.2 and 7.3, we have the result choosing C = 4 and C ′ = 16(Σ1 +
Σ2). �

7.4.1. Proof of Lemma 7.2. To prove this lemma, we use Talagrand’s inequality
given in Appendix A.3, and compute H2, M1, v defined there. Denote by m′′ =
m ∨ m′. We start by computing H2. As the map t 7→ νn,1(t) is linear, for t =∑m′′−1
j=0 ajϕj such that ‖t‖ = 1, we have

(νn,1(t))
2

=

m′′−1∑
j=0

ajνn,1 (ϕj)

2

≤
m′′−1∑
j=0

a2
j

m′′−1∑
j=0

νn,1(ϕj)
2 =

m′′−1∑
j=0

νn,1(ϕj)
2.

Therefore,

E

[(
sup

t∈Sm′′ ,‖t‖=1

(νn,1(t))2

)]
≤ E

m′′−1∑
j=0

νn,1(ϕj)
2

 =

m′′−1∑
j=0

1

n
Var

(
φϕj ,1(Z1)

)

≤ 1

n

m′′−1∑
j=0

E
[
|φϕj ,1 (Z1) |2

]
.

It comes using (7.2) that,

E[

m′′−1∑
j=0

|φϕj (Z1) |2] =
1

(2π)2
E[

m′′−1∑
j=0

∣∣∣∣∣
∫
|u|≤
√
lm′′

ϕ∗j (u)e−iuZ1

f∗ε (−u)
du

∣∣∣∣∣
2

] ≤ ∆(m′′)

n
:= H2.

(7.16)
Now we look for M1. Using Cauchy-Schwarz inequality and Parseval’s theorem

|φt,1(x)| = 1

2π

∣∣∣∣∣
∫
|u|≤
√
lm′′

t∗(u)

f∗ε (−u)
e−iuxdu

∣∣∣∣∣ ≤ 1

2π

∫
|u|≤
√
lm′′

∣∣∣∣ t∗(u)

f∗ε (−u)
e−iux

∣∣∣∣ du
≤ 1

2π

√∫
|t∗(u)|2du

∫
|u|≤
√
lm′′

du

|f∗ε (−u)|2

=
1

2π

√
2π||t||2

∫
|u|≤
√
lm′′

du

|f∗ε (−u)|2
≤
√

∆(m′′).

Thus, it follows

sup
t∈Sm+Sm′ ,‖t‖=1

‖φt,1‖∞ ≤
√

∆(m′′) := M1.
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The case of v is more tedious,

Var(φt,1(Z1)) ≤ E
[
|φt,1(Z1)|2

]
=

1

2π

∫ ∣∣∣∣∣
∫
|u|≤
√
lm′′

t∗(u)

f∗ε (−u)
e−iuzdu

∣∣∣∣∣
2

fZ(z)dz

=
1

2π

∫∫∫
t∗(u)

f∗ε (−u)

t∗(−v)

f∗ε (v)
e−i(u−v)zfZ(z)1|u|≤

√
lm′′1|v|≤

√
lm′′dudvdz

=
1

2π

∫∫
t∗(u)

f∗ε (−u)

t∗(−v)

f∗ε (v)
f∗Z(v − u)1|u|≤

√
lm′′1|v|≤

√
lm′′dudv

≤ 1

2π

∫∫ ∣∣∣∣ t∗(u)

f∗ε (−u)

∣∣∣∣2 |f∗Z(v − u)|1|u|≤√lm′′1|v|≤√lm′′dudv

≤ 1

2π

∫
|f∗Z(z)|dz

∫ ∣∣∣∣ t∗(u)

f∗ε (−u)

∣∣∣∣2 1|u|≤√lm′′du.
Using the Cauchy-Schwarz inequality and Parseval’s theorem we have:∫

|f∗Z(z)|dz =

∫
|f∗(z)f∗ε (z)|dz ≤ 2π‖fε‖. ‖f‖.

Thus, we get: Var(φt,1(Z1)) .
∫ ∣∣∣ t∗(u)

f∗ε (−u)

∣∣∣2 1|u|≤√lm′′du. We consider separately
two cases.

(1) Ordinary smooth case: In this case, we have by (7.16) and by (7.4) that
H2 � m′′γ+1/2

n . Moreover,

Var(φt,1(Z1)) ≤
∫
|t∗(u)|2 (1 + t2)γ1|u|≤

√
lm′′du ≤ (1 + lγm′′γ)

∫
|t∗(u)|2 du

= 2π(1 + lγm′′γ)‖t‖2 = 2π(1 + lγm′′γ).

We can set v = cm′′γ , with c > 0. Thus, using Talagrand’s inequality we
have:

E

[(
sup

t∈Sm′′ , ‖t‖=1

(νn,1(t))2 − p(m,m′)

)
+

]
. [U(m′′) + V (m′′)] , (7.17)

with p(m,m′) = κ
8

∆(m′′)
n = κ

8H
2 ≥ 2(1 + 2ε)H2, we take κ0 = 17, ε = 1/2,

and

U(m′′) =
v

n
exp

(
−K1

2

nH2

v

)
=
cm′′γ

n
exp

−K1

2
n
m′′γ+

1
2

n

cm′′γ

 . m′′γ

n
e−

K1
2c m

′′ 1
2 ,

V (m′′) =
M2

1

C(ε)2n2
exp

(
−K ′1C(ε)

1√
2

nH

M1

)
= C1

∆(m′′)

n2
exp

−C2n

√
∆(m′′)
n√

∆(m′′)


.

1

n
e−C2

√
n,

because for m ∈Mn, ∆(m) ≤ n. Therefore, we deduce by (7.17) that:∑
m′∈Mn

E

[(
sup

t∈Sm′′ , ‖t‖=1

(νn,1(t))2 − p(m,m′)

)
+

]
.

∑
m′∈Mn

[U(m′′) + V (m′′)] .
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As∑
m′

U(m′′) .
1

n

∑
m′

m′′γe−
K1
2c

√
m′′

=
1

n

 m∑
m′=0

m′′γe−
K1
2c

√
m′′ +

n2∑
m′=m

m′′γe−
K1
2c

√
m′′


=

1

n

[
mγ+1e−

K1
2c

√
m +

+∞∑
m′=m

m′γe−
K1
2c

√
m′

]
≤ C ′1

n
,

and∑
m′∈Mn

V (m′′) .
1

n

∑
m′∈Mn

e−C2
√
n =

1

n
|Mn|e−C2

√
n . ne−C2

√
n ≤ C ′′1

n
.

We deduce that∑
m′∈Mn

E

[(
sup

t∈Sm′′ , ||t||=1

(νn,1(t))2 − p(m,m′)

)
+

]
≤ Σ1

n
, Σ1 = C ′1 + C ′′1 . (7.18)

(2) Super smooth case: In this case the order of H2 is given by (7.4): H2 �
m′′

1−δ
2 eµl

δ
2m
′′ δ

2

n ,

Var(φt,1(Z1)) ≤ c1
∫
|t∗(u)|2 eµ|u|

δ

1|u|≤
√
lm′′du ≤ c1e

µl
δ
2m′′

δ
2

∫
|t∗(u)|2 du

= 2πc1e
µl
δ
2m′′

δ
2 ‖t‖2 . eµl

δ
2m′′

δ
2 = v.

We use Talagrand’s inequality again, we must compute U(m′′) and V (m′′).

U(m′′) =
v

n
exp

(
−K1ε

nH2

v

)
=
ceµl

δ
2m′′

δ
2

n
exp

−K1εn
m′′

1−δ
2 eµl

δ/2m
′′ δ

2

n

eµlδ/2m
′′ δ

2


.

1

n
eµl

δm′′
δ
2−K1εm

′′ 1−δ
2 ,

V (m′′) =
M2

1

C2(ε)n2
exp

(
−K ′1C(ε)

√
ε
nH

M1

)
=

∆(m′′)

C2(ε)n2
exp

(
−K ′1C(ε)

√
ε
√
n
)

≤ 1

C2(ε)n
exp

(
−K ′1C(ε)

√
ε
√
n
)
.

• Study of
∑
m′∈Mn

U(m′′): we have∑
m′∈Mn

U(m′′) .
1

n

∑
m′∈Mn

eµl
δ
2m′′

δ
2−K1εm

′′ 1−δ
2 .

We are going to study this term according the value of δ.
(i) Case 0 < δ < 1/2: In this case δ/2 < (1− δ)/2. Thus the choice ε = 1

implies that meµl
δm

δ
2−K1εm

1−δ
2 is bounded by a constant independent

of m′, and eµl
δm′

δ
2−K1εm

′ 1−δ
2 is integrable in m′. We deduce that:

1

n

∑
m′∈Mn

eµl
δm′′

δ
2−K1εm

′′ 1−δ
2 =



440 O. Sacko

=
1

n

 m∑
m′=1

eµl
δ/2m′′

δ
2−K1εm

′′ 1−δ
2 +

n2∑
m′=m

eµl
δ/2m′′

δ
2−K1εm

′′ 1−δ
2


≤ 1

n

[
meµl

δ/2m
δ
2−K1εm

1−δ
2 +

∑
m′∈Mn

eµl
δ/2m′

δ
2−K1εm

′ 1−δ
2

]

≤ C ′′1
n
.

(ii) Case δ ≥ 1/2: We choose ε such that µlδ/2m′′
δ
2 − K1εm

′′ 1−δ2 =

−µl δ2m′′ δ2 , that is ε = 2µlδ/2

K1
m′′δ−

1
2 . This implies

1

n

∑
m′∈Mn

eµl
δ/2m′′

δ
2−K1εm

′′ 1−δ
2 =

1

n

∑
m′∈Mn

e−µl
δ/2m′′

δ
2 ≤ 1

n

∑
m′

e−µl
δ/2m′

δ
2 ≤ C ′′1

n
.

In the all cases, we have :
∑
m′∈Mn

U(m′′) ≤ C′′1
n .

• Study of
∑
m′∈Mn

V (m′′)

As |Mn| = O(n2) and for all choice of ε in the study of U(m′′), we have
C(ε) = 1, ε ≥ 1. Thus, it follows∑

m′∈Mn

V (m′′) ≤ |Mn|
C2(ε)n

exp
(
−K ′1C(ε)ε

√
n
)
≤ n

C2(ε)
exp

(
−K ′1C(ε)

√
ε
√
n
)
≤ C ′1

n
.

Therefore, (7.18) holds and the result of Lemma 7.2 is proven. �

7.4.2. Proof of Lemma 7.3. Here m? = m ∨ m̂. Using the Cauchy-Schwarz
inequality for t =

∑m?−1
j=0 ajϕj such that ‖t‖2 =

∑m?−1
j=0 a2

j = 1, we have:

νn,2(t)2 =
1

(2π)2

(∫
|u|>
√
lm?

t∗(u)

f∗ε (−u)
(f̂∗Z(−u)− f∗Z(−u))du

)2

≤ 1

(2π)2

m?−1∑
j=0

∣∣∣∣∣
∫
|u|>
√
lm?

ϕ∗j (u)

f∗ε (−u)
(f̂∗Z(−u)− f∗Z(−u))du

∣∣∣∣∣
2
 .

By (2.1)-(2.2) and using the Cauchy-Schwarz inequality, we have:

m?−1∑
j=0

∣∣∣∣∣
∫
|u|>
√
lm?

ϕ∗j (u)

f∗ε (−u)
(f̂∗Z(u)− f∗Z(u))du

∣∣∣∣∣
2

= 2π

m?−1∑
j=0

∣∣∣∣∣
∫
|u|>
√
lm?

ϕj(u)

f∗ε (−u)
(f̂∗Z(−u)− f∗Z(−u))du

∣∣∣∣∣
2

.
m?−1∑
j=0

(∫
|u|>
√
lm?

|f̂∗Z(−u)− f∗Z(−u)|
|f∗ε (−u)|

|ϕj(u)|du

)2

.
m?−1∑
j=0

(∫
|u|>
√
lm?

|f̂∗Z(−u)− f∗Z(−u)|
|f∗ε (−u)|

e−ξu
2

du

)2
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.
m?−1∑
j=0

(∫
|u|>
√
lm?

|f̂∗Z(−u)− f∗Z(−u)|2

|f∗ε (−u)|2
e−ξu

2

du

)

×
∫
|u|>
√
lm?

e−ξu
2

du.

As
∫
|u|>
√
lm?

e−ξu
2

du ≤ ce−ξm
?

and the function x 7→ xe−ξx reaches its maximum

(1/ξ)e−1 in x = 1/ξ, it implies νn,2(t)2 .
∫
R
|f̂∗Z(−u)−f∗Z(−u)|2

|f∗ε (−u)|2 e−ξu
2

du. Therefore,

E

[
sup

t∈Sm? ,‖t‖=1

(νn,2(t))2

]
.
∫
R

E
[
|f̂∗Z(−u)− f∗Z(−u)|2

]
|f∗ε (−u)|2

e−ξu
2

du.

Now, we have

E
[
|f̂∗Z(−u)− f∗Z(−u)|2

]
= Var[f̂∗Z(−u)] =

1

n
Var[e−iuZ1 ] =

1

n

(
1− |f∗Z(−u)|2

)
≤ 1

n
.

Thus, by this last inequality we deduce

E

[
sup

t∈Sm∗ , ‖t‖=1

(νn,2(t))2

]
.

1

n

∫
R

1

|f∗ε (−u)|2
e−ξu

2

du.

If fε is ordinary smooth, the integral is convergent and the previous bound is of
order 1/n. Assume now fε super smooth, we have by (2.3):

E

[
sup

t∈Sm∗ , ‖t‖=1

(νn,2(t))2

]
.

1

n

∫
R
eµ|u|

δ

e−ξu
2

du ≤ Σ2

n
,

if δ < 2, or if δ = 2, and µ < ξ. This gives the announced result.

Appendix A. Some inequalities

A.1. Covariance inequality (Viennet, 1997). Let (Xi)i∈Z be a strictly stationary
absolutely process with β−missing sequence (βk)k≥0. Then, there exists a sequence
of measurable functions (bk)k≥0, with b0 ≡ 1, 0 ≤ bk ≤ 1, EP [bk] = βk such that
for any measurable function f in L2(P ) and any positive integer n, we have

Var(

n∑
i=1

f(Xi)) ≤ 4n

∫
b(x)f2(x)dP (x),

where b =
∑n
k=0 bk is such that EP (bp) ≤ p

∑
k≥0(k + 1)p−1βk, for 1 ≤ p < +∞

(see Lemma 4.2 in Viennet, 1997 p. 481).

A.2. Asymptotic Askey and Wainger formula. From Askey and Wainger (1965), we
have for ν = 4k + 2δ + 2, and k large enough

|ψ(δ)
k (x/2)| ≤C



a) (xν)δ/2 if 0 ≤ x ≤ 1/ν

b) (xν)−1/4 if 1/ν ≤ x ≤ ν/2
c) ν−1/4(ν − x)−1/4 if ν/2 ≤ x ≤ ν − ν1/3

d) ν−1/3 if ν − ν1/3 ≤ x ≤ ν + ν1/3

e) ν−1/4(x− ν)−1/4e−γ1ν
−1/2(x−ν)3/2 if ν + ν1/3 ≤ x ≤ 3ν/2

f) e−γ2x if x ≥ 3ν/2
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where γ1 and γ2 are positive and fixed constants.

A.3. Talagrand’s inequality. Let (Xi)1≤i≤n be independent real random variables,
F a class at most countable of measurable functions and νn(f) = 1

n

∑n
i=1(f(Xi)−

E[f(Xi)]) for all f ∈ F . We assume there exist third strictly positive constantsM1,
H, v such that:

sup
f∈F
‖f‖∞ ≤M1, E[sup

f∈F
| νn(f) |] ≤ H, and sup

f∈F

1

n

n∑
i=1

Var(f(Xi)) ≤ v.

Then, for ε > 0,

E

[(
sup
f∈F
|ν2
n(f)| − 2(1 + 2ε)H2

)
+

]

≤ 4

K1

(
v

n
exp(−K1ε

nH2

v
) +

49M2
1

K1C2(ε)n2
exp(−K ′1C(ε)

√
ε
nH

M1
)

)
where C(ε) = (

√
1 + ε − 1) ∧ 1, K1 = 1/6 and K ′1 a universal constant. The

Talagrand inequalities has been proven in Talagrand (1996), reworded by Ledoux
(1995/97). This version is given in Klein and Rio (2005).
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