
Rev. Mat. Iberoamericana 19 (2003), 23–55

Hermite functions and uncertainty
principles for the Fourier and the

windowed Fourier transforms

Aline Bonami, Bruno Demange and Philippe Jaming

Abstract

We extend an uncertainty principle due to Beurling into a charac-
terization of Hermite functions. More precisely, all functions f on R

d

which may be written as P (x) exp(−〈Ax, x〉), with A a real symmetric
definite positive matrix, are characterized by integrability conditions
on the product f(x)f̂(y). We then obtain similar results for the win-
dowed Fourier transform (also known, up to elementary changes of
functions, as the radar ambiguity function or the Wigner transform).
We complete the paper with a sharp version of Heisenberg’s inequality
for this transform.

1. Introduction and Notations.

Uncertainty principles state that a function and its Fourier transform cannot
be simultaneously sharply localized. To be more precise, let d ≥ 1 be the
dimension, and let us denote by 〈., .〉 the scalar product and by ‖.‖ the
Euclidean norm on R

d. Then, for f ∈ L2(Rd), define the Fourier transform
of f by

f̂(y) =

∫
Rd

f(t)e−2iπ〈t,y〉dt.

The most famous uncertainty principle, due to Heisenberg and Weil, can be
stated in the following directional version :

Heisenberg’s inequality. Let i = 1, . . . , d and f ∈ L2(Rd). Then

(1.1) inf
a∈R

(∫
Rd

(xi − a)2|f(x)|2dx

)
inf
b∈R

(∫
Rd

(ξi − b)2
∣∣∣f̂(ξ)

∣∣∣2dξ

)
≥ ‖f‖4

L2

16π2
.
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Moreover (1.1) is an equality if and only if f is of the form

f(x) = C(x1, . . . , xi−1, xi+1, . . . , xn)e−2iπbxie−α(xi−a)2

where C is a function in L2(Rd−1), α > 0, and a and b are real constants for
which the two infimums in (1.1) are realized.

The usual non-directional uncertainty principle follows easily from this
one. We refer to the recent survey articles by Folland and Sitaram [11] and
Dembo, Cover and Thomas [9] as well as the book of Havin and Jöricke [17]
for various uncertainty principles of different nature which may be found in
the literature. One theorem stated in [11] is due to Beurling. Its proof has
been written much later by Hörmander in [18]. Our first aim is to weaken
the assumptions so that non zero solutions given by Hermite functions are
also possible. More precisely, we will prove the following theorem :

Theorem 1.1 (Beurling-Hörmander type) Let f ∈ L2(Rd) and N ≥ 0.
Then

(1.2)

∫∫
Rd×Rd

|f(x)||f̂(y)|
(1 + ‖x‖ + ‖y‖)N

e2π|〈x,y〉| dxdy < +∞

if and only if f may be written as

f(x) = P (x)e−π〈Ax,x〉,

where A is a real positive definite symmetric matrix and P is a polynomial
of degree < N−d

2
.

In particular, for N ≤ d, the function f is identically 0. Beurling-
Hörmander’s original theorem is the above theorem for d = 1 and N = 0.
An extension to d ≥ 1 but still N = 0 has been given, first by S.C. Bagchi
and S. K. Ray in [2] in a weaker form, then very recently by S. K. Ray
and E. Naranayan in the present form. Their proof, which relies on the one
dimensional case, uses Radon transform [25].

Let us remark that the idea of characterizing Hermite functions by point-
wise vanishing at infinity, for both the function and its Fourier transform,
goes back to Hardy. Indeed, such a characterization is contained in Hardy’s
original theorem [16], (though textbooks usually restrict attention to the
characterization of Gaussian functions in Hardy’s Theorem).

One may also consult [27] for extensions. The proof given here with
integrability conditions uses new ingredients compared to the original proof
of Hörmander [18]. At the same time, it simplifies Hörmander’s argument
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for the case N = 0, d = 1, in such a way that the proof can now be given in
any textbook on Fourier Analysis. We give this last one in the Appendix,
since it may be useful in this context.

The previous theorem has as an immediate corollary the following char-
acterization.

Corollary 1.2 A function f ∈ L2(Rd) may be written as

f(x) = P (x)e−π〈Ax,x〉,

with A a real positive definite symmetric matrix and P a polynomial, if and
only if the function

f(x)f̂(y) e2π|〈x,y〉|

is slowly increasing on Rd × Rd.

As an easy consequence of the previous theorem, we also deduce the
following corollary, which generalizes the Cowling-Price uncertainty principle
(see [8]).

Theorem 1.3 (Cowling-Price type) Let N ≥0. Assume that f ∈L2(Rd)
satisfies

∫
Rd

|f(x)| eπa|xj |2

(1 + |xj|)N
dx < +∞ and

∫
Rd

|f̂(y)| eπb|yj |2

(1 + |yj|)N
dy < +∞

for j = 1, . . . , d and for some positive constants a and b with ab = 1. Then
f(x) = P (x)e−a‖x‖2

for some polynomial P .

The Cowling-Price type theorem is given in [8] for d = 1, N = 0, and with
p-th powers as well. This last extension is a trivial consequence of Hölder’s
inequality once N is allowed to take positive values. For higher dimension,
we use a trick due to S.C. Bagchi and S. K. Ray to have only directional
conditions. For p = ∞, this gives a directional Hardy type theorem.

It is remarked in [18], as well as in [2], that a theorem of Beurling-
Hörmander type implies also a theorem of Morgan type. But the constant
that one obtains when doing this is not the best one. In fact, the best
constant has been given by G. Morgan in [24] which is contemporary of the
paper by Hardy. One may also consult the work of Nazarov [26] as well as
[17] for more comments on the work of Morgan. We give here integrability
conditions.
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Theorem 1.4 (Morgan type) Let 1 < p < 2, and let q be the conjugate
exponent. Assume that f ∈ L2(Rd) satisfies∫

Rd

|f(x)|e2π ap

p
|xj |pdx < +∞ and

∫
Rd

|f̂(y)|e2π bq

q
|yj |qdy < +∞

for some j = 1, . . . , d and for some positive constants a and b. Then f = 0

if ab >
∣∣cos(pπ

2
)
∣∣1/p

.

If ab <
∣∣cos(pπ

2
)
∣∣1/p

, one may find a dense subset of functions which
satisfy the above conditions for all j.

From Theorem 1.1, one only gets the first result for ab ≥ 1, which is
clearly much weaker. Such a theorem is sometimes called of “Gel’fand-
Shilov type”, as these authors have studied similar conditions in their work
on the classes of distributions that have a Fourier transform.

One way one may hope to overcome the lack of localisation is to use
the windowed Fourier transform, also known as the (continuous) Gabor
transform or the short-time Fourier transform. To be more precise, fix
v ∈ L2(Rd), the “window”, and define for u ∈ L2(Rd) :

Svu(x, y) = u v(. − x)(y) =

∫
Rd

u(t)v(t − x) e−2iπ〈t,y〉dt.

This transform occurs also in several other forms, for example |Svu|2 is
known as a spectrogram. For sake of symmetry in u and v, we rather focus
on the radar ambiguity function defined for u, v ∈ L2(Rd) by

(1.3) A(u, v)(x, y) =

∫
Rd

u
(
t +

x

2

)
v

(
t − x

2

)
e−2iπ〈y,t〉dt.

Since |A(u, v)| = |Svu|, there will be no loss in doing so. We refer the reader
to [1], [7], [6] and the references there for the way these functions occur in
signal processing, and their basic properties.

Finally, W (u, v), the Fourier transform of A(u, v) in R
2d is known in

quantum mechanics and in the PDE community as the Wigner transform
or Wigner distribution. Since

W (u, v)(x, y) =

∫
Rd

u

(
x +

t

2

)
v

(
x − t

2

)
e2iπ〈y,t〉dt,

W (u, v) is also related to A(u, v) by

W (u, v)(x, y) = 2dA(u, Zv)(2x,−2y)
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where Zv(x) = v(−x). So again, all results stated here can be restated in
terms of the Wigner transform.

Our second aim here is to extend uncertainty principles to the radar am-
biguity functions. In particular, we will show that A(u, v) satisfies theorems
of Cowling-Price type on one side, of Morgan type on the other one. Both
results are sharp, with the same characterization of the Hermite functions in
the first case. Let us mention that the Hardy’s theorem has been extended
in this context by K. Gröchenig and G. Zimmermann in [15].

We also give a version of Heisenberg’s inequality for A(u, v) that is
stronger than a previous version by A.J.E.M. Janssen ([21], see also [10]).
The one dimensional case for the Wigner transform W (u, u) can be found
in [3]. This Heisenberg’s inequality may be stated in the following matricial
form.

Theorem 1.5 Assume that u and v be in L2(Rd), with ‖u‖L2‖v‖L2 = 1,
and ∫

Rd

‖x‖2(|u|2 + |v|2 + |û|2 + |v̂|2)dx < ∞ .

Let (X,Y ) be a random vector with probability density given on R
d × R

d by
the function |A(u, v)|2. Then X and Y are not correlated, and their two
covariance matrices are such that

4π2V (X) − V (Y )−1

is semi-positive definite. Moreover, if it is the zero matrix, then u and v are
Gaussian functions.

In Radar Theory, for which d = 1, the couple (X,Y ) may be given
a physical meaning: its first component is related to the distance to the
target, the second to its velocity. So the variance gives the quadratic error
when estimating the distance or the velocity by the corresponding mean.

A different problem consists in minimizing the same quantity A(u, v) for
a fixed “window” v, or more generally to consider uncertainty principles in
terms of a function u and its windowed Fourier transform A(u, v). Such
problems have been considered by E. Wilczock [29]. Best results follow from
ours only when the window is Gaussian.

The article is organized as follows : the next section is devoted to the
proof of Theorem 1.1, whereas in section 3, we consider the other mentioned
uncertainty principles for the Fourier transform. In section 4, we recall
some basic properties of the ambiguity functions, pursuing in section 5 with
the Heisenberg inequality for these functions. Section 6 is devoted to the
extension of uncertainty principles to ambiguity functions.
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2. Generalization of Beurling-Hörmander’s theorem.

The statement of Theorem 1.1 is divided into two propositions. The first
one is elementary.

Proposition 2.1 Let f ∈ L2(Rd) be a function of the form

f(x) = P (x)e−π〈(A+iB)x,x〉,

with A and B two real symmetric matrices and P a polynomial. Then the
matrix A is positive definite. Moreover, the three following conditions are
equivalent:

(i) B = 0 and deg(P ) < N−d
2

;

(ii)

∫∫
Rd×Rd

|f(x)||f̂(y)|
(1 + ‖x‖ + ‖y‖)N

e2π|〈x,y〉| dxdy < +∞ ;

(iii)

∫∫
Rd×Rd

|f(x)||f̂(y)|
(1 + ‖x‖)N

2 (1 + ‖y‖)N
2

e2π|〈x,y〉| dxdy < +∞ .

Proof. The fact that A is positive definite is elementary. Then, after a
change of variables, we may assume that A is the identity matrix, so that
f may be written as P (x)e−π‖x‖2

e−iπ〈Bx,x〉. The Fourier transform of f may

be written as Q(y)e−π〈(I+iB)−1y,y〉, with deg(P ) = deg(Q) = n.

To prove that (i) implies (iii), it is sufficient to prove that, for α > d/2,
we have the inequality∫∫

Rd×Rd

(1 + ‖x‖)−α(1 + ‖y‖)−αe−π‖x−y‖2

dxdy < +∞ .

But this integral is twice the integral on the subset where ‖x‖ ≤ ‖y‖. So it
is bounded by

2

∫
Rd

[
(1 + ‖x‖)−2α ×

∫
Rd

e−π‖x−y‖2

dy

]
dx < +∞

which allows to conclude.

It is clear that (iii) implies (ii) for all functions f . Let us now prove
that (ii) implies (i). First, writing (I + iB)−1 = (I − iB)(I + B2)−1, it is

immediate that the integrability on f(x)f̂(y) implies that the homogeneous
polynomial ‖x‖2 + 〈(I + B2)−1y, y〉 − 2〈x, y〉 is non negative, which implies
that B = 0. Now, let Pn and Qn be the homogeneous terms of maximal
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degree of the polynomials P and Q. There exists x(0) ∈ R
d of norm 1

such that Pn(x(0))Qn(x(0)) is different from 0. We call Γε the cone under
consideration. It is obtained as the image of the cone{

x = (x1, . . . , xd) ; (x2
2 + · · · + x2

d)
1
2 < εx1

}
under a rotation which maps the point (1, 0, . . . , 0) to x(0). Then, for ε < 1
small enough, there exists a constant c such that, for x, y ∈ Γε, one has the
inequality

|Pn(x)| |Qn(y)| ≥ c‖x‖n‖y‖n .

The same inequality is valid for P and Q for x and y large, which implies
that ∫∫

Γε×Γε

‖x‖n‖y‖n

(1 + ‖x‖ + ‖y‖)N
e−π‖x−y‖2

dxdy < +∞ .

We remark that if x ∈ Γε then −Γε ⊂ x − Γε. So, a fortiori, we have that∫∫
Γε×(−Γε)

‖x‖n‖t + x‖n

(1 + ‖x‖ + ‖t + x‖)N
e−π‖t‖2

dxdt < +∞ .

We know, using Fubini’s theorem, that there exists t for which∫
Γε

‖x‖n‖t + x‖n

(1 + ‖x‖ + ‖t + x‖)N
dx < +∞ ,

which proves that N − 2n > d. �

We have written here the equivalence between Conditions (ii) and (iii) to
remark that Condition (iii) could be written in place of (1.2) in Theorem 1.1.

The next proposition is much deeper.

Proposition 2.2 Let f ∈ L2(Rd). If, for some positive integer N ,

(2.1)

∫∫
Rd×Rd

|f(x)||f̂(y)|
(1 + ‖x‖ + ‖y‖)N

e2π|〈x,y〉| dxdy < +∞ ,

then f may be written as

f(x) = P (x)e−π〈(A+iB)x,x〉,

where A and B are two symmetric matrices and P is a polynomial.
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Proof. We may assume that f 	= 0.

First step. Both f and f̂ are in L1(Rd).

For almost every y,

|f̂(y)|
∫

Rd

|f(x)|
(1 + ‖x‖)N

e2π|〈x,y〉| dx < +∞.

As f 	= 0, the set of all y’s such that f̂(y) 	= 0 has positive measure. In
particular, there is a basis y(1), . . . , y(d) of R

d such that, for i = 1, . . . , d,
f̂(y(i)) 	= 0 and ∫

Rd

|f(x)|
(1 + ‖x‖)N

e2π|〈x,y(i)〉| dx < +∞.

Since, clearly, there exists a constant C such that

(1 + ‖x‖)N ≤ C
d∑

i=1

e2π |〈x,y(i)〉| ,

we get f ∈ L1(Rd). Exchanging the roles of f and f̂ , we get f̂ ∈ L1(Rd).

Second step. The function g defined by ĝ(y) = f̂(y)e−π‖y‖2

satisfies the
following properties (with C depending only on f)

(2.2)

∫
Rd

|ĝ(y)| eπ‖y‖2

dy < ∞ ;

(2.3) |ĝ(y)| ≤ Ce−π‖y‖2

;

(2.4)

∫∫
Rd×Rd

|g(x)||ĝ(y)|
(1 + ‖x‖ + ‖y‖)N

e2π|〈x,y〉| dxdy < +∞ ;

(2.5)

∫
‖x‖≤R

∫
Rd

|g(x)||ĝ(y)| e2π|〈x,y〉| dxdy < C(1 + R)N .

Property (2.2) is obvious from the definition of g and the fact that f̂ is in

L1(Rd). As f ∈ L1(Rd), f̂ is bounded thus (2.3) is also obvious. To prove
(2.4), we have∫∫

Rd×Rd

|g(x)||ĝ(y)|
(1 + ‖x‖ + ‖y‖)N

e2π|〈x,y〉|dxdy ≤
∫∫

|f(t)||f̂(y)|A(t, y)e2π|〈t,y〉|dtdy



Hermite functions and uncertainty principles 31

with

A(t, y) =

∫
e−π‖x‖2−π‖y‖2+2π|〈x,y〉|

(1 + ‖t − x‖ + ‖y‖)N
dx.

We claim that

(2.6) A(t, y) ≤ C(1 + ‖t‖ + ‖y‖)−N ,

which allows to conclude. Indeed, separating the cases of 〈x, y〉 being positive
or negative, we get

A(t, y) ≤
∫

e−π‖x−y‖2

(1 + ‖t − x‖ + ‖y‖)N
dx +

∫
e−π‖x+y‖2

(1 + ‖t + x‖ + ‖y‖)N
dx

= I1 + I2.

As I2(t, y) = I1(−t, y), it is enough to get a bound for I1. Now, fix 0 < c < 1
and write B = (1 + ‖t‖ + ‖y‖), then

I1 ≤
∫
‖x−y‖>cB

e−π‖x−y‖2

dx +

∫
‖x−y‖≤cB

e−π‖x−y‖2

(1 + ‖t − x‖ + ‖y‖)N
dx.

We conclude directly for the first integral. For the second one, it is sufficient
to note that, if ‖x − y‖ ≤ c(1 + ‖t‖ + ‖y‖), then

1 + ‖t − x‖ + ‖y‖ ≥1 +
1

2
‖t‖ +

1

2
‖y‖ − 1

2
‖x − y‖

≥(1 − c)

2
(1 + ‖t‖ + ‖y‖).

This completes the proof of (2.6) and (2.4).

Let us finally prove (2.5). Fix c > 2. Then the left hand side is bounded
by∫

‖x‖≤R

|g(x)|
(∫

‖y‖>cR

|ĝ(y)|e2π|〈x,y〉|dy +

∫
‖y‖<cR

|ĝ(y)|e2π|〈x,y〉|dy

)
dx

≤
∫
‖x‖≤R

|g(x)|
(∫

‖y‖>cR

Ce−(π−2 π
c
)‖y‖2

dy +

∫
‖y‖<cR

|ĝ(y)|e2π|〈x,y〉|dy

)
dx

≤ K‖g‖L1 +

∫
‖x‖≤R

∫
‖y‖<cR

|g(x)||ĝ(y)|e2π|〈x,y〉|dxdy.

Then, if we multiply and divide by (1 + ‖x‖ + ‖y‖)N in the integral of
right side, we get the required inequality (2.5). This completes the proof of
the claim.
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Third step. The function g admits an holomorphic extension to C
d that is

of order 2. Moreover, there exists a polynomial R such that for all z ∈ Cd,
g(z)g(iz) = R(z).

It follows from (2.3) and Fourier inversion that g admits an holomorphic
extension to C

d which we again denote by g. Moreover,

|g(z)| ≤ Ceπ‖z‖2

,

with C the L1 norm of ĝ. It follows that g is of order 2. On the other hand,
for all x ∈ Rd and eiθ of modulus 1,

(2.7) |g(eiθx)| ≤
∫

Rd

|ĝ|(y)e2π|〈x,y〉|dy.

Let us now define a new function G on C
d by :

G : z →
∫ z1

0

. . .

∫ zd

0

g(u)g(iu)du.

As g is entire of order 2, so is G. By differentiation of G, the proof of this
step is complete once we show that G is a polynomial.

To do so, we will use (2.5) and an elementary variant of Phragmèn-
Lindelhöf’s principle which we recall here, and which may be found in [14] :
let φ be an entire function of order 2 in the complex plane and let α ∈]0, π/2[;
assume that |φ(z)| is bounded by C(1 + |z|)N on the boundary of some
angular sector {reiβ : r ≥ 0, β0 ≤ β ≤ β0 + α}. Then the same bound is
valid inside the angular sector (when replacing C by 2NC).

Let us fix a vector ξ ∈ R
d and define the function Gξ on C by Gξ(z) =

G(zξ). Then Gξ is an entire function of order 2 which has polynomial growth
on R and on iR by (2.7) and (2.5). We cannot directly apply Phragmèn-
Lindelhöf’s principle since we are not allowed to do so on angular sectors of
angle π/2. But, to prove that G has polynomial growth in the first quadrant,
it is sufficient to prove uniform estimates of this type inside all angular
sectors {reiβ : r ≥ 0, 0 < β0 ≤ β ≤ π/2}. Moreover, it is sufficient to have

uniform estimates for the functions G
(α)
ξ (z) = G(α)(zξ), with 0 < α < β0,

and

G(α)(z) =

∫ z1

0

. . .

∫ zd

0

g(e−iαu) g(iu) du.

G
(α)
ξ clearly has polynomial growth on eiα

R and on iR, that is

G
(α)
ξ (z) ≤ C(1 + |x|‖ξ‖)N .
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The constant C, which comes from the constant in (2.5), is independent
of α. The same estimate is valid inside the angular sector by the Phragmèn-
Lindelhöf’s principle, and extends to Gξ, which we wanted to prove.

Proceeding in an analogous way in the three other quadrants, we prove
that Gξ is an entire function with polynomial growth of order N , so a poly-
nomial of degree ≤ N . Let us now write

Gξ(z) = a0(ξ) + · · · + aN (ξ)zN .

Then

aj(ξ) =
1

j!

dj

dzj

(
G(zξ)

)∣∣
z=0

shows that aj is a homogeneous polynomial of degree j on Rd.

The entire function G, which is a polynomial on R
d, is a polynomial.

Finally,

(2.8) g(z)g(iz) = R(z),

where R is a polynomial and the proof of this step is complete.

Fourth Step. A lemma about entire functions of several variables.

We are now lead to solving the equation (2.8), where g is an entire
function of order 2 of d variables and R is a given polynomial. It is certainly
well known that such functions g can be written as P (z)eQ(z), with Q(z)
a polynomial of degree at most 2. Moreover, the equation implies that
Q(z) + Q(iz) = 0, so that Q is homogeneous of degree 2. So we have
completed the proof, up to the study of the equation (2.8). Since we did not
find a simple reference for it, we include the proof of the next lemma, which
is a little more general than what we need above.

Lemma 2.3 Let ϕ be an entire function of order 2 on Cd such that, on every
complex line, either ϕ is identically 0 or it has at most N zeros. Then, there
exists a polynomial P with degree at most N and a polynomial Q with degree
at most 2 such that ϕ(z) = P (z)eQ(z).

Proof. Without loss of generality, we may assume that ϕ(0) does not
vanish. Then, for z ∈ Cd, ϕz(t) = ϕ(tz) is a non-zero entire function of
order 2 that has at most N zeros. By Hadamard’s factorisation theorem,
for every z ∈ C

d, there exists a polynomial Pz with deg(Pz) ≤ N and
α(z), β(z) ∈ C such that :

ϕ(tz) = Pz(t)e
α(z)t+β(z)t2 ,
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with
Pz(t) = a0(z) + · · · + aN(z)tN .

From the uniqueness in Hadamard’s theorem, we easily see that the functions
α and β are homogeneous of degree 1 and 2 respectively, and aj is of degree
j. We may assume that aN (z) is non identically zero. We have

(2.9) ϕ(tz)ϕ(−tz)ϕ(itz)ϕ(−itz) = Pz(t)Pz(−t)Pz(it)Pz(−it).

Differentiating (2.9) 4N times with respect to t, and then taking t = 0, we
get that aN(z)4 is a homogeneous polynomial of degree 4N . Now,

d

dt

(
ϕ(tz)

)
ϕ(−tz)ϕ(itz)ϕ(−itz)

=

(
d

dt
Pz(t) + (2β(z)t + α(z))Pz(t)

)
Pz(it)Pz(−it),

and differentiating 4N + 1 times with respect to t at t = 0, we get that
aN (z)4β(z) is holomorphic. Thus β(z) is also holomorphic, and so a homo-
geneous polynomial of degree 2. An analogous proof allows to conclude that
α(z) is a homogeneous polynomial of degree 1. Define Q(z) = β(z) + α(z)
and P (z) = ϕ(z)e−Q(z). We know that P is holomorphic, and we have to
prove that it is a polynomial. Then

P (tz) = Pz(t) = a0(z) + · · · + aN (z)tN .

In particular,

aj(z) =
1

j!

dj

dtj
(
P (tz)

)∣∣∣∣
t=0

is a holomorphic function, thus a homogeneous polynomial of degree j. It
follows that P (z) = a0(z)+ · · ·+aN(z) is a polynomial of degree ≤ N , which
we wanted to prove to conclude for this step. �

We have also completed the proof of Proposition 2.2. Indeed, g has the
required form thus so has f . �

Let us make a few comments on the proof. Step 3 is very much inspired,
with simplifications, from the proof of Hörmander [18]. Step 2 is not con-
tained in [18], and simplifies greatly the proof, even for N = 0. Further, it
is easy to see that if the function ϕ in Lemma 2.3 is of order less than k,
then ϕ(z) = P (z)eQ(z), with P a polynomial of degree at most N and Q a
polynomial of degree at most k.

As we said in the introduction, the reader will find separately the proof
of Beurling-Hörmander’s Theorem (N = 0, d = 1) in the Appendix.
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3. Applications to other uncertainty principles.

Let us first mention the following immediate corollary of Theorem 1.1 :

Corollary 3.1 Let f ∈ L2(Rd).

(i) If

(3.1)

∫∫
Rd×Rd

|f(x)||f̂(y)|
(1 + ‖x‖ + ‖y‖)N

e2π
∑d

i=1 |xiyi| dxdy < +∞

then f(x) = P (x)e−
∑d

i=1 βix
2
i with P a polynomial and βi > 0 for i =

1, . . . , d.

(ii) If

(3.2)

∫∫
Rd×Rd

|f(x)||f̂(y)|
(1 + ‖x‖ + ‖y‖)N

e2π‖x‖ ‖y‖ dxdy < +∞

then f(x) = P (x)e−β‖x‖2

with P a polynomial and β > 0.

Proof. It is enough to see that Conditions (3.1) and (3.2) are stronger than
Condition (1.2) of Theorem 1.1. Thus f(x) = P (x)e−〈Ax,x〉 for some positive
definite matrix A. A direct computation then shows that the form of the
matrix A imposed by Conditions (3.1) and (3.2) are respectively A diagonal
and A = βI. �

The next proposition, which implies the Cowling–Price theorem in one
dimension, follows at once from the last case.

Proposition 3.2 Let N ≥ 0. Assume that f ∈ L2(Rd) satisfies∫
Rd

|f(x)|eπa‖x‖2

(1 + ‖x‖)N
dx < +∞ and

∫
Rd

|f̂(y)|eπb‖x‖2

(1 + ‖y‖)N
dy < +∞ .

Then, ab > 1 implies f = 0. If ab = 1, then f(x) = P (x)e−πa‖x‖2

for some
polynomial P .

Proof of Theorem 1.3. For d = 1, this is exactly Proposition 3.2. For
d > 1, we proceed as in [2] to reduce to the one-dimensional case. For almost
every x′ = (x2, . . . , xd), the function fx′ defined by fx′(x1) = f(x1, x

′) is in
L2(R) and has as Fourier transform the function

y1 �→
∫

Rd−1

f̂(y1, y
′)e−2πi〈x′,y′〉dy′ .
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So, for almost every x′, the function fx′ satisfies the assumptions of Propo-
sition 3.2, and eπa|x1|2f(x1, x

′) is a polynomial of degree at most N − 2 in the
x1 variable. The same is valid in each variable, which allows to conclude. �

Let us remark that, as in [2] for the case N = 0, it is possible to weaken
the assumption when the conclusion is that f vanishes. We have the imme-
diate corollary :

Corollary 3.3 Assume that f ∈ L2(Rd) satisfies

∫
Rd

|f(x)| eπa|xj |2

(1 + |xj|)M
dx < +∞ and

∫
Rd

|f̂(y)| eπb|yj |2

(1 + |yj|)N
dy < +∞

for some j = 1, . . . , d and for some positive constants a and b with ab = 1.
If min{M,N} = 1, then f is identically 0.

Another remark is that L1 norms may be replaced by Lp norms for 1 ≤
p ≤ ∞ in the previous statements, using Hölder’s inequality. In particular,
we get Corollary 1.2 as well as a modification of the usual Hardy’s theorem
that we state now.

Proposition 3.4 (Hardy type) Let f ∈ L2(Rd) be such that, for all j =
1, . . . , n,

|f(x)| ≤ C(1 + |xj|)Ne−πa|xj |2 and |f̂(y)| ≤ C(1 + |yj|)Ne−πb|yj |2 .

We have the following implications.

1. If ab > 1, then f = 0.

2. If ab = 1, then f(x) = P (x) e−πa ‖x‖2

, where P is a polynomial of
degree ≤ N .

3. Else, there is a dense subspace of functions satisfying these estimates.

Proof. It is enough to notice that the assumptions of Theorem 1.3 are
satisfied (for a larger value of N). �
Proof of Theorem 1.4. It is sufficient to consider the one-dimensional
case: for the first statement we conclude the general case from the one-
dimensional one as before, and to find a dense subset of functions we use
tensorization. So, let us first assume that f ∈ L2(R) is such that∫

R

|f(x)|e2π ap

p
|x|pdx < +∞ and

∫
R

|f̂(y)|e2π bq

q
|y|qdy < +∞
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for some positive constants a and b, and prove that f is identically zero.
Here 1 < p ≤ 2, and q is the conjugate exponent. It follows from the second
inequality that f extends to an entire function, which satisfies the inequality

|f(x + iy)| ≤ C e
2π
p | y

b |p .

Moreover, the same inequality is valid when f is replaced by its even
part, or its odd part. Such a function may be written as g(z2), or zg(z2),
with g an entire function. One of them is non zero, and satisfies

|g(x + iy)| ≤ C e
2π
p

b−p|z|p/2

and

∫
R

|g(x)| e 2π
p

ap|x|p/2

dx <+∞ .

In the second inequality, a has effectively been replaced by an arbitrarily
close smaller constant, which we write a again for simplification. We then
consider the function

G(z) =

∫ z

0

g(u) du −
∫ ∞

0

g(u) du .

Then G is an entire function of order p/2, and, for positive x,

|G(−x)| ≤ C e
2π
p

b−p xp/2

and |G(x)| ≤ C e−
2π
p

ap xp/2

,

eventually changing the value of b into an arbitrary close one. We claim that
it follows that G is constant, which allows to conclude. One may refer to
[24] or [26] for this.

For sake of completeness, let us give a simple proof. We may assume
that 2πb−p = p, and 2πap = p(1+ε)

∣∣cos(pπ
2

)
∣∣. Apply the Phragmèn-Lindelöf

principle in the upper-half plane as well as in the lower-half-plane for the
function G(z) exp

(−(−z)p/2
)

(using the principal branch). We find that
this function, which is holomorphic outside R+, is bounded. In particular,
it implies that, for some θ ∈ (

0, 2π/p − π
)

and for positive x, the quantity

G(ei(π±θ)x)G(x) is bounded.

Now, consider the entire function H : z �→ G(ei(π−θ)z)G(z), which is
entire of order p/2 and bounded on the boundary of the sector Γ = {xeiα :
x ≥ 0,−π+θ ≤ α ≤ 0}. Thus, applying the Phragmèn-Lindelöf principle to
H, both on the inside and on the outside of Γ, one gets that H is bounded,
thus constant. But H is the product of G and of z �→ G(ei(π−θ)z) which are
both entire functions of order ≤ p/2 < 2. As they have no zeros, they are
either constant or of the form eaz. The later case is clearly excluded, so G
is constant as claimed.
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Let us now prove that, for ab <
∣∣cos(pπ

2
)
∣∣ 1

p , there is a dense subset of
functions f such that

|f(x)| ≤ C e−
2π
p

ap |x|p and |f̂(y)| ≤ C e−
2π
q

bq |y|q .

Since this set of functions is stable under multiplications by e2πiy0x (changing
b into an arbitrarily close smaller constant), we see immediately that it is
dense, unless it reduces to 0. Indeed, if f is such a non zero function and
φ ∈ L2(R) is orthogonal to all functions e2πiy0xf , then fφ is identically 0.
Since f is analytic, it means that φ is 0. But the existence of such a function
has been given by G. Morgan in [24] (see also [26]). This finishes the proof
of Theorem 1.4. �

G. Morgan gives examples of non zero functions which may be used for

ab =
∣∣cos(pπ

2
)
∣∣ 1

p . Nevertheless, it leaves open the complete description of the
possible functions, except for the case when p = 2, for which the previous
theorems give precise information.

4. Properties of the ambiguity function.

For sake of self-containedness, let us recall here a few properties of the
ambiguity function that we may use in the sequel. They can be found in [1],
[28].

Lemma 4.1 Let u, v in L2(Rd). For a, ω ∈ R
d, λ > 0 define

S(a)u(t) = u(t − a) , M(ω)u(t) = e2iπωtu(t) , Dλu(t) = λ
d
2 u(λt)

and recall that we defined Zu(t) = u(−t). Then

(i) A
(
S(a)u, S(b)v

)
(x, y) = e−iπ〈a+b,y〉A(u, v)(x + b − a, y),

(ii) A
(
M(ω1)u,M(ω2)v

)
(x, y) = eiπ〈ω1+ω2,x〉A(u, v)(x, y + ω2 − ω1),

(iii) A
(
Dλu,Dλv

)
(x, y) = A(u, v)

(
λx, y

λ

)
(iv) A(Zu,Zv)(x, y) = A(v, u)(x, y),

(v) A(û, v̂)(x, y) = A(u, v)(−y,−x) and A(u, v)(x, y) = A(v, u)(−x,−y).
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Lemma 4.2 Let u, v ∈ L2(Rd). Then A(u, v) is continuous on R
2d and

A(u, v) ∈ L2(R2d). Further,

‖A(u, v)‖L2(R2d) = ‖u‖L2(Rd)‖v‖L2(Rd) .

Proof. This fact is also well known, however to help the reader to get
familiar with our notation, let us recall the proof of the last assertion (see
[1], [28]). If u and v are fixed, we will write

(4.1) hx(t) = u
(
t +

x

2

)
v
(
t − x

2

)
.

The change of variables

(4.2) ξ = t − x

2
and η = t +

x

2

gives

∫∫
|hx(t)|2dtdx =

∫∫
|u(η)|2|v(ξ)|2dηdξ = ‖u‖2

L2(Rd)‖v‖2
L2(Rd).

In particular, for almost every x, the integral with respect to t is finite, i.e
hx ∈ L2. Noticing that A(u)(x, y) = ĥx(y), and using Parseval’s formula we
obtain ∫ (∫

|A(u, v)(x, y)|2dx

)
dy =

∫ (∫ ∣∣∣ĥx(y)
∣∣∣2dy

)
dx

= ‖u‖2
L2(Rd)‖v‖2

L2(Rd),

which completes the proof. �

Finally, we will also need the following lemma from [19], [22] :

Lemma 4.3 Let u, v, w ∈ L2(Rd). Then, for every x, y ∈ R
d,

∫
R2d

A(u, v)(s, t)A(v, w)(s, t) e−2iπ(〈s,x〉+〈t,y〉)dsdt

= A(u, v)(−y, x)A(v, w)(−y, x).
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5. Heisenberg inequality for the ambiguity function.

We show here that the ambiguity function is subject to sharp inequalities
of Heisenberg type. We give first a directional version of Heisenberg’s in-
equality (1.1) in the context of ambiguity functions, with an elementary
proof.

Theorem 5.1 For u, v ∈ L2(Rd), for every i = 1, . . . , d and every a, b ∈ R,
one has the following inequality :∫∫

R2d

|xi − a|2|A(u, v)(x, y)|2dxdy

∫∫
R2d

|yi − b|2|A(u, v)(x, y)|2dxdy(5.1)

≥ ‖u‖4
L2(Rd)‖v‖4

L2(Rd)

4π2
.

Moreover equality holds in (5.1), with u and v non identically 0, if and only
if there exists µ, ν ∈ L2(Rd−1), α > 0 and β, γ ∈ R such that

u(t) =µ(t1, . . . , ti−1, ti+1, . . . , td)e
2iπβtie−α/2|ti−γ|2 ,

v(t) =ν(t1, . . . , ti−1, ti+1, . . . , td)e
2iπ(b+β)tie−α/2|ti−a−γ|2 .

To prove the theorem, we will need the following lemma that has its own
interest :

Lemma 5.2 Let u, v ∈ L2(Rd) be both non identically zero and let i =
1, . . . , d. The following are equivalent :

(a)

∫∫
|xi|2|A(u, v)(x, y)|2dxdy < +∞.

(b) For all a ∈ R,

∫∫
|xi − a|2|A(u, v)(x, y)|2dxdy < +∞.

(c)

∫
|ti|2|u(t)|2dt < +∞ and

∫
|ti|2|v(t)|2dt < +∞.

(d) For all a, b ∈ R,∫
|ti − a|2|u(t)|2dt < +∞ and

∫
|ti − b|2|v(t)|2dt < +∞.

Remark : Note that, if u ∈ L2(Rd) and if

∫
|ti|2|u(t)|2dt < +∞, then

ti|u(t)|2 ∈ L1(Rd).
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Proof. Let us first remark that (a) ⇐⇒ (b) and (c) ⇐⇒ (d). Indeed, it is
sufficient to use the triangle inequality

|x|2 ≤ 2(|x − a|2 + |a|2) .

Moreover, (b) and (d) may be replaced by (b′) and (d′), where “for all” has
been changed into “for some”. Let us prove that (a) implies (d′). With the
notations of Lemma 4.2, Parseval identity gives :∫∫

|xi|2|A(u, v)(x, y)|2dxdy =

∫
|xi|2

∫ ∣∣∣ĥx(y)
∣∣∣2dydx

=

∫
|xi|2

∫
|hx(t)|2dtdx

=

∫∫
|xi|2

∣∣∣∣u(
t +

x

2

)
v
(
t − x

2

)∣∣∣∣2dtdx

=

∫ (∫
|ηi − ξi|2|v(ξ)|2dξ

)
|u(η)|2dη.(5.2)

So, if (a) holds, for almost every η,

|u(η)|2
∫

|ξi − ζi|2|v(ξ)|2dξ < +∞ .

As we assumed that u 	= 0, there exists η such that u(η) 	= 0, and the first
inequality in (d′) holds with a = η. Since u and v play the same role, we
conclude for the second part similarly.

Conversely, if (c) holds, the right hand side of (5.2) is finite, and (a)
holds also. �
Proof of Theorem 5.1. Let us start by proving the inequality. Set A =
A(u, v). We may assume that[∫∫

|xi|2|A(x, y)|2dxdy

] [∫∫
|yi|2|A(x, y)|2dxdy

]
< +∞

so that both factors are finite, and, by homogeneity, that

‖u‖L2(Rd) = ‖v‖L2(Rd) = 1.

Moreover, replacing u and v by translates of these functions (with the same
translation), we may assume that

(5.3) −
∫

ti|u(t)|2dt =

∫
ti|v(t)|2dt =

a

2
.
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Heisenberg’s inequality (1.1) applied to hx(t) = u
(
t + x

2

)
v

(
t − x

2

)
implies

that, for any b ∈ R
d :

(5.4)

1

4π

∫
|hx(t)|2dt ≤

(∫
|ti|2|hx(t)|2dt

)1/2 (∫
|yi − b|2|A(u, v)(x, y)|2dy

)1/2

.

Integrating this inequality with respect to the x-variable and appealing to
Cauchy-Schwarz inequality, we get :
(5.5)

1

4π
=
‖u‖2‖v‖2

4π
≤

(∫∫
|ti|2|hx(t)|2dtdx

)1
2
(∫∫

|yi − b|2|A(u, v)(x, y)|2dxdy

)1
2

.

Let us now transform the first factor on the right hand side of this expression.
We write

|ti|2 =

(
ti +

xi − a

2

) (
ti − xi − a

2

)
+

|xi − a|2
4

.

The second term which appears is, by Parseval identity, equal to

1

4

∫∫
|xi − a|2|A(x, y)|2dxdy .

The first term is equal to

(5.6)

∫∫ (
ηi − a

2

)(
ξi +

a

2

)
|u(η)|2|v(ξ)|2dηdξ = −1

4
|a − a|2 ≤ 0

using (5.3). Finally, including these results in (5.5), we obtain the desired
inequality.

Assume now that we have equality. Let us remark that, using properties
(a) and (b) of Lemma 4.1, we may as well assume that the constants a and b
are 0. Moreover, up to a same translations in space and frequency, we may
again assume that − ∫

ti|u(t)|2dt =
∫

ti|v(t)|2dt = a
2
, and − ∫

ti|Fu(t)|2dt =∫
ti|Fv(t)|2dt = b

2
. Let hx(t) = u

(
t + x

2

)
v

(
t − x

2

)
as before. Then, to have

equality in (5.1), we have equality in (5.6), i.e. we have a = a = 0. Similarly,
exchanging the roles of the x and y variables, we also have b = b = 0.

We then have equality in Cauchy-Schwarz inequality (5.5). This im-
plies that

x �→
∫

|ti|2|hx(t)|2dt and x �→
∫

|yi|2
∣∣∣ĥx(y)

∣∣∣2dy

are proportional.
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Further, for almost every x, we also have equality in Heisenberg’s in-
equality (5.4). From now on, we assume for simplicity that i = 1. We then
get that, for almost every x, hx is a Gaussian in the t1 variable :

hx(t) = C(x, t′)e−πα(x)|t1|2 .

where t′ = (t2, . . . , td) ∈ Rd−1, C(x, t′) is not identically 0 and α(x) > 0 for
those x for which C(x, t′) 	= 0.

Let us first prove that α does not depend on x. With this expression of
hx, we get that

∫
|t1|2|hx(t)|2dt = ‖C(x, .)‖2

L2(Rd−1)

√
π

2

(
1

2πα(x)

)3/2

whereas (with Parseval identity)

∫
|yi|2

∣∣∣ĥx(y)
∣∣∣2dy = ‖C(x, .)‖2

L2(Rd−1)

1

4π

√
α(x)

2
.

But these two functions are proportional only if α(x) is a constant, say
α(x) = α.

Taking Fourier transforms, we get that

(5.7) A(u, v)(x, y) =
1√
α

Ĉ(x,−y′) e−
π
α
|y1|2 ,

where Ĉ(x, .) is the Fourier transform in Rd−1 of C(x, .). In particular, as

A(u, v) is continuous, Ĉ is also continuous.

Further, if one has equality in (5.1) for u, v, one has again this equality if
u, v are replaced by their Fourier transform, as A(û, v̂)(x, y)=A(u, v)(−y, x).
So, we have

(5.8) A(u, v)(x, y) = D(y, x′) e−
π
β
|x1|2 ,

for some function D and some β > 0. Comparing (5.7) and (5.8), we get
that

A(u, v)(x, y) = E(x′, y′) e−
π
β
|x1|2e−

π
α
|y1|2

for some function E ∈ L2(Rd−1×R
d−1). Taking the inverse Fourier transform

in the y variable, we get

u
(
t +

x

2

)
v

(
t − x

2

)
= Ẽ(x′, t′) e−

π
β
|x1|2e−πα|t1|2 .
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So, setting again η = t + x
2
, ξ = t − x

2
, we get

u(η)v(ξ) = Ẽ

(
η′ − ξ′,

η′ + ξ′

2

)
e−

π
β

(η1−ξ1)2e−
πα
4

(η1+ξ1)2 .

This is only possible if β = 4
α

and u(x) = µ(x̂i)e
−πα

2
|xi|2 , v(x) = ν(x̂i)e

−πα
2
|xi|2

with µ, ν ∈ L2(Rd−1). �
We now translate the last theorem in terms of inequalities on covariance

matrices, as it is classical for inequality (1.1) (see for instance [9]).

Proof of Theorem 1.5. First, it follows from Lemma 5.2 that X and Y
have moments of order 2. Let us prove that X and Y are not correlated.
Without loss of generality, we may assume that∫

ti|u(t)|2dt =

∫
ti|v(t)|2dt =

∫
ti|Fu(t)|2dt =

∫
ti|Fv(t)|2dt = 0

for all i, so that X and Y are centered. Let us show that∫∫
xiyj|A(u, v)|2dx dy = 0 .

Using Plancherel identity, we are led to consider∫∫
xi

[
∂tjhx(t)hx(t) + hx(t)∂tjhx(t)

]
dxdt .

Writing xi = t + xi/2 − (t − xi/2), and

∂tjhx(t) = u
(
t +

x

2

)
∂tjv

(
t − x

2

)
+ ∂tju

(
t +

x

2

)
v
(
t − x

2

)
,

we get eight terms. For four of them we get directly 0. The sum of the last
four may be written, after changes of variables, as∫

Rd

ti∂tj [|u(t)|2]dt ×
∫

Rd

|v(t)|2dt −
∫

Rd

|u(t)|2dt ×
∫

Rd

ti∂tj [|v(t)|2]dt .

After an integration by parts, the two terms give δij , so that their difference
is 0.

Let us now prove the second assertion. Let C be an automorphism
of R

d. For a function f ∈ L2(Rd), we consider fC the function given by

fC(t) = |det(C)|−1/2f(C−1t). Then a simple change of variables shows that
the probability density of (CX,t C−1Y ) is |A(uC , vC)|2. Eventually changing
u and v into uC and vC we may assume that V (Y ) is the identity matrix.
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Moreover, we may also assume that V (X) is diagonal. Then the inequality
follows from Theorem 5.1. Equality holds only if all eigenvalues are equal
to 4π2, which means that u and v are Gaussian functions. �

From Theorem 1.5, we immediately obtain that

(5.9) det(V (X)) × det(V (Y )) ≥ (4π2)−2d .

Equality holds only for Gaussian functions. Another (much less elementary)
proof of (5.9) can be obtained using the entropy inequality of Lieb and the
theorem of Shannon (see [11], Section 6).

The same inequality holds for traces instead of determinants. We state
it independently.

Corollary 5.3 Let u, v ∈ L2(Rd) be both non identically zero and a, b ∈ Rd.
Then∫∫

R2d

‖x − a‖2|A(u, v)(x, y)|2dxdy ×
∫∫

R2d

‖y − b‖2|A(u, v)(x, y)|2dxdy

≥ d2‖u‖4
L2(Rd)‖v‖4

L2(Rd)

4π2
,(5.10)

with equality if and only if there exists λ, ν ∈ C∗, α > 0 and β, γ ∈ Rd such
that

u(t) = λe2iπ〈β,t〉e−α/2‖t−γ‖2

and v(t) = ν e2iπ〈−b+β,t〉e−α/2‖t+a−γ‖2

.

6. Uncertainty principles for the ambiguity function.

We first prove the following uncertainty principle for the ambiguity function,
which also gives a characterization of Hermite functions:

Theorem 6.1 Let u, v ∈ L2(Rd) be non identically vanishing. If∫∫
R2d

|A(u, v)|2 eπ‖x‖2

(1 + ‖x‖)N
dxdy < +∞ and∫∫

R2d

|A(u, v)|2 eπ‖y‖2

(1 + ‖y‖)N
dxdy < +∞(6.1)

for all j = 1, · · · , d, then there exists a, w ∈ Rd such that both u and v are
of the form

P (x)e2iπ〈w,x〉e−π‖x−a‖2

,

with P a polynomial.
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Let us first remark that when u = v, since the Fourier transform of |A(u, u)|2
taken at (x, y) is equal to |A(u, u)|2(−y, x), the result follows immediately
from Theorem 1.3. Our aim is to prove that it is also valid in the general
case. We first prove a weaker statement.

Proposition 6.2 Let u, v ∈ L2(Rd) be non identically vanishing. If

(6.2)

∫∫
Rd×Rd

|A(u, v)(x, y)|2
(1 + ‖x‖ + ‖y‖)N

eπ(‖x‖2+‖y‖2)dxdy < +∞ ,

then there exists a, w ∈ R
d such that both u and v are of the form

P (x)e2iπ〈w,x〉e−π‖x−a‖2

with P a polynomial.

Before starting the proof of Proposition 6.2, let us state two lemmas.
The first one is elementary and well known.

Lemma 6.3 Let u, v ∈ L2(Rd) be non identically vanishing. Then

u(x) = P (x)e2iπ〈α,x〉e−π‖x−a‖2

and v(x) = Q(x)e2iπ〈α,x〉e−π‖x−a‖2

with P,Q polynomials and a, α ∈ Rd if and only if there is a polynomial R
such that

A(u, v)(x, y) = R(x, y)e2iπ(〈α,x〉+〈a,y〉)e−
π
2
(‖x‖2+‖y‖2).

Moreover, deg(R) = deg(P ) + deg(Q).

Lemma 6.4 Assume that u, v ∈ L2(Rd), with u(x) = P (x)e2iπ〈a,x〉e−π‖x‖2

,
where a ∈ Cd. Then the function A(u, v) can be extended to an entire
function on C2d.

Proof. For z, ζ ∈ Cd, we note 〈z, ζ〉 =
∑

ziζi. Then

(6.3) A(u, v)(x, y) = eiπ〈x,(y+2a)〉 ×
∫

P (t + x)v(t)e−π‖t+x‖2

e2iπ〈t,(a+y)〉dt .

This clearly makes sense for x, y ∈ C
d, and defines an entire function. �
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Proof of Proposition 6.2. By homogeneity, we may assume that ‖u‖L2 =
‖v‖L2 = 1. For each w ∈ L2(Rd), we consider the function

gw = A(u, v)A(v, w) .

By Lemma 4.3, the Fourier transform of gw is given by Fgw(x, y)=gw(−y, x).

First step. There exists a polynomial P such that

(6.4) A(u, v)(x, y)A(v, u)(x, y) = P (x, y)e−π(‖x‖2+‖y‖2) .

Proof. We consider here the function gu. As gu is (up to a change of variable)
its own Fourier transform, by Proposition 3.2, it is sufficient to prove that

(6.5)

∫
|gu(x, y)| eπ(‖x‖2+‖y‖2)

(1 + ‖x‖ + ‖y‖)N
dxdy < ∞ .

It follows immediately from the assumption on A(u,v), using Cauchy-Schwarz
inequality and the fact that A(v, u)(x, y) = A(u, v)(−x,−y). �

To complete the proof of the proposition, it is sufficient to prove that
A(u, v) extends to an entire function of order 2. Indeed, Lemma 2.3 then
implies that

A(u, v)(x, y) = R(x, y)eQ(x,y) ,

where R is a polynomial and Q a polynomial of degree at most 2. But, as

A(u, v)(x, y)A(u, v)(−x,−y) = A(u, v)(x, y)A(v, u)(x, y)

= P (x, y)e−π(‖x‖2+‖y‖2),

we get Q(x, y) = 〈β, x〉+〈γ, y〉− π
2
(‖x‖2+‖y‖2) for some constants β, γ ∈ Cd.

Next, Condition (6.2) implies that β, γ are purely imaginary, β = 2iπα, γ =
2iπa with a, α ∈ R

d so that

A(u, v)(x, y) = R(x, y)e2iπ(〈α,x〉+〈a,y〉)e−
π
2
(‖x‖2+‖y‖2) ,

with R a polynomial. Lemma 6.3 allows to conclude. So, we have finished
the proof once we have proved the second step.

Second step. The function A(u, v) extends to an entire function of order 2.

Proof. To prove this, we first show that, for each w ∈ L2(Rd), the function
gw extends to an entire function of order 2. Since, up to a change of variable,
gw coincides with its Fourier transform, it is sufficient to show that∫

|gw(x, y)|eπ
4
(‖x‖2+‖y‖2)dxdy < ∞ .
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This last inequality follows from the fact that |gw| ≤ |A(u, v)|‖w‖L2, and
from the assumption on A(u, v). We get the estimate

(6.6) |gw(z, ζ)| ≤ C‖w‖e4π(‖z‖2+‖ζ‖2) ,

for all (z, ζ) ∈ C
d × C

d, with a constant C which does not depend on w.
In order to conclude this step, it is sufficient to show that there exists a
constant C such that, for each (z, ζ) ∈ Cd × Cd, we may find wz,ζ which is
of the form required in Lemma 6.4, such that

(6.7) |A(wz,ζ , v)(z, ζ)| ≥ C−1e−C(‖z‖2+‖ζ‖2) ,

and

(6.8) ‖wz,ζ‖ ≤ C−1eC(‖z‖2+‖ζ‖2) .

By density of the Hermite functions we can choose a polynomial P0 such
that ∫

P0(t)v(t)e−π‖t‖2

dt = 1 .

We then define wz,ζ by

wz,ζ(t) = P0(t − z)e2π〈z−iζ,t〉e−π‖t‖2

.

It follows from the choice of P0 that

A(wz,ζ , v)(z, ζ) = eπ(〈z,z〉−i〈z,ζ〉) .

Then (6.7) and (6.8) follow from direct computations. Finally, since

A(u, v)A(v, wz,ζ)

extends to an entire function for each z, ζ, and since the second factor is
also entire and does not vanish in a neighborhood of (−z,−ζ) ∈ Cd, A(u, v)
extends also to an entire function. The fact that it is of order 2 follows from
(6.6), (6.7) and (6.8). �

We have completed the proof of Proposition 6.2. �
Proof of Theorem 6.1. With the weaker assumption (6.1), we conclude
that (6.4) also holds, using the directional theorem for Fourier transforms.
We claim that A(u, v) is an analytic function of each of the variables x
and y. Indeed, as before, for every function w ∈ L2(Rd), the product
A(u, v)A(v, w) extends to a holomorphic function of x, y being fixed, as
well as to a holomorphic function of y, x being fixed. When choosing w as
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before, we conclude that the function extends to an entire function of order
2 in x, for fixed y. So, for almost every fixed y, A(u, v)(x, y) may be written

as Ry(x)e2iπ〈α(y),x〉e−
π
2
‖x‖2

, with Ry a polynomial of degree at most N . It
follows that the continuous function

eπ(‖x‖2+‖y‖2)|A(u, v)(x, y)|2

is a polynomial of degree at most 2N in each variable x, y. So it is a poly-
nomial, and the assumption (6.2) is satisfied. We can now use Proposition
6.2 to conclude. �

In particular, it follows from Theorem 6.1 that there does not exist two
non zero functions u, v which satisfy Condition (6.1) for N ≤ d. In this case,
where the conclusion is that u or v is identically 0, the condition can be
relaxed into a directional condition as for the case of the Fourier transform.

Corollary 6.5 Assume that∫∫
R2d

|A(u, v)|2 eπ|xj |2

(1 + |xj|)M
dxdy < +∞ and

(6.9) ∫∫
R2d

|A(u, v)|2 eπ|yj |2

(1 + |yj|)N
dxdy < +∞

for some j = 1, . . . , d. If min{M,N} = 1, then u or v vanishes.

Proof. When d = 1, the result follows from Theorem 6.1. Let us now
consider the case d > 1. We assume that the condition is satisfied for j = 1.
For t′ ∈ R

d−1 and for f in L2(Rd), we define ft′(t1) = f(t1, t
′). It follows

from Plancherel identity that∫
Rd−1

|A(u, v)(x, y)|2dy′ =

∫
Rd−1

∣∣∣A(u
t′−x′

2
, v

t′+x′
2
)(x1, y1)

∣∣∣2dy′ .

Changing variables, and using Fubini’s Theorem, it follows that, for almost
every ξ′ and η′ in Rd−1,∫∫

R×R

|A(uη′ , vξ′)(x1, y1)|2
(1 + |x1| + |y1|)2

eπ(|x1|2+|y1|2)dx1dy1 < +∞ .

It follows from the one dimensional case that either uη′ or vξ′ is identically
0. So, for almost every ξ′ and η′ in R

d−1, A(uη′ , vξ′) = 0. It follows that
A(u, v) = 0. �

As in section 3, we may deduce from Theorem 6.1 a version of Hardy’s
theorem for the ambiguity function. Let us remark that the constraints
on degrees are always elementary. The case when N = 0 has also been
considered in ([15]).



50 A. Bonami, B. Demange and P. Jaming

Corollary 6.6 Let u, v ∈ L2(Rd) and assume that

|A(u, v)(x, y)| ≤ K(1 + ‖x‖)Ne−
π
2
〈Bx,x〉

and |A(u, v)(x, y)| ≤ K(1 + ‖y‖)Ne−
π
2
〈Cy,y〉.

We have the following implications.

1. If B − C−1 is positive, non zero, then either u or v = 0 .

2. If B = C−1, there are polynomials P,Q of degree ≤ N and constants
ω, a ∈ R

d such that

u(x) = P (x)e2iπ〈ω,x〉e−π〈B(x−a),x−a〉

and v(x) = Q(x)e2iπ〈ω,x〉e−π〈C(x−a),x−a〉.

Remark : This corollary implies in particular that if u0(x) = P0(x)e−α‖x‖2

,

v0(x) = Q0(x)e−α‖x‖2

with P0, Q0 polynomials and if |A(u, v)| = |A(u0, v0)|
then u, v are of the form

u(x) = P (x)e2iπ〈ω,x〉−α‖x−a‖2

v(x) = Q(x)e2iπ〈ω,x〉−α‖x−a‖2

with P,Q polynomials and ω, a ∈ R
d.

The problem of finding u, v from u0, v0 is known as the radar ambiguity
problem and has been considered by Bueckner [5] and de Buda [4] for u0, v0

as above. This remark corrects the proof of [4].

Further references on this problem may be found in [20] and [12].

Let us finally give a Morgan type theorem.

Theorem 6.7 Let 1 < p < 2, and let q be the conjugate exponent. Assume
that u, v ∈ L2(Rd) satisfy∫∫

Rd×Rd

|A(u, v)(x, y)|2 e
2π
p

ap |xj |p dxdy < +∞

and

∫∫
Rd×Rd

|A(u, v)(x, y)|2 e
2π
q

bq |yj |q dxdy < +∞

for some j = 1, . . . , d and for some positive constants a and b. Then either

u or v vanish if ab >
∣∣cos

(
pπ
2

)∣∣ 1
p . If ab <

∣∣cos
(

pπ
2

)∣∣ 1
p , there exists a non

zero function u such that the two conditions are satisfied by A(u, u).
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Proof. It is sufficient to consider the one dimensional case. Otherwise,
the proof works as in Corollary 6.5. Let us prove the first assertion. If we
proceed as in the proof of Theorem 6.1, we conclude at once that

A(u, v)(x, y)A(u, v)(−x,−y) = 0,

using the similar result on Fourier transforms. It remains to show that
A(u, v) is an analytic function of each variable, which is obtained in the
same way as before using an auxiliary function w.

Let us now prove that, for ab <
∣∣cos

(
pπ
2

)∣∣ 1
p , there exists a non zero

function u such that the two conditions are satisfied by A(u, u). Using
Plancherel formula, the first condition may as well be written as∫∫

R×R

∣∣∣u (
t − x

2

)∣∣∣2 ∣∣∣u (
t +

x

2

)∣∣∣2 e
2π
p

ap |x|p dxdt < +∞ .

Using the same change of variable as before, and the inequality |η − ξ| ≤
2p−1(|η|p + |ξ|p), we see that this integral is bounded by the square of the
integral ∫

R

|u(ξ)|2 e
4π
p

(21−2/p a)p |ξ|p dξ .

For the second integral, we use Lemma 4.1 to write it in terms of the Fourier
transform of u. We obtain that it is bounded by∫

R

|û(ξ)|2 e
4π
q

(21−2/q b)q |ξ|q dξ .

The fact that there is a non zero function u for which both integrals are
finite is an easy consequence of Theorem 1.4 and Schwarz inequality, since(
21−2/p a

) × (
21−2/q b

)
<

∣∣cos
(

pπ
2

)∣∣ 1
p . �

Remark : At this stage, we would like to point out that we have not been
able to replace the conditions of Theorem 6.1 by the condition

∫∫ |A(u, v)(x, y)|2
(1 + ‖x‖ + ‖y‖)N

e2π|〈x,y〉| dxdy < +∞

or at least

∫∫ |A(u, v)(x, y)|2
(1 + ‖x‖ + ‖y‖)N

e2π‖x‖‖y‖ dxdy < +∞.

Also, we do not know whether weaker conditions, with |A(u, v)(x, y)| in place
of its square, are sufficient.
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Appendix

We give here a simplified proof of Beurling-Hörmander’s Theorem, which
may be useful for elementary courses on Fourier analysis. All ideas are
contained in Section 2.

We want to prove that a function f ∈ L1(R) which satisfies the inequality

(6.10)

∫∫
R×R

|f(x)| |f̂(ξ)| e2π|x||ξ| dxdξ < +∞

is identically 0. It is sufficient to show that the function g = e−πx2 ∗ f is
identically 0. Indeed, the Fourier transform of g is equal to e−πξ2

f̂ . If it is
0, then f vanishes also. Now g extends to an entire function of order 2 in
the complex plane. We note also g its extension. We claim that, moreover,

(6.11)

∫∫
R×R

|g(x)| |ĝ(ξ)| e2π|x||ξ| dxdξ < +∞ .

Indeed, replacing g and ĝ by their values in terms of f and f̂ and using
Fubini’s theorem, we are led to prove that the quantity∫

R

e−π((x−y)2−2|x| |ξ|+2|y| |ξ|+ξ2) dx

is bounded independently of y and ξ. Taking x − y as the variable, it is
sufficient to prove that ∫

R

e−π(x2−2|x| |ξ|+ξ2) dx

is bounded by 2, which follows from the fact that x2 − 2|x| |ξ| + ξ2 is either
(x − ξ)2 or (x + ξ)2.

Now, for all z ∈ C, we have the elementary inequality

|g(z)| ≤
∫

R

|ĝ(ξ)| e2π|z||ξ| dξ ,

so that there exists some constant C such that

(6.12)

∫ +∞

−∞
|g(x)| sup

|z|=|x|
|g(z)| dx ≤ C .

We claim that the holomorphic function

G(z) =

∫ z

0

g(u) g(iu) du
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is bounded by C. Once we know this, the end of the proof is immediate:
G is constant by Liouville’s Theorem; so g(u)g(iu) is identically 0, which
implies that g is identically 0.

It is clear from (6.12) that G is bounded by C on the axes. Let us prove
that it is bounded by C for z = reiθ in the first quadrant. Assume that θ is
in the interval (0, π/2). By continuity, it is sufficient to prove that

Gα(z) =

∫ z

0

g(e−iαu) g(iu) du

is bounded by 2C for all α ∈ (0, θ). But the function Gα is an entire function
of order 2, which is bounded by C on the y-axis and on the half-line ρeiα.
By Phagmèn–Lindelhöf principle, it is bounded by 2C inside the angular
sector, which gives the required bound for |Gα(z)|. A similar proof gives the
same bound in the other quadrants.
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Département de Mathématiques, BP 6759
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