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SPATIAL CURVES
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Abstract. Polynomial geometric interpolation by parametric curves became one of the standard
techniques for interpolation of geometric data. An obvious generalization leads to rational geometric
interpolation schemes, which are a much less investigated research topic. The aim of this paper is to
present a general framework for Hermite geometric interpolation by rational Bézier spatial curves.
In particular, cubic G2 and quartic G3 interpolations are analyzed in detail. Systems of nonlinear
equations are derived in a simplified form and the existence of admissible solutions is studied. For
the cubic case, geometric conditions implying solvability of the nonlinear system are also stated. The
asymptotic analysis is done in both cases and optimal approximation orders are proved. Numerical
examples are given, which confirm the theoretical results.
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1. Introduction. Geometric interpolation by parametric curves is a modern
research topic dealing with interpolation of given geometric data (points, tangent
directions, etc.) and is based on geometric properties, independent of parameteriza-
tions. In comparison to classical interpolation schemes, this allows additional shape
parameters and consequently a higher approximation order. The shape of the inter-
polant is more pleasant since the parameters that need to be prescribed in advance
in classical schemes are here chosen automatically. The first rigorous analysis of a
particular geometric interpolation scheme goes back to [2]. Later, Höllig and Koch
([8]) stated a general conjecture on polynomial geometric interpolation asserting that
these interpolants could, in general, interpolate much more data than their classical
counterparts of the same degree. However, the analysis of geometric interpolation
schemes is a challenging task since it involves analysis of systems of nonlinear equa-
tions. Several results on existence, uniqueness, geometric conditions for solvability,
and algorithms for construction are known (see [9], [15], [14], [6] and the references
therein). While planar polynomial geometric interpolation is a well investigated topic,
not much is known for interpolation in higher dimensional spaces Rd. Obviously the
rational geometric interpolation is even more challenging topic and even less results
are known. A nice survey on known facts is given, e.g., in [20]. Some recent results
are mainly dealing with the planar case ([7], [17], [19]) while the spatial case is still to
be investigated. Some interesting results can be found in [12], [4], [3], [10] and [21].

In this paper, Hermite interpolation by rational Bézier spatial curves is tackled. A
general system of 6 r polynomial equations for Gr Hermite interpolation by a rational
Bézier curve of degree n = r+1 is derived. This system can be further simplified to a
system of 3 r equations not involving control points and weights. Sufficient conditions
for the optimal asymptotic approximation order 2n of a solution are given.

Quadratic rational Bézier curves are planar and thus they do not posses enough
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flexibility to interpolate spatial data. In this paper, the next two interesting cases,
i.e., cubic G2 and quartic G3 rational Bézier interpolants will be considered. Quite
surprisingly, the analysis of the cubic rational geometric Hermite interpolation is
a much more straightforward than its polynomial counterpart. There is only one
nontrivial solution of the interpolation problem, and the geometric conditions for its
existence can be derived. The interpolant is given in a closed form and the asymptotic
approximation order is 6. The quartic case is harder to tackle, but the solutions can
still be derived explicitly by solving a quartic polynomial equation. There can be 0
to 4 admissible solutions. The asymptotic approximation order of solutions is 8.

Since only data points are usually given in practical applications, Gr data need
to be obtained by a suitable approximation. The most natural way would be to use
local approach - apply a polynomial interpolant through 5 successive data points, and
compute its suitable higher order derivatives, which would be used as Gr data.

The outline of the paper is as follows. In the next section, the Hermite interpo-
lation problem is analyzed, and the system of equations, that needs to be solved, is
derived. It is further simplified, and sufficient conditions for the optimal approxima-
tion order of the solution are derived. In the third section, the solution for the cubic
case is given, together with geometric conditions for its existence, and the optimal
approximation order is confirmed. In the penultimate section, the quartic case is
studied. The paper is concluded by some examples.

2. Hermite interpolation. Let us consider a Hermite geometric interpolation
problem in R3. We are given two data points PL,PR, with the associated vectors
tLi and tRi , i = 1, 2, . . . , r, respectively. The notation (.)

L
and (.)

R
refers to the data

at the left and the right endpoint of the domain interval of a parametric interpolant.
The vectors tLi and tRi represent i-th derivatives. Without loss of generality we can
assume that the vectors tL1 and tR1 , that represent tangent directions, are of the unit
length.

We are looking for a particular interpolant of the form r(t) =
∑n

i=0 biΦi(t) on
[0, 1], where bi are control points and Φi are chosen basis functions with

∑n
i=0 Φi(t) ≡

1. Our goal is to interpolate the given data in Gr sense, i.e., the data points, tangent
directions, etc.,

r(0) = PL, r(1) = PR,

r(i)(0) =
i∑

k=1

αL
i,k t

L
k , i = 1, 2, . . . , r, (2.1)

r(i)(1) =
i∑

k=1

αR
i,k t

R
k , i = 1, 2, . . . , r.

The coefficients αL
i,j and αR

i,j are elements of a lower triangular connection matrix at
parameter 0 and 1, respectively. They describe geometric continuity conditions (see
[5], [18], e.g.). As an example, for r ≤ 4, the connection matrix is given as the r × r
leading principal submatrix of the matrix

α1 0 0 0
α2 α2

1 0 0
α3 3α1α2 α3

1 0
α4 3α2

2 + 4α1α3 6α2
1α2 α4

1

 . (2.2)



RATIONAL HERMITE GEOMETRIC INTERPOLATION 3

The entries of (2.2) are obtained by Faa di Bruno’s formula for differentiation of
a reparameterized curve ([11]). Note that there are r unknown parameters αi in a
general Gr connection matrix. The elements αL

1,1 and αR
1,1 need to be positive to

preserve the given tangent directions.
In this paper we will consider the rational Bézier basis, i.e.,

Φi(t) =
wiB

n
i (t)

w(t)
,

where wi denotes the weight and Bn
i the i-th Bernstein basis polynomial of degree n.

The polynomial w is defined as w(t) :=
∑n

j=0 wjB
n
j (t). Thus the interpolant can be

written as

r(t) =
p(t)

w(t)
,

with

p(t) :=
n∑

i=0

wibiB
n
i (t),

where bi are control points of the rational Bézier curve and wi are its weights. By
using the normalized form of the curve [5], we can without loss of generality assume
that w0 = wn = 1.

Let us consider the interpolation problem (2.1) more precisely now. Since the
endpoint interpolation property of a rational Bézier curve automatically fulfills the
first two conditions, there are 6r equations left. The unknowns are w1, w2, . . . , wn−1,
b1, b2, . . . , bn−1 and r parameters of each connection matrix at both endpoints. Thus
there are 4(n− 1)+2r unknowns. In order for the number of unknowns to match the
number of equations, this yields n = r + 1.

The geometric nature of the unknown weights wi and the elements of the con-
nection matrices differs from the unknown control points bi significantly. But the
equation set can be split into two parts. The first, the tough one, involves the scalar
unknowns only. Let [tℓ, tℓ+1, . . . , tℓ+k] denote the divided difference based upon the
knots tℓ, tℓ+1, . . . , tℓ+k. If we apply divided differences

[ 0, . . . , 0︸ ︷︷ ︸
n−i

, 1, . . . , 1︸ ︷︷ ︸
i+2

], i = 0, 1, . . . , n− 2,

to the identity p = wr, the right-hand side must vanish since p is a polynomial curve
of degree ≤ n. The closed form of the equations follows from the following lemma.
This, together with the following lemma, gives the closed form of the equations.

Lemma 2.1. Suppose that i, j, k,m ∈ N0 are given integers, and

gk,m(x) := xk (1− x)
m
.

Then

[ 0, . . . , 0︸ ︷︷ ︸
i

, 1, . . . , 1︸ ︷︷ ︸
j

]gk,m =


(−1)j+i−k−1

(
m− j

i− k − 1

)
, k ≤ i− 1, m ≥ j,

(−1)m
(

k − i

j −m− 1

)
, k ≥ i, m ≤ j − 1,

0, otherwise.

(2.3)
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Proof. Suppose that k ≤ i− 1, m ≥ j. Since

gk,m(x) = x gk−1,m(x) = (1− x) gk,m−1(x),

the Leibniz rule reveals

[ 0, . . . , 0︸ ︷︷ ︸
i

, 1, . . . , 1︸ ︷︷ ︸
j

]gk,m = [ 0, . . . , 0︸ ︷︷ ︸
i

, 1, . . . , 1︸ ︷︷ ︸
j

] ( (.) gk−1,m(.) ) =

= [0] (.) [ 0, . . . , 0︸ ︷︷ ︸
i

, 1, . . . , 1︸ ︷︷ ︸
j

]gk−1,m + [0, 0] (.) [ 0, . . . , 0︸ ︷︷ ︸
i−1

, 1, . . . , 1︸ ︷︷ ︸
j

]gk−1,m

= [ 0, . . . , 0︸ ︷︷ ︸
i−1

, 1, . . . , 1︸ ︷︷ ︸
j

]gk−1,m = · · · = [ 0, . . . , 0︸ ︷︷ ︸
i−k

, 1, . . . , 1︸ ︷︷ ︸
j

]g0,m,

and

[ 0, . . . , 0︸ ︷︷ ︸
i−k

, 1, . . . , 1︸ ︷︷ ︸
j

]g0,m = [ 0, . . . , 0︸ ︷︷ ︸
i−k

, 1, . . . , 1︸ ︷︷ ︸
j

] ( (1− .) g0,m−1(.) ) =

= −[ 0, . . . , 0︸ ︷︷ ︸
i−k

, 1, . . . , 1︸ ︷︷ ︸
j−1

]g0,m−1 = · · · = (−1)j [ 0, . . . , 0︸ ︷︷ ︸
i−k

]g0,m−j .

Further,

[ 0, . . . , 0︸ ︷︷ ︸
i−k

]g0,m−j =
1

(i− k − 1)!

di−k−1

dxi−k−1
(1− x)m−j

|x=0

= (−1)i−k−1

(
m− j

i− k − 1

)
,

which proves the first possibility in (2.3). The second one follows similarly. If k ≤
i − 1, m ≤ j − 1, the degree of the polynomial gk,m is ≤ i + j − 2, so any divided
difference based upon i+ j knots maps it to zero. If m ≥ j, k ≥ i,

[ 0, . . . , 0︸ ︷︷ ︸
i

, 1, . . . , 1︸ ︷︷ ︸
j

]gk,m = (−1)j−1[0, 1]gk−i+1,m−j+1 = 0,

which completes the proof.
Note that the result of Lemma 2.1 could be derived from the Opitz’s formula for

divided differences of monomials [1], but a direct proof is quite straightforward.
Theorem 2.2. The equations that determine the scalar parameters of the rational

interpolatory curve r are given by

n−2−i∑
ℓ=0

(−1)n−ℓ

(
n

ℓ

)
wℓ

n−1−i−ℓ∑
k=1

tLk

n−1−i−ℓ∑
s=k

(−1)s+1

(
n− 2− i− ℓ

s− 1

)
αL
s,k

s!

+ (−1)i+1

(
n

i+ 1

)
wn−1−i ∆P (2.4)

+
n∑

ℓ=n−i

(−1)n−ℓ

(
n

ℓ

)
wℓ

ℓ+1−n+i∑
k=1

tRk

ℓ+1−n+i∑
s=k

(
ℓ− n+ i

s− 1

)
αR
s,k

s!
= 0,

i = 0, 1, . . . , n− 2,
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where αL
s,k and αR

s,k are the elements of the connection matrices involved in the inter-

polation conditions (2.1), and ∆P := PR − PL.
Proof. Suppose that 0 ≤ ℓ ≤ n− 2− i. The Leibniz rule gives

[ 0, . . . , 0︸ ︷︷ ︸
n−i

, 1, . . . , 1︸ ︷︷ ︸
i+2

] (rBn
ℓ ) =

n−i∑
s=1

[ 0, . . . , 0︸ ︷︷ ︸
s

]r [ 0, . . . , 0︸ ︷︷ ︸
n−i+1−s

, 1, . . . , 1︸ ︷︷ ︸
i+2

]Bn
ℓ

+

n+2∑
s=n−i+1

[ 0, . . . , 0︸ ︷︷ ︸
n−i

, 1, . . . , 1︸ ︷︷ ︸
s−n+i

]r [ 1, . . . , 1︸ ︷︷ ︸
n+3−s

]Bn
ℓ . (2.5)

But the terms [ 1, . . . , 1︸ ︷︷ ︸
n+3−s

]Bn
ℓ vanish by Lemma 2.1 since

ℓ ≥ 0, n− ℓ ≥ i+ 2 ≥ n+ 3− s, s = n− i+ 1, n− i+ 2, . . . , n+ 2,

and so does the term at s = 1. Lemma 2.1 simplifies (2.5) further to

n−i−ℓ∑
s=2

(−1)n−ℓ−s

(
n

ℓ

)(
n− ℓ− i− 2

s− 2

)
[ 0, . . . , 0︸ ︷︷ ︸

s

]r. (2.6)

If ℓ ≥ n− i, we obtain

[ 0, . . . , 0︸ ︷︷ ︸
n−i

, 1, . . . , 1︸ ︷︷ ︸
i+2

] (rBn
ℓ ) =

i+2∑
s=1

[ 1, . . . , 1︸ ︷︷ ︸
s

]r [ 0, . . . , 0︸ ︷︷ ︸
n−i

, 1, . . . , 1︸ ︷︷ ︸
i+3−s

]Bn
ℓ

+

n+2∑
s=i+3

[ 0, . . . , 0︸ ︷︷ ︸
s−i−2

, 1, . . . , 1︸ ︷︷ ︸
i+2

]r [ 0, . . . , 0︸ ︷︷ ︸
n+3−s

]Bn
ℓ

=

ℓ−n+i+2∑
s=2

(−1)n−ℓ

(
n

ℓ

)(
ℓ− n+ i

s− 2

)
[ 1, . . . , 1︸ ︷︷ ︸

s

]r, (2.7)

again by Lemma 2.1. Similarly, if ℓ = n− 1− i,

[ 0, . . . , 0︸ ︷︷ ︸
n−i

, 1, . . . , 1︸ ︷︷ ︸
i+2

]
(
rBn

n−1−i

)
= [0]r [ 0, . . . , 0︸ ︷︷ ︸

n−i

, 1, . . . , 1︸ ︷︷ ︸
i+2

]Bn
n−1−i (2.8)

+ [0, 1]r [ 0, . . . , 0︸ ︷︷ ︸
n−i−1

, 1, . . . , 1︸ ︷︷ ︸
i+2

]Bn
n−1−i + · · · = (−1)i+1

(
n

i+ 1

)
[0, 1]r.

Let us combine (2.6)-(2.8). We obtain the system of equations

n−2−i∑
ℓ=0

(−1)n−ℓ

(
n

ℓ

)
wℓ

n−2−i−ℓ∑
s=0

(−1)s
(
n− i− 2− ℓ

s

)
1

(s+ 1)!
r(s+1)(0)

+ (−1)i+1

(
n

i+ 1

)
wn−1−i [0, 1]r

+
n∑

ℓ=n−i

(−1)n−ℓ

(
n

ℓ

)
wℓ

ℓ−n+i∑
s=0

(
ℓ− n+ i

s

)
1

(s+ 1)!
r(s+1)(1) = 0,

i = 0, 1, . . . , n− 2,



6 G. JAKLIČ, J. KOZAK, M. KRAJNC, V. VITRIH AND E. ŽAGAR

and the interpolation conditions (2.1) give the final form (2.4).
There is a natural way to rewrite the system of vector equations (2.4) in a scalar

form that allows to separate the equations that determine the weights wℓ and the
connection parameters. Let λj : R3 → R, j = 1, 2, 3, be linear functionals, defined as

λ1 := det
(
. ,∆P , tR1

)
, λ2 := det

(
tL1 , . , t

R
1

)
, λ3 := det

(
tL1 ,∆P , .

)
. (2.9)

These functionals are clearly linearly independent iff the vectors tL1 ,∆P , tR1 are lin-
early independent, i.e.,

ω := det
(
tL1 ,∆P , tR1

)
̸= 0. (2.10)

So if one applies λj , j = 1, 2, 3, to the system (2.4), the equivalent scalar system of
3(n − 1) equations emerges. But, for a fixed i, 0 ≤ i ≤ n − 2, the part of (2.4),
contributed by terms that involve wn−2−i, wn−1−i and wn−i, reads

vi :=(−1)i
(

n

i+ 2

)
wn−2−i α

L
1,1 t

L
1 + (−1)i+1

(
n

i+ 1

)
wn−1−i∆P

+ (−1)i
(
n

i

)
wn−iα

R
1,1t

R
1 ,

and

λ1vi = (−1)i
(

n

i+ 2

)
ω αL

1,1 wn−2−i,

λ2vi = (−1)i+1

(
n

i+ 1

)
ω wn−1−i, λ3vi = (−1)i

(
n

i

)
ω αR

1,1 wn−i.

So one may use λ2vi, for i = 0, 1, . . . , n− 2, to obtain wn−1−i, and eliminate it from
all the other equations. This separates the system of equations into two parts: the
first should determine the connection parameters, and the second one provides the
weights wℓ in terms of them.

Once the weights wi and the connection parameters αL
i,k, α

R
i,k, i = 1, 2, . . . , n− 1,

have been determined, it is straightforward to compute the control points bi, i =
0, 1, . . . , n, from

n!

(n− s)!
∆s(w0b0) =

s∑
i=0

(
s

i

)
r(i)(0)

n!

(n− s+ i)!
∆s−iw0,

(2.11)
n!

(n− s)!
∆s(wn−sbn−s) =

s∑
i=0

(
s

i

)
r(i)(1)

n!

(n− s+ i)!
∆s−iwn−s+i,

and (2.1), for s = 0, 1, . . . , r, where ∆ denotes the standard forward difference, i.e.,
∆(.)i := (.)i+1 − (.)i. Of course all the control points could be obtained by either of
equations in (2.11), but by using both, more elegant symmetric expressions can be
obtained.

The system (2.4) may have none or several feasible solutions, depending on the
data supplied. Let us consider the asymptotic approximation order of the feasible
solutions. The asymptotic analysis could not be carried out in advance for a general
n, but a significant preparation step is right at hand. First of all, we recall the
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parametric distance (see [16], e.g.) as a measure of distance between parametric
curves f : [a, b] → Rd and g : [c, d] → Rd, defined as

distP (f , g) := inf
φ

max
a≤t≤b

∥f(t)− g(φ(t))∥, (2.12)

where the infimum is taken among all diffeomorphisms φ : [a, b] → [c, d], and ∥.∥ is
the usual Euclidean norm.

Theorem 2.3. Suppose that the interpolation data

PL = f

(
−h

2

)
, tLs = f (s)

(
−h

2

)
, s = 1, 2, . . . , n− 1,

PR = f

(
h

2

)
, tRs = f (s)

(
h

2

)
, s = 1, 2, . . . , n− 1,

are sampled from an analytic curve f : [−h
2 ,

h
2 ] → R3, parameterized by the arc-length.

Suppose that a rational Gn−1 interpolant rh exists, and depends continuously on h for
all 0 < h ≤ h0, for some constant h0 > 0. Further, let the corresponding unknowns,
determined as a solution of the system (2.4), additionally satisfy

w(t) = 1 +O (h) , w(s)(t) = O (hs) , s = 1, 2, . . . , n, (2.13)

and

φ′(t) = h+O
(
h2
)
, φ(i)(t) = O

(
hi
)
, i = 2, 3, . . . , 2n− 1, (2.14)

where φ : [0, 1] → [−h/2, h/2] is a polynomial of degree ≤ 2n− 1, determined by the
values

φ(0) = −h

2
, φ(1) =

h

2
, φ(i)(0) = αL

i , φ(i)(1) = αR
i , i = 1, 2, . . . , n− 1. (2.15)

Then

distP (f , rh) = O
(
h2n
)
.

Proof. Let q be the polynomial curve of degree ≤ 2n − 1 that interpolates the
data (2.1). Since

distP (f , rh) ≤ distP (f , q) + distP (q, rh) , (2.16)

it is enough to estimate each of the right-hand side terms separately. Any particular
reparameterization in (2.12) gives an upper bound on the parametric distance. Let
h0 be small enough so that φ as defined in the theorem is a diffeomorphism for all
0 < h ≤ h0. Such an h0 should exist by (2.14). Then

distP (f , q) ≤ max
0≤t≤1

∥f (φ(t))− q(t)∥.

But the polynomial curve q of degree ≤ 2n− 1 agrees with f ◦ φ n-fold at 0 and at
1, respectively. Thus the interpolation error is

f (φ(t))− q(t) = tn(t− 1)n[ 0, . . . , 0︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
n

, t ] (f ◦ φ) = O
(
h2n
)
.
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The last equality follows from the chain rule applied to ds

dtsf (φ(t)), and (2.14), which
proves

ds

dts
f (φ(t)) = O (hs) , s = 1, 2, . . . , 2n. (2.17)

The second term in (2.16) is bounded above by

max
0≤t≤1

∥q (t)− rh(t)∥,

and

q (t)− rh(t) = tn(t− 1)n[ 0, . . . , 0︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
n

, t ]rh,

since q interpolates rh too. But

0 = [ 0, . . . , 0︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
n

, t ] (wrh) =

= w(t)[ 0, . . . , 0︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
n

, t ]rh +

n∑
i=1

[0, . . . , 0︸ ︷︷ ︸
i

, t]w[ 0, . . . , 0︸ ︷︷ ︸
n+1−i

, 1, . . . , 1︸ ︷︷ ︸
n

]rh.

Since w(t) = 1 + O (h), and rh interpolates f ◦ φ (n − 1)-fold at 0 and at 1, (2.13)
and (2.17) imply

(1 +O (h)) [ 0, . . . , 0︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
n

, t ]rh =

−
n∑

i=1

[0, . . . , 0︸ ︷︷ ︸
i

, t]w [ 0, . . . , 0︸ ︷︷ ︸
n+1−i

, 1, . . . , 1︸ ︷︷ ︸
n

] (f ◦ φ) = O
(
h2n
)
.

This concludes the proof.

3. Cubic rational G2 interpolation. In this section, we will analyze the cubic
rational G2 Hermite interpolation in detail. We are given the following data: points
PL,PR ∈ R3, the corresponding unit tangent directions tL1 , t

R
1 ∈ R3, and (second

derivative) vectors tL2 , t
R
2 ∈ R3. The system (2.1) simplifies to

r(0) = PL, r(1) = PR,

r′(0) = αL
1 tL1 , r′(1) = αR

1 tR1 , (3.1)

r′′(0) = αL
2 tL1 + (αL

1 )
2 tL2 , r′′(1) = αR

2 tR1 + (αR
1 )

2 tR2 ,

where αL
1 > 0, αR

1 > 0 and αL
2 , α

R
2 are unknowns, arising from the connection matrix

(2.2) at both endpoints of the domain interval [0, 1]. The nonlinear part of the system
of equations, established in Theorem 2.2, reads

e1 :=
w0

2

((
αL
2 − 2αL

1

)
tL1 +

(
αL
1

)2
tL2

)
+ 3w1α

L
1 t

L
1 − 3w2∆P + αR

1 t
R
1 = 0,

e2 := −αL
1 t

L
1 + 3w1∆P − 3w2α

R
1 t

R
1 +

w3

2

((
2αR

1 + αR
2

)
tR1 +

(
αR
1

)2
tR2

)
= 0,
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where w0 = 1, w3 = 1. Let the linear functionals λℓ be as introduced in (2.9), and let
us define data constants

νLℓ,j := λℓt
L
j , νRℓ,j := λℓt

R
j , ℓ = 1, 2, 3; j = 1, 2, . . . , n− 1. (3.2)

Then, with ω ̸= 0, defined in (2.10), equations λ2ej = 0, j = 1, 2, give relations that
determine the weights wi as functions of α

L
1 and αR

1 ,

1

2
νL2,2

(
αL
1

)2 − 3ωw2 = 0, 3ωw1 +
1

2
νR2,2

(
αR
1

)2
= 0. (3.3)

Thus

w1 = −
νR2,2
6ω

(
αR
1

)2
, w2 =

νL2,2
6ω

(
αL
1

)2
. (3.4)

Similarly, equations λ1e1 = 0 and λ3e2 = 0, together with (3.4), yield

αL
2 =

αL
1

(
νR2,2

(
αR
1

)2 − αL
1 ν

L
1,2 + 2ω

)
ω

, αR
2 =

αR
1

(
νL2,2

(
αL
1

)2 − νR3,2α
R
1 − 2ω

)
ω

. (3.5)

Finally, λ1e2 = 0 and λ3e1 = 0, reveal a system of quadratic equations

1

2
νR1,2

(
αR
1

)2 − ωαL
1 = 0,

1

2
νL3,2

(
αL
1

)2
+ ωαR

1 = 0, (3.6)

that can be straightforwardly solved. The other unknowns are then obtained from
(3.5) and (3.4) by a backward substitution, and the control points follow from (2.11)
as

b0 = PL, b1 = PL +
αL
1

3w1
tL1 , b2 = PR − αR

1

3w2
tR1 , b3 = PR. (3.7)

Note that the control points (3.7) and the weights (3.4) are independent of αL
2 and

αR
2 . Let us summarize the discussion.

Theorem 3.1. There exists a unique cubic rational Bézier curve, satisfying the
G2 interpolation conditions (3.1) iff

νL2,2ω > 0, νR2,2ω < 0, νL3,2ω < 0, νR1,2ω > 0.

In this case,

αL
1 =

2ω

3

√(
νL3,2
)2

νR1,2

, αR
1 = − 2ω

3

√
νL3,2

(
νR1,2
)2 . (3.8)

The rest of the parameters are determined from (3.4) and (3.7). If ω = 0, the solution
may exist only if the vectors tL1 , t

L
2 ,∆P , tR1 and tR2 are coplanar.

Proof. If ω ̸= 0, the assertion follows from (3.4), (3.6), and the requirements
αL
1 > 0, αR

1 > 0, w1 > 0, w2 > 0. So only the case ω = 0 is left to be examined.
If ω = 0, the vectors tL1 ,∆P , and tR1 are coplanar. Further, (3.3) implies that the
vectors tL1 , t

L
2 , t

R
2 , and tR1 should be coplanar too, and the proof is completed.

The asymptotic approximation order of the cubic rationalG2 interpolation scheme
is also not too hard to establish.
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Theorem 3.2. Suppose that the data are sampled from an analytic parametric
curve f : [−h/2, h/2] → R3 with a nonvanishing curvature and torsion, parameterized
by the arc-length,

PL = f

(
−h

2

)
, PR = f

(
h

2

)
, tLs = f (s)

(
−h

2

)
, tRs = f (s)

(
h

2

)
, s = 1, 2.

The asymptotic approximation order of the cubic rational interpolant rh is 6.

Proof. Without loss of generality we may assume f(0) = 0. Since the Frenet
frame of the curve f exists by assumption, we may assume that at s = 0 it is equal
to the columns of the identity matrix. This simplifies the Taylor series of the curve f
at 0 to

f(s) =

 s− 1
6κ

2
0s

3 − 1
8κ0κ1s

4 + . . .
1
2κ0s

2 + 1
6κ1s

3 − 1
24

(
κ3
0 − κ2 + κ0τ

2
0

)
s4 + . . .

1
6κ0τ0s

3 + 1
24 (2κ1τ0 + κ0τ1) s

4 + . . .

 , (3.9)

where κ(s) = κ0 +
1
1!κ1 s+

1
2!κ2 s

2 + . . . and τ(s) = τ0 +
1
1!τ1 s+

1
2!τ2 s

2 + . . . denote
Taylor series of the principal curvatures of f . From (3.9) it is straightforward to
obtain the expansions of the rest of the data, and the data constants νLℓ,j , ν

R
ℓ,j , . . .

involved. In particular,

ω =
1

12
κ2
0τ0h

4 +O
(
h6
)
,

so ω > 0 for h small enough, and (3.8), (3.5), and (3.4) give expansions of the
unknowns

αL
1 = h+ θ2h

2 + θ3h
3 + θ4h

4 +O
(
h5
)
, αR

1 = h− θ2h
2 + θ3h

3 − θ4h
4 +O

(
h5
)
,

αL
2 = −2θ2h

2 − 6θ3h
3 + θ5h

4 +O
(
h5
)
, αR

2 = −2θ2h
2 + 6θ3h

3 + θ5h
4 +O

(
h5
)
,

w1 = 1 + ξ2h
2 +O

(
h3
)
, w2 = 1 + ξ2h

2 +O
(
h3
)
, (3.10)

with

θ2 :=
1

12

(
2κ1

κ0
+

τ1
τ0

)
,

θ3 :=
−12κ4

0τ
2
0 − 12κ2

0τ
4
0 + 25κ2

0τ
2
1 − 18κ2

0τ0τ2 − 24κ2κ0τ
2
0 + 16κ1κ0τ0τ1 + 40κ2

1τ
2
0

720κ2
0τ

2
0

,

ξ2 :=
−36κ4

0τ
2
0 − 36κ2

0τ
4
0 + 35κ2

0τ
2
1 − 24κ2

0τ0τ2 − 12κ2κ0τ
2
0 + 8κ1κ0τ0τ1 + 20κ2

1τ
2
0

720κ2
0τ

2
0

,

and θ4, θ5 are similar, but rather lengthy expressions depending on the curvature
expansions only. Thus the denominator w by (3.10) satisfies

w(0) = 1, [0, 0]w = 3ξ2h
2 +O

(
h3
)
,

[0, 0, 0]w = −3ξ2h
2 +O

(
h3
)
, [0, 0, 0, 0]w = O

(
h3
)
,

and the assumption (2.13) of Theorem 2.3 is confirmed. For the polynomial reparam-
eterization φ of degree ≤ 2n− 1 = 5, determined by the conditions (2.15), we observe
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from (3.10) that the first four columns of the corresponding divided difference table,
that determines a particular Newton form of φ, read

0 −h
2 h+ θ2h

2 + θ3h
3 + θ4h

4 +O
(
h5
)

0 −h
2 −θ2h

2 − 3θ3h
3 + θ5

2 h
4 +O

(
h5
)

h+ θ2h
2 + θ3h

3 + θ4h
4 +O

(
h5
)

0 −h
2 −θ2h

2 − θ3h
3 − θ4h

4 +O
(
h5
)

h
1 h

2 −θ2h
2 + θ3h

3 − θ4h
4 +O

(
h5
)

h− θ2h
2 + θ3h

3 − θ4h
4 +O

(
h5
)

1 h
2 −θ2h

2 + 3θ3h
3 + θ5

2 h
4 +O

(
h5
)

h− θ2h
2 + θ3h

3 − θ4h
4 +O

(
h5
)

1 h
2

and the last three ones are

2θ3h
3 −

(
θ4 +

θ5
2

)
h4 +O

(
h5
) (

θ4 +
θ5
2

)
h4 +O

(
h5
)

2θ3h
3 +O

(
h5
)

O
(
h5
)(

θ4 +
θ5
2

)
h4 +O

(
h5
)

2θ3h
3 +

(
θ4 +

θ5
2

)
h4 +O

(
h5
)

Thus the reparameterization φ satisfies (2.14), and one may use Theorem 2.3 to
complete the proof.

4. Quartic rational G3 interpolation. For the quartic G3 rational Hermite
interpolation, the nonlinear system of equations that follows from (2.4), with w0 =
w4 = 1, is given as

e1 :=
1

6

((
6αL

1 − 6αL
2 + αL

3

)
tL1 + αL

1

((
3αL

2 − 6αL
1

)
tL2 +

(
αL
1

)2
tL3

))
+ w1

((
2αL

2 − 4αL
1

)
tL1 + 2

(
αL
1

)2
tL2

)
+ 6w2α

L
1 t

L
1 − 4w3∆P + αR

1 t
R
1 = 0,

e2 :=

(
αL
1 − αL

2

2

)
tL1 − 1

2

(
αL
1

)2
tL2 − 4w1α

L
1 t

L
1 + 6w2∆P − 4w3α

R
1 t

R
1

+
1

2

((
2αR

1 + αR
2

)
tR1 +

(
αR
1

)2
tR2

)
= 0, (4.1)

e3 := αL
1 t

L
1 − 4w1∆P + 6w2α

R
1 t

R
1 − 2w3

((
2αR

1 + αR
2

)
tR1 +

(
αR
1

)2
tR2

)
+

1

6

((
6αR

1 + 6αR
2 + αR

3

)
tR1 + αR

1

(
3
(
2αR

1 + αR
2

)
tR2 +

(
αR
1

)2
tR3

))
= 0.

This system of three vector equations is obviously harder to tackle than its cubic
counterpart. But similar elimination steps can be carried out, which will result in the
final quartic equation.

Recall the linear functionals λℓ, defined in (2.9), and the data constants, intro-
duced in (3.2). Let us simplify the discussion by assuming ω = det

(
tL1 ,∆P , tR1

)
̸= 0.

If we apply λℓ, ℓ = 1, 2, 3, to the system (4.1), we obtain nine scalar equations. From
λ1e1 = 0 we may express

αL
3 =

1

ω

((
6 (1− 2w1) ν

L
1,2α

L
1 − νL1,3

(
αL
1

)2
+ 6 (4w1 − 6w2 − 1)ω

)
αL
1

− 3
(
νL1,2α

L
1 + 4w1ω − 2ω

)
αL
2

)
. (4.2)
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Similarly, λ3e3 = 0 gives

αR
3 =

1

ω

(
− 3

(
νR3,2α

R
2 + 2 (6w2 − 4w3 + 1)ω

)
αR
1

+ 6 (2w3 − 1) νR3,2
(
αR
1

)2 − νR3,3
(
αR
1

)3
+ 6 (2w3 − 1)ωαR

2

)
. (4.3)

The unknown weights appear linearly in (4.1). Since ω ̸= 0, we may use the equations

λ2ei = 0, i = 1, 2, 3,

and express them as

w1 =
νR2,2

((
12ω − νL2,3

(
αL
1

)3
+ 3νL2,2

(
2αL

1 − αL
2

)
αL
1

)
αR
1 + 6ωαR

2

)
αR
1 + 2ωνR2,3

(
αR
1

)3
12π1

(
αL
1 , α

R
1

) ,

w2 =
νL2,2

(
αL
1

)2 − νR2,2
(
αR
1

)2
12ω

, (4.4)

w3 =
νL2,2

((
νR2,3

(
αR
1

)3
+ 3

(
2αR

1 + αR
2

)
αR
1 ν

R
2,2 − 12ω

)
αL
1 + 6ωαL

2

)
αL
1 + 2ωνL2,3

(
αL
1

)3
12π1

(
αL
1 , α

R
1

) ,

with

π1(x, y) := 4ω2 + νL2,2ν
R
2,2x

2y2. (4.5)

Note that wi in (4.4) depend on αL
1 , α

L
2 , α

R
1 and αR

2 only, and the unknowns αL
2 , α

R
2

appear linearly. If we insert the weights (4.4) in

λ1e2 =
1

2

(
−νL1,2

(
αL
1

)2
+ νR1,2

(
αR
1

)2
+ 2ωαL

1 − ωαL
2

)
− 4ωw1α

L
1 = 0,

λ3e2 =
1

2

(
−νL3,2

(
αL
1

)2
+ νR3,2

(
αR
1

)2
+ 2ωαR

1 + ωαR
2

)
− 4ωw3α

R
1 = 0,

we derive rather long expressions for αL
2 , α

R
2 , depending on data constants and αL

1 , α
R
1

only,

αL
2 =

π2

(
αL
1 , α

R
1

)
3ω π1

(
αL
1 , α

R
1

) , αR
2 =

π3

(
αL
1 , α

R
1

)
3ω π1

(
αL
1 , α

R
1

) , (4.6)

with

π2(x, y) := νR2,2
(
3νL1,2ν

L
2,2 − 2ωνL2,3

)
x4y2 − 3νR1,2ν

L
2,2ν

R
2,2x

2y4 + 6ωνL2,2ν
R
2,2x

3y2

− 12ωνR2,2ν
L
3,2x

3y − 4ω
(
ωνR2,3 − 3νR2,2ν

R
3,2

)
xy3 − 12ω2νL1,2x

2

+ 12ω2νR1,2y
2 + 24ω3x,

π3(x, y) := νL2,2
(
3νR2,2ν

R
3,2 − 2ωνR2,3

)
x2y4 − 3νL2,2ν

R
2,2ν

L
3,2x

4y2 − 6ωνL2,2ν
R
2,2x

2y3

+ 4ω
(
ωνL2,3 − 3νL1,2ν

L
2,2

)
x3y + 12ωνR1,2ν

L
2,2xy

3 + 12ω2νL3,2x
2

− 12ω2νR3,2y
2 − 24ω3y.

There are only two equations left,

λ1e3 =ωαL
1 +

1

6
νR1,3

(
αR
1

)3
+
(
νR1,2 − 2w3ν

R
1,2

) (
αR
1

)2
+

1

2
νR1,2α

R
1 α

R
2 = 0,

(4.7)

λ3e1 =ωαR
1 +

1

6
νL3,3

(
αL
1

)3
+
(
2w1ν

L
3,2 − νL3,2

) (
αL
1

)2
+

1

2
νL3,2α

L
1 α

L
2 = 0.
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Let us insert in (4.7) the weights w1 and w3 from (4.4) and αL
2 , α

R
2 from (4.6). The

equations (4.7) transform to

6λ1e3 = π4(α
L
1 , α

R
1 ) +

π6(α
L
1 , α

R
1 )

π1(αL
1 , α

R
1 )

= 0, 6λ3e1 = π5(α
L
1 , α

R
1 ) +

π7(α
L
1 , α

R
1 )

π1(αL
1 , α

R
1 )

= 0,

(4.8)
where π1 is defined in (4.5),

π4(x, y) :=2

(
3ω +

ωνL2,3 − 3νL1,2ν
L
2,2

νL2,2ν
R
2,2

νR1,2

)
x+

(
νR1,3 −

νR1,2ν
R
2,3

νR2,2

)
y3,

π5(x, y) :=2

(
3ω −

ωνR2,3 − 3νR3,2ν
R
2,2

νL2,2ν
R
2,2

νL3,2

)
y +

(
νL3,3 −

νL2,3ν
L
3,2

νL2,2

)
x3,

and

π6(x, y) := 6νR1,2
(
2ωνL3,2x+ νL2,2ν

R
1,2y

3
)
xy

− 8ω2νR1,2
ωνL2,3 − 3νL1,2ν

L
2,2

νL2,2ν
R
2,2

x+ 4ωνR1,2

(
ωνR2,3
νR2,2

− 3νR3,2

)
y3,

π7(x, y) := 6νL3,2
(
2ωνR1,2y − νL3,2ν

R
2,2x

3
)
xy

+ 8ω2νL3,2
ωνR2,3 − 3νR2,2ν

R
3,2

νL2,2ν
R
2,2

y + 4ωνL3,2

(
ωνL2,3
νL2,2

− 3νL1,2

)
x3.

Let us introduce new variables z1 and z2 with

z1 :=
αL
1(

αR
1

)3 , z2 := αL
1 α

R
1 . (4.9)

Thus

αL
1 = 4

√
z1z32 , αR

1 = 4

√
z2
z1

. (4.10)

Note that only positive values z1 and z2 are admissible. The first equation in (4.8),

divided by
(
αR
1

)3
, is linear in z1, which yields

z1 =
4ω
(
3νR1,2ν

R
3,2 − ωνR1,3

)
− 6νL2,2

(
νR1,2
)2

z2 + νL2,2
(
νR1,2ν

R
2,3 − νR1,3ν

R
2,2

)
z22

24ω3 + 12ωνL3,2ν
R
1,2z2 + 2

(
ωνL2,3ν

R
1,2 + 3ωνL2,2ν

R
2,2 − 3νL1,2ν

L
2,2ν

R
1,2

)
z22

. (4.11)

Let us insert the new variables (4.9) in the second equation in (4.8), divided by αR
1 ,

and let us apply the substitution (4.11). The numerator of the expression obtained
gives the last equation as

π8(z2) :=144ω4 + 144ω2νL3,2ν
R
1,2 z2 + 4

(
3ω2νL2,3ν

R
1,2 − ω2νL3,3ν

R
1,3 + 9ω2νL2,2ν

R
2,2

− 3ω2νL3,2ν
R
2,3 + 3ωνR3,2

(
νL3,3ν

R
1,2 + 3νL3,2ν

R
2,2

)
+ νL1,2

(
3νL3,2

(
ωνR1,3 − 3νR1,2ν

R
3,2

)
− 9ωνL2,2ν

R
1,2

)
+ 9

(
νL3,2
)2 (

νR1,2
)2 )

z22

+ 6
((

νL3,2
)2 (

νR1,3ν
R
2,2 − νR1,2ν

R
2,3

)
+
(
νL2,3ν

L
3,2 − νL2,2ν

L
3,3

) (
νR1,2
)2)

z32

+
(
νL2,3ν

L
3,2 − νL2,2ν

L
3,3

) (
νR1,3ν

R
2,2 − νR1,2ν

R
2,3

)
z42 = 0. (4.12)
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Thus the main part of the quartic rational G3 interpolation problem is to solve the
quartic equation (4.12). All the other unknowns are obtained by the backward substi-
tution. Any positive root of π8 is an admissible z2. If the corresponding z1, computed
from (4.11), is positive too, the equations (4.10) determine an admissible pair αL

1 , α
R
1 .

With the help of (4.6), we then obtain the corresponding unknowns αL
2 , α

R
2 . The

weights w1, w2, and w3 naturally follow from (4.4). If all weights are positive, the
solution set is altogether admissible. In case αL

3 , α
R
3 are needed too, they can be

computed from (4.2) and (4.3), respectively. Finally, the unknown control points are
determined from (2.11) as

b0 = PL, b4 = PR, b1 = PL +
αL
1

4w1
tL1 , b3 = PR − αR

1

4w3
tR1 ,

b2 = PL +
(8w1 − 2)αL

1 + αL
2

12w2
tL1 +

(
αL
1

)2
12w2

tL2 .

There is no way to state existence conditions of the quartic case solution so precisely
as in Theorem 3.1 for the cubic one. Quite clearly we observe from (4.12) that the
number of admissible solutions is at most 4, but the actual number depends on the
particular set of the independent data constants

ν :=
(
ω, νL1,2, ν

L
2,2, ν

L
3,2, ν

L
1,3, ν

L
2,3, ν

L
3,3, ν

R
1,2, ν

R
2,2, ν

R
3,2, ν

R
1,3, ν

R
2,3, ν

R
3,3

)
∈ R13.

Since a data change ν → const ν, const ̸= 0, does not change the equations involved,
it is enough to consider the unit sphere S in R13 as parameter space only. Its surface
could be split in open subsets and their boundaries such that the number of admissible
solutions on each subset is constant. However, there is no point to list all the varieties
that define these boundaries. Instead, as an example, let us consider data from a
particular curve

f(t) :=

(
cos t√
1 + t2

, sin t,
√
1 + t2

)T

, t ∈ [a, b], (4.13)

and let us examine the number of admissible solutions depending on the parameter
interval, −1 ≤ a < b ≤ 1. Figure 4.1 clearly suggests that any number of admissible
solutions between 0 and 4 is possible. Even in the asymptotic case, no entirely precise
answer can be found. Let us start with two lemmas.

Lemma 4.1. Suppose that the weights wj for h small enough expand as

wj =
3∑

ℓ=0

wj,ℓh
ℓ +O

(
h4
)
, j = 1, 2, 3. (4.14)

The polynomial w =
∑4

j=0 wjB
4
j satisfies the assumptions (2.13) of Theorem 2.3 iff

w1,0 = 1, w2,0 = 1, w3,0 = 1, w1,1 = 0, w2,1 = 0, w3,1 = 0,

3w1,2 − 3w2,2 + w3,2 = 0, w1,2 − 3w2,2 + 3w3,2 = 0, (4.15)

−2w1,3 + 3w2,3 − 2w3,3 = 0.

Proof. Recall w0 = w4 = 1. Since w is a Bézier polynomial, the assumptions
(2.13) are by the convex hull property equivalent to

wj = 1 +O (h) , j = 0, 1, . . . , 4,
(4.16)

∆ℓwj = O
(
hℓ
)
, j = 0, 1, . . . , 4− ℓ; ℓ = 2, 3, 4.
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-1.0

-0.5

0.5

1.0

b

no solution

one solution

two solutions

three solutions

four solutions

Fig. 4.1. The number of admissible solutions for the curve f , defined in (4.13), that depends
on a particular parameter interval [a, b] in the range −1 ≤ a < b ≤ 1, with a legend on the right.

Let us insert the expansions (4.14) in the finite difference table ∆ℓwj . The relations
(4.16) are fulfilled if and only if the constants wj,ℓ satisfy the relations (4.15). Since
the relations wj,0 = 1, j = 1, 2, 3, are obvious, let us verify (4.16) for ℓ = 2. Since
O (h) terms should vanish, we obtain

w2,1 − 2w1,1 = 0, w1,1 − 2w2,1 + w3,1 = 0, w2,1 − 2w3,1 = 0,

which implies w1,1 = 0, w2,1 = 0, w3,1 = 0. The other relations follow similarly.
Lemma 4.2. Suppose that φ is a polynomial of degree ≤ 2n − 1 = 7 determined

by the interpolation conditions (2.15), and let αL
j , α

R
j expand as

αL
j =

6∑
ℓ=j

αL
j,ℓh

ℓ +O
(
h7
)
, αR

j =
6∑

ℓ=j

αR
j,ℓh

ℓ +O
(
h7
)
, j = 1, 2, 3. (4.17)

Then φ satisfies (2.14) iff the following relations hold,

αL
1,1 − 1 = 0, αR

1,1 − 1 = 0, (4.18)

2αL
1,2 + αL

2,2 = 0, αL
1,2 + αR

1,2 = 0, αR
2,2 − 2αR

1,2 = 0, (4.19)

6αL
1,3 + 3αL

2,3 + αL
3,3 = 0, 4αL

1,3 + αL
2,3 + 2αR

1,3 = 0,
(4.20)−2αL

1,3 − 4αR
1,3 + αR

2,3 = 0, 6αR
1,3 − 3αR

2,3 + αR
3,3 = 0,

18αL
1,4 + 6αL

2,4 + αL
3,4 + 6αR

1,4 = 0, −6αL
1,4 − αL

2,4 − 6αR
1,4 + αR

2,4 = 0,
(4.21)

6αL
1,4 + 18αR

1,4 − 6αR
2,4 + αR

3,4 = 0,

−36αL
1,5 − 9αL

2,5 − αL
3,5 − 24αR

1,5 + 3αR
2,5 = 0,

(4.22)
24αL

1,5 + 3αL
2,5 + 36αR

1,5 − 9αR
2,5 + αR

3,5 = 0,

60αL
1,6 + 12αL

2,6 + αL
3,6 + 60αR

1,6 − 12αR
2,6 + αR

3,6 = 0. (4.23)
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Proof. Let (ξi)
7
i=0 := (0, 0, 0, 0, 1, 1, 1, 1) be the knot sequence at which φ inter-

polates the data
(
−h

2 , α
L
1 , α

L
2 , α

L
3 ,

h
2 , α

R
1 , α

R
2 , α

R
3

)
. Quite clearly, (2.14) is equivalent

to

[ξi, ξi+1]φ = h+O
(
h2
)
, i = 0, 1, . . . , 6, (4.24)

and

[ξi, ξi+1, . . . , ξi+ℓ]φ = O
(
hℓ
)
, i = 0, 1, . . . , 7− ℓ; ℓ = 2, 3, . . . , 7. (4.25)

If we insert the expansions (4.17) in the divided difference table (4.25), we observe
that the relation (4.25) for ℓ = 2 is equivalent to (4.18), for ℓ = 3 to (4.19), etc.
Finally, (4.18) implies (4.24) too, which concludes the proof.

Theorem 4.3. Suppose that the data (2.1) are determined by an analytic curve
f : [−h

2 ,
h
2 ] → R3 with nonvanishing curvature and torsion as in Theorem 3.2. Then

there exists h0 > 0 such that for all h, 0 < h ≤ h0, the number of the corresponding
solutions is constant. This number depends on the curvatures expansion coefficients

κ0, κ1, . . . , κ5, τ0, τ1, . . . , τ4,

and it is equal to 0, 2 or 4. The asymptotic approximation order of any regular solution
(i.e., with a nonvanishing derivative) is 8.

Proof. Let us recall the expansion (3.9) that gives, after quite a bit of sym-
bolic computer work, the expansions of the data constants ω, νLi,j , ν

R
i,j . If we insert

the expansions obtained in (4.12) and rearrange the quartic equation π8(z2) = 0 by
introducing a new variable

Z :=
h2 − z2

h4
,

we obtain

π8(z2) = π8(h
2 − h4Z) = h24

(
π9(Z) + o1(Z)h2 + o2(Z)h4 + . . .

)
= 0. (4.26)

Here π9 and oi are quite lengthy polynomials of degree ≤ 4 with coefficients that
depend on curvatures expansions only, but not on h. In particular, the leading poly-
nomial reads

π9(Z) =
1

144
κ8
0τ

4
0Z

4 + . . . .

So it is precisely of the degree 4 since κ0, τ0 ̸= 0. So the equation π9(Z) = 0 has an

even number of real solutions. Suppose that Z̃ is a simple real root of π9. Then (4.26)
gives an expansion of Z for h small enough as

Z = Z̃ − o1(Z̃)

π′
9(Z̃)

h2 −

(
o1(Z̃)2π′′

9 (Z̃)

2π′
9(Z̃)3

− o1(Z̃)o′1(Z̃)

π′
9(Z̃)2

+
o2(Z̃)

π′
9(Z̃)

)
h4 +O

(
h6
)
.

Consequently,

αL
1 α

R
1 = z2 = h2 − Z̃h4 +

o1(Z̃)

π′
9(Z̃)

h6 +O
(
h8
)
. (4.27)
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The identity (4.11) gives z1 as a rational function of the z2 expansion (4.27). This
gives the expansions

αR
1 = 4

√
z2
z1

= h+ αR
1,2h

2 + αR
1,3h

3 + αR
1,4h

4 + αR
1,5h

5 + αR
1,6h

6 +O
(
h7
)

(4.28)

and

αL
1 =

z2
αR
1

= h+ αL
1,2h

2 + αL
1,3h

3 + αL
1,4h

4 + αL
1,5h

5 + αL
1,6h

6 +O
(
h7
)
. (4.29)

Note that (4.27) implies

αL
1,2 = −αR

1,2, αL
1,4 + αR

1,4 + αL
1,3α

R
1,2 + αL

1,2α
R
1,3 = 0,

(4.30)
αL
1,6 + αR

1,6 + αL
1,5α

R
1,2 + αL

1,4α
R
1,3 + αL

1,3α
R
1,4 + αL

1,2α
R
1,5 = 0,

and

αL
1,3 + αR

1,3 + αL
1,2α

R
1,2 = −Z̃.

Also, the coefficients αL
1,ℓ, α

R
1,ℓ depend on curvature expansions as well on Z̃, and they

are quite lengthy. A straightforward substitution of (4.29) and (4.28) in (4.6), (4.4),
(4.3), and (4.2) confirms that the unknowns have asymptotic expansions of the form
(4.14) and (4.17). But, due to the computer power at will, we have not been able
to produce enough expansion constants to confirm the asserted approximation order
by a straightforward backward substitution approach. Instead, let us consider the
expansion of the original system (4.1), where we assume also that the unknowns have
expansions of the form (4.14) and (4.17). Additionally, suppose that coefficients in
the expansions of αL

1 and αR
1 satisfy (4.30) too, but for a moment we neglect their

actual values that were determined in (4.28) and (4.29). Note that (4.18) is satisfied
already. The left-hand sides of the equations expand as

ei = (ei,j)
3
j=1 =

(
hj
(
ei,j,0 + ei,j,1h+ ei,j,2h

2 + . . .
))3

j=1
, i = 1, 2, 3.

The leading terms simplify to

e1,1,0 = −4w1,0 + 6w2,0 − 4w3,0 + 2, e1,2,0 = κ0 (4w1,0 − 3w2,0 − 1) ,

e1,3,0 =
1

12
κ0τ0 (−18w1,0 + 9w2,0 − 2w3,0 + 11) ,

e2,1,0 = e1,1,0, e2,2,0 = 2κ0 (w1,0 − w3,0) , e2,3,0 =
1

4
κ0τ0 (−2w1,0 + w2,0 − 2w3,0 + 3) ,

e3,1,0 = e1,1,0, e3,2,0 = κ0 (3w2,0 − 4w3,0 + 1) ,

e3,3,0 =
1

12
κ0τ0 (−2w1,0 + 9w2,0 − 18w3,0 + 11) .

It is obvious that they can vanish iff

w1,0 = w2,0 = w3,0 = 1,

and the first three relations in (4.15) are satisfied. We now continue in this way by
determining the expansion coefficients from the equations

ei,j,ℓ = 0, j = 1, 2, 3; i = 1, 2, 3; ℓ = 1, 2, . . . , 5.
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At ℓ = 1 we obtain

w1,1 = w2,1 = w3,1 = 0, αL
2,2 = −2αL

2,1, α
R
2,2 = −2αL

2,1,

and the equations at ℓ = 2 determine

w1,2 =
1

80
c, w2,2 =

1

60
c, w3,2 =

1

80
c,

αL
2,3 = −2

(
2αL

1,3 + αR
1,3

)
, αR

2,3 = 2
(
αL
1,3 + 2αR

1,3

)
, αL

3,3 = αR
3,3 = 6

(
αL
1,3 + αR

1,3

)
,

with

c :=
1

κ0τ0

(
− τ0

(
κ0

(
−60αL

1,3 − 60αR
1,3 + κ2

0 + τ20
)
− 3κ2

)
+ 60(αL

1,2)
2κ0τ0 − 20αL

1,2 (2κ1τ0 + κ0τ1) + 3κ1τ1 + κ0τ2
)
.

In this way we determine the coefficients

w1,ℓ, w2,ℓ, w3,ℓ, αL
2,ℓ+1, αR

2,ℓ+1, αL
3,ℓ+1, αL

3,ℓ+1, ℓ = 0, 1, . . . , 5,

as functions of the coefficients in the expansions (4.28) and (4.29). It is tedious but
straightforward to verify that all the relations required, i.e., (4.15), (4.18), (4.19),
(4.20), (4.21), (4.22) are fulfilled but (4.23). If we substitute now the actual values
of the coefficients that were obtained in (4.28) and (4.29), the left-hand side of (4.23)
simplifies to

60αL
1,6 + 12αL

2,6 + αL
3,6 + 60αR

1,6 − 12αR
2,6 + αR

3,6 =

− 10450944000 π9(Z̃)

κ4
0 (κ0 (τ1 (2τ0 (2κ2

0τ0 + 6τ30 − 9τ2) + 15τ21 ) + 4τ3τ20 )− 2κ1τ0 (4τ40 + 2τ2τ0 − 3τ21 ))
.

But Z̃ is a root of π9, and the proof of the theorem is completed.
The Mathematica programs, used in computations, are available at [13].

5. Examples. Let us conclude the paper with some numerical examples. In
Figure 5.1, a cubic G2 rational spline is shown. The data were sampled from the
curve (

(ln t+ 3 ln 10) cos t,
√
1 + ln t sin t, 3 ln t

)T
(5.1)

at 2π/3 + i π/9, i = 0, 1, . . . , 39. Each spline segment was constructed on the basis
provided by Theorem 3.1. Of course, the interpolant is almost indistinguishable from
the original curve. In Fig. 5.2, the corresponding curvature and torsion plots are
shown. Fig. 5.3 shows jumps (differences of values at the breakpoints) in the torsion
that are inevitable in general since the G2 conditions at the breakpoints are satisfied
only. For the jumps to be more clearly visible, the logarithmic scale is used.

In Fig. 5.1, right, a comparison of our cubic rational interpolant and a cubic C2

polynomial spline is presented. Some differences in the shape can be observed. Of
course, the C2 spline has only approximation order 4. Note that for less sparse data
the curve shapes become indistinguishable.

Let us consider now a quartic G3 case, with the interpolated data sampled from(
cos t ln(1 + t),

√
1 + t2 + 2 ln(1 + t) sin t√

5
,
2
√
1 + t2 − ln(1 + t) sin t√

5

)T

, t ∈ [0, h].

(5.2)
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Fig. 5.1. A cubic G2 rational spline, interpolating the data, sampled from the curve (5.1) (left).
A comparison of a cubic rational (black, thick) and a cubic C2 polynomial interpolant (blue, thin)
for more sparse data (right).
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Fig. 5.2. Curvature (left) and torsion (right) of the rational spline in Fig. 5.1.

There are two quartic G3 rational curves interpolating these data for h small enough,
both with the approximation order 8. This is to be expected from Theorem 4.3. One
computes the coefficients of the curvature expansion of (5.2) as κ0 = 2.2361, κ1 =
4.0249, κ2 = −4.0696, κ3 = −20.9982, κ4 = −8.2243, κ5 = 75.6374. Further, the
leading part of the torsion is determined by τ0 = 0.6, τ1 = −0.56, τ2 = −1.444, τ3 =
3.2744, τ4 = 3.8329. This gives the quartic polynomial π9 as

π9(Z) = 0.5625Z4 + 0.8088Z3 + 0.6211Z2 + 0.2425Z − 0.042,

with precisely two real solutions,

Z1 = −0.85547, Z2 = 0.12565, Z3,4 = −0.35398± 0.7548 i.

Table 5.1 shows a parametric upper bound and the approximation order of a G2

rational curve for the data taken from (5.1) and for two G3 rational curves for the
data given by (5.2).
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Fig. 5.3. Jumps (differences of values at the breakpoints) in the torsion plot in Fig. 5.2, right.
The logarithmic scale is used.

Table 5.1
Parametric upper bound of the asymptotic approximation order based upon the data curve

reparameterization φ as defined in (2.15), for the cubic G2 rational curve and both quartic G3 ones,
interpolating data, sampled from (5.2) on [0, h].

G2 case G3 case, solution 1 G3 case, solution 2
h Error Order Error Order Error Order

1
100 3.992 · 10−15 – 2.558 · 10−12 – 5.338 · 10−13 –
1

200 6.268 · 10−17 5.99 2.398 · 10−15 10.06 2.161 · 10−17 14.59
1

400 9.816 · 10−19 6.00 5.263 · 10−18 8.83 4.309 · 10−19 5.65
1

800 1.535 · 10−20 6.00 1.580 · 10−20 8.38 1.898 · 10−21 7.83
1

1600 2.400 · 10−22 6.00 5.438 · 10−23 8.18 7.531 · 10−24 7.98
1

3200 3.752 · 10−24 6.00 1.997 · 10−25 8.09 2.945 · 10−26 8.00
1

6400 5.863 · 10−26 6.00 7.565 · 10−28 8.04 1.149 · 10−28 8.00
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