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Abstract

The author introduces the concept of harmonically convex functions
and establishes some Hermite-Hadamard type inequalities of these
classes of functions.
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1. Introduction
Let f : I ⊂ R→ R be a convex function defined on the interval I of real numbers and

a, b ∈ I with a < b. The following inequality

(1.1) f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f(a) + f(b)

2

holds. This double inequality is known in the literature as Hermite-Hadamard integral
inequality for convex functions. Note that some of the classical inequalities for means
can be derived from (1.1) for appropriate particular selections of the mapping f . Both
inequalities hold in the reversed direction if f is concave. For some results which gener-
alize, improve and extend the inequalities (1.1) we refer the reader to the recent papers
(see [1, 2, 3, 4, 6, 5, 7] ).

The main purpose of this paper is to introduce the concept of harmonically convex
functions and establish some results connected with the right-hand side of new inequalities
similar to the inequality (1.1) for these classes of functions. Some applications to special
means of positive real numbers are also given.
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2. Main Results
2.1. Definition. Let I ⊂ R\ {0} be a real interval. A function f : I → R is said to be
harmonically convex, if

(2.1) f

(
xy

tx+ (1− t)y

)
≤ tf(y) + (1− t)f(x)

for all x, y ∈ I and t ∈ [0, 1]. If the inequality in (1.1) is reversed, then f is said to be
harmonically concave.

2.2. Example. Let f : (0,∞) → R, f(x) = x, and g : (−∞, 0) → R, g(x) = x, then f
is a harmonically convex function and g is a harmonically concave function.

The following proposition is obvious from this example:

2.3. Proposition. Let I ⊂ R\ {0} be a real interval and f : I → R is a function, then ;
• if I ⊂ (0,∞) and f is convex and nondecreasing function then f is harmonically

convex.
• if I ⊂ (0,∞) and f is harmonically convex and nonincreasing function then f is

convex.
• if I ⊂ (−∞, 0) and f is harmonically convex and nondecreasing function then f

is convex.
• if I ⊂ (−∞, 0) and f is convex and nonincreasing function then f is a harmoni-

cally convex.

The following result of the Hermite-Hadamard type holds.

2.4. Theorem. Let f : I ⊂ R\ {0} → R be a harmonically convex function and a, b ∈ I
with a < b. If f ∈ L[a, b] then the following inequalities hold

(2.2) f

(
2ab

a+ b

)
≤ ab

b− a

b∫
a

f(x)

x2
dx ≤ f(a) + f(b)

2
.

The above inequalities are sharp.

Proof. Since f : I → R is a harmonically convex function, we have, for all x, y ∈ I (with
t = 1

2
in the inequality (2.1) )

f

(
2xy

x+ y

)
≤ f(y) + f(x)

2
.

Choosing x = ab
ta+(1−t)b

, y = ab
tb+(1−t)a

, we get

f

(
2ab

a+ b

)
≤
f
(

ab
tb+(1−t)a

)
+ f

(
ab

ta+(1−t)b

)
2

.

Further, integrating for t ∈ [0, 1], we have

f

(
2ab

a+ b

)
(2.3)

≤ 1

2

 1∫
0

f

(
ab

tb+ (1− t)a

)
dt+

1∫
0

f

(
ab

ta+ (1− t)b

)
dt

 .
Since each of the integrals is equal to ab

b−a

b∫
a

f(x)

x2
dx, we obtain the left-hand side of the

inequality (2.2) from (2.3).



The proof of the second inequality follows by using (2.1) with x = a and y = b and
integrating with respect to t over [0, 1].

Now, consider the function f : (0,∞)→ R, f(x) = 1. thus

1 = f

(
xy

tx+ (1− t)y

)
= tf(y) + (1− t)f(x) = 1

for all x, y ∈ (0,∞) and t ∈ [0, 1]. Therefore f is harmonically convex on (0,∞) . We also
have

f

(
2ab

a+ b

)
= 1,

ab

b− a

b∫
a

f(x)

x2
dx = 1,

and

f(a) + f(b)

2
= 1

which shows us the inequalities (2.2) are sharp.

For finding some new inequalities of Hermite-Hadamard type for functions whose
derivatives are harmonically convex, we need a simple lemma below.

2.5. Lemma. Let f : I ⊂ R\ {0} → R be a differentiable function on I◦ and a, b ∈ I
with a < b. If f ′ ∈ L[a, b] then

f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

=
ab (b− a)

2

1∫
0

1− 2t

(tb+ (1− t)a)2
f ′
(

ab

tb+ (1− t)a

)
dt.(2.4)

Proof. Let

I∗ =
ab (b− a)

2

1∫
0

1− 2t

(tb+ (1− t)a)2
f ′
(

ab

tb+ (1− t)a

)
dt.

By integrating by part, we have

I∗ =
(2t− 1)

2
f

(
ab

tb+ (1− t)a

)∣∣∣∣1
0

−
1∫

0

f

(
ab

tb+ (1− t)a

)
dt.

Setting x = ab
tb+(1−t)a

, dx = −ab(b−a)

(tb+(1−t)a)2
dt = −x2(b−a)

ab
dt, we obtain

I∗ =
f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

which gives the desired representation (2.4).



2.6. Theorem. Let f : I ⊂ (0,∞)→ R be a differentiable function on I◦, a, b ∈ I with
a < b, and f ′ ∈ L[a, b]. If |f ′|q is harmonically convex on [a, b] for q ≥ 1, then∣∣∣∣∣∣f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

∣∣∣∣∣∣(2.5)

≤ ab (b− a)
2

λ
1− 1

q

1

[
λ2

∣∣f ′ (a)∣∣q + λ3

∣∣f ′ (b)∣∣q] 1
q ,

where

λ1 =
1

ab
− 2

(b− a)2
ln

(
(a+ b)2

4ab

)
,

λ2 =
−1

b (b− a) +
3a+ b

(b− a)3
ln

(
(a+ b)2

4ab

)
,

λ3 =
1

a (b− a) −
3b+ a

(b− a)3
ln

(
(a+ b)2

4ab

)
= λ1 − λ2.

Proof. From Lemma 2.5 and using the Hölder inequality, we have∣∣∣∣∣∣f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

∣∣∣∣∣∣
≤ ab (b− a)

2

1∫
0

∣∣∣∣ 1− 2t

(tb+ (1− t)a)2

∣∣∣∣ ∣∣∣∣f ′( ab

tb+ (1− t)a

)∣∣∣∣ dt
≤ ab (b− a)

2

 1∫
0

∣∣∣∣ 1− 2t

(tb+ (1− t)a)2

∣∣∣∣ dt
1− 1

q

×

 1∫
0

∣∣∣∣ 1− 2t

(tb+ (1− t)a)2

∣∣∣∣ ∣∣∣∣f ′( ab

tb+ (1− t)a

)∣∣∣∣q dt


1
q

.

Hence, by harmonically convexity of |f ′|q on [a, b], we have∣∣∣∣∣∣f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

∣∣∣∣∣∣
≤ ab (b− a)

2

 1∫
0

|1− 2t|
(tb+ (1− t)a)2

dt

1− 1
q

×

 1∫
0

|1− 2t|
[
t |f ′ (a)|q + (1− t) |f ′ (b)|q

]
(tb+ (1− t)a)2

dt


1
q

≤ ab (b− a)
2

λ
1− 1

q

1

[
λ2

∣∣f ′ (a)∣∣q + λ3

∣∣f ′ (b)∣∣q] 1
q .



It is easily check that

1∫
0

|1− 2t|
(tb+ (1− t)a)2

dt

=
1

ab
− 2

(b− a)2
ln

(
(a+ b)2

4ab

)
,

1∫
0

|1− 2t| (1− t)
(tb+ (1− t)a)2

dt

=
1

a (b− a) −
3b+ a

(b− a)3
ln

(
(a+ b)2

4ab

)
,

1∫
0

|1− 2t| t
(tb+ (1− t)a)2

dt

=
−1

b (b− a) +
3a+ b

(b− a)3
ln

(
(a+ b)2

4ab

)
.

2.7. Theorem. Let f : I ⊂ (0,∞)→ R be a differentiable function on I◦, a, b ∈ I with
a < b, and f ′ ∈ L[a, b]. If |f ′|q is harmonically convex on [a, b] for q > 1, 1

p
+ 1

q
= 1, then

∣∣∣∣∣∣f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

∣∣∣∣∣∣(2.6)

≤ ab (b− a)
2

(
1

p+ 1

) 1
p (
µ1

∣∣f ′ (a)∣∣q + µ2

∣∣f ′ (b)∣∣q) 1
q ,

where

µ1 =

[
a2−2q + b1−2q [(b− a) (1− 2q)− a]

]
2 (b− a)2 (1− q) (1− 2q)

,

µ2 =

[
b2−2q − a1−2q [(b− a) (1− 2q) + b]

]
2 (b− a)2 (1− q) (1− 2q)

.



Proof. From Lemma 2.5, Hölder’s inequality and the harmonically convexity of |f ′|q on
[a, b],we have, ∣∣∣∣∣∣f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

∣∣∣∣∣∣
≤ ab (b− a)

2

 1∫
0

|1− 2t|p dt


1
p

×

 1∫
0

1

(tb+ (1− t)a)2q

∣∣∣∣f ′( ab

tb+ (1− t)a

)∣∣∣∣q dt


1
q

≤ ab (b− a)
2

(
1

p+ 1

) 1
p

×

 1∫
0

t |f ′ (a)|q + (1− t) |f ′ (b)|q

(tb+ (1− t)a)2q
dt


1
q

,

where an easy calculation gives
1∫

0

t

(tb+ (1− t)a)2q
dt(2.7)

=

[
a2−2q + b1−2q [(b− a) (1− 2q)− a]

]
2 (b− a)2 (1− q) (1− 2q)

and
1∫

0

1− t
(tb+ (1− t)a)2q

dt(2.8)

=

[
b2−2q − a1−2q [(b− a) (1− 2q) + b]

]
2 (b− a)2 (1− q) (1− 2q)

.

Substituting equations (2.7) and (2.8) into the above inequality results in the inequality
(2.6), which completes the proof.

3. Some applications for special means
Let us recall the following special means of two nonnegative number a, b with b > a :

(1) The arithmetic mean

A = A (a, b) :=
a+ b

2
.

(2) The geometric mean

G = G (a, b) :=
√
ab.

(3) The harmonic mean

H = H (a, b) :=
2ab

a+ b
.



(4) The Logarithmic mean

L = L (a, b) :=
b− a

ln b− ln a
.

(5) The p-Logarithmic mean

Lp = Lp (a, b) :=

(
bp+1 − ap+1

(p+ 1)(b− a)

) 1
p

, p ∈ R\ {−1, 0} .

(6) the Identric mean

I = I (a, b) =
1

e

(
bb

aa

) 1
b−a

.

These means are often used in numerical approximation and in other areas. However,
the following simple relationships are known in the literature:

H ≤ G ≤ L ≤ I ≤ A.

It is also known that Lp is monotonically increasing over p ∈ R, denoting L0 = I and
L−1 = L.

3.1. Proposition. Let 0 < a < b. Then we have the following inequality

H ≤ G2

L
≤ A.

Proof. The assertion follows from the inequality (2.2) in Theorem 2.4, for f : (0,∞) →
R, f(x) = x.

3.2. Proposition. Let 0 < a < b. Then we have the following inequality

H2 ≤ G2 ≤ A(a2, b2).

Proof. The assertion follows from the inequality (2.2) in Theorem 2.4, for f : (0,∞) →
R, f(x) = x2.

3.3. Proposition. Let 0 < a < b and p ∈ (−1,∞) \ {0} . Then we have the following
inequality

Hp+2 ≤ G2.Lp
p ≤ A(ap+2, bp+2).

Proof. The assertion follows from the inequality (2.2) in Theorem 2.4, for f : (0,∞) →
R, f(x) = xp+2, p (−1,∞) \ {0} .

3.4. Proposition. Let 0 < a < b. Then we have the following inequality

H2 lnH ≤ G2 ln I ≤ A
(
a2 ln a, b2 ln b

)
.

Proof. The assertion follows from the inequality (2.2) in Theorem 2.4, for f : (0,∞) →
R, f(x) = x2 lnx.



References
[1] Dragomir, S.S. and Pearce, C.E.M., Selected Topics on Hermite-Hadamard Inequalities and

Applications, RGMIA Monographs, Victoria University, 2000.
[2] İşcan, İ., A new generalization of some integral inequalities for (α,m)-convex functions,

Mathematical Sciences, 7 (22), 1-8, 2013. doi:10.1186/2251-7456-7-22.
[3] Kavurmacı, H., Özdemir, M.E. and Avcı, M., New Ostrowski type inequalities for m-convex

functions and applications, Hacettepe Journal of Mathematics and Statistics, 40 (2), 135 –
145, 2011.

[4] Park, J., New integral inequalities for products of similar s-convex functions in the first
sense, International Journal of Pure and Applied Mathematics, 80 (4), 585-596, 2012.

[5] Set, E., Ozdemir, M.E. and Dragomir, S.S., On Hadamard-type inequalities involving several
kinds of convexity, Journal of Inequalities and Applications, 2010, Article ID 286845, 12
pages, 2010. doi:10.1155/2010/ 286845.

[6] Sulaiman, W.T., Refinements to Hadamard’s inequality for log-convex functions, Applied
Mathematics, 2, 899-903, 2011.

[7] Zhang, T.-Y., Ji, A.-P. and Qi, F., On integral inequalities of Hermite Hadamard type for
s-gometrically convex functions, Abstract and Applied Analysis, 2012, Article ID 560586,
14 pages, 2012. doi:10.1155/2012/560586.


