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HERMITE METHODS
FOR HYPERBOLIC INITIAL-BOUNDARY VALUE PROBLEMS

JOHN GOODRICH, THOMAS HAGSTROM, AND JENS LORENZ

Abstract. We study arbitrary-order Hermite difference methods for the nu-
merical solution of initial-boundary value problems for symmetric hyperbolic
systems. These differ from standard difference methods in that derivative data
(or equivalently local polynomial expansions) are carried at each grid point.
Time-stepping is achieved using staggered grids and Taylor series. We prove
that methods using derivatives of order m in each coordinate direction are sta-
ble under m-independent CFL constraints and converge at order 2m + 1. The
stability proof relies on the fact that the Hermite interpolation process gener-
ally decreases a seminorm of the solution. We present numerical experiments
demonstrating the resolution of the methods for large m as well as illustrating
the basic theoretical results.

1. Introduction

Challenging problems in large scale scientific computing typically involve multi-
ple spatial and temporal scales. For hyperbolic problems this entails the propaga-
tion of short waves over many wavelengths. In such cases, one expects high-order
methods to be particularly efficient. In recent years, a number of high-order finite-
element methods have been developed and applied to wave propagation problems
[3, 4, 13]. In contrast, the application of high-order nodal based finite-difference
methods has lagged. A possible explanation for this is difficulties associated with
the application of boundary conditions. (See, e.g., [18] for a somewhat complicated
approach to dealing with this issue.)

In this work we develop the basic theory for a different class of node-based
methods of arbitrary order. The ingredients of our method, which could be applied
independently, are:

i: The association of derivative data, or equivalently local polynomials, with
each grid point. Using Hermite interpolation, this allows us to derive meth-
ods of arbitrary order using 2µ-point stencils in µ space dimensions.
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ii: The use of high-order Taylor series in time to evolve the solution on a
staggered space-time mesh. Employing the Cauchy-Kowalewskaya recur-
sion (e.g., [6, 12]), time derivatives of a local solution are calculated using
the Hermite interpolant and the partial differential equation itself. For
constant coefficient linear systems in any number of space dimensions, the
Taylor series truncates for piecewise polynomial data except at the break-
points. Then the evolution is exact so long as a CFL-type condition is
satisfied. Here the use of a staggered mesh is crucial, as it allows us to
evolve the data at a point where the piecewise polynomial is smooth.

Certainly these ingredients have been used elsewhere in different contexts: meth-
ods for hyperbolic systems using piecewise cubic Hermite interpolation have been
proposed by Yabe and coworkers in [19, 20, 21] and studied further in [17]; high-
order Taylor series methods for ordinary differential equations are discussed in [15];
and the use of staggered grids to facilitate time-integration of hyperbolic equations
is a key part of the so-called central difference schemes for hyperbolic conservation
laws [14]. However, we believe their combination with arbitrary-order Hermite in-
terpolation to solve hyperbolic systems and the convergence analysis we provide is
new.

At first glance Hermite methods might appear less efficient than high-order meth-
ods requiring only function data; after all we are introducing many additional de-
grees of freedom. However, we will demonstrate that the Hermite methods allow
significant subgrid resolution, so that the number of degrees of freedom required
per wavelength is comparable to other techniques. An advantage of our approach is
that the time-step stability restrictions are determined by the cell size independent
of the order. Thus much larger time steps can be taken.

The outline of the remainder of the paper is as follows. In section 2 we describe
in detail the basic method for space-periodic problems. In section 3 we analyze our
method for constant coefficient systems in one space dimension. The convergence
proof is based on the observation that Hermite interpolation generally decreases
a seminorm of the solution. In sections 4 and 5 we generalize the analysis to
systems with variable coefficients and nonperiodic boundary conditions, which is
conceptually straightforward but technically detailed. Again we emphasize that
the boundary treatment is completely natural, requiring no changes in the basic
discretization. In section 6 we consider systems in multiple space dimensions using
tensor-product grids. Here we must generalize the seminorm in an interesting way
to obtain the convergence theorem. Finally, in section 7 we present a number
of simple numerical experiments which demonstrate the resolving power of the
methods as well as the basic theoretical results. An appendix collecting various
facts about Hermite interpolation and solutions of hyperbolic systems which are
used in the analysis is also included. Proofs of these facts or proof outlines are
given for completeness.

We note that the methods are applicable to nonlinear hyperbolic-parabolic sys-
tems. Extension of the theory to cover that case as well as applications of the
method to the study of compressible flows will be reported elsewhere.

2. Hermite-Taylor methods for periodic problems

To begin we describe the method for the simple model problem

(1) ut = aux, u(x, 0) = f(x),
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where f(x) is a smooth 2π–periodic function and a is a real constant. For reasons
detailed below, we use staggered space-time grids and our grid data includes not
only approximate function values but scaled space derivatives of orders 1 through
m. Precisely let:

(2) 0 < x 1
2

< x1 < x 3
2

< x2 < · · · < xN− 1
2

< xN < x 1
2

+ 2π = xN+ 1
2
.

Set

G̃h =
{
xj+ 1

2
: j ∈ Z

}
, xj+ 1

2+N = xj+ 1
2

+ 2π,

Gh =
{
xj : j ∈ Z

}
, xj+N = xj + 2π,

(3) hj+ 1
2

= xj+1 − xj , hj = xj+ 1
2
− xj− 1

2
.

Starting at time tn, a full step of the method proceeds as follows (see Figure 1):
i: On each cell [xj , xj+1] (i.e., each interval bounded by adjacent points on

the current grid), construct the Hermite interpolant of the function and
derivative data at the nodes xj , xj+1. This will be a polynomial of degree
2m + 1. We express it as an expansion in local coordinates centered at the
staggered grid point, xj+ 1

2
:

(4) pj+ 1
2
(x, tn) =

2m+1∑
l=0

cl0

(
x − xj+ 1

2

)l

.

ii: At each point on the staggered grid, xj+ 1
2
, compute a temporal Taylor

series,

(5) pn
j+ 1

2
(x, t) =

2m+1∑
l=0

2m+1−l∑
s=0

cls

(
x − xj+ 1

2

)l

(t − tn)s.

To compute the coefficients cls we note that time derivatives of a smooth
solution to (1) may be directly expressed in terms of space derivatives.

I → I →

I → I →

I← I←

I← I←

T
↑

T
↑

T
↑

T
↑

T
↑

xj−1 xj− 1
2

xj xj+ 1
2

xj+1

tn

tn+ 1
2

tn+1

Figure 1. Schematic of the numerical process for a full time step.
Solid circles represent the base mesh and open circles represent the
dual mesh. I is the Hermite interpolation operator, and T is the
Taylor evolution operator.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



598 JOHN GOODRICH, THOMAS HAGSTROM, AND JENS LORENZ

Writing this relationship recursively:

(6)
∂su

∂ts
= a

∂su

∂ts−1∂x
.

Applying (6) to pj+ 1
2

we derive a simple recursion for the coefficients cls,
s = 1, . . . , 2m + 1 (recall we have computed the cl0):

(7) cls = a
(l + 1)

s
cl+1,s−1, l = 0, . . . , 2m + 1 − s.

We note that we have included all nonzero terms in (5) as computed by
(7).

iii: Evaluate the series at tn+ 1
2

= tn + k
2 to derive:

(8)
1
l!

∂lu

∂xl
(xj+ 1

2
, tn+ 1

2
) ≈

2m+1−l∑
s=0

cls

(
k

2

)s

, l = 0, . . . , m.

Since we have included all terms in the Taylor series, the right-hand side
of (8) represents the exact values of the solution of the governing equation
with the piecewise polynomial data so long as the domain of dependence of
the solution at (xj+ 1

2
, tn+ 1

2
) on data at tn is included in the cell, that is, if

the CFL-type condition

(9) a
k

2
< min

(
xj+1 − xj+ 1

2
, xj+ 1

2
− xj

)
is satisfied.

iv: Repeat the process on the dual grid starting at tn+ 1
2

producing data on the
original grid at time tn+1.

Functionally, the method requires two procedures: an interpolation procedure,
I, which, on each cell, transforms the derivative data at the endpoints to the local
expansion coefficients, cl0, of (4) and an evolution procedure, T , which applies the
recursion (7) to compute the space-time expansion coefficients cls and updates the
data using (8). Generalizations of the method to more complex problems require
generalizations of the evolution procedure, T , while the interpolation procedure
remains unchanged. We note that by evolving the piecewise polynomial data on
the dual grid we are able to consider a point where the approximate solution is
smooth, and for constant coefficient problems, satisfaction of the CFL constraint
results in the evolution being exact on the grid.

2.1. Extensions. We now consider how to generalize the method to systems, vari-
able coefficients, and multiple dimensions. The treatment of boundary conditions
will be discussed in section 5.

2.1.1. Constant coefficient systems. We begin by looking at the constant coefficient
system:

(10) ut = Aux, A = AT ∈ Rd×d,

(11) u(x, 0) = f(x), f(x + 2π) = f(x).

In this case the data consists of approximate function and scaled derivative values
for each of the d components of the solution on the grid. The Hermite interpolation
step leading to (4) is carried out componentwise and is thus identical to the scalar
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case. The result is an Rd-valued function each of whose components is a polynomial
of degree 2m + 1. From the perspective of the data the coefficients cl0 are now d-
vectors.

Similarly, the space-time polynomial in (5) is vector-valued, described by coeffi-
cients cls ∈ Rd. They can be recursively computed using:

(12)
∂su

∂ts
= A

∂su

∂ts−1∂x
,

which implies the vector recursion:

(13) cls =
(l + 1)

s
Acl+1,s−1.

As in the scalar case, it is easy to show that (5) contains all nonzero terms in a
temporal Taylor series for a solution of (10) with polynomial data. The update is
exact on the dual grid if the appropriate CFL condition, determined by the spectral
radius of A, ρ(A), is satisfied. This is stated in the following lemma.

Lemma 2.1. Suppose p(x, tn) is an Rd-valued degree 2m + 1 piecewise polynomial
function of x with breaks at x0 < x1 < · · · < xN . If p(x, t) satisfies (10) for t ≥ tn
and the time step, k, satisfies the CFL condition

ρ(A)
k

2
< min

(
xj+1 − xj+ 1

2
, xj+ 1

2
− xj

)
,

then p(xj+ 1
2
, tn+ 1

2
) is given by (5), where the coefficients satisfy (13).

Proof. The result follows directly from (13) and standard domain of dependence
considerations [16, Ch. 3,6]. �

2.1.2. Variable coefficients. We now consider the spatially-periodic, forced, sym-
metric hyperbolic system:

(14) ut = A(x, t)ux + B(x, t)u + F (x, t), A = AT , u(x, 0) = f(x),

(15) f(x + 2π) = f(x), F (x + 2π, t) = F (x, t),

(16) A(x + 2π, t) = A(x, t), B(x + 2π, t) = B(x, t).

Here u, f, F ∈ Rd, A, B ∈ Rd×d.
As in the constant coefficient case, we compute Rd-valued Hermite interpolants

on each cell; i.e., we compute the coefficient vectors cl0. However, a terminating
local space-time expansion of the form (5) no longer exists. Thus we give up on
exact local evolution of the data, specifying instead the degree of the Taylor series
in time we wish to use. To be precise, denote by p(x, t), tn ≤ t ≤ tn+ 1

2
, the solution

of (14) with initial data p(x, tn), which is a piecewise polynomial function of degree
2m + 1 with breaks xj as before. Let xj < xj+1/2 < xj+1. Then for a time step
satisfying the CFL condition

(17) max
x∈[xj ,xj+1], t∈[tn,t

n+ 1
2
]
ρ(A)

k

2
< min

(
xj+1 − xj+ 1

2
, xj+ 1

2
− xj

)
,
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we choose q ≥ 2m + 1 and replace (8) by the approximate expression

(18)
1
l!

∂lu

∂xl
(xj+ 1

2
, tn+ 1

2
) ≈

q−l∑
s=0

cls

(
k

2

)s

≡ 1
l!
T (q,l)pn

j+ 1
2
.

Recursions for the space-time coefficients cls follow from differentiating (14) in space
and time and applying Leibniz’ rule (see, e.g., [8, Ch. 9]):

cls =
1
s

l∑
i=0

s−1∑
j=0

(i + 1)A[l−i,s−1−j]ci+1,j(19)

+
1
s

l∑
i=0

s−1∑
j=0

B[l−i,s−1−j]cij +
1
s
F [l,s−1].

Here, for any function G, vector or matrix-valued, we are using the notation of [8]:

(20) G[i,j](x, t) =
1

i!j!
∂i+jG

∂xi∂tj
(x, t).

In (19) all functions are evaluated at (xj+ 1
2
, tn). We note that the right-hand side

of (19) only involves t-derivatives of order up to s − 1, and thus the recursion may
be initiated by space derivatives of p alone. If we choose q > 2m + 1, then space
derivatives of p of order greater than 2m + 1 appear. Although these are zero
initially, their time derivatives generally are not. We finally note that the degree of
the Taylor series in (18) decreases as the order of the spatial derivative increases.
In some implementations for nonlinear systems it may be advantageous to use the
same degree for all derivatives. Such issues will be discussed in a later work.

2.1.3. Multiple dimensions. We now consider a symmetric hyperbolic system in Rµ:

(21) ut =
µ∑

j=1

Aj(x, t)uxj
+ B(x, t)u + F (x, t), Aj = AT

j , u(x, 0) = f(x),

under the assumption that all functions are 2π-periodic d-vectors or d× d matrices
in all space variables. We introduce tensor-product grids of type (2) with Ni points
in each coordinate direction:

(22) G̃h =
s⊗

i=1

G̃h,i, Gh =
s⊗

i=1

Gh,i,

G̃h,i =
{

xi,j+ 1
2

: j ∈ Z

}
, xi,j+ 1

2+Ni
= xi,j+ 1

2
+ 2π,

Gh,i =
{

xi,j : j ∈ Z

}
, xi,j+Ni

= xi,j + 2π.

We set

(23) hi = max
j

max((xi,j+1 − xi,j), (xi,j+ 1
2
− xi,j− 1

2
))

and

(24) h = max
i

hi.
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Thus a cell on the base grid takes the form

(25)
µ⊗

i=1

[xi,ji
, xi,ji+1],

and the coordinates of its interior dual grid point are

(26) (x1,j1+
1
2
, x2,j2+

1
2
, . . . , xµ,jµ+ 1

2
).

On these grids one can define tensor-product Hermite interpolants of degree
µ(2m + 1), that is, polynomials of degree µ(2m + 1) that are sums of products of
polynomials of degree 2m + 1 in each variable xi. The nodal data used to define
the interpolants is

(27)

(
µ∏

i=1

1
νi!

Dνi
i

)
u, 0 ≤ νi ≤ m.

(Here we introduce the notation Di = ∂/∂xi.) Obviously, the computation of each
interpolant can be reduced to the composition of one-dimensional Hermite interpo-
lation operators along coordinate directions. For example, in two space dimensions
one might first interpolate in the x1-direction along the top and bottom of each
cell for each order, ν2, of the x2-derivative. That is, one would compute 2m + 2
polynomials centered at x1,j1+

1
2
, half located at the top and half located at the

bottom. Thus to each power, (x1 − x1,j1+
1
2
)l, one associates 2m + 2 coefficients

computed with Dν2
2 u at x2,j2 and x2,j2+1. Applying the one-dimensional interpo-

lation operator to these produces the analogue of (4):

(28) pj1+
1
2 ,j2+

1
2
(x1, x2, tn) =

2m+1∑
l1=0

2m+1∑
l2=0

cl1l20

(
x1 − x1,j1+

1
2

)l1 (
x2 − x2,j2+

1
2

)l2
,

or in Rµ:

(29) pj1+
1
2 ,...,jµ+ 1

2
(x1, . . . , xµ, tn) =

2m+1∑
l1=0

· · ·
2m+1∑
lµ=0

cl1···lµ0

µ∏
i=1

(
xi − xi,ji+

1
2

)li
.

To evolve these polynomials in time, we look at the special case Aj = constant,
B = 0, F = 0. Then, if we insist on exact evolution, the Taylor series in time
must in general be of degree µ(2m+1), which is of significantly higher degree than
required simply to attain the order of accuracy 2m + 1. We note, however, that
carrying the series to higher degree does not require any additional spatial data.
However, for variable coefficient problems, it does lead to additional derivatives of
coefficients to be evaluated. In the final section we will present some numerical
experiments related to the degree of the temporal Taylor series. Thus in general we
will as above choose a temporal degree q ≥ 2m + 1 and approximate the updated
data by the analogue of (18):

(30)

(
µ∏

i=1

1
νi!

Dνi

)
u(x1,j1+

1
2
, . . . , xµ,jµ+ 1

2
, tn+ 1

2
) ≈

q∑
s=0

cν1···νµs

(
k

2

)s

.

(For q sufficiently large some of the terms in the sum above will be identically zero,
but we include them for ease of notation.)
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In the constant coefficient case the coefficients again satisfy a simple recursion:

(31) cl1···lµs =
µ∑

j=1

(lj + 1)
s

Ajcl1···lj−1lj+1lj+1···lµs−1,

with a more complex formula generalizing (19) holding in general. In either instance
one generates the coefficients for increasing s starting with (29), the output of the
Hermite interpolation.

To complete our discussion, we must also consider the domain of dependence of
the updated solution at a mesh point over a half-step. Given a unit vector e ∈ Rµ

the maximum wave speed in the direction e is given by

(32) c(e) = ρ

⎛
⎝ µ∑

j=1

ejAj

⎞
⎠ ,

leading to the CFL constraint

(33) eic(e)
k

2
< min

j

(
xi,ji+1 − xi,ji+

1
2
, xi,ji+

1
2
− xi,ji

)
, i = 1, . . . , µ.

Note that for an isotropic problem on a uniform mesh this reduces to the one-
dimensional CFL condition (17). Also, in the case Aj constant and B = 0, F = 0
we have the generalization of Lemma 2.1:

Lemma 2.2. Suppose p(x1, . . . , xµ, tn) is an Rd-valued degree µ(2m + 1) tensor-
product piecewise polynomial function of x with breaks at the edges of the tensor-
product grid described above. If p satisfies (21) with Aj constant and B = 0, F = 0
for t ≥ tn and the time step, k, satisfies the CFL condition (33),
then p(x1,j1+

1
2
, . . . , xµ,jµ+ 1

2
, tn+ 1

2
) and its derivatives are given by (30) with q =

µ(2m + 1) and coefficients satisfying (31).

2.2. Algorithm. We are now in a position to give a complete description of the
algorithm for space-periodic problems. Note that the details of the evolution steps
depend on the particular case as described above. Of course many variations on
the algorithm, such as variable time-stepping, are possible.

Initialize: Determine parameters and initial conditions.
1: Choose a primal and dual grid, as well as a time step, k, satisfying the

appropriate CFL restrictions.
2: Choose the maximal derivative order in each direction, m, to be carried on

the grid as well as the order, q, of the temporal Taylor series.
3: Initialize the data on the primal grid. That is, compute and store the

required function and derivative values from the initial condition, f , at the
nodes of the primal grid.

Time Step: For n = 0, . . . , Nsteps − 1
1: For all cells on the primal grid

i: Use Hermite interpolation to transform the data at the cell vertices to
the Taylor coefficients, cl1···lµ0, of the interpolating polynomial at the
node of the dual grid contained within the cell.

ii: Use the recursion implied by the partial differential equation to com-
pute the space-time Taylor coefficients, cl1···lµs, of the solution of the
PDE with the piecewise polynomial initial data, centered at the node
of the dual grid contained within the cell.
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iii: Evaluate the series at t = tn + k
2 to obtain the required function and

derivative data at the included dual grid node.
2: For all cells on the dual grid

i: Use Hermite interpolation to transform the data at the cell vertices to
the Taylor coefficients, cl1···lµ0, of the interpolating polynomial at the
node of the primal grid contained within the cell.

ii: Use the recursion implied by the PDE to compute the space-time Tay-
lor coefficients, cl1···lµs, of the solution of the PDE with the piecewise
polynomial initial data, centered at the node of the primal grid con-
tained within the cell.

iii: Evaluate the series at t = tn+1 = tn+k to obtain the required function
and derivative data at the included primal grid node.

3. Convergence analysis

for constant coefficient systems in one space dimension

In this section we prove the basic convergence result in the simplest case: con-
stant coefficient systems in one space dimension (10)–(11). The proof is facilitated
by considering the discrete evolution of the interpolants rather than the evolution
of the grid data that determines the interpolants. Thus we express the algorithm
in terms of the interpolation operators I, Ĩ, defined on the primal and dual grids
respectively, and the exact solution operator, S, over a half step k/2. Recalling
Lemma 2.1 and assuming that the time step satisfies the CFL condition hypothe-
sized there, the evolution of the grid data by Taylor series followed by interpolation
is equivalent to:

i: Let p0 = If ;
ii: For n = 0, 1, . . . , let

pn+ 1
2 = ĨSpn,(34)

pn+1 = ISpn+ 1
2 .(35)

Obviously, the stability and accuracy of the proposed method are determined by
the properties of Hermite interpolation. Denote the L2-inner product and norm of
2π-periodic functions by

(f, g) =
∫ π

−π

f(x)T g(x) dx, ‖g‖2 = (g, g) ,

and the Sobolev norms on Hq
per, the space of 2π-periodic functions with q weak

derivatives in L2, by

‖f‖2
Hq =

q∑
ν=0

‖Dνf‖2.

In some instances we will use these norms, as well as the uniform norms ‖ · ‖Cq , on
subintervals (a, b). In such cases the subinterval will be explicitly included in the
index: ‖f‖Hq(a,b), ‖f‖Cq(a,b). Also, let

(36) h = max(max
j

hj , max
j

hj+ 1
2
).

We begin with standard results on the interpolation error which follow directly
from the Peano kernel representation. Such results are proven in more generality
in [2] in one and two space dimensions, and extensions to higher dimensions via
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induction arguments are straightforward. Note that interpolation on each of the
meshes has the same properties, so we state results for I only.

Lemma 3.1. The Hermite interpolation operators, I and Ĩ, satisfy:

‖g − Ig‖ ≤ Ch2m+2‖D2m+2g‖ for g ∈ H2m+2
per ,(37)

‖Dm+1(g − Ig)‖ ≤ Chm+1‖D2m+2g‖ for g ∈ H2m+2
per ,(38)

‖g − Ig‖ ≤ Chm+1‖Dm+1g‖ for g ∈ Hm+1
per .(39)

If one sets g = q − Iq in the last equation and observes that Ig = 0 for this g,
then one obtains

Corollary 3.1.

(40) ‖q − Iq‖ ≤ Chm+1‖Dm+1(q − Iq)‖ for q ∈ Hm+1
per .

Stability of the algorithm depends on the stability of the interpolation process.
A direct analysis in L2 fails because the operator norms, ‖I‖ and ‖Ĩ‖, are not
bounded by 1 + O(h). Instead we make use of the following crucial Orthogonality
lemma, which is closely related to the well-known integral relation from the theory
of splines (e.g., [11, Ch. 6.2]).

Lemma 3.2. For all f, g ∈ Hm+1
per ,(

Dm+1If, Dm+1(g − Ig)
)

= 0 .

Proof. As this lemma is central to the stability of the algorithm, we give its simple
proof. Noting that If restricted to each interval (xj , xj+1) is a polynomial of degree
2m + 1 and integrating by parts we have(

Dm+1If, Dm+1(g − Ig)
)

=
N−1∑
j=0

∫ xj+1

xj

Dm+1IfT Dm+1(g − Ig)dx

=
N−1∑
j=0

[
m∑

k=0

(−1)(m−k)D2m+1−kIfT Dk(g − Ig)|xj+1
xj

+(−1)(m+1)

∫ xj+1

xj

D2m+2IfT (g − Ig)dx

]
.

(41)

However, since by interpolation,

Dk(g − Ig) = 0, x = xj , xj+1, 0 ≤ k ≤ m,

and since If is a polynomial of degree no greater than 2m + 1,

D2m+2If = 0,

all terms on the right-hand side of equation (41) are zero. Thus the lemma is
proved. �

If we define the semi-inner product

(p, q)m+1 = (Dm+1p, Dm+1q), p, q ∈ Hm+1
per ,
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then the Orthogonality lemma says that any interpolant, If , is semi-orthogonal to
any interpolation error, g − Ig. Clearly, for every f ∈ Hm+1

per ,

f = If + (f − If),
Dm+1f = Dm+1If + Dm+1(f − If).

Applying Lemma 3.2 with g = f we obtain

(42) ‖Dm+1f‖2 = ‖Dm+1If‖2 + ‖Dm+1(f − If)‖2, f ∈ Hm+1
per .

In particular,

(43) ‖Dm+1If‖ ≤ ‖Dm+1f‖, f ∈ Hm+1
per .

In this sense the interpolation process is stable w.r.t. the seminorm, ‖ · ‖m+1,
corresponding to the above semi-inner product. This is the key fact that allows us
to prove convergence.

Lastly, we make a technical assumption concerning the grids: namely, that for
some fixed positive constants c1, c2,

(44) c1 max(hj , hj+1) ≤ hj+ 1
2
≤ c2 min(hj , hj+1).

3.1. Convergence theorem. Let u be the solution to (10)–(11) and set

un = u(·, nk) and un+ 1
2 = u(·, (n + 1

2 )k).

Denote the corresponding approximations by pn(x) and pn+ 1
2 (x). We measure the

error in the L2-norm. Thus we consider

‖un − pn‖ and ‖un+ 1
2 − pn+ 1

2 ‖ .

Precisely we prove that the error in the propagated piecewise polynomials is one
order less than would be obtained by the direct piecewise Hermite interpolation
of the solution. The strategy in the proof is to first estimate the error using the
semi-inner product defined above, where stability automatically follows from (43).
We then bootstrap the result to estimate the error in L2. Here Corollary 3.1 plays
a key role, as its right-hand side is estimated in the first step.

Theorem 3.1. Let λ = k/h > 0 and let T > 0 be fixed. Suppose f ∈ (H2m+2
per )d and

that the hypotheses of Lemma 2.1 hold. Then there is a constant C, independent of
h, so that

‖un − pn‖ + ‖un+ 1
2 − pn+ 1

2 ‖ ≤ Ch2m+1‖D2m+2f‖ for 0 ≤ nk ≤ T .

Proof. Substituting the exact solution into the equations (34), (35) defines the local
truncation errors, ηn and ηn+ 1

2 ,

un+ 1
2 = ĨSun + ηn ,(45)

un+1 = ISun+ 1
2 + ηn+ 1

2 .(46)

Since Sun = un+ 1
2 and Sun+ 1

2 = un+1, the local truncation errors are in fact
interpolation errors,

ηn = un+ 1
2 − Ĩun+ 1

2 ,(47)

ηn+ 1
2 = un+1 − Iun+1,(48)

and we obtain from Lemma 3.1,

(49) ‖ηn‖ + ‖ηn+ 1
2 ‖ ≤ Cmh2m+2‖D2m+2f‖ .
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Let
en = un − pn, en+ 1

2 = un+ 1
2 − pn+ 1

2

denote the errors. By subtracting the equations (34) and (35) from the equations
(45) and (46), we obtain the error equations

en+ 1
2 = ĨSen + ηn ,(50)

en+1 = ISen+ 1
2 + ηn+ 1

2 .(51)

Also,
e0 = u0 − p0 = f − If

is an interpolation error; thus,

(52) ‖e0‖ ≤ Cmh2m+2‖D2m+2f‖ .

As mentioned above, we cannot directly use these error equations due to the fact
that the L2-operator norms of I and Ĩ are not bounded by 1 + O(h). Therefore,
the above considerations are not sufficient to prove the theorem.

If instead one measures the local truncation error in the semi-norm, ‖ · ‖m+1,
one obtains an estimate ‖ηn‖m+1 = ‖Dm+1ηn‖ ≤ Chm+1. Combining this fact
with (43) we can prove convergence, but we do not get sharp bounds on ‖en‖. For
this reason, the remainder of the proof uses a combination of the L2-norm, ‖ · ‖,
in which the local truncation error is O(h2m+2), and the semi-norm, ‖ · ‖m+1, in
which the interpolation is stable.

Estimates in the semi-norm ‖ · ‖m+1. Apply Dm+1 to the error equation (50)
and obtain

Dm+1en+ 1
2 = Dm+1ĨSen + Dm+1ηn .

Since ηn = un+ 1
2 − Ĩun+ 1

2 we can apply Lemma 3.2 and obtain

(53) ‖Dm+1en+ 1
2 ‖2 = ‖Dm+1ĨSen‖2 + ‖Dm+1ηn‖2 .

For simplicity, if we estimate the local truncation error, we will only write the
correct powers of h, but we will not write how the estimate depends on f . Thus
we have

(54) ‖Dm+1en+ 1
2 ‖2 = ‖Dm+1ĨSen‖2 + O(h2m+2) .

Next we consider the first term on the right-hand side of the above equation. Write

Dm+1Sen = Dm+1ĨSen + Dm+1(Sen − ĨSen) .

Using Lemma 3.2 again one obtains

(55) ‖Dm+1Sen‖2 = ‖Dm+1ĨSen‖2 + ‖Dm+1(Sen − ĨSen)‖2 .

Let us set
εn := ‖Dm+1en‖, δn := ‖Dm+1(Sen − ĨSen)‖ .

Then, using (54), (55), and the fact that S preserves the semi-norm we find

(56) ε2
n+ 1

2
= ε2

n − δ2
n + O(h2m+2) .

From the above equation one obtains the recursive error estimate

ε2
n+ 1

2
≤ ε2

n + O(h2m+2) .
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It turns out that the resulting error estimate, ‖Dm+1en‖ ≤ Chm+ 1
2 for nk ≤ T , is

not good enough to prove the theorem. Therefore we proceed differently and first
obtain an estimate of the quantities δn = ‖Dm+1(Sen − ĨSen)‖.

From (56) we obtain

δ2
n = ε2

n − ε2
n+ 1

2
+ O(h2m+2) .

Therefore, noting that inequalities analogous to those we derived also apply at the
even half-steps,

J∑
n=0

(δ2
n + δ2

n+ 1
2
) ≤ ε2

0 + CJh2m+2

≤ Ch2m+1 for Jk ≤ T .(57)

Error estimates in the L2-norm. Having established the bound (57) we now
treat the error equations (50), (51) in the L2-norm:

‖en+ 1
2 ‖ ≤ ‖ĨSen‖ + Ch2m+2

≤ ‖Sen‖ + ‖Sen − ĨSen‖ + Ch2m+2

= ‖en‖ + ‖Sen − ĨSen‖ + Ch2m+2.

Here we have, using Corollary 3.1,

‖Sen − ĨSen‖ ≤ Chm+1‖Dm+1(Sen − ĨSen)‖
= Chm+1δn.

Therefore,
‖en+ 1

2 ‖ ≤ ‖en‖ + Chm+1δn + Ch2m+2,

and, consequently, using the analogous inequality for the even half-steps:

(58) ‖eJ+1‖+‖eJ+ 1
2 ‖ ≤ Chm+1

J∑
n=0

(δn+δn+ 1
2
)+Ch2m+1 for 0 ≤ (J+1)k ≤ T .

Finally,
N∑

n=0

(δn + δn+ 1
2
) ≤ C

( N∑
n=0

1
)1/2( N∑

n=0

(δ2
n + δ2

n+ 1
2
)
)1/2

≤ Ch−1/2hm+ 1
2

= Chm.

Using this bound in (58), the theorem is proved. �

4. Convergence for variable coefficient systems

We now extend our convergence analysis to approximations to (14). The main
difference in this case is that the local evolution by a truncated Taylor series (18)
is not exact. Thus we must specify the degree, q, of the Taylor expansion. Our
notation will be

pn+ 1
2 = ĨT (q)pn,(59)

pn+1 = IT (q)pn+ 1
2 .(60)

This is a slight abuse of notation as the Taylor series in time is not defined at the
break points; in fact, we only use it on the dual grid. In our analysis the operator
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T (q) is followed by an interpolation, so its values on the dual grid are all that is
needed to make sense of the formulas.

In this case we will also need pointwise estimates of the piecewise Hermite inter-
polants and bounds on the solution of (14) in terms of local properties of the data
and coefficients. These essentially standard estimates are given in Lemma 9.1 and
Lemma 9.2 in the Appendix.

4.1. Convergence theorem. We now state and prove a generalization of Theorem
3.1. The new feature in the result is the necessity to account for the truncation
error in the temporal Taylor series.

Theorem 4.1. Suppose q ≥ 2m + 1, A, B and F satisfy the assumptions of
Lemma 9.2 with r = q+1, and f ∈ C2m+2

per . Let u be the solution of (14), and p the
numerical approximation to u computed via the degree (2m + 1, q) Hermite-Taylor
method with q ≥ 2m + 1. Then for any T > 0 there exists C depending on T , F ,
f , A and B but independent of the mesh such that:

‖un − pn‖ + ‖un+ 1
2 − pn+ 1

2 ‖ ≤ Chκ for 0 ≤ nk ≤ T ,

where
κ = min(2m + 1, q − 1

2 ).

Remark. Clearly if we choose the minimal value of q = 2m + 1 our error estimate
is one-half order lower than in the constant coefficient case. We recover the earlier
estimate by taking q ≥ 2m + 2. However in practice we have seen an advantage
to choosing q > 2m + 1 only for marginally resolved cases with m large. Some
comparisons will be made in the final section.

Proof. We copy the proof of Theorem 3.1 but with the additional time truncation
error term. Precisely we write

en+1/2 = Ĩ(Sun − Spn) + Ĩ(Spn − T (q)pn) + Sun − ĨSun

= ĨShen + γn + ηn,(61)

where Sh denotes the solution operator for the homogeneous problem (F = 0) and
γn, ηn are the truncation error terms:

γn = Ĩ(Spn − T (q)pn),

and ηn is defined as in (45). We begin with the equality for the error semi-norm:

(62) ‖Dm+1en+1/2‖2 = ‖Dm+1ĨShen + Dm+1γn‖2 + ‖Dm+1ηn‖2.

From Lemmas 3.1 and 9.2 we then have for any c > 0:

‖Dm+1en+1/2‖2 ≤ (1 + ch)‖Dm+1ĨShen‖2

+(1 + (ch)−1)‖Dm+1γn‖2 + Ch2m+2.(63)

To proceed further we must estimate the Taylor truncation error term, which we
accomplish in the next lemma. The idea behind the estimate is to express pn in
terms of un and en.

Lemma 4.1. Under the assumptions of the theorem we have for some constant C
independent of h:

‖Dm+1γn‖2 ≤ Ch2q−4m
(
h2m + ‖Dm+1en‖2 + ‖en‖2

)
,

‖γn‖2 ≤ Ch2q−2m+2
(
h2m + ‖Dm+1en‖2 + ‖en‖2

)
.
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Proof. By Taylor’s Theorem we have for any space derivative of order l, 0 ≤ l ≤ m,
evaluated at (xi+ 1

2
, tn+ 1

2
):

(64) |
(
Dl

xSpn − T (q,l)pn
)
|2 ≤ Ch2q+2−2l max

tn≤t≤tn+1/2

| ∂q+1Spn

∂tq+1−l∂xl
(xi+1/2, t)|2.

From Lemma 9.2 and using the fact that pn is piecewise polynomial of degree 2m+1
we bound the right-hand side of (64) by

Ch2q+2−2l

⎛
⎝1 +

2m+1∑
j=0

max
x∈(xi,xi+1)

(
∂jpn

∂xj
(x, tn)

)2
⎞
⎠ .

We write
pn = Ipn = Iun − Ien.

Then by Lemma 9.1 we bound the right-hand side of (64) by

Ch2q+2−2l

i+ 1
2

(
1 + h

−(2m+1)

i+ 1
2

‖en‖2
Hm+1(xi,xi+1)

)
.

Again applying Lemma 9.1 to bound ‖Dm+1γn‖2 and recalling (44) we obtain

‖Dm+1γn‖2 ≤ C

N∑
i=1

m∑
l=0

h2l−2m−1
i

1∑
ν=0

|
(
DlSpn − T (q,l)pn

)
(xi+ν−1/2, tn+1/2)|2

≤ C
N−1∑
i=0

h2q−2m+1

i+ 1
2

(
1 + h

−(2m+1)

i+ 1
2

‖en‖2
Hm+1(xi,xi+1)

)
≤ Ch2q−4m

(
h2m + ‖en‖2

Hm+1

)
.

Applying the well-known inequality

‖en‖2
Hm+1 ≤ C

(
‖Dm+1en‖2 + ‖en‖2

)
,

we reach the first result. Similarly

‖γn‖2 ≤ C
N∑

i=1

m∑
l=0

h2l+1
i

1∑
ν=0

|
(
DlSpn − T (q,l)pn

)
(xi+ν−1/2, tn+1/2)|2

≤ C

N−1∑
i=0

h2q+3

i+ 1
2

(
1 + h

−(2m+1)

i+ 1
2

‖en‖2
Hm+1(xi,xi+1)

)
≤ Ch2q−2m+2

(
h2m + ‖Dm+1en‖2 + ‖en‖2

)
.

This completes the proof of Lemma 4.1. �

Returning to the proof of Theorem 4.1 we now have

‖Dm+1en+1/2‖2 ≤ (1 + ch)‖Dm+1ĨShen‖2

+ Ch2q−4m−1
(
‖Dm+1en‖2 + ‖en‖2

)
+ Chκ̄,

where κ̄ = min(2q − 2m − 1, 2m + 2). Defining as before

εn = ‖Dm+1en‖, δn = ‖Dm+1(Shen − ĨShen)‖,
we use Lemma 3.2 to deduce

ε2n+ 1
2
≤ (1 + ch)‖Dm+1Shen‖2 − δ2

n + Ch2q−4m−1
(
ε2n + ‖en‖2

)
+ Chκ̄.
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By Lemma 9.2 we conclude that

‖Dm+1Sh(en)‖2 ≤ (1 + Ch)ε2n + Ch‖en‖2.

Since q ≥ 2m + 1 we finally have

(65) ε2n+ 1
2
≤ (1 + Ch)ε2n − δ2

n + Ch‖en‖2 + Chκ̄.

From (65) we conclude

(66) ε2n + ε2n+ 1
2
≤ Chκ̄−1 + Ch

n∑
j=0

(
‖ej‖2 + ‖ej+ 1

2 ‖2
)

,

(67)
n∑

j=0

(
δ2
j + δ2

j+ 1
2

)
≤ Chκ̄−1 + Ch

n∑
j=0

(
‖ej‖2 + ‖ej+ 1

2 ‖2
)

.

Finally we estimate the L2-norm directly. In particular, we have

‖en+ 1
2 ‖ ≤ ‖ĨShen‖ + ‖γn‖ + ‖ηn‖.

Estimating the truncation errors as above we have

‖ηn‖ ≤ Ch2m+2,

and by Lemma 4.1 and (66)

‖γn‖ ≤ Chq+1 + Chq−m+ 3
2

⎛
⎝ n∑

j=0

(
‖ej‖2 + ‖ej+ 1

2 ‖2
)⎞
⎠

1/2

+ Chq−m+1‖en‖.

Finally we write as in the proof of Theorem 3.1:

‖ĨShen‖ ≤ ‖Shen‖ + Chm+1δn

≤ (1 + Ch)‖en‖ + Chm+1δn.

Set
En = max

j≤n
(‖ej‖, ‖ej− 1

2 ‖), En+ 1
2 = max

j≤n
(‖ej‖, ‖ej+ 1

2 ‖).

Then combining the last few inequalitites and recalling that q ≥ 2m + 1 we find

En+ 1
2 ≤ (1 + Ch)En + Chm+1δn + Ch2m+2.

Using (67) this implies for nk ≤ T :

En+1 + En+ 1
2 ≤ Ch2m+1 + Chm+1

n∑
j=0

(
δj + δj+ 1

2

)

≤ Ch2m+1 + Chm+ 1
2

⎛
⎝ n∑

j=0

(
δj + δj− 1

2

)2

⎞
⎠

1
2

≤ Chm+ κ̄
2 + Chm+ 1

2 En+ 1
2 .

Choosing h sufficiently small we can clearly eliminate the term involving En+ 1
2

from the right-hand side. Noting that

κ = m +
κ̄

2
,

we have completed the proof of Theorem 4.1. �
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5. Initial-boundary value problems

We now consider the initial-boundary value problem defined for x ∈ (0, 1):

ut = Aux + Bu + F,(68)

uR(0, t) = MLuL(0, t) + γL(t),(69)

uL(1, t) = MRuR(1, t) + γR(t),(70)
u(x, 0) = f(x).(71)

We assume, for simplicity, that A is diagonal:

(72) A =
(

ΛR O
O ΛL

)
,

where
ΛR ∈ RdR×dR , ΛR < O,

ΛL ∈ RdL×dL , ΛL > O.

The partitioning

u =
(

uR

uL

)
thus corresponds to a splitting into right-going and left-going characteristic vari-
ables, and the boundary conditions (69), (70) explicitly express the incoming waves
in terms of outgoing waves and inhomogeneous data. We note that any symmetric
system can be diagonalized and the incoming and outgoing characteristic variables
identified, which is all that is needed to construct the discrete approximations. For
variable coefficient problems it is possible for the number of right-going and left-
going waves to be different at each boundary, but for simplicity we exclude this
possibility. The results extend to that case, however. It would also be possible for
the number of ingoing and outgoing waves at a boundary to change as a function
of time. Again we exclude this possibility, which would require further analysis.

We note that the problem (68)–(70) is strongly well-posed [16, 7.6]. Away from
the boundaries the local estimates of Lemma 9.2 still hold. Near them, however,
they must be modified to take account of the boundary data, so that additional
inhomogeneous terms appear. Global estimates thus take the form [16, 7.6]:

m∑
j=0

(
‖Dju(·, t)‖2 +

∫ t

0

(
|Dju(0, τ )|2 + |Dju(1, τ )|2

)
dτ

)

≤ Ceαmt
m∑

j=0

(
‖Djf‖2 +

∫ t

0

(
‖DjF (·, τ )‖2 + |∂

jγL

∂tj
(τ )|2 + |∂

jγR

∂tj
(τ )|2

)
dτ

)
.

(73)

Time derivatives and mixed derivatives of the solution can be expressed by space
derivatives; thus analogous estimates hold for them.

5.1. Description of the method. We introduce staggered grids satisfying (44)
as before:

0 = x0 < x 1
2

< x1 < x 3
2

< x2 < · · · < xN− 1
2

< xN = 1,

G̃h = {xj+ 1
2
, 0 ≤ j ≤ N − 1} ∪ {x0, xN},

Gh = {xj , 0 ≤ j ≤ N}.
Note that the boundary points are included in both meshes.
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Given Hermite data of order up through m on one of the grids, the (m, q)
Hermite-Taylor update on the interior of the dual grid is carried out precisely as
in the periodic cases described earlier. Thus we need only describe how to update
the solution and its space derivatives at the points x0 and xN .

The concept of our boundary update is as follows. Updated function and de-
rivative values for outgoing components, uL(0, t) and uR(1, t), are computed using
one-sided formulas, that is, via (18) applied at the boundary point. We then up-
date the incoming components by insisting that the boundary condition and time
derivatives of the boundary condition are satisfied at the new time level. Time
derivatives of the approximate solution appearing in the differentiated boundary
condition are replaced by space derivatives using the equation (68).

For definiteness we look at an even half-step where we propagate data associated
with the piecewise polynomial pn from Gh to G̃h. Applying the update directly
at x = x0 and x = xN we obtain values for the solution and its scaled space
derivatives:

T (q,l)pn(0, tn+ 1
2
), T (q,l)pn(1, tn+ 1

2
),

via (18). Note that these values only use one-sided spatial information and typically
do not satisfy the boundary conditions. Thus we will use the boundary conditions to
update the incoming characteristic variable and its space derivatives. Specializing to
the left boundary, x = 0, we will derive recursion relations allowing us to effectively
express DluR in terms of DluL alone. We use the one-sided Taylor updates to
compute this outgoing data.

In what follows the vector space-time coefficients c̃ij are understood to be ap-
proximations:

(74) c̃ij ≈ u[i,j](0, tn+ 1
2
).

The tilde is to remind us that they are distinct from the coefficients cij used in the
Taylor update (18). The coefficients cij approximate the space-time derivatives of
u at the current time, tn. Also it is to be understood that all updates are at the
point (x, t) = (0, tn+ 1

2
).

We compute the approximation to uL and its derivatives via (18):

(75) c̃L
l0 =

q−l∑
s=0

cL
ls

(
k

2

)s

.

Note that the cls are obtained by a modified interpolation routine computing the
expansion of the interpolating polynomial at an endpoint. The boundary condition
(69) itself provides us with our approximation to uR(0, tn+ 1

2
) directly:

(76) c̃R
00 = MLc̃L

00 + γL.

Proceeding to first space derivatives we use c̃L
10 and (68) to compute an approx-

imation to uL
t :

c̃L
01 = ΛLc̃L

10 + (Bc̃00)L + FL,

which can be substituted into the time derivative of (69) to produce an approxima-
tion to uR

t :

c̃R
01 = MLc̃L

01 + ML,[1]c̃L
00 + γL,[1].
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(As the boundary coefficients are functions of time alone their scaled derivatives
are expressed by a single superscript.) Finally, we compute an approximation to
uR,[1,0] using (68):

c̃R
10 = (ΛR)−1

(
c̃R
01 − (Bc̃00)R − FR

)
.

This process, though involved, can be repeated as desired. Proceeding recursively,
suppose we know all space-time derivatives of order up through ν − 1, as well as
the outgoing data provided by (75). That is, we have values for c̃lj , l + j ≤ ν − 1
and c̃L

l0, l ≤ m. We compute the derivatives of order ν as follows.

i: Approximate scaled order ν space-time derivatives of uL are computed using
derivatives of (68). (See (19).) In particular, for j = 1, . . . , ν we set

c̃L
ls =

1
s

l∑
i=0

s−1∑
j=0

(i + 1)ΛL,[l−i,s−1−j]c̃L
i+1,j(77)

+
1
s

l∑
i=0

s−1∑
j=0

(
B[l−i,s−1−j]c̃ij

)L

+
1
s
FL,[l,s−1].

Note that if we proceed sequentially in j all terms on the right-hand side
are known.

ii: Take the νth time derivative of (69) to compute c̃R
0ν :

(78) c̃R
0ν =

ν∑
l=0

ML,[ν−l]c̃L
0l + γL,[ν].

iii: Finally, using (68) compute sequentially for j = 1, . . . , ν:

jΛRc̃R
j,ν−j = (ν − j + 1)c̃R

j−1,ν+1−j − FR,[j−1,ν−j]

−
j−1∑
i1=0

ν−j∑′

i2=0

(i1 + 1)ΛR,[j−i1−1,ν−j−i2]c̃R
i1+1,i2(79)

−
j−1∑
i1=0

ν−j∑
i2=0

(
B[j−1−i1,ν−j−i2]c̃i1i2

)R

.

(Here the prime denotes the exclusion of the i1 = j − 1, i2 = ν − j term
from the double summation.)

At its termination, this process produces all the required derivatives of pn+ 1
2 , which

are the coefficients c̃l0. At x = 1 we carry out the analogous process with the roles
of c̃L

ij and c̃R
ij reversed and (69) replaced by (70). The update process for even time

steps is identical. We note that this process defines an affine map between the
outgoing Hermite data and the incoming Hermite data. We represent these maps
via the following notation:

c̃R
·,0 = PL,τ c̃L

·,0 + ΓL,τ , x = x0,(80)

c̃L
·,0 = PR,τ c̃R

·,0 + ΓR,τ , x = xN ,(81)

where τ = n or τ = n + 1
2 .
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5.2. Stability analysis. We first note that the Orthogonality Lemma 3.2 still
holds in this case, that is, for functions in Hm+1(0, 1), so long as 0 and 1 are
nodes. Also, we note that equations (77)–(79), with appropriate interpretation
of the coefficients c̃L

ls and c̃R
ls, are satisfied by the exact solution u. A simplified

stability and convergence analysis can then be constructed for problems where the
Taylor time evolution is exact, that is, when

(82) A(x, t) = Ā, ML(t) = M̄L, MR(t) = M̄R, B = 0, F = 0, γ = 0.

Precisely we have:

Lemma 5.1. Suppose pn is a Cm piecewise degree 2m+1 polynomial relative to the
grid Gh, and Spn denotes the exact solution of (68)–(70) for tn ≤ t ≤ tn+ 1

2
equal

to pn at t = tn. Suppose further that (82) holds and that pn is compatible; that is,
pn satisfies (80)–(81). Then if (17) holds, Spn satisfies (80)–(81) at t = tn+ 1

2
.

Proof. For systems satisfying (82), uL(0, t) is given by

(uL)i(0, t) = (uL)i(ΛL
i ∆t, t − ∆t).

Thus if the data, pn(x), is a degree 2m + 1 polynomial on x ∈ (0, ΛL
i ∆t + ε), then

1
l!

Dl(Spn)L
i (0, tn+ 1

2
) =

1
l!

Dl(pn)L
i (ΛL

i ∆t)

=
2m+1−l∑

j=0

(ΛL
i ∆t)j

l!j!
Dj+l(pn)L

i (0)

=
2m+1−l∑

j=0

(clj)L
i (∆t)j .

Thus Spn satisfies the computational update formula (75). As our assumption that
the compatibility conditions hold ensures a smooth solution, (77)–(79), which are
consequences of the equation and boundary condition, are also satisfied. �

Now we must consider the semi-norm ‖Dm+1pn‖. We consider the simplest case
when the reflection matrices are zero, that is, M̄L = O, M̄R = O. Then the
boundary conditions imply

(83) DjuR(0, t) = 0, DjuL(1, t) = 0.

Moreover, the system decouples into scalar equations:

(84) uL
i,t = ΛL

i uL
i,x, uR

i,t = ΛR
i uR

i,x.

Combining this with (83) we find

(85) (Spn)L
i =

{
pn(x + ΛL

i t), 0 ≤ x + ΛL
i t ≤ 1,

0, otherwise,

(86) (Spn)R
i =

{
pn(x + ΛR

i t), 0 ≤ x + ΛR
i t ≤ 1,

0, otherwise,

which implies

(87) ‖Dm+1Spn‖ ≤ ‖Dm+1pn‖.
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Combining (87) with Lemma 3.2 we deduce the basic stability inequality:

‖Dm+1pn+ 1
2 ‖ ≤ ‖Dm+1Spn‖

≤ ‖Dm+1pn‖.
In this special case we can now repeat the arguments leading to Theorem 3.1 to

prove:

Theorem 5.1. Let 0 < λ = k/h < ρ(Ā) and T > 0 be fixed. Let u solve (68)–
(70) under the assumptions of Lemma 5.1 and suppose in addition that M̄L = O,
M̄R = O. Let f ∈ (H2m+2)d be compatible with the boundary conditions and let p
be the numerical approximation based on degree 2m + 1 Hermite interpolation and
degree 2m + 1 Taylor evolution with time steps satisfying the CFL condition. Then
there is a constant C, independent of h, so that

‖un − pn‖ + ‖un+ 1
2 − pn+ 1

2 ‖ ≤ Ch2m+1‖D2m+2f‖ for 0 ≤ nk ≤ T.

Theorem 5.1 can be generalized to problems with variable coefficents and nonzero
reflections using the techniques of section 4 and the estimates of (73). The idea
is again to estimate the error in truncating the Taylor series. Of course (88) is
replaced in the argument by an inequality of the form (65). We have not carried
out the details, but present some simple numerical experiments to illustrate the
method’s performance.

6. Convergence in multiple dimensions

We now extend the convergence result to multiple space dimensions, that is, to
(21). For simplicity we restrict attention to the constant coefficient case:

(88) Aj(x, t) = Āj , B = 0, F = 0.

Generalizations follow using the arguments of section 4. We will also choose the
degree, q, of the temporal Taylor series to be µ(2m + 1) so that the evolution of
the piecewise polynomial data is exact on the grid. In the experiments section we
show that this isn’t necessary.

Now we may express the evolution of the interpolants as in section 3, that is,
by (34)–(35). To generalize the proof of Theorem 3.1 we must generalize the semi–
inner product and Orthogonality lemma to be compatible with piecewise Hermite
tensor-product interpolation.

6.1. Norms and interpolation. We introduce

(89) ‖f‖µ,[r] =
∑

α∈Qr

‖Dαf‖,

(90) |f |µ,[r] = ‖f‖µ,[r] − ‖f‖,
where Qr is the set of µ-dimensional multiindices defined by

(91) Qr = {α|αj ∈ {0, r}}.
In other words, ‖f‖µ,[r] measures all partial derivatives of f involving derivatives
in the coordinate directions of order r or 0. We also denote by H[r]

µ the space of
all functions for which ‖ · ‖µ,[r] is finite. Obviously, H[r]

µ contains the Sobolev space
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Hrµ
µ,per. However, the degree µ(2m + 1) tensor-product interpolants we are using

are, in fact, elements of H[m+1]
µ but are typically not elements of H

(m+1)µ
µ for µ > 1.

We also inductively define a new semi-inner product for µ > 1 by
(92)

(f, g)µ,[m+1] =

⎛
⎝ µ∏

j=1

Dm+1
j f,

µ∏
j=1

Dm+1
j g

⎞
⎠ +

µ∑
i=1

Ni∑
ji=1

hi,ji
(f, g)µ−1,[m+1]|xi=xi,ji

.

(Clearly, the new inner product depends on the mesh, which is suppressed in our
notation.) Note that if we expand this out we see that each term involves inner
products of derivatives

∏ir

j=i1
Dm+1

j applied to f and g on r-dimenional faces. On
one-dimensional faces we simply use the inner product from the previous sections.
An inner product associated with the dual mesh is defined analogously.

We first note the following estimates of the interpolation error. For µ = 2
the estimates (93)–(95) follow from results in [2] and can be generalized to higher
dimensions in a straightforward manner. Inequality (96) follows from the arguments
leading to Corollary 3.1. A crucial point in (94) is that the convergence rate for
approximations to g in ‖ · ‖µ,[m+1] is the same as for approximations to Dm+1

i g in
L2 despite the fact that derivatives of higher order appear.

Lemma 6.1. The Hermite interpolation operators, I and Ĩ, satisfy:

‖g − Ig‖ ≤ Ch2m+2|g|µ,[2m+2] for g ∈ H[2m+2]
µ ,(93)

‖g − Ig‖µ,[m+1] ≤ Chm+1|g|µ,[2m+2] for g ∈ H[2m+2]
µ ,(94)

‖g − Ig‖ ≤ Chm+1|g|µ,[m+1] for g ∈ H[m+1]
µ ,(95)

‖g − Ig‖ ≤ Chm+1|g − Ig|µ,[m+1] for g ∈ H[m+1]
µ .(96)

We also have the generalization of Lemma 3.2,

Lemma 6.2. For all f, g ∈ H[m+1]
µ ,(
If, g − Ig

)
µ,[m+1]

= 0 .

Proof. We proceed by induction on µ and note that the lemma holds for µ = 1.
Also, restricted to the face xi = xi,ji

, the function If is a (µ − 1)-dimensional
interpolant and g −Ig is a (µ− 1)-dimenional interpolation error. Thus each term
in the double sum in (92) vanishes by the induction hypothesis. Hence we need
only consider the first inner product on the right-hand side of (92). Looking at the
integral on an arbitrary cell, integrating by parts the derivative Dm+1

µ from g −Ig

to If and noting that in the cell interior D2m+2
µ If = 0, we obtain for the integral:

m∑
i=0

(−1)i

∫
F+

Dm+1+i
µ

µ−1∏
j=1

Dm+1
j If · Dm−i

µ

µ−1∏
j=1

Dm+1
j (g − Ig)

+ (−1)i+1

∫
F−

Dm+1+i
µ

µ−1∏
j=1

Dm+1
j If · Dm−i

µ

µ−1∏
j=1

Dm+1
j (g − Ig),

where F± are the cell faces with normal in the xµ-direction. Let Iµ denote the
interpolation operator in xµ and I(µ−1) denote (µ − 1)-dimensional interpolation
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in the other variables. Then

(97) I = I(µ−1) ◦ Iµ.

Using the fact that Dm−i
µ Iµg = Dm−i

µ g on F±, we can rewrite the typical integral
on a given face as∫ ⎡

⎣µ−1∏
j=1

Dm+1
j I(µ−1)Dm+1+i

µ Iµf

⎤
⎦ ·

⎡
⎣µ−1∏

j=1

Dm+1
j

(
Dm−i

µ g − I(µ−1)Dm−i
µ g

)⎤
⎦ .

Summing over all faces with xµ = xµ,i and using the induction hypothesis we can
write this as ∑(

I(µ−1)f̃ , g̃ − I(µ−1)g̃
)

µ−1,[m+1]
,

where
f̃ = Dm+1+i

µ Iµf, g̃ = Dm−i
µ g.

By the induction hypothesis this inner product is zero, completing the proof of the
lemma. �

Secondly, we show that the new inner product can be used to control the semi-
norm appearing in the error estimates:

Lemma 6.3. There exist positive constants C1,C2 independent of the grid Gh and
the function g ∈ H[m+1]

µ such that

C1|g|2µ,[m+1] ≤ (g, g)µ,[m+1] ≤ C2‖g‖2
µ,[m+1].

Proof. The second inequality follows directly from the standard Sobolev inequality
in one dimension:

(98) |f(x)| ≤ C
(
‖f‖ + ‖Dm+1f‖

)
,

followed by repeated integration. (Note that the scaling of the terms in (92)
involving lower-dimenional inner products is necessary here for C1,2 to be grid-
independent.) For the first inequality, we first prove by induction on µ the following
auxiliary inequality:

(99) ‖f‖2 ≤ Chµ

⎛
⎝(f, f)µ,[m+1] +

N1∑
j1=1

· · ·
Nµ∑

jµ=1

f2(x1,j1 , . . . , xµ,jµ
)

⎞
⎠ .

We assume h < 1
2 . Taking µ = 1 and considering an interval (xj , xj+1) we have

max
xj≤x≤xj+1

f2(x) ≤ f2(xj) + 2
∫ xj+1

xj

|f | · |Df |dx

≤ f2(xj) + ‖f‖2
(xj ,xj+1) + ‖Df‖2

(xj ,xj+1)

≤ f2(xj) + hj+ 1
2

max
xj≤x≤xj+1

f2(x) + ‖Df‖2
(xj ,xj+1)

,

which implies

(100) max
xj≤x≤xj+1

f2(x) ≤ 2f2(xj) + 2‖Df‖2
(xj ,xj+1).

Integrating (100) yields

(101) ‖f‖2
(xj ,xj+1)

≤ 2hj+ 1
2

(
f2(xj) + ‖Df‖2

(xj ,xj+1)

)
.
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Summing over j and estimating ‖Df‖ by ‖Dm+1f‖ yields (99) for µ = 1.
Now assume that the analogue of (101) holds in dimensions up through µ − 1.

That is, for a cell

Cj1,...,jµ−1 =
µ−1⊗
i=1

(xi,ji
, xi,ji+1),(102)

‖f‖2
Cj1,...,jµ−1

≤ Chµ−1
(
f2(x1,j1 , . . . , xµ−1,jµ−1) + (f, f)µ−1,[1],Cj1,...,jµ−1

)
,(103)

where the inner product is restricted to the cell. Now consider a µ-dimensional cell,
Cj1,...,jµ

. For any fixed xµ ∈ (xµ,jµ
, xµ,jµ+1), (103) holds. Integrating in xµ then

yields

(104) ‖f‖2
Cj1,...,jµ

≤ Chµ−1 (I1 + I2) ,

where

I1 =
∫ xµ,jµ+1

xµ,jµ

f2(x1,j1 , . . . , xµ−1,jµ−1 , xµ)dxµ,(105)

I2 =
∫ xµ,jµ+1

xµ,jµ

(f(·, xµ), f(·, xµ))µ−1,[1],Cj1,...,jµ−1
dxµ.(106)

Now we apply (101) to estimate I1 and I2:

I1 ≤ 2hµ,jµ+ 1
2

(
f2(x1,j1 , . . . , xµ,jµ

)(107)

+
∫ xµ,jµ+1

xµ,jµ

(Dµf)2(x1,j1 , . . . , xµ−1,jµ−1 , xµ)dxµ

)
,

I2 ≤ 2hµ,jµ+ 1
2
(f(·, xµ,jµ

), f(·, xµ,jµ
))µ−1,[1],Cj1,...,jµ−1

+2hµ,jµ+ 1
2

∫ xµ,jµ+1

xµ,jµ

(Dµf(·, xµ), Dµf(·, xµ))µ−1,[1],Cj1,...,jµ−1
dxµ.(108)

Noting that all of the integral terms are bounded by (f, f)µ,[1],Cj1,...,jµ
we conclude

that (103) holds in dimension µ. Equation (99) follows from summing over the cells
and bounding (f, f)µ,[1] by (f, f)µ,[m+1].

Now we prove the lemma by induction on µ, again noting that we have already
proven it for µ = 1. Note that

(109) |g|2µ,[m+1] =

(∑
i

∫
|Dm+1

i g|2µ−1,[m+1]dxi +
∑

i

‖Dm+1
i g‖2

)
.

Using the induction hypothesis we have∫
|Dm+1

i g|2µ−1,[m+1]dxi ≤ C

∫
(Dm+1

i g, Dm+1
i g)µ−1,[m+1]dxi

≤ C(g, g)µ,[m+1],(110)
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and by (99) with µ replaced by µ − 1 and f replaced by Dm+1
i g:

‖Dm+1
i g‖2 =

∫
‖Dm+1

i g(. . . , xi, . . .)‖2dxi

≤ Chµ−1

∫
(Dm+1

i g, Dm+1
i g)µ−1,[m+1]dxi

+Chµ−1
∑

· · ·
∑∫

(Dm+1
i g)2(x1,j1 , . . . , xi, . . . , xµ,jµ

)dxi(111)

≤ C(g, g)µ,[m+1].

This completes the proof of Lemma 6.3. �

6.2. Convergence theorem. We can now use this semi-inner product to gener-
alize Theorem 3.1 to the multidimensional case.

Theorem 6.1. Let u solve (21) with B = 0, F = 0 and Aj = Āj, constant. Let

f ∈
(
H[2m+2]

per

)d

and let p be the numerical approximation based on degree µ(2m+1)
Hermite tensor-product interpolation and degree µ(2m + 1) Taylor evolution with
time step k satisfying (33). Finally, let T > 0 be fixed. Then there is a constant
C, independent of the grids, so that

‖un − pn‖ + ‖un+ 1
2 − pn+ 1

2 ‖ ≤ Ch2m+1|f |µ,[2m+2] for 0 ≤ nk ≤ T.

Proof. As in the proof of Theorem 3.1 we use the fact that the Taylor formula to
advance pn in time is exact at the nodes. Thus we repeat the arguments of Theorem
3.1 using the analogues of Lemmas 3.1–3.2 proven above.

Set

(112) ε2
n = (en, en)µ,[m+1], δ2

n = (Sen − ĨSen,Sen − ĨSen)µ,[m+1],

and, by Lemmas 6.1 and 6.3,

(113) ηn = un+1 − Iun+1, (ηn, ηn)µ,[m+1] = O(h2m+2).

Then using Lemma 6.2 we derive (56) and (57). To estimate the error in the L2-
norm we again follow the arguments from the one-dimensional case and use (96) in
conjunction with Lemma 6.3 to conclude

(114) ‖Sen − ĨSen‖ ≤ Chm+1δn,

which leads to the final result. �

7. Numerical experiments

In this section we present the results of a series of simple numerical experiments
which demonstrate the resolution capabilities of the Hermite methods and illustrate
the theoretical results.

An accepted framework within which to compare the efficiency of methods of
different orders is to find the minimal number of points per wavelength required
to propagate a wave a given number of periods with a fixed accuracy (e.g. [9, Ch.
3]). For standard central difference methods and periodic problems, this number
is always greater than two, approaching two points per wavelength in the limit
of infinite order, which yields the Fourier pseudospectral method [5]. As Hermite
methods require more work and storage per point, to be competitive they must
have superior resolution; that is, they must be capable of using fewer than two
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points per wavelength. This will be demonstrated below. Note that more extensive
experiments can be found in [7]. Also, the methods are used to discretize high-order
radiation boundary conditions for the linearized Euler equations in [10].

Consider the initial value problem (1) for a = 1 with

(115) f(x) = eiωx,

and where ω is an integer. We assume a uniform mesh of width h and evolve
the discrete solution with the m-derivative Hermite method. To study subgrid
resolution we allow

(116) |ω|h > π ,

i.e., the function f(x) = eiωx may oscillate between consecutive grid points xj , xj+1.
We set

(117) ξ = ωh ,

and note that the wavelength of the wave u = eiω(x+t) is

(118) Λ =
2π

|ω| .

Therefore,

(119)
Λ
h

=
2π

|ωh| =
2π

|ξ|
where Λ/h is the number of mesh points per wavelength Λ. For example, ξ = π
corresponds to two mesh points per wavelength, ξ = 2π corresponds to one mesh
point per wavelength, and ξ = π/10 corresponds to 20 mesh points per wavelength.

Define the error function (the maximum is taken over all xj+ 1
2
∈ G̃h),

(120) error(ξ, m, λ, n) = max
{
|u(xj+ 1

2
, nk) − pn(xj+ 1

2
)|

}
.

We show some representative results for the error function (120). We have fixed
the CFL number as λ = .8 and the number of half time steps as n = 200. For these
values the functions

(121) ξ → η(ξ, m) = error(ξ, m, λ = .8, n = 200)
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Figure 2. Error functions η(ξ, m) for |ξ| ≤ π and |ξ| ≤ 2π
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Figure 3. Logarithm of error functions maximized over |ξ| ≤ π
and |ξ| ≤ 2π

are plotted in Figure 2 for |ξ| ≤ π and m = 1, 2, 3 and for |ξ| ≤ 2π and m = 1 to 5.
Note that the functions vanish to high order at ξ = 0, which is to be expected for
any high-order method.

Again fixing λ = 0.8 and n = 200, we have maximized these functions over ξ
and have varied m from 1 to 10. In Figure 3 we plot the functions

(122) m → log10 max{η(ξ, m) : |ξ| ≤ π}

and

(123) m → log10 max{η(ξ, m) : |ξ| ≤ 2π} .

From these figures it is clear that, for m large, subgrid resolution is achieved.
Thus the number of degrees of freedom required is comparable to that required by
high-order difference methods, while we may take significantly larger time steps.

It is also of interest to study the convergence of the method in the limit m → ∞
when the number of wavelengths per cell is large. Ainsworth [1] has considered this
problem for finite-element methods applied to the Helmholtz equation.
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Figure 4. Logarithm of error functions with increasing m
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Table 1. Errors at t = 100 in 1d with a uniform mesh

m q N CFL error pobs

2 5 40 0.8 4.36E − 2

2 5 80 0.8 1.64E − 3 4.7

2 5 120 0.8 2.90E − 4 4.3

2 6 40 0.8 4.52E − 2

2 6 80 0.8 1.63E − 3 4.8

2 6 120 0.8 3.00E − 4 4.2

4 9 25 0.8 1.36E − 3

4 9 50 0.8 3.98E − 6 8.4

4 9 75 0.8 1.16E − 7 8.7

4 10 25 0.8 1.11E − 3

4 10 50 0.8 4.20E − 6 8.0

4 10 75 0.8 1.22E − 7 8.7

7 15 10 0.6 2.37E − 2

7 15 20 0.6 5.10E − 7 15.5

7 15 30 0.6 9.73E − 10 15.4

7 16 10 0.6 8.92E − 3

7 16 20 0.6 4.68E − 7 14.2

7 16 30 0.6 9.21E − 10 15.4

7 17 10 0.8 2.32E − 1

7 17 20 0.8 7.77E − 7 18.2

7 17 30 0.8 9.78E − 10 16.5

10 21 8 0.4 2.37E − 3

10 21 16 0.4 1.35E − 9 20.7

10 21 24 0.4 5.31E − 12 13.7

10 22 8 0.4 2.34E − 3

10 22 16 0.4 1.38E − 9 20.7

10 22 24 0.4 5.23E − 12 13.7

10 25 10 0.8 3.05E − 4

10 25 15 0.8 9.13E − 8 20.0

10 25 20 0.8 9.78E − 10 26.3

Following that work, we fix N = 1 and plot the error after two full time steps
for ξ = 50 and ξ = 100. (See Figure 4.) The graphs are qualitatively similar to
those shown in [1], exhibiting, in particular, nonmonotonic behavior in increasing
m followed by a superexponential convergence. Note that, in contrast to [1], our
calculations include the effects of time-stepping.

We now consider full-blown implementations of the method in one and two space
dimensions and study the order of convergence under mesh refinement. In all cases
we take m = 2, 4, 7, 10. In our first experiment we solve

(124) ut =
(

1 +
sin x

2

)
ux + f(x, t),

with periodic boundary conditions on the domain

(125) (x, t) ∈ [0, 2π] × [0, 100],

where f is chosen so that the solution is

(126) u(x, t) = cos (16(x + t)).
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Table 2. Errors at t = 100 in 1d with a random mesh

m q N CFL error pobs

2 5 55 0.8 5.34E − 2

2 5 110 0.8 1.95E − 3 4.8

2 5 165 0.8 3.02E − 4 4.6

2 6 50 0.8 9.28E − 2

2 6 100 0.8 3.33E − 3 4.8

2 6 150 0.8 5.08E − 4 4.6

4 9 25 0.8 1.26E − 2

4 9 50 0.8 5.81E − 5 7.8

4 9 75 0.8 1.23E − 6 9.5

4 10 25 0.8 1.26E − 2

4 10 50 0.8 5.82E − 5 7.8

4 10 75 0.8 1.23E − 6 9.5

7 15 12 0.8 9.50E − 3

7 15 24 0.8 1.35E − 6 12.8

7 15 36 0.8 5.46E − 9 13.6

7 16 12 0.8 9.47E − 3

7 16 24 0.8 1.35E − 6 12.8

7 16 36 0.8 5.46E − 9 13.6

10 21 10 0.8 1.31E − 3

10 21 20 0.8 3.47E − 10 21.8

10 22 10 0.8 1.34E − 3

10 22 20 0.8 3.48E − 10 21.9

We varied both the number of mesh points, N , and the number of terms, q, in
the temporal Taylor series. In most cases we chose a CFL number of 0.8 and
various numbers of mesh points. For the larger values of m and minimal q this
was sometimes unstable. Then we found that the method could be stabilized either
by decreasing the CFL number or by increasing q. (The latter method is typically
more efficient.) We compute an estimated convergence rate by comparing errors
for different meshes and computing

(127) pobs =
log

(
err2
err1

)
log

(
h2
h1

) .

In our first experiment we use a uniform mesh, with results shown in Table 1.
(The errors are relative l2 errors at t = 100.) Clearly, the observed convergence
rates are consistent with the theory. Lower rates are observed only when errors are
at a level where roundoff plays a role. We see that increasing q had little or no
effect on the accuracy, but for m large had significant effects on the stability.

In our second experiment we solve the same problem, but introduce random
perturbations to the mesh. Precisely we set

(128) xj = (j + τj)h, xj+ 1
2

= (j + 1
2 + τj+ 1

2
)h,

with τ chosen randomly from a uniform distribution on (−.2, .2) and h = 2π
N . Thus

the mesh is not smooth. Note that the CFL constraint in this case is based on the
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Table 3. Errors in 1d at t = 100 with a reflective boundary condition

m q N CFL error pobs

2 5 40 0.7 5.04E − 2
2 5 80 0.7 1.85E − 3 4.8
2 5 120 0.7 4.51E − 4 3.5
2 6 40 0.7 4.32E − 2
2 6 80 0.7 1.26E − 3 5.1
2 6 120 0.7 2.02E − 4 4.5
4 9 25 0.6 4.74E − 3
4 9 50 0.6 5.41E − 6 9.8
4 9 75 0.6 1.23E − 7 9.3
4 10 25 0.6 1.12E − 3
4 10 50 0.6 4.05E − 6 8.1
4 10 75 0.6 1.07E − 7 9.0
7 15 10 0.4 1.82E − 2
7 15 20 0.4 4.74E − 7 15.2
7 15 30 0.4 9.24E − 10 15.3
7 16 10 0.4 9.37E − 3
7 16 20 0.4 4.18E − 7 14.5
7 16 30 0.4 7.48E − 10 15.5
7 17 10 0.5 5.26E − 2
7 17 20 0.5 3.36E − 7 17.3
7 17 30 0.5 8.66E − 10 14.7

10 21 7 0.3 8.38E − 3
10 21 14 0.3 1.14E − 8 19.5
10 22 7 0.3 1.15E − 2
10 22 14 0.3 1.31E − 8 19.7
10 24 7 0.4 8.17E − 2
10 24 14 0.4 1.36E − 7 19.2

smallest cell. Here it was never necessary to decrease the CFL number to achieve
stability. The results are given in Table 2. We use average mesh width to compute
pobs. Of course this is somewhat imprecise. Given this imprecision, the agreement
of the observed and theoretical convergence rates is reasonable. The results are
essentially independent of q.

In our third set of experiments we test our implementation of nonperiodic bound-
ary conditions as described in section 5. Here we solve the system:

(129) u1,t =
sin x

2
u1,x + u2,x + f1,

(130) u2,t = u1,x +
sin x

2
u2,x + f2,

where x ∈ [0, 2π] and f1, f2 are chosen so that

(131) u1 = sin (16x) cos (16t), u2 = cos (16x) sin (16t).
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Table 4. Errors in 2d at t = 100

m q N CFL error pobs

2 5 50 0.8 5.60E − 2
2 5 100 0.8 1.10E − 3 5.7
2 7 55 0.8 4.09E − 2
2 7 110 0.8 1.32E − 3 5.0
2 10 60 0.8 2.66E − 2
2 10 120 0.8 8.53E − 4 5.0
4 9 20 0.7 4.08E − 3
4 9 40 0.7 5.77E − 6 9.5
4 13 20 0.7 3.65E − 3
4 13 40 0.7 7.72E − 6 8.9
4 18 20 0.7 3.65E − 3
4 18 40 0.7 7.72E − 6 8.9
7 15 6 0.6 9.90E − 2
7 15 12 0.6 5.27E − 6 14.2
7 22 6 0.6 7.15E − 2
7 22 12 0.6 6.99E − 6 13.3
7 30 6 0.6 7.15E − 2
7 30 12 0.6 6.99E − 6 13.3

10 21 4 0.6 4.02E − 2
10 21 8 0.6 9.46E − 8 18.7
10 31 4 0.6 2.92E − 2
10 31 8 0.6 6.69E − 8 18.7
10 42 4 0.6 2.92E − 2
10 42 8 0.6 6.69E − 8 18.7

We impose the boundary conditions

(132) u1 = 0, x = 0, 2π.

Note that at the boundaries the local characteristic variables are

(133) uR = u1 − u2, uL = u1 + u2,

so that the boundary condition takes the form uR = −uL. We use a uniform mesh.
The results, shown in Table 3, are similar to the periodic case, except that we

needed to decrease the CFL number somewhat. We believe that this is due to the
particular implementation of the boundary condition. We plan to carefully examine
the stability characteristics of different implementations in the future. Note that
again increasing q sometimes allowed us to compute with larger time steps.

In our final experiment we consider a periodic problem in two space dimensions:

(134) ut = .6ux1 + .8ux2 , (x1, x2) ∈ [0, 2π] × [0, 2π],

(135) u = cos (7x1 + 9x2 + 11.4t).

The results are shown in Table 4. Note that the theory we developed assumes
q = 4m + 2. The experiments show that q can in practice be taken much smaller.
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8. Conclusions

In conclusion, we have demonstrated that minimal stencil methods using deriva-
tives of order m in each coordinate direction combined with Taylor series in time
yield approximations to hyperbolic initial-boundary value problems which

i: are of order 2m + 1 in space and time;
ii: are stable under an order-independent stability constraint;
iii: allow a natural implementation of boundary conditions to the order of the

method;
iv: achieve subgrid resolution for m large.

In future work we will extend our analysis to hyperbolic-parabolic systems and
discuss the efficient implementation of the method for problems with simple non-
linearities. We believe the methods have great potential for applications to problems
in scientific computing, and we are currently developing codes which utilize them
to solve the compressible Navier-Stokes equations.

9. Appendix: Auxiliary results

In this section we give, for completeness, basic lemmas estimating Hermite in-
terpolants as well as the solution of (14). We begin with pointwise estimates of
Hermite interpolants.

Lemma 9.1. The Hermite interpolation operators, I and Ĩ, satisfy for 0 ≤ q ≤
2m + 1:

(136) max
xk≤x≤xk+1

|DqIg(x)| ≤ C‖g‖C2m+2(xk,xk+1),

max
xk≤x≤xk+1

|DqIg(x)| ≤ Chκ
k+ 1

2
‖Ig‖Hm+1(xk,xk+1),(137)

κ = min
(
−1

2
, m +

1
2
− q

)
,

(138) ‖DqIg‖2
L2(xk,xk+1) ≤ C

m∑
j=0

h2j−2q+1

k+ 1
2

(
(Djg(xk))2 + (Djg(xk+1))2

)
.

Proof. We define the Hermite-Lagrange basis functions, Qj(z), j = 0, . . . , m, on
the standard interval z ∈ [0, 1] by:

(1) Qj is a polynomial of degree 2m + 1;
(2) Qj satisfies for 0 ≤ i, j ≤ m:

diQj

dzi
(1) = δij ,

diQj

dzi
(0) = 0.

Setting G(z) = g(xi + hi+ 1
2
z) and constructing the Hermite interpolant, ISG, of G

on the standard interval we find that Ig may be written:

(139) Ig(x) =
m∑

j=0

(
(−hi+ 1

2
)jDjg(xi)Qj(1 − z) + hj

i+ 1
2
Djg(xi+1)Qj(z)

)
,

where
z =

x − xi

hi+ 1
2

.
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The interpolation error is expressed using the well-known Peano kernel repre-
sentation [11, Ch. 5]. For g ∈ Hp and integers 0 ≤ q < p ≤ 2m + 2 we have

Dq(g − Ig) = h−q

i+ 1
2

dq

dzq
(G − ISG)

= h−q

i+ 1
2

∫ 1

0

Kq,m,p(z, s)
dpG

dzp
(s)ds(140)

= hp−1−q

i+ 1
2

∫ xi+1

xi

Kq,m,p(h−1
i+ 1

2
(x − xi), h−1

i+ 1
2
(y − xi))Dpg(y)dy.

Note that the kernel, Kq,m,p(z, s), depends only on q, m, p, and its arguments, z
and s, but not on g. It is also bounded.

To prove the first statement in Lemma 9.1 we write

|DqIg| ≤ |Dq(g − Ig)| + |Dqg|.
By (140) the first term is bounded by Chi+ 1

2
maxx |D2m+2g(x)|. Thus (136) is

immediate. To prove the remaining results we use norm equivalence arguments on
the vector space of degree 2m + 1 polynomials of z. Suppose that 0 ≤ q ≤ 2m + 1
and 0 ≤ p ≤ q. Then

max
0≤z≤1

|d
qISG

dzq
(z)|2 ≤ C(q, m, p)‖dpISG

dzp
‖2.

Thus

max
xi≤x≤xi+1

|DqIg(x)|2 ≤ C(q, m, p)h2p−1−2q

i+ 1
2

∫ xi+1

xi

(DpIg(x))2dx.

Now (137) follows from choosing p = q when q ≤ m+1 and p = m+1 for q > m+1.
Finally we also have for any q:∫ 1

0

(
dqISG

dzq
(z)

)2

dz ≤ C(q, m)
m∑

j=0

((
djISG

dzj
(0)

)2

+
(

djISG

dzj
(1)

)2
)

.

Transforming back to x coordinates as before yields (138). �

We now consider solutions of (14). For simplicity we set

(141) c = max
x,t

|A(x, t)|.

Lemma 9.2. Suppose

A, B ∈ Cr([0, T ]; (Cr
per)

d×d), F ∈ Cr([0, T ]; (Cr
per)

d), f ∈ (Cr
per)

d.

Then equation (14) has a solution, u ∈ Cr([0, T ]; (Cr
per)d). Moreover, for any

0 ≤ q ≤ r there exists α(q), C(q) independent of the initial data and F such that
for any x0 ≤ x1, 0 ≤ t0 ≤ t1 ≤ T :

‖∂qu

∂xq
(·, t1)‖(x0,x1) ≤ eα∆t‖∂qu

∂xq
(·, t0)‖(x0−c∆t,x1+c∆t)

+C∆t

q−1∑
j=0

‖∂ju

∂xj
(·, t0)‖(x0−c∆t,x1+c∆t)

+C∆t max
t0≤t≤t1

q∑
j=0

‖∂jF

∂xj
(·, t)‖(x0−c∆t,x1+c∆t),
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|∂
qu

∂xq
(x, t1)| ≤ eα∆t max

|z−x|≤c∆t
|∂

qu

∂xq
(z, t0)|

+C∆t

q−1∑
j=0

max
|z−x|≤c∆t

|∂
ju

∂xj
(z, t0)|

+C∆t max
t0≤t≤t1

q∑
j=0

max
|z−x|≤c∆t

|∂
jF

∂xj
(z, t)|,

and for q1 ≥ 1:

‖ ∂qu

∂tq1∂xq−q1
(·, t1)‖(x0,x1) ≤ C

q∑
j=0

‖∂ju

∂xj
(·, t0)‖(x0−c∆t,x1+c∆t)

+ C

q∑
j=0

min(q1−1,j)∑
l=0

max
t0≤t≤t1

‖ ∂jF

∂tl∂x(j−l)
(·, t)‖(x0−c∆t,x1+c∆t),

| ∂qu

∂tq1∂xq−q1
(x, t1)| ≤ C

q∑
j=0

max
|z−x|≤c∆t

‖∂ju

∂xj
(z, t0)|

+C

q∑
j=0

min(q1−1,j)∑
l=0

max
t0≤t≤t1

max
|z−x|≤c∆t

| ∂jF

∂tl∂x(j−l)
(z, t)|.

Here ∆t = t1 − t0.

Proof. The proof of the first two statements is based on standard energy arguments
and domain of dependence considerations, e.g. [16, Ch. 3,6]. In particular, consider
first

w =
∂qu

∂xq
,

which satisfies an equation of the form

(142)
∂w

∂t
= A

∂w

∂x
+ Bqw + Fq,

where Fq depends linearly on space derivatives of u of order 1 through q−1 as well
as on the qth space derivative of F . An energy inequality for the entire domain
takes the form

d

dt
‖w‖ ≤ α(q)‖w‖ + β‖Fq‖.

This inequality implies

‖w(·, t1)‖ ≤ eα(t1−t0)‖w(·, t0)‖ + β
eα(t1−t0) − 1

α
max

t0≤t≤t1
‖Fq(·, t)‖.

Combined with a simple induction argument on q this inequality yields the desired
result when the integrals are taken over the entire domain. The second inequality
follows from using derivatives of the equation to express time derivatives in terms of
space derivatives. Our final form follows from domain of dependence considerations
[16, Ch. 3,6].

To derive maximum norm estimates we again look at (142), but now use the
method of characteristics. Diagonalizing the system by a unitary transformation,
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Q(x, t), we obtain for v = QT w:

∂v

∂t
= Λ

∂v

∂x
+ B̃qv + F̃ ,

where
Λ = diag(λi(x, t)).

Thus along the characteristic Xi(ζ, t) defined by

dXi

dt
= −λi(Xi, t), Xi(t0) = ζ,

we have
dvi

dt
=

(
B̃qv + F̃

)
i
.

From these we easily derive the inequality

max
x

|v(x, t)| ≤ max
x

|v(x, t0)| + C

∫ t

t0

(
max

x
|v(x, s)| + max

x
|F̃ (x, s)|

)
ds.

Application of Gronwall’s lemma implies

max
x

|v(x, t1)| ≤ eα∆t max
x

|v(x, t0)| + C∆t max
t0≤t≤t1

max
x

|F̃ (x, t)|.

The desired inequalities for all space derivatives then follow by induction and do-
main of dependence considerations. The inequalities for the mixed space-time
derivatives follow from expressing time derivatives in terms of space derivatives. �

References

1. M. Ainsworth, Dispersive properties of high order finite elements, Mathematical and Numer-
ical Aspects of Wave Propagation Phenomena (G. Cohen, E. Heikkola, P. Joly, and P. Neit-
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