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Sinusoidal-Gaussian beams have recently been obtained as exact solutions of the paraxial wave equation for 
propagation in complex optical systems. Another useful set of beam solutions for Cartesian coordinate sys
tems is based on Hermite-Gaussian functions. A generalization of these solution sets is developed here. The 
new solutions are referred to as Hermite-sinusoidal-Gaussian beams, because they are in the form of a prod
uct of Hermite-polynomial functions of either complex or real argument, sinusoidal functions of complex argu
ment, and Gaussian functions of complex argument. These beams are valid for propagation through systems 
that can be represented in terms of complex beam matrices, and the previous beam solution sets are special 
cases of these more general results. Propagation characteristics and applications of these beams are dis
cussed, including their use as a basis set for propagation of arbitrary electromagnetic beams. © 1998 Optical 
Society of America I S0740-3232(98)01904-81 

OClS codes: 140.3410, 350.5500. 

1. INTRODUCTION 
The propagation of electromagnetic beams in optical sys
tems has long been of interest, and in some cases exact 
analytical solutions of the paraxial wave equation have 
been obtained. Such solutions are important because 
they require little or no numerical computation for their 
evaluation. The nature of the solutions that one obtains 
depends on the coordinate system that is employed. For 
many years the most general analytical solutions in Car
tesian coordinates have been in the form of Hermite
Gaussian functions in which the arguments of both the 
Hermite-polynomial factor and the Gaussian factor are 
complex. 1-10 Besides free-space and other lens and mir
ror elements, the complex Hermite-Gaussian beam solu
tions can also propagate in any media that can be charac
terized by only constant, linear, and quadratic transverse 
variations of the gain and the index of refraction in the 
vicinity of the beam. Thus they are valid for propagation 
through any systems that can be represented in terms of 
complex beam matrices. Some studies have allowed 
these beams to deviate from the axis of the complex opti-

1 t 6 10 11 d' h . ca sys em,' , an In t e most general analyses mIS-
alignment of the component optical elements has also 
been permittedy~,13 

Recently, an alternative set of complex Cartesian beam 
solutions of the paraxial wave equation has been obtained 
in the form of sinusoidal-Gaussian beams. I4 These solu
tions can also propagate through any systems that can be 
represented in terms of complex beam matrices, and they 
reduce to conventional rectangular waveguide modes in 

0740-3232/98/040954-08$15.00 

the appropriate limit. Properties and applications of 
these beams are discussed here, including their use as a 
basis set for propagation of arbitrary electromagnetic 
beams and as solution modes in novel laser resonators. 

As just noted, there are now two important beam solu
tion sets for propagation with the use of Cartesian coor
dinates, and these include the Hermite-Gaussian and 
sinusoidal-Gaussian beams of complex argument. A new 
generalization and merging of these two solution sets 
is described here. The resulting solutions are referred 
to as Hermite-sinusoidal-Gaussian beams because they 
are in the form of a product of Hermite-polynomial func
tions of complex argument, sinusoidal functions of com
plex argument, and Gaussian functions of complex argu
ment. They are also valid for propagation through 
systems that can be represented in terms of complex 
beam matrices, and the previous beam solution sets are 
special cases of these more general results. For example, 
Hermite-Gaussian beams for which the arguments of the 
Hermite polynomials are real are a special case of 
complex-argument Hermite-Gaussian beams,15 which 
are a special case of the Hermite-sinusoidal-Gaussian 
beams. 

After a brief review of Hermite-Gaussian beam theory 
in Section 2, the basic derivation of the Hermite
sinusoidal-Gaussian modes is included in Section 3. Al
though other procedures are possible, the derivation here 
is set up as a generalization of the more familiar 
Hermite-Gaussian modes without reference back to the 
scalar wave equation. Section 4 includes a discussion of 

© 1998 Optical Society of America 
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how the less familiar sinusoidal-Gaussian beam solutions 
can be employed as a basis set for the propagation of an 
arbitrary electromagnetic field distribution. 

2. HERMITE-GAUSSIAN BEAM THEORY 
We begin with a brief summary of the equations govern
ing conventional off-axis Hermite-Gaussian functions of 
complex argument. For the usual case of slowly varying 
complex wave number k(x, y, z), the Maxwell-Heaviside 
equations reduce to the wave equation 

V2E'(x, y, z) + k 2(x, y, z)E'(x, y, z) = 0, (1) 

where E' is the complex amplitude of the vector electric 
field E. The wave number may have an imaginary part 
that is due to nonzero conductivity or out-of phase compo
nents of the material polarization or magnetization. If 
needed, the weak z components of the fields may be found 
from the transverse components by means of the 
Maxwell-Heaviside equations. 11 

In many practical situations the gain (or loss) and the 
index of refraction have at most quadratic variations in 
the vicinity of the propagating beam, and one can write 

k2(x, y, z) = ko(z)[ko(z) - k1x(z)x - kIy(z)y 

(2) 

For an x-polarized wave propagating in the z direction, a 
useful substitution is 

E;(x, y, zl ~ A(x, y, Zlexp[ -; io'kO(Z'ldz'j, (3) 

and the x component of Eq. (1) reduces to the paraxial 
wave equation 

2 k 2)A - ° (4) + k 2xx + 2yY -, 

where A(x, y, z) is assumed to vary so slowly with z that 
its second derivative can be neglected. 

A useful form of the solution to Eq. (4) for an astigmatic 
off-axis Gaussian beam is6 

Am,n(x, y, z) 

= AoHm[at(z)x + b,(zl]Hn[ay(z)y + by(Z)] 

2 f .[ Qx(z )x 2 Qy(z )y 
X eXPt-T 2 + 2 

+ Sx(zlx + S,(zIY + P(ZI]), (5) 

where Hand H are Hermite polynomials of order m 
m . 11 • Q d Q are known and n, respectIvely. The functIOns x an .~ 

as beam parameters, and Sx, Sy, and ~ are dlsplac~~e~t 
and phase parameters. The functIOns a)z),. x z , 
a (z) and b (z) characterize the width and the dlspl~ce-
y, Y • f th lutIOn ment of the Hermite-polynomial factors 0 e so . 

Al t e in general com-I of these z -dependent parame ers ar , ' 
plex valued. If the input beam to an optical system of ~he 

. . . I I 'S mirrors lenshke type bemg conSIdered (SImp e ense, ' 

Vol. 15, No. 4/ April 1998/ J. Opt. Soc. Am. A 

media, etc.) is of the form given in Eq. (5), the output 
beam will be of the same form. The propagation of such 
a beam through the system would be fully characteriZL'd 
by the above parameters. 

One finds by direct substitution that Eq. (5) is an exact 
solution of Eq. (4) provided that the various parameters 
satisfy the following equations: 

dP 

dz 

Qx 2 + 
dQx 

ko dz + 

Q/ + 
dQy 

ko -,-' + 
( Z 

QxSr 
dS, 

+ ko~ + 

dS I · 

Qy 5 y + ko~ + 

Qxax 
dax 

+ ko~ 

Qyay 

day 
+k()~ 

db, 
Sxax + ko~ 

db v 
Sya y + ko~ 

S/ + 5 y
2 

2ko 

dk o 
2k()~' 

+ 

+ 

koh:zx 0, (61 

kolt:zv 0, li) 

kol? Lr 
0, (H) 

2 

h of? 1.1' 
0, (9) 

2 
-

+ lax 
;{ 0, (10) 

+ ia y 
:1 = 0, (11 ) 

ia,'2.b, -- 0, (l2) 

ia y'2.b y - 0, (13) 

'2. :2 rna x + nay 

ko 

This separation is accomplished by setting equal to zero 
the various terms in x 2, y'2., x, and y, and using the Her
mite differential equation 

d2Hm dRill 
-- - 2x' -- + 2mH/II = O. (1f5) 
dx,2 dx' 

For this form of the Hermite equation, x' would corre
spond to a.\.(z)x + b>;(z) in the above solutio.n .. 

If the gain per wavelength is small, the sIgmficance of 
the Q parameters is contained in the relation 

Qx 1 1 . A 
-=-=--~--2' 

ko qx Rx 7TW x 
(16) 

where Rx and W x are, respectively, the radius of c~rv~
ture of the phase fronts and the lie amplitude ~pot SIze.m 
the x direction. The ratio dX(l = -5xi /Q xi IS the dIS
placement in the x direction of the amplitude cente.r of the 
Gaussian part of the beam, and the ratIO d,p 
= -S /Q is the displacement in the x direction of the 

xr xr 11 h b . t' d phase center of the beam. Here t e su scnp S l an r 
denote, respectively, the imaginary and the real parts of 
the parameters Qx and S-.; , and similar relations apply to 
the functions Qy and 51" The parameters ax, be' 0v, 

and by characterize the higher-order amplitude. and
d phase 'variations and displacements that are aSSOCIate 
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with the polynomial factors in the solution, and the pa
rameter P is an overall phase correction. The parameter 
ax is sometimes recast as \/2/Wx (Refs. 12 and 13) or 
\2/u," (Ref. 15). 

Thus far we have summarized the general Hermite
Gaussian beams in terms of a set of ordinary differential 
equations given above as Eqs. (6)-(14). The solutions of 
these equations are known for a variety of optical ele
ments and systems. Our focus here will be on the astig
matic, complex, and misaligned systems that can be de
scribed in terms of generalized beam matrices of the 
forml~ 

( U" ) 
[ A, 

( 1lqx~ )ux~ = Cx 

S\"~ll x2 G l 

Bx 

Dx 

Hx ~l 
Uxl 

(llqxl)Ud , 

SxlU.d 

(17) 

where the subscripts 1 and 2 indicate the input and out
put parameters of the optical element, respectively. The 
Ax, B x' C

l
, and Dx elements in Eq. (17) are the usual 

complex matrix elements for an aligned system, and G x 

and H., allow the inclusion of displacements and mis
alignments in the formalism. Similar results apply for 
the y variations of the fields. The matrix in Eq. (17) has 
been obtained for a wide variety of optical elements. 12 

Optical systems may be analyzed by multiplying the ma
trix representations of the optical elements in the reverse 
of the order in which those elements are encountered by 
an incident light beam. 

We indicate first the beam transformation formulas for 
an arbitrary complex distributed lenslike medium. Di
viding the second row of Eq. (17) by its first row yields the 
Kogelnik transformations: 

1 Cx + Dxlqx1 

Ax + Bx1qxl 
, (18) 

qx~ 

1 Cy + Dylqyl 

Ay + Bylqyl 
(19) 

qy2 

Similarly, the displacement transformations are obtained 
by dividing the third row of Eq. (17) by its first row: 12 

(20) 

Syl + Gy + Hylqyl 
Sv2 = A B I . y + y qy1 

(21) 

Using these results, one may obtain transformation for
mulas for the other parameters of the beams: 

ad ( 2iax1
2 Bx ) -112 

a l'J = A B I 1 + k . ~ x + x qxl . 01 Ax + Bx Iq xl· ' 

(22) 

(
. axlSxl Bx ) 

. bx1 - k A BI 01 x + x qxl 

( 
2ia.d 2 Bx ) ··1/2 

X 1 + --- ------
kOI Ax + Bx1qxI 

(24) 
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(25) 

i ( 2ia Y 1
2 

By ) + -2 n In 1 + . 
k01 Ay + BylqY1 

Bx (Sx1 + Gx + H x lqx1)2 

2k01 Ax + Bx Iq xl 

By (Sy1 + Gy + Hylq yd 2 

2kol Ay + BylqY1 

1 JZ( dRy dGy), 
+ 2kol 0 Gy dz' - Hy dz' dz. (26) 

These transformation formulas are applicable to a wide 
range of optical elements and systems in addition to dis
tributed lenslike media. With Eqs. (18)-(26), Eq. (5) is a 
complete solution for the propagation of a Hermite
Gaussian beam between two reference planes of a me
dium characterized by a matrix of the form given in Eq. 
(17). 

3. DERIVATION OF THE BEAM MODES 
The purpose of this section is to obtain a new set of Car
tesian beam solutions of the paraxial wave equation in 
the form of Hermite-sinusoidal-Gaussian functions. Al
though one could obtain these solutions starting directly 
from the wave equation, there is a shortcut that reduces 
the mathematical effort required. Since the ordinary 
Hermite-Gaussian beam solutions are already known to 
form a complete set, any other solutions that might be 
possible must be expressible as a linear combination of 
the Hermite-Gaussian results. Our objective is to show 
that an appropriate superposition of these beams can cor
respond to the Hermite-sinusoidal-Gaussian solutions 
that are being emphasized here. In exploring this possi
bility, we will focus first on the field variations in the x 
direction. 
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The notation involved in introducing the sinusoidal 
variations in the x direction is simplified if the phase pa
rameter is broken up into a part that involves the com
plex displacement parameter S x and a part that does not. 
Thus we rewrite Eq. (26) in the form 

Bx (Sxl + Ox + Hx/qxd 2 
P 2 = PI - -- ---------

2kol Ax + Bx/qxl 

Hx 
+ k- Sxl + Po, 

01 

where the phase Po is given by 

i 
2" In(Ay + By/qyl) 

+ 
i ( 2ia,,2 Bx ) 
-mln1+--
2 kOl Ax + Bx/qxl 

+ i ( 2iay1
2 

By ) -nln1+--
2 kOl Ay + By /qyl 

By (Syl + Oy + Hy/qYl)2 

2kOl Ay + By/qyl 

+ 
Hx 

2kol (Gx + Hx/qxl) 

+ Hy / 
2kol (2Syl + Oy + Hy qyl) 

+ 
1 f( dH, dGx) , 

2kol 0 Ox dz' - Hx dz' dz 

1 f( dHy dGy ) , 
+ 2kOl 0 Oy dz' -Hy dz', dz. 

(27) 

(28) 

With this change of variables, a special superposition of 
two of the beams (an a beam and a (3 beam) given above 
as Eq. (5) can now be written in the form 

A 2,m,n(x, y) = AoHm(ax2x + bx2 )Hn(a yV' + by2 ) 

[ 
. ( Qx2X2 QyV'2 ). 

X exp -l -2- + -2- + SyV' 

X{~ exp[ -i(Sxza-X + P2a)] 

+ ~ exp[ -i(Sx2;fC + P 2,B)]}' (29) 

From Eq. (20) the transformation formulas for these new 
complex displacement parameters are 

Sxla + Ox + Hx/qxl 
Sx2a = Ax + Bx/qxl ' 

(30) 

Sxl,B + Ox + Hx/qxl 
Sx2,B = Ax + Bx/qxl ' 

(31) 

Vol. 15, No. 4/ApriI1998/J. Opt. Soc. Am. A 957 

and from Eq. (27) the transformations for the new phase 
parameters are 

B t (SrI" + Or + Hx /qrl ):! 
P 2a = PIa - -2k A B / 

01 x + r (jxl 

Hx 
+ k- S.tl" + PO, 

01 

Hx 
+ -k Srl{3 + Po· 

01 

(32) 

To be specific, we now specify the initial values of the 
complex displacement and phase parameters in the forms 

8 x }I1' == Sx] - a_~l , (34) 

(35) 

(36) 

(37) 

When Eqs. (30)-(37) are substituted into Eq. (29), one ob
tains 

A 2,m"JX, y) 

2 B (SrI + a~1 + Gx + Hx/qxd 
+ P 1 + b ~ 1 - 2 k

X 

A + B /q 
01 x x x 1 

+ :~ (8x1 + a;l) + Poll)· (38) 

Mter some rearranging Eq. (38) is 
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1
1 [.(. -a~l 

X - exp -l X - b ~ 1 
2 Ax + Bx1qxl 

1 [. (-a~l , 
+ -2 exp + l . A + B 1 X - b xl x x qx1 

( 

, 2 B ) . a x 1 x " 
X exp l -2k A B 1 cos(ax2x + bx2 )' 

\ 01 x + x q xl 

(39) 

where Sx2 and P2 are given again by Eqs. (20) and (27), 
respectively, and we have identified the new parameters 
a.~2 and b~2 with the formulas 

, 
, a x1 

a x 2 = A B 1 ' x + x qxl 
(40) 

Thus we have obtained a new set of beam solutions that 
has the same form as that of our original set of Hermite
Gaussian beams, except that these original beams now 
have an extra evolving complex off-axis sinusoidal factor 
and an extra complex phase exponent. It is important to 
emphasize that these new factors to the Hermite
Gaussian beam solutions are the same as the correspond
ing terms in the sinusoidal-Gaussian beams that were ob
tained as direct solutions of the paraxial wave equation. 
Thus the new phase exponent in Eq. (39) was included 
previously in Eq. (35) of Ref. 14 (with I'x set to unity), the 
coefficient a~2 in Eq. (40) was given as Eq. (30) in the ref
erence, and the term b~2 in Eq. (41) is compatible for 
aligned systems (Ox = 0, Hx = 0) with the previous Eq. 
(33). 

It is, of course, true that similar sinusoidal variations 
can also be found for the y direction and that sine
function or complex-exponential dependences can be used 
instead of cosine dependences. Thus we can write our 
general Hermite-sinusoidal-Gaussian solutions in the 
form 

L. W. Casperson and A. A. Tovar 

A 2,m,n(X, y) 

= AoHm(ax2x + bx2)Hn(ayzY + by2 ) 

[ ( 
Qx2X2 QyzY2 S S ') I 

X exp -i -2- + -2- + x2X + yzY + P 2 

The large parentheses in the last row of Eq. (42) repre
sent a possible superposition of the functions that they 
enclose. Furthermore, if an i is factored out of a~2 and 
b~2 everywhere, the solutions can be written in terms of 
ordinary exponential or hyperbolic trigonometric func
tions, and the hyperbolic functions are expected to be at 
least as important in practice as the ordinary trigonomet
ric functions shown. More complicated separations in
volving higher products of trigonometric and hyperbolic 
and exponential functions could also be readily obtained 
by using standard trigonometric identities. With this 
understanding, Eq. (42) is our general form for the 
Hermite-sinusoidal-Gaussian beams of complex argu
ment in misaligned complex optical systems. 

To visualize the shape of the Hermite-sinusoidal
Gaussian beams, we consider the special case axl 
= )21 WI, where WI is the spot size of the beam at refer
ence plane 1. If we further restrict our attention to the x 
variation of an on-axis beam, then an example of a beam 
field at this plane is 

A 1,m(x, y) = AoHm( fix1w1)exp( -x2Iwi)cosh(a~lx). 
(43) 

With the change of variable x' = xlw 1, this field can be 
written in the normalized form 

A ( ) = A I,m (x, y) 
m X, Y Ao 

= H m( fix' )exp( -X ,2)cosh(a"x'), (44) 

where the parameter change a" = a~lwl has also been 
introduced. Finally, the intensity is often of more direct 
interest than the field, and from Eq. (44) the intensity is 

Im(x, y) = Am2(x, y) 

= H~( fix')exp( -2x,2)cosh2(a"x'). (45) 

Equation (45) is plotted in Fig. 1 for the mode index 
m = 4 and various values of the coefficient a". With 
a" = 0 it is clear from the figure, as from Eq. (45), that 
the intensity distribution reduces to the familiar H 4 

Hermite-Gaussian form. For larger values of a", the 
coshCa"x') function acts to concentrate the energy in the 
outer lobes of the beam. Thus the beam formulas given 
in this example would be useful for representing the 
propagation of a field distribution that at some reference 
plane has its energy concentrated in two widely spaced 
lobes. 
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Fig. 1. Intensity plots of m = 4 Hermite-sinusoidal-Gaussian 
beam profiles from Eq. (45). The parameter a" represents ap
proximately the ratio of the width associated with the Hermite
Gaussian factors to the width associated with the sinusoidal por
tion of the beam, and in the plots a" takes on the values 0.0, 0.5, 
1.0, and 2.0. 

4. SINUSOIDAL-GAUSSIAN EXPANSIONS 
In the above analysis we have described a new way to ob
tain the sinusoidal-Gaussian beams that had been found 
recently as solutions of the paraxial wave equation, and a 
new and more general class of Hermite-sinusoidal
Gaussian beams has also been developed. For the re
mainder of this study, we focus on some of the practical 
applications of the sinusoidal-Gaussian beam solutions. 
It is not as obvious with the sine functions as with the 
more standard Hermite polynomials how these solutions 
can be used as a basis for the expansion of an arbitrary 
electromagnetic beam field, and such expansions are the 
subject of this discussion. 

Classification of the beams described by Eq. (42) is 
somewhat different from the usual classification of con
ventional polynomial-Gaussian beams. In the 
polynomial- or Bessel-Gaussian beams, the governing 
beam formulas typically have one or more indices in ad
dition to the other z -dependent beam parameters, and 
these indices are integer valued to ensure beam confine-
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ment. For these beams questions of orthogonality, com
pleteness, and beam expansions are addressed, assuming 
t~at the be~m parameters have the same values for a par
tIcular famIly of beams and the beams within that family 
differ from each other only in having differing values ~f 
the integer indices. The beam parameters of a familv, 
spot size for example, are each assigned a single arbitra;y 
value at the reference plane of an expansion. . 

The sinusoidal-Gaussian beams, on the other hand, are 
confined for all values of the arguments of the sine func
tions, and thus they are not automatically associated with 
discrete indices. Sinusoidal functions of continuous ar
gument become a set of discrete modes only when bound
ary conditions are imposed, and when that is done, inte
ger indices are typically inserted within the arguments of 
the functions. In the case of freely propagating 
sinusoidal-Gaussian beams, there are no intrinsic bound
aries in the transverse direction. Any transverse con
straints that might lead to such indices must be imposed 
in some other way. For purposes of our beam expan
sions, it is necessary only that an expansion interval be 
chosen that is larger than the beam diameter at the ex
pansion plane. This diameter must encompass both the 
actual beam and the off-axis Gaussian factor that has 
been chosen for its lowest-order representation. In this 
case the resulting family of complex sinusoidal factors is 
exactly the usual basis set for an ordinary Fourier-series 
expansion. 

To see how an arbitrary field can be expanded in terms 
of sinusoidal-Gaussian beams, we first consider the gen
eral complex Fourier series. A function j'(x) can be ex
panded over the interval from - L/2 to L/2 in the series]f) 

((x) = L an exp(i2mzxIL), (46) 

where the expansion coefficients are given by 

J
U'2 

an = . {(x)exp(-i27TnxIL)dx. 
Ll2 

(47) 

As an illustration, we will express the complex expansion 
coefficients in terms of their magnitude and phase: 

an = Ian lexp(i ¢II)' 

With this substitution Eq. (46) is 

{(x) = L la n lexp[i(27TnxIL + cPnlj 
n 

+ i sin(27TnxIL + ¢II>]' 

(48) 

(49) 

These trigonometric functions are in just the form given 
in Eq. (42) if one makes the reference plane identifica
tions a;l = 27Tn1L and b;l = ¢n' 

With this background information on Fourier series, we 
can now indicate a procedure for expanding an arbitrary 
field distribution in a series of sinusoidal-Gaussian 
beams. The first step is to select the Gaussian beam pa
rameters to be used in the expansion. For this purpose 
the off-axis Gaussian factor should represent an approxi
mate fit to the beam being represented. The assumed 
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Gaussian factor should then be divided into the given 
beam, and the quotient should be expanded in a Fourier 
series. As noted above, it is necessary only that the ex
pansion interval be large compared with the beam and its 
Gaussian approximation. Each term in such an expan
sion can be propagated analytically by using the formulas 
of Section 3. 

It is, of course, also possible to use an expansion inter
val that is much larger than the beam diameter. This 
would, however, require the inclusiol1 of a larger number 
of terms in the Fourier expansion. With an infinite ex
pansion interval, the Fourier-series representation 
evolves into a continuous complex Fourier transform. 
Such a transform is never required in this method 
though, because the finite Gaussian beam factor width 
renders any larger expansion region unnecessary. Quite 
complicated beam profiles should be representable with 
only a few terms in the expansion. 

To illustrate some of the concepts discussed above, we 
will briefly sketch a specific example. Consider the 
propagation of a conventional TEMm,n Hermite-Gaussian 
beam through the hypothetical optical system shown in 
Fig. 2. In this system the lenses have a focal length of (, 
and the distance between each of the lenses and the 
transmission filter is also f. The transmission filter in 
this case is a thin element that has the amplitude trans
fer characteristic 

T(x) = isin(27TxIL)i, (50) 

which is shown in Fig. 3. For this purpose we wish to 
represent the filter characteristic in a Fourier series, and 
thus Eq. (50) is written as 17 

~ _ ~ [COS(47TXIL) + COS(87TXIL) 
T(x) = 7T 7T 1 X 3 3 X 5 

+ 
cos( 127TXI L) 

5 X 7 + .. J (51) 

Similar methods would also be applicable with phase, 
rather than amplitude, filters. I8 

The first step in analyzing the transfer of a Hermite
Gaussian beam through the system shown in Fig. 1 is to 
propagate the beam from the input plane to the transmis
sion filter. In this example the beam matrix for this pur
pose is 

The propagation methods for this region are already well 
known, and the initial Hermite-Gaussian beam will still 
be in the Hermite-Gaussian beam form. Next, to propa
gate the resulting beam through the transmission filter, 
the beam at the filter must be multiplied by T(x) as given 
in Eq. (50). Clearly, the result in this case will be a set of 
beams, each of which is a Hermite-sinusoidal-Gaussian 
in the form of Eq. (42). Thus Eq. (42) together with the 
propagation formulas presented in Sections 2 and 3 allow 
for the further propagation of the filtered beam. For the 
case shown in this example, the propagation to the output 
plane is governed by the matrix 

Input Plane 
I 

J 

~ 
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Output Plane 

I 
Transmission 

Filter 

Fig. 2. Example of an optical system containing a periodic 
transmission filter, as discussed in Section 4. In this system the 
filter is centered between two identical lenses. 

T(x) 

--~------~------~~----~~------1rX 

-2L -L L 2L 

Fig. 3. Transmission characteristic 1 sin (xL/p )1 for the amplitude 
filter in the system shown in Fig. 2. 

M2 ~ l-~/f ~l[~ ~l ~ [-~/f ~l· (53) 

At the output plane one can find the resultant field by 
adding up the individual complex Hermite-sinusoidal
Gaussian beam components. This general procedure 
would be applicable for any system containing a filter for 
which the transmission characteristic can be represented 
by a Fourier series. The method could be extended to 
systems with multiple filters, and in this case each com
ponent resulting from the expansion at one filter would it
self need to be expanded on transmission through the 
next filter. 

It may be noted here that the propagation of beams 
that have been transmitted through filters represented by 
their Fourier expansions is well known in studies of spa
tial modulation. I8 In earlier treatments, however, the 
propagation of the filtered beams has been based on dif
fraction integral methods. With the procedure reported 
here, input Hermite-Gaussian beams are expanded by 
the Fourier-represented transmission filter into a set of 
components that can be propagated analytically. If the 
number of components needed for this expansion is not 
large, this procedure is an efficient alternative to the 
brute force diffraction calculations. 

5. DISCUSSION 
General Hermite-sinusoidal-Gaussian beam solutions of 
the paraxial wave equation have been developed for the 
propagation of off-axis electromagnetic waves through 
misaligned complex optical systems. These solutions in
clude as special cases the Hermite-Gaussian beams of 
complex argument that have been studied previously and 
also the sinusoidal-Gaussian beams that have recently 
been reported. The generality of these new beams pro
vides added flexibility as one seeks the simplest represen
tation for a given propagation or resonator application. 
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In seeking to expand a field distribution in analytically 
propagatable beam functions, one would be led to con
sider beams that individually are as similar as possible to 
the field being expanded. This choice would tend to mini
mize the number of terms required for the expansion. 
For example, a field with most of its power in outer lobes 
might be well represented by a few higher-order 
Hermite-Gaussian functions, whereas a field emerging 
from a waveguide might couple most efficiently to a few 
sinusoidal-Gaussian functions. 

Other considerations in choosing an expansion set 
might include mathematical simplicity or familiarity. 
Expansions in terms of Hermite-Gaussian solutions re
quire some juggling of special functions, whereas 
sinusoidal-Gaussian expansions reduce to very basic Fou
rier series. Several aspects of field expansions in 
sinusoidal-Gaussian functions have been treated in Sec
tion 4. In particular, it has been indicated how a general 
sinusoidal-Gaussian beam solution can be reinterpreted 
as a set of discrete functions for use in such expansions. 

The sinusoidal-Gaussian field solutions also lead to the 
possibility of new optical elements that do not have a 
simple ABCD matrix representation. For example, if a 
Gaussian beam is incident on an aperture having a cosh 
amplitude transmission function, one obtains a cosh
Gaussian beam, and such a beam can be propagated ana
lytically through further ABCD elements. If the trans
mission element is not immediately in the form of a 
sinusoidal or hyperbolic-sinusoidal function, it can always 
be expanded in a series of such functions. In the example 
of Section 4 it was shown how an incident Hermite
Gaussian be~m can be propagated through an optical sys
tem that contains a periodic amplitude transmission fil
ter, and similar methods are applicable for phase filters. 
The transmission function of the filter is expanded in a 
Fourier series, and the output from the filter can be inter
preted as a set of Hermite-sinusoidal-Gaussian beams. 
Each of these component beams can then be propagated 
analytically through a wide variety of optical elements by 
using the formulas developed in this study. 
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