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We consider Hölder continuous circulant (2 × 2) matrix functions G1
2 defined on the fractal

boundary Γ of a domain Ω in R
2n. The main goal is to study under which conditions such a

function G1
2 can be decomposed as G1

2 = G1+
2 − G1−

2 , where the components G1±
2 are extendable

toH-monogenic functions in the interior and the exterior of Ω, respectively.H-monogenicity are a
concept from the framework of Hermitean Clifford analysis, a higher-dimensional function theory
centered around the simultaneous null solutions of two first-order vector-valued differential
operators, called Hermitean Dirac operators.H-monogenic functions then are the null solutions of
a (2 × 2) matrix Dirac operator, having these Hermitean Dirac operators as its entries; such matrix
functions play an important role in the function theoretic development of Hermitean Clifford
analysis. In the present paper a matricial Hermitean Téodorescu transform is the key to solve
the problem under consideration. The obtained results are then shown to include the ones where
domains with an Ahlfors-David regular boundary were considered.

1. Introduction

Clifford analysis is a higher-dimensional function theory offering a generalization of the
theory of holomorphic functions in the complex plane and, at the same time, a refinement
of classical harmonic analysis. The standard case, also referred to as Euclidean Clifford
analysis, focuses on the null solutions, calledmonogenic functions, of the vector-valued Dirac
operator ∂X =

∑m
j=1 ej ∂xj , which factorizes the m-dimensional Laplacian: ∂2X = −Δm. Here
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(e1, . . . , em) is an orthonormal basis for the quadratic space R
0,m underlying the construction

of the real Clifford algebra R0,m, where the considered functions take their values. Since
the Dirac operator is invariant with respect to the action of the orthogonal group O(m;R),
doubly covered by the Pin(m) group of the Clifford algebra R0,m, the resulting function
theory is said to be rotation invariant. Standard references for Euclidean Clifford analysis are
[1–5].

More recently, Hermitean Clifford analysis has emerged as yet a refinement of the
Euclidean case. One of the ways for introducing it is by considering the complex Clifford
algebra C2n, equipped with a complex structure, that is, an SO(2n;R) element J for which
J2 = −1. In fact, it is precisely in order to ensure that such a complex structure exists that the
dimension of the underlying vector space is taken to be even. The resulting function theory
focuses on the simultaneous null solutions of two complex Hermitean Dirac operators ∂Z
and ∂Z† which no longer factorize but still decompose the Laplace operator in the sense that
4(∂Z∂Z† + ∂Z†∂Z) = Δ2n. Since the system indeed constitutes a refinement of the original
Euclidean Dirac equation, the fundamental group invariance of this system breaks down to
a smaller group; it was shown in [6] that it concerns the unitary group U(n;C). The study of
complex Dirac operators was initiated in [7–10]; a systematic development of the associated
function theory still is in full progress; see, for example, [6, 11–15].

In [16] a Cauchy integral formula for Hermiteanmonogenic functions was established,
obviously an essential result in the development of the function theory. However, as in
some very particular cases Hermitean monogenicity is equivalent with (anti)holomorphy
in n complex variables (z1, . . . , zn) (see [12]), such a representation formula could not take
the traditional form as in the complex plane or in Euclidean Clifford analysis. The matrix
approach needed to obtain the desired result leads to the concept of (left or right) H-
monogenic functions, introduced as circulant (2 × 2) matrix functions, which are (left or
right) null solutions of a (2 × 2) circulant matrix Dirac operator, having the Hermitean Dirac
operators ∂Z and ∂Z† as its entries. Although the H-monogenic system thus arose as an
auxiliary concept in Hermitean Clifford analysis, it was meanwhile also further studied itself;
see also [15, 17, 18].

In the present paper, we consider Hölder continuous circulant (2× 2)matrix functions
G1

2 defined on the fractal boundary Γ of a domain Ω in R
2n, and we investigate under

which conditions such a function G1
2 can be decomposed as G1

2 = G1
2
+ − G1

2
−, where

the components G1
2
± are extendable to H-monogenic functions in the interior and the

exterior of Ω, respectively. This type of decomposition (or “jump”) problem has already
been considered in Euclidean Clifford analysis in, for example, [19–22] for domains with
boundaries showing minimal smoothness, including some results for fractal boundaries as
well. In [23] a similar decomposition problem for domains with fractal boundaries was
considered in the Hermitean Clifford context, the approach, however, not being suited for
a treatment of the circulant matrix situation. It turns out that the introduction of a matricial
Hermitean Téodorescu transform is crucial to solve this problem.

2. Preliminaries

2.1. Some Elements of Hermitean Clifford Analysis

Let (e1, . . . , em) be an orthonormal basis of Euclidean space R
m and consider the complex

Clifford algebra Cm constructed over Rm. The noncommutative or geometric multiplication
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in Cm is governed by the following rules:

e2j = −1, j = 1, . . . , m,

ejek + ekej = 0, j /= k.
(2.1)

The Clifford algebra Cm thus is generated additively by elements of the form eA = ej1 · · · ejk ,
where A = {j1, . . . , jk} ⊂ {1, . . . , m} is such that j1 < · · · < jk, while for A = ∅, one puts e∅ = 1,
the identity element. The dimension of Cm thus is 2m. Any Clifford number λ ∈ Cm may thus
be written as λ =

∑
A λAeA, λA ∈ C, and its Hermitean conjugate λ† is defined by

λ† =
∑

A

λcAeA, (2.2)

where the bar denotes the real Clifford algebra conjugation, that is, the main anti-involution
for which ej = −ej , and λcA stands for the complex conjugate of the complex number λA.

Euclidean space Rm is embedded in the Clifford algebra Cm by identifying (x1, . . . , xm)
with the real Clifford vector X given by X =

∑m
j=1 ejxj , for which X2 = −〈X,X〉 = −|X|2. The

Fischer dual of the vector X is the vector-valued first-order Dirac operator ∂X =
∑m

j=1 ej∂xj ,
factorizing the Laplacian: Δm = −∂2X ; it is precisely this Dirac operator which underlies the
notion of monogenicity of a function, the higher-dimensional counterpart of holomorphy
in the complex plane. The functions under consideration are defined on (open subsets
of) R

m and take values in the Clifford algebra Cm. They are of the form g =
∑

A gAeA,
where the functions gA are complex valued. Whenever a property such as continuity and
differentiability is ascribed to g, it is meant that all the components gA possess the cited
property. A Clifford algebra-valued function g, defined and differentiable in an open region
Ω of Rm, is then called (left)monogenic in Ω if and only if ∂Xg = 0 in Ω.

The transition from Euclidean Clifford analysis as described above to the Hermitean
Clifford setting is essentially based on the introduction of a complex structure J . This is a
particular SO(m) element, satisfying J2 = −1m. Since such an element cannot exist when
the dimension m of the vector space is odd, we will put m = 2n from now on. In terms
of the chosen orthonormal basis, a particular realization of the complex structure may be
J[e2j−1] = −e2j and J[e2j] = e2j−1, j = 1, . . . , n. Two projection operators ±(1/2)(12n ± iJ)
associated to this complex structure J then produce the main objects of Hermitean Clifford
analysis by acting upon the corresponding objects in the Euclidean setting; see [11, 12]. First
of all, the vector space C

2n thus decomposes as W+ ⊕ W− into two isotropic subspaces. The
real Clifford vector X is now denoted by

X =
n∑

j=1

(
e2j−1x2j−1 + e2jx2j

)
, (2.3)

and its corresponding Dirac operator ∂X by

∂X =
n∑

j=1

(
e2j−1∂x2j−1 + e2j ∂x2j

)
, (2.4)
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while we will also consider their so-called “twisted” counterparts, obtained through the
action of J , that is,

X
∣
∣ =

n∑

j=1

(
e2j−1x2j − e2jx2j−1

)
,

∂X| =
n∑

j=1

(
e2j−1∂x2j − e2j∂x2j−1

)
.

(2.5)

As was the case with ∂X , a notion of monogenicity may be associated in a natural way to ∂X|
as well. The projections of the vector variable X and the Dirac operator ∂X on the spaces W±

then give rise to the Hermitean Clifford variables Z and Z†, given by

Z =
1
2
(
X + iX

∣
∣
)
, Z† = −1

2
(
X − iX

∣
∣
)
, (2.6)

and (up to a factor) to the Hermitean Dirac operators ∂Z and ∂Z† given by

∂Z† =
1
4
(
∂X + i∂X|

)
, ∂Z = −1

4
(
∂X − i∂X|

)
(2.7)

(see [6, 11]). Observe for further use that the Hermitean vector variables and Dirac operators
are isotropic, that is, (Z)2 = (Z†)

2
= 0 and (∂Z)

2 = (∂Z†)2 = 0, whence the Laplacian allows for

the decompositionΔ2n = 4 (∂Z∂Z† +∂Z†∂Z), while alsoZ Z†+Z†Z = |Z|2 = |Z†|2 = |X|2. These
objects lie at the core of the Hermitean function theory by means of the following definition
(see, e.g., [6, 11]).

Definition 2.1. A continuously differentiable function g inΩ ⊂ R
2n with values in C2n is called

left Hermitean monogenic (or left h-monogenic) inΩ, if and only if it satisfies inΩ the system

∂Zg = 0 = ∂Z†g (2.8)

or, equivalently, the system

∂Xg = 0 = ∂X|g. (2.9)

In a similar way right h-monogenicity is defined. Functions which are both left and right
h-monogenic are called two-sided h-monogenic. This definition inspires the statement that h-
monogenicity constitutes a refinement of monogenicity, since h-monogenic functions (either
left or right) are monogenic w.r.t. both Dirac operators ∂X and ∂X|.

In what follows, we will systematically take Ω ⊂ R
2n to be a so-called Jordan domain,

that is, a bounded oriented connected open subset of R2n, the boundary Γ of which is a
compact topological surface. Note that, in the case n = 1, this notion coincides with the usual
one of a Jordan domain in the complex plane. For further use, we also introduce the notation
Ω+ ≡ Ω, and Ω− ≡ R

2n \Ω.
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2.2. Some Elements of the Matricial Hermitean Clifford Setting

The fundamental solutions of the Dirac operators ∂X and ∂X| are, respectively, given by

E
(
X
)
= − 1

σ2n

X
∣
∣X
∣
∣2n

, E |
(
X
)
= − 1

σ2n

X
∣
∣

∣
∣X
∣
∣2n

, X ∈ R
2n \ {0}, (2.10)

where σ2n denotes the surface area of the unit sphere in R
2n. Introducing the functions E =

−(E + iE|) and E† = (E − iE|), explicitly given by

E
(
Z
)
=

2
σ2n

Z
∣
∣Z
∣
∣2n

, E†(Z
)
=

2
σ2n

Z†

∣
∣Z
∣
∣2n

, (2.11)

it is directly seen that E and E† are not the fundamental solutions to the respective Hermitean
Dirac operators ∂Z and ∂Z† . Surprisingly, however, introducing the particular circulant (2×2)
matrices

D(Z,Z†) =

(
∂Z ∂Z†

∂Z† ∂Z

)

, E =

(
E E†

E† E

)

, δ =

(
δ 0

0 δ

)

, (2.12)

where δ is the Dirac delta distribution, one obtains that D(Z,Z†)E(Z) = δ(Z), so that E may
be considered as a fundamental solution of D(Z,Z†) in a matricial context, see, for example,
[8, 16, 18]. Moreover, the Dirac matrix D(Z,Z†) in some sense factorizes the Laplacian, since

4D(Z,Z†)

(
D(Z,Z†)

)†
=

(
Δ2n 0

0 Δ2n

)

≡ Δ, (2.13)

where Δ2n is the usual Laplace operator in R
2n. It was exactly this simple observation which

leads to the idea of following a matrix approach in order to establish integral representation
formulae in the Hermitean setting; see [15, 16]. Moreover, it inspired the following definition.

Definition 2.2. Let g1, g2 be continuously differentiable functions defined in Ω and taking
values in C2n, and consider the matrix function:

G1
2 =

(
g1 g2

g2 g1

)

. (2.14)

ThenG1
2 is called left (resp., right)H-monogenic inΩ if and only if it satisfies inΩ the system

D(Z,Z†)G
1
2 = O

(
resp.,G1

2D(Z,Z†) = O
)
. (2.15)

Here O denotes the matrix with zero entries.
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Explicitly, the system for leftH-monogenicity reads:

∂Z
[
g1
]
+ ∂Z†

[
g2
]
= 0,

∂Z†
[
g1
]
+ ∂Z

[
g2
]
= 0.

(2.16)

Again, a notion of two-sided H-monogenicity may be defined similarly. However, unless
mentioned explicitly, we will only work with leftH-monogenic matrix functions. This matrix
approach has also been successfully applied in [17, 24] for the construction of a boundary
values theory of h-monogenic functions.

Observe however that the H-monogenicity of the matrix function G1
2 does not imply

the h-monogenicity of its entry functions g1 and g2. Nevertheless, choosing in particular g1 =
g and g2 = 0, the H-monogenicity of the corresponding diagonal matrix, denoted by G0,
is seen to be equivalent to the h-monogenicity of the function g. Moreover, considering the
matricial Laplacian introduced in (2.13), one may call a matrix function G1

2 harmonic if and
only if it satisfies the equation Δ[G1

2] = O. Each H-monogenic matrix function G1
2 then is

harmonic, ensuring that its entries are harmonic functions in the usual sense.
In general, notions of continuity, differentiability, and integrability of G1

2 are
introduced by means of the corresponding notions for its entries. In what follows, we will in
particular use the notations C0,ν(Γ), C0,ν(R2n), and Lp(Ω) for the class of Hölder continuous
and p-integrable circulant matrix functions, respectively.

2.3. Some Elements of Fractal Geometry

Let E be an arbitrary subset of R2n. Then for any s ≥ 0 its Hausdorff measure Hs(E) may be
defined by

Hs(E) = lim
δ→ 0

inf

{
∞∑

k=1

(diam Bk)
s : E ⊂

∞⋃

k=1

Bk, diam Bk < δ

}

, (2.17)

where the infimum is taken over all countable δ-coverings {Bk} of Ewith open or closed balls.
Note that, for s = 2n, the Hausdorff measure H2n coincides, up to a positive multiplicative
constant, with the Lebesgue measure L2n in R

2n.
Now, let E be a compact subset of R2n. The Hausdorff dimension of E, denoted by

αH(E), is then defined as the infimum of all s ≥ 0 such that Hs(E) < ∞. For more details
concerning the Hausdorff measure and dimension we refer the reader to [25, 26].

Frequently, however, see, for example, [27], the so-called box dimension is more
appropriated than the Hausdorff dimension to measure the roughness of a given set E. By
definition, the box dimension of a compact set E ⊂ R

2n is equal to

α(E) = lim
ε→ 0

sup
logNE(ε)
− log ε

, (2.18)
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whereNE(ε) stands for theminimal number of ε-balls needed to cover E. Note that the limit in
(2.18) remains unchanged ifNE(ε) is replaced by the number of k-cubes, with 2−k ≤ ε < 2−k+1,
intersecting E. For completeness we recall that a cube Q is called a k-cube if it is of the form

[
l12−k, (l1 + 1)2−k

]
× · · · ×

[
l2n2−k, (l2n + 1)2−k

]
, (2.19)

where k and l1, . . . , l2n are integers. The box dimension and the Hausdorff dimension of a
given compact set E can be equal, which is, for instance, the case for the so-called (2n − 1)-
rectifiable sets (see [28]), but this is not the case in general, where we have that αH(E) ≤ α(E).

In what follows we will assume the boundary Γ of our Jordan domain Ω to have
Hausdorff dimension 2n − 1 ≤ αH(Γ) < 2n. This includes the case when Γ is fractal in the
sense of Mandelbrot, that is, when 2n − 1 < αH(Γ).

3. A Pair of Euclidean Téodorescu Transforms

From now on we reserve the notations Y and Y | for Clifford vectors associated to points in
Ω±. We may then consider the Euclidean Téodorescu transforms TΩg and TΩ|g of a function
g, assumed to be integrable in Ω, given by

TΩg
(
X
)
= −

∫

Ω
E
(
Y −X

)
g
(
Y
)
dV

(
Y
)
,

TΩ | g
(
X
)
= −

∫

Ω
E |

(
Y −X

)
g
(
Y
)
dV

(
Y
∣
∣
)
,

(3.1)

where dV (Y ) and dV (Y |) are oriented volume elements on Ω, for which it is easily checked
that dV (Y ) = dV (Y |). For the sake of completeness, we recall some basic properties ofTΩ and
TΩ|, which are generalizations to the case of Clifford analysis of the well-known properties
established in the complex plane.

To this end, let g be a C2n-valued function defined on Γ, which satisfies a Hölder
condition of order ν, that is, g ∈ C0,ν(Γ), where 0 < ν ≤ 1, and denote by g̃ the so-called
Whitney extension of g from Γ to the whole of R2n (see [29]). We recall that the Whitney
extension of g ∈ C0,ν(Γ) is a compactly supported function g̃ ∈ C∞(R2n \ Γ) ∩ C0,ν(R2n) for
which it holds that g̃|Γ = g and

∣
∣∂xi g̃

(
X
)∣
∣ ≤ c dist

(
X,Γ

)ν−1
, forX ∈ R

2n \ Γ, i = 1, . . . , 2n. (3.2)

We then first formulate an auxiliary result.

Lemma 3.1. ∂Xg̃ and ∂X|g̃ are p-integrable in Ω for any p < (2n − α(Γ))/(1 − ν).

Proof. We only give the main lines of the proof; for details we refer the reader to [22, Lemma
6.1]. In the notation of [30], letW =

⋃
k Wk be theWhitney partition ofΩ bymeans of k-cubes.

We then have
∫

Ω

∣
∣∂Y g̃

∣
∣p dV

(
Y
)
=
∑

Q∈W

∫

Q

∣
∣∂Y g̃

∣
∣p dV

(
Y
)
. (3.3)
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On the other hand, (3.2) implies that for Q ∈ Wk

∫

Q

∣
∣∂Y g̃

∣
∣p dV

(
Y
)
≤ c

∫

Q

dist
(
Y,Γ

)p(ν−1)
dV

(
Y
)
≤ c 2k(p(1−ν)−2n), (3.4)

since dist(Y,Γ) � 2−k. Now, invoking the fact that the number of k-cubes appearing in Wk is
less than cNΓ(2−k), while by definition of α(Γ),

NΓ

(
2−k

)
≤ c2kα

′
(3.5)

for any α′ ∈]α(Γ), 2n[, we arrive at

∫

Ω

∣
∣∂Y g̃

∣
∣pdV

(
Y
)
≤ c

∞∑

k=0

NΓ

(
2−k

)
2k(p(1−ν)−2n) ≤ c

∞∑

k=0

2k(p(1−ν)−2n+α
′), (3.6)

the last series being convergent for p < (2n − α′)/(1 − ν). In view of the arbitrary choice of α′,
this concludes the proof.

Now, take ν such that

ν >
α(Γ)
2n

, (3.7)

and then it holds that (2n − α(Γ))/(1 − ν) > 2n; whence, on account of the previous lemma,
there exist exponents p > 2n such that ∂Xg̃ and ∂X|g̃ are p-integrable in Ω. From this
observation it then follows that, for g ∈ C0,ν(Γ), with ν as in (3.7), both TΩ∂Xg̃ and TΩ | ∂X|g̃
belong to C0,μ(R2n), for any μ satisfying

μ <
2nν − α(Γ)
2n − α(Γ)

, (3.8)

due to the fact that the Téodorescu transform maps the space of p-integrable functions with
compact support to C0,(p−2n)/p(R2n) if p > 2n (see, e.g., [5]). The following result then holds.

Proposition 3.2. For g ∈ C0,ν(Γ), with ν as in (3.7), consider

Φ
(
X
)
= X

(
X
)
g̃
(
X
)
− TΩ∂Xg̃

(
X
)
,

Φ |
(
X
)
= X

(
X
)
g̃
(
X
)
− TΩ | ∂X|g̃

(
X
)
,

(3.9)

With X(X) denoting the characteristic function of the set Ω. Then Φ(X) and Φ | (X) are monogenic
in Ω+ and in Ω−, with respect to ∂X and ∂X|, respectively. They are continuous in the corresponding
closed domains, vanish at infinity, and show jump g over the boundary Γ.

Proof. For simplicity we restrict ourselves to Φ(X), the proof for Φ|(X) running along similar
lines. The continuity ofΦ on the closed domains follows from the fact thatTΩ∂Xg̃ ∈ C0,μ(R2n)
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for any μ satisfying (3.8). On the other hand, a direct calculation shows that Φ(∞) = 0 and
that

Φ+(X
)
−Φ−(X

)
= g

(
X
)
, X ∈ Γ, (3.10)

where

Φ±(X
)
= lim

Ω±�Y →X
Φ
(
Y
)
. (3.11)

Finally, the monogenicity of Φ is a direct consequence of the well-known fact that the
Téodorescu transform constitutes a right inverse of the Dirac operator.

Summarizing, any function g ∈ C0,ν(Γ), with ν as in (3.7), can be decomposed as

g = g+ − g−, (3.12)

where the components g± are extendable to monogenic functions in the interior and the
exterior of the domain Ω, with respect to ∂X and ∂X|, respectively. Note that a decomposition
of type (3.12) is said to be of class C0,μ if g± ∈ C0,μ(Ω±). The remaining question is whether
the decomposition (3.12) is unique. In order to investigate this, we will need the following
version of the Dolzhenko theorem, as proved in [22].

Theorem 3.3. Let the compact set E ⊂ R
2n be such that αH(E) < 2n + μ − 1(0 < μ ≤ 1). Then, a

function g ∈ C0,μ(R2n) which is monogenic in R
2n \ E is monogenic in the whole of R2n.

We then arrive at the following result.

Theorem 3.4. Suppose that

αH(Γ) − 2n + 1 < μ <
2nν − α(Γ)
2n − α(Γ)

. (3.13)

Then, for any g in C0,ν(Γ), 0 < ν ≤ 1, there exists a unique decomposition (3.12) of class C0,μ.

Proof. The existence being shown above, it remains to prove the uniqueness. To this end,
assume that g admits two decompositions of class C0,μ, denoted by f± and h±, respectively.
Then

f+ − f− = g = h+ − h−, on Γ, (3.14)

implying that

f+ − h+ = f− − h−, on Γ. (3.15)

Consequently, the function f − h is monogenic in R
2n \ Γ and belongs to C0,μ(R2n), whence

it is monogenic in R
2n on account of Theorem 3.3, while it also vanishes at ∞. By Liouville’s

Theorem we conclude that f ≡ h.
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4. A Matricial Hermitean Téodorescu Transform

Afirst step in the solution of theHermiteanmatrix decomposition problem is the introduction
of the matricial Hermitean Téodorescu transform:

TΩG1
2
(
Y
)
= −

∫

Ω
E
(
Z − V

)
G1

2
(
X
)
dW

(
Z,Z†

)
, (4.1)

where dW(Z,Z†) is the associated volume element given by

dV
(
X
)
= (−1)n(n−1)/2

(
i

2

)n

dW
(
Z,Z†

)
, (4.2)

and (V , V †) denote the Hermitean counterparts of (Y, Y |), that is,

V =
1
2
(
Y + iY

∣
∣
)
,

V † = −1
2
(
Y − iY

∣
∣
)
.

(4.3)

It clearly holds that TΩG1
2(∞) = O.

A direct calculation reveals that the Hermitean Téodorescu transform TΩ can be
expresed in terms of the Euclidean Téodorescu transforms TΩ and TΩ| as follows (see [15]):

TΩG1
2 = (−1)n(n+1)/2(2i)n

⎛

⎜
⎝

TΩ
[
g1 − g2

]
+ iTΩ |

[
g1 + g2

]
−TΩ

[
g1 − g2

]
+ iTΩ |

[
g1 + g2

]

−TΩ
[
g1 − g2

]
+ iTΩ |

[
g1 + g2

]
TΩ

[
g1 − g2

]
+ iTΩ |

[
g1 + g2

]

⎞

⎟
⎠.

(4.4)

In particular, for the special case of the matrix function G0 (i.e., g1 = g and g2 = 0) this
expression reduces to

TΩG0 = (−1)n(n+1)/2(2i)n
⎛

⎜
⎝

TΩ
[
g
]
+ iTΩ |

[
g
]

−TΩ
[
g
]
+ iTΩ |

[
g
]

−TΩ
[
g
]
+ iTΩ |

[
g
]

TΩ
[
g
]
+ iTΩ |

[
g
]

⎞

⎟
⎠. (4.5)

In what follows we will denote by G̃1
2 the Whitney extension of G1

2, that is,

G̃1
2 =

(
g̃1 g̃2

g̃2 g̃1

)

. (4.6)

The following theorem then contains some of its basic properties of the matricial Hermitean
Téodorescu transform. They can be proven using standard techniques applied to the present
matrix context.
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Theorem 4.1. (i) IfG1
2 ∈ Lp(Ω), with p > 2n, then TΩG1

2 ∈ C0,(p−2n)/p(R2n).
(ii) IfG1

2 ∈ L1(Ω), then

D(Z,Z†)TΩG1
2
(
Y
)
=

⎧
⎨

⎩

(−1)n(n+1)/2(2i)nG1
2

(
Y
)
, Y ∈ Ω+,

0, Y ∈ Ω−.
(4.7)

(iii) IfG1
2 ∈ C0,ν(Γ) with ν as in (3.7), then

TΩD(Z,Z†)G̃
1
2 ∈ C0,μ

(
R

2n
)

(4.8)

for any μ satisfying (3.8).

5. The H-Monogenic Decomposition Problem

We are now in the possibility to treat the H-monogenic decomposition problem; it means to
study under which conditions a given matrix function G1

2 ∈ C0,ν(Γ) can be decomposed as

G1
2 = G1

2
+ −G1

2
−
, (5.1)

where the components G1
2
±, are Hölder continuous matrix functions on Γ, which are

Hermitean monogenically extendable to Ω± respectively, and moreover G1
2
−(∞) = O. The

following theorem provides an answer to that question.

Theorem 5.1. Let G1
2 ∈ C0,ν(Γ), with ν as in (3.7). Then G1

2 admits the Hermitean monogenic
decomposition (5.1), where the components are explicitly given by

G1
2
+
= G̃1

2 −
(−1)n(n+1)/2

(2i)n
TΩD(Z,Z†)G̃

1
2,

G1
2
−
=

(−1)n(n+1)/2

(2i)n
TΩD(Z,Z†)G̃

1
2.

(5.2)

Proof. On account of the assumption on ν, it follows that D(Z,Z†)G̃
1
2 belongs to Lp(Ω), for

p = 1 and p > 2n, simultaneously. Then, the Hölder continuity of G1
2
± directly follows from

Theorem 4.1, (i) and (iii). Next, the matrix inversion formula (ii) in Theorem 4.1 yields

D(Z,Z†)G
1
2
±
= O in R

2n \ Γ (5.3)

showing theH-monogenicity ofG1
2
± in Ω±, respectively.
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In order to rephrase Theorem 5.1 in the h-monogenic setting, as studied in [23], we
only need to ensure that

(−1)n(n+1)/2

(2i)n
TΩD(Z,Z†)G̃0

=

⎛

⎝
TΩ

[
∂Zg̃ − ∂Z† g̃

]
+ iTΩ |

[
∂Zg̃ + ∂Z† g̃

]
0

0 TΩ

[
∂Zg̃ − ∂Z† g̃

]
+ iTΩ |

[
∂Zg̃ + ∂Z† g̃

]

⎞

⎠

(5.4)

or, equivalently, that

TΩ

[
∂Zg̃ − ∂Z† g̃

]
= iTΩ |

[
∂Zg̃ + ∂Z† g̃

]
, (5.5)

which, by means of some direct calculations, can be rewritten as

TΩ∂Xg̃ = TΩ | ∂X|g̃. (5.6)

This is precisely the condition under which a function g ∈ C0,ν(Γ) has been found to admit
an h-monogenic decomposition (3.12); see [23, Theorem 2]. This result may be reformulated
into the present setting as follows.

Theorem 5.2. Let g ∈ C0,ν(Γ), with ν as in (3.7), and consider the corresponding matrix function
G0 ∈ C0,ν(Γ). ThenG0 admits the decomposition (5.1) in terms of h-monogenic functions if and only
if (5.4) holds.

Remark 5.3. Even though the decomposition (5.1) is not unique in general, it will be so in the
corresponding class:

C0,μ =
{
G1

2 | g1, g2 ∈ C0,μ

}
(5.7)

for αH(Γ) − 2n + 1 < μ < (2nν − α(Γ))/(2n − α(Γ)); see Theorem 3.4.

Remark 5.4. When Γ is sufficiently regular, for example, Ahlfors-David regular, the expres-
sions (5.2) reduce to the ones obtained in [17] in terms of the matricial Hermitean Cauchy
integral, the latter being easily obtained using the Hermitean Borel-Pompeiu formula, as
proved in [16]. Indeed, applying this Borel-Pompeiu formula to G̃1

2, we obtain

CΓG̃1
2
(
Y
)
+TΩD(Z,Z†)G̃

1
2
(
Y
)
=

⎧
⎨

⎩

(−1)n(n+1)/2 (2i)nG̃1
2

(
Y
)
, Y ∈ Ω+,

0, Y ∈ Ω−,
(5.8)
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where CΓG̃1
2(Y ) is the Hermitean Cauchy integral given by

CΓG̃1
2
(
Y
)
=
∫

Γ
E
(
Z − V

)
N(Z,Z†)G̃

1
2
(
X
)
dH2n−1, Y ∈ Ω±. (5.9)

Here, the additional circulant matrix

N(Z,Z†) =

(
N −N†

−N† N

)

(5.10)

contains (up to a factor) the Hermitean projections N and N† of the outward unit normal
vector n(X) at the point X, while the matrix Hausdorff measure dH2n−1 is given by

dH2n−1 =

(
dH2n−1 0

0 dH2n−1

)

. (5.11)

Since G̃1
2|Γ = G1

2, we have

CΓG1
2
(
Y
)
+TΩD(Z,Z†)G̃

1
2
(
Y
)
. =

⎧
⎨

⎩

(−1)n(n+1)/2 (2i)nG̃1
2

(
Y
)
, Y ∈ Ω+,

0, Y ∈ Ω−
(5.12)

or, using the notations of (5.2),

1

(−1)n(n+1)/2 (2i)n
CΓG1

2
(
Y
)
=

⎧
⎨

⎩

G1
2
+(
Y
)
, Y ∈ Ω+,

G1
2
−(
Y
)
, Y ∈ Ω−,

(5.13)

which coincides with [17, equation (5.2)].
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