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Abstract. The hermitian functionals on a unital complex Banach algebra are
defined here to be those in the real span of the normalized states (tangent functionals
to the unit ball at the identity). It is shown that every functional/in the dual A' of
A can be decomposed as/=/i + ik, where « and k are hermitian functionals. Moreover,
this decomposition is unique for every fe A' iff A admits an involution making it a
C*-algebra, and then the hermitian functionals reduce to the usual real or symmetric
functionals. A second characterization of C*-algebras is given in terms of the separa-
tion properties of the hermitian elements of A (real numerical range) as functionals
on A'. The possibility of analogous theorems for vector states and matrix element
functionals on operator algebras is discussed, and potential applications to the
representation theory of locally compact groups are illustrated.

Introduction. As the abstract indicates, we introduce here the notion of a
hermitian functional on an arbitrary complex Banach algebra (ß-algebra) with
norm-one unit ; these functionals generalize real measures on a compact Hausdorff
space (qua functionals on CiX)) and the real or symmetric functionals on a
unital C*-algebra. Our definition exploits the earlier involution-independent
geometrical characterization of the positive functionals or states on a C*-algebra,
due to Bohnenblust and Karlin [2], as well as Lumer's strikingly successful use
of this to define states on general ß-algebras and hermitian members of such
algebras [7]. We show rather easily here that the dual space A' of A is the complex
span of the states (a mild improvement of the Bohnenblust-Karlin vertex theorem
[2]) and thus that every fe A' can be expressed as f=h + ik for suitable "real"and
"imaginary" hermitian parts « and k. The entire dual space of A is thus brought
into play in the geometrical study of A, making possible two considerably deeper
duality characterizations of C*-algebras: A admits a C* involution iff A' decom-
poses as a real direct sum A' = Hi A') + iHiA') of hermitians, or equivalently iff the
hermitians in A (or their complex span) separate points in A'. (This brings the study
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of B- and C*-algebras more fully within the scope of the program of duality
theory, which seeks to reduce all important properties of a locally convex space or
algebra to properties of its dual space.) Both of these results rely heavily upon the
rather deep geometrical characterization of C*-algebras first given by Vidav [10]
and progressively refined by Lumer [7], Berkson [1], Glickfeld [6] and Palmer [8].
The proof of the first also employs the natural generalization to 5-algebras of the
enveloping von Neumann (or W*-) algebra of a C*-algebra, as developed in the
recent notes of Bonsall and Duncan [3]: the second dual A" of A, as a unital
ß-algebra with Arens multiplication, is first shown to be C*, and then the canon-
ical image of A in A" is shown to be a selfadjoint subalgebra. (Thus A" is in fact
the enveloping W/*-algebra.)

A few very preliminary results in an analogous investigation of vector states
and matrix element functionals on operator algebras are mentioned in §4, along
with some open questions and some primitive-but-suggestive examples of potential
applications to group representations.

2. Formulation of the principal theorems. The decomposition of A' obtained
below is motivated by a much simpler decomposition which occurs in the dual of a
complex unital ß-algebra with continuous involution *. (These decompositions
coincide if and only if A is C*.) We recall that every fe Ä has an adjoint/* e A'
defined by the formula

(1) f*(a)= f(a*)*

for all a e A. (Here we use * also for complex conjugation in C.) Then the standard
expression

(2) / = 2 - '(/+/*) + i(2i) - l(f-f*) = Re (/) + i Im (/)

decomposes every fe A' uniquely as a sum of a symmetric functional
(Re (/)* = Re (/)) and a skew-symmetric one (Im (/)* = Im (/) so (/Im(/))*
= -(/ Im (/))). If S(A')={g eA':g* =g}, then we have

(3) A' = S(A')@iS(A')

as a direct sum of closed real ß-subspaces.
Now, in the special case where A is C*, the symmetric functionals admit a

decomposition into positive and negative parts. Specifically, if the normalized
positive functionals are

(4) P(A') = {weA' : w(aa*) £ 0 for all a e A and «(/) = 1}

then for each s e S(A') there exist scalars o^, a2^0 and positive functionals
u>x, o}2 e P(A') such that

(5) S = axwx — <x2w2.
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(The existence of such a decomposition is given in Corollary 2.6.4 of Dixmier [5],
and uniqueness subject to a disjointness condition is established in Corollary
12.3.4 there.) But Bohnenblust and Karlin [2] have given a description of PiA')
entirely independent of * :

(6) PiA') = {co e A' : oil) = 1 = H'}

and Lumer [7] has used the generalization of this to define an analogous weak-
*-compact convex space of inormalized) states for an arbitrary complex unital
5-algebra :
(6') Ü.ÍA') = {œeA' : «(/) = 1 = |a>||'}.

In the same spirit, we take (5) as the definition of the hermitian functionals on A

HiA') = {«iCUi — a2cü2 : ai, a2 ^ 0, <au oj2 £ Q(¿í')}
(7) = real span QiA').

Just as Lumer's states retain most of the useful properties of the positive functionals
on a C*-algebra, our hermitian functionals retain most of those of the symmetric
functionals. The most important property that persists is a weakened form of (3).

Theorem 1. Let A be a complex unital B-algebra.
(a) The hermitian functionals HiA') form a real subspace of the dual A' of A,

HiA') is a real B-space with respect to the natural hermitian norm for « e HiA'):

(8) || A || H = inf {a+/3 : A = aü>x—ßu>2for a, ß ^ 0 andu>x, <x>2 e &ÍA')},

and the natural injection ofiHiA'), \\ ■ \\H) into iA', || • ||') is continuous.

(9) A' = HiA') + iHiA') = complex span (Q(A')).

Also
(b) Moreover, A admits a C* involutioni2) iff

(10) N(A') = HiA') n iH(A') = {0}.

In that case, the sum in (9) is direct and HiA') = SiA') so that (9) reduces to (3), and
HiA') is a closed subspace of A'.

Remarks. (1) The claim in (9) that the subspace K= complex span (QL4'))
exhausts A' can be viewed as a useful strengthening of the Bohnenblust-Karlin
vertex theorem [2]. The latter asserts that Q.ÍA') separates points in A, and is easily
seen to be equivalent to the claim that K separates points in A'. By a duality
argument (which also appears in the proof of Theorem 2) one sees that K separates
points iff it is weak-* dense in A', and the first claim in Theorem 1 asserts that it
actually coincides with A'.

(2) That is, A admits an involution * such that it is isometrically *-isomorphic to an adjoint-
closed subalgebra of the operator algebra B{H) on some Hubert space H.
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(2) It is natural to ask when the "natural" norm on H (A') mentioned in (a) is
topologically equivalent to the relative dual norm on H(A') inherited from A'.
A routine application of the open mapping theorem shows that this occurs iff
H (A') is a closed real subspace of A' (hence a real 5-space with respect to the dual
norm). This is true, for example, in (b) above, when the sum A' = H(A') © iH(A')
is algebraically direct. Methods communicated to me by F. F. Bonsall can be used
to show that H(A') need not be closed, so that then the natural norm gives H(A')
a strictly finer topology; this occurs in the disc algebra A(D) of functions analytic
in the interior of the unit disc and continuous on the boundary. (Details will be
published elsewhere.)

The thrust of Theorem 1 can be summarized in the observation : every 5-algebra
has enough hermitian functionals, and failure to be C* is associated with the
presence of too many such functionals (those in N(A')). The appearance of these
" nonstandard " hermitians can be attributed in part to the scarcity of hermitian
elements in A. We recall that by Lumer [7] we may define the hermitians in A as
follows

(11) H(A) = {aeA: m(a) e R for all w e Cl(A')}.

Theorem 2. Let A be a complex unital B-algebra. Then the following are equiva-
lent:

(i) The hermitians H(A) separate the states in Q.(A').
(ii) The hermitians H(A) separate points in A'.

(iii) There exists an involution * on A with respect to which A is a C*-algebra.

Acknowledgements. I wish to thank F. F. Bonsall for calling to my attention
an important error (fortunately, a repairable one) in the first draft of this article.
I would also like to thank A. M. Sinclair for suggesting the importance of the
number ||n||H = inf {a+ß : h = axwx — a2co2, etc.} which coincides with the dual
norm ||«||' if A is C*. This number is in fact equal to a much clumsier and less
natural "coset norm" which I had previously employed here. (Both appear in the
proof. See below.) Sinclair has also independently proved (9), using an interesting
argument which employs no measure theory, being based purely upon convexity
and separation methods.

3. Proof of the main theorem. The proof of Theorem 1 turns upon two rather
easy lemmas which may be of some independent interest. The second claim also
requires an application of the deep theorem of Vidav-Palmer to the second dual
A" of A when the latter is treated as a unital ß-algebra with the Arens multiplica-
tion. This machinery is available in precisely the right form in the excellent notes
of Bonsall and Duncan [3] on numerical range, and the reader will be assumed to
be familiar with that treatment. (Indeed, the method of proof used here was
suggested to me by the treatment of A" in §12 of these notes; I am indebted to the
authors for the privilege of seeing a preprint.)
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For the first lemma, we recall that

(1) W(a) = {coia) : m e Q(A')}

is the numerical range of a e A, and its numerical radius is

(2) wia) = sup{|A| : Ae Wia)}.

The latter is a norm on A topologically equivalent to the given norm via

(3) wia) è || a 1 Ú ewia)

(cf. [2]) so that, with primes denoting dual norms on A',

(4) w'if) ¡> 11/11 ' ;> e-Wif)
is an equivalent norm for A'. We then isolate the tangent functionals to the w-unit
ball at /, or the "w-states"

nwiA') = {weA'\ oj(/) = 1 = w'ico)}.

Lemma A. (a) The w-states coincide with the states

(5) QWL4') = niA').

(b) In particular, a functional f e A' is a state iff it maps every aeA into its
numerical range

(6) Q-iA') = {feA' : /(a) e W{a) for all a e A).

Remark. The characterization (14) is analogous to the much deeper result of
Gleason-Kahane-Zelasko (cf. [3]) describing the multiplicative functionals on A:
fis multiplicative iff it maps every aeA into its spectrum.

Proof, (a) The first inequality in (12) shows that if w e Q.wiA'), then ¡|oj||':£vv'(«j)
= 1, and since «>(/)= 1, ||tu||' = 1 and w e D.ÍA'). For the converse (and for (b)), we
notice that if fia) e Wia) for all a e A (necessarily true if fe Q.ÍA')) then |/(a)|
■¿wia) for all a e A and w'(f)fí\. But since w(/) = {l} by inspection, any such/
has/(/)= 1 and w\f)=\, sofe C1W(A'). Thus (13) is proved.

To complete (b), what was said above now implies that the left-hand side of
(14) contains the right, and the reverse inclusion holds by definition.

The second lemma is required in the proof of (b); it is unlikely to be new but
I have been unable to locate a reference.

Lemma B. Let A be a closed unital subalgebra of a C*-algebra C. Then A is a
C*-subalgebra (i.e. closed with respect to *) iff for every /=Re(/) + iIm (/) e C
which vanishes on A, Re (/) and Im (/) vanish on A as well.

Proof. We recall that Re (/) and Im (/) are the unique hermitian functionals on
C which are defined on the hermitians //(C) in C by Re (/)(A) = Re (Jib)), Im (/)(¿)
-Im Œb)) for allé e HÍC).
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Thus if A is C*, the usual calculation a = 2~1(a + a*) + (2i')_1(a—a*) shows that
A = H(Ä) ® iH(A) for H(A) the set of hermitians in A. Iff vanishes on A, then/,
Re(/), and Im(/) all vanish on H (A). But then if a=b + ic for b, c in H(A),
Re (f)(a) = Re (f)(b) + i Re (/)(c) = 0, and Im (f)(a)=0 similarly, so Re (/) and
Im (/) vanish on A.

On the other hand, if A is not a C*-subalgebra, there must be an a e A with
a* $ A, and by the Hahn-Banach theorem, there is an/e C which vanishes on A
and is nonzero at a* (say/(a*) = 1). Thus at least one of the hermitian functionals
Re (/) and Im (/) must be nonzero at a*. But for every hermitian functional
« e H(C') and every a e C it is true that h(a) = h(a*)*, so at least one of Re (/) and
Im (/) fails to vanish on a as well. By contraposition, the converse is proved.

Proof of Theorem 1(a). The idea of our proof is close in spirit to the one frequently
used (e.g. in [5]) to decompose S(A') with respect to P(A') when A is C* : we identify
A with functions on the weak-*-compact convex set 0.(A'), and A' with suitable
measures there. Specifically, if ae A the formula â(oj) = m(a) defines a continuous
function â e C(Q.(A'), C), and it is clear that w(a)= \â\x = sup {|á(tu)| : o? e £î(A')}.
The function / is identically 1.

The algebraic claim in Theorem 1(a) is established by means of the Hahn-
Banach and Riesz theorems, which guarantee that for each fe Ä there exists at
least one Borel measure /¿, such that for all ae A

(1) f(a) = \      â(w) dN(œ).
J CHA')

By the usual decomposition of measures

(8) n, - 2 Í'Ví : 0 áy á 3}
where a^O and tt} is a probability measure on Q.(Ä). But if -n is a probability
measure, the functional wn(a)=\niA,)â(cS)dir(w) satisfies a>„(/) = l and |a>„(a)|
^ ||â|| m = w(a), so wn e C1W(A'). Thus by Lemma A, there are states œjeQ(A')
= Q.W(Ä) corresponding to the Tr¡ in (8), and for each ae A

(9) f(a) = 2 {iiai í     á(") ̂X«)} = 2 *v»x«).
Consequently

/= («í^i — a3w3) +'ÍWa — «é^é) e H(A') + iH(A')

c complex span (QL4'))

and equation (9) in Theorem 1(a) follows.
To establish the topological claim, let us identify A (normed by w) isometrically

as a subspace of C=C(Q-(A'), C). We check that the restriction map p: C -*■ A',
from the dual C of C (measures on Q(A')) onto the dual of A, carries the space R
of real measures onto H (A'). We also show that p(R)-alias-H(A') is isomorphic as
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a vector space to R/iR n A1), and that the latter is a real 5-space, so that its 5-space
structure can be transported to HiA'). (Here A±={fe C : fiA)={0}}.)

Since every real measure p. can be written in the form p. = a^! — a27r2, for oí¡ ̂  0
and 7Tj a probability measure on QiA') (/= 1, 2), the argument based upon Lemma
A used above shows that the 7r¡ restrict to states cu¡ on A, and linearity of restriction
implies that p. restricts to a member of HiA'). Thus />(/?)<=//(,4'). But if
h = a1cu1 — a3w3e HiA'), any Hahn-Banach extensions 7r, of the co¡ must satisfy
77¡(/) = co¡(/) = 1 = w'(">i) = ||«>J'oo = IKII'»> whence the tt¡ are (represented by)
probability measures and p. = cti^ — a3ir3 e R with pip) = h.

Next, since A1 = ker ip), A'^C'/A1 as vector spaces, and a standard folk-lemma
asserts that this isomorphism is an isometry between w' on A' and the quotient
norm ||/¿ + .41||, = inf{¡/n + vH'«, :veAL} on C'/AL. (Every p, + v restricts to a
functional of smaller norm on A, so that the norm w'ipip)) of the restriction is
dominated by ||/i+^1||s, while every pip) has at least one Hahn-Banach extension
aep + A1 with ||ff||'a, = M''(pOi))> which proves equality.) Consequently, H{A')
with w' as norm can be identified with />(/?) equipped with the quotient norm || • ¡,.

Similarly, the restriction p\R of p to R has kernel R n A1, so that p(Z?) is also
isomorphic to R/iR n AL). Since both R and A1 are closed in C (hence they are
real 5-spaces), Rn A1 is closed and the quotient R/iR n A1) is a real 5-space
when equipped with the quotient norm \\p,+Rn A1\\q = inf{\\p.+v\\a0 : ve R n yi1}.
The various identifications finally identify p,+AL with p + Rn A1 when /¿eä, and
l^+^ll«^ 1/*+-^ n ^1||d hy inspection, whence by our last paragraph the map
of (/?/(/? u A1), || ■ ||,) onto (//L4'), w') is norm-decreasing and is continuous into
A' as claimed.

Finally, we check that if A e //L4') is the hermitian functional whose real
representing measures are described by the coset p + R n A^ ip real), then the
quotient norm ||^ + /î n A1]],, coincides with the hermitian norm ||A|H
= inf {a-r-^3 : h = au)1 — ßw2 for a, /3^0, <ou <xi2 e QiA')}. First, if p + v represents A
(i.e. A(a)=Jn(il,)á(íu)í/(/i+i')) we can calculate its total variation H/i-r-vl'«, by its
Jordan decomposition p.+v = aTr1—ßTr2 with the -n-, probability measures on
0,{A'), a, /9ï;0, and |/t-f-v|'00=a-|-j3. But then the it, restrict to states u)t and A
= aüj!—/Sa>2 as before, so ||A||H^a+j8= ||/i+v|'œ and we conclude that ||A||H
^infdl/i-r-vll'«, : veRr\AL}=\\p + Rr\A\\q. On the other hand, if h = aoj1-ß<i>2
for <ou oj2 e O.ÍA'), the <o¡ extend to probability measures w, and the real measure
aTr1—ßir2 represents A and must be of the form p + v for ve Rn AL. But then, by
standard measure theory, the total variations satisfy ||/x+v||'œ ^ ¡awxH'c-f- ¡jSwaH'o,
= a+ß. This suffices to prove the reverse inequality, so that ||A||H = ||/*+l? n AL\\q
as claimed.

Proof of Theorem 1(b). The idea of this part of the proof is to use the decom-
position of A',

(11) A' = HW)@iH(A'),
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to decompose the second dual as

(12) A" = H(A") ® iH(A")
where H(A") is exactly the set of hermitian elements of the unital ß-algebra A"
obtained from the Arens multiplication. Once this is established, the Vidav-
Palmer theorem [8] implies that A" is a C*-algebra, and the only remaining step is
to check that the canonical image of A in A" is C*, which we do by Lemma B.

The decomposition of A" is obtained by defining the obvious involution * on A'
and then repeating the steps (l)-(3) at the beginning of §2 on A" rather than on A'.
Specifically, iff=h + ik (for «, k in H(A')) is the unique representation offeA',
then

(13) /* = h-ik
defines the desired involution uniquely. It is evident that/** =/, but we must check
that * is continuous and complex conjugate-linear. Let Er and Et be the disjoint
real-linear projections onto H(A') and iH(A') respectively. Then clearly

(14) /* = (ET-Ei)f
which immediately implies real-linearity of *. Complex conjugate-linearity follows
easily then from the fact that H(A') and iH(A') are real subspaces, and from
uniqueness of decomposition, by the calculation

[eie(h + ik)]* = [(cos (6)h- sin (6)k) + i(sin(e)h + cos (0)k)]*
(15) = (cos (0)« - sin (6)k) - /(sin (0)«+cos (0)k)

= e~ie(h-ik) = (eie)*[h + ik]*.

The continuity claim is deeper, but reduces quickly by (14) to the claim that Er
and E¡ are continuous, and since multiplication by i is a homeomorphism and
projections are continuous iff their kernels are closed (by the closed graph theorem)
it suffices to check that H(A') is norm-closed in A'. In the spirit of Remark 2
following the statement of the theorem, we check that the dual norm topology of
H (A1) is equivalent to the 5-space topology it obtains from the natural norm in
(a), which we denote by || • \H here. Transporting || • ||H to iH(A'), we may equip
A' = H(A') ® iH(A') with the direct sum topology derived from || • ||H to obtain a
5-space topology which is easily checked to be finer than the dual norm topology
on A'. Applying the open mapping theorem to the identification, it becomes a
topological isomorphism which identifies the two topologies on H (A1). Closure of
H(A') then follows from || • H^-completeness.

Then the involution is lifted over to Fe A" by

(16) F*(f) = F(f*)*
so that if S(A") = {Fe A" : F*=F}, we have as in (3) of §2 the algebraic decom-
position

(17) A" = S(A") + iS(A").
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But each FeS(A") maps Q(A') into R, since each weÇl(A') has w* = co
( = (Er- Ei)o)) and

(18) F(w) = JF*(o>) = F(cü*)* = F(w)*.

Consequently, Corollary 12.3 in Bonsall-Duncan [3] guarantees that each such
Fe S(A") is in the hermitians H(A") when A" is treated as a unital ß-algebra, and
it is certainly true then that (12) holds as desired.

Finally, since A" = C is now known to be a C*-algebra, and since the canonical
injection of A into A" is an algebra isomorphism (§12 of [3]) we may apply Lemma
B. Thus if A failed to be a *-subalgebra, we could find/e C vanishing on A such
that the symmetric parts Re (/) and Im (/) do not both vanish. As discussed in
§2, symmetric functionals « are hermitian and « = ajcuj — a2(x>2, for the cu¡ states of C.
Then since states of C clearly restrict to states of A, Re (/) and Im (/) restrict to
hermitians on A—call them « and k. But since « + ik vanishes on A, h = — ik would
be a nontrivial member of N(A'), which is impossible. Hence A is a *-subalgebra
and (b) is proved.

3. Two proofs of Theorem 2. There are two rather different lines of argument
which can be used to prove Theorem 2. The shortest uses both parts of Theorem
1, with very little added machinery. The other uses merely the first part of Theorem
1 and a duality argument. Both require parts of the following lemma.

Lemma C. Let A be a complex unital B-algebra.
(a) Every nontrivial hermitian functional « e H(A') which vanishes on H (A) has

the form

(1) « = a(<i)x — u)2), a > 0, cdx ^ w2,

where wx — œ2 vanishes on H(A).
(b) Every h e N(A') vanishes identically on H(A) and, if it is nontrivial, has the

form (1).

Proof, (a) First, IeH(A), so that any such « = axu>x — a2w2, ce¡^0, o>¡ e Ü.(A')
must satisfy 0 = h(I) = axwx(I) — a2co2(I) = ax — a2, and we take a = ax = a2. Thus
h = a((ox — ü}2), and this functional is nontrivial iff a>0 and wx^w2, while u)X — <d2
must vanish on H(A) if h does.

(b) Since Q.(A') by definition maps H(A) into R, so does its real span H(A').
Thus every « e N(A') = H(A') n iH(A') maps H(A) into R n iR={0} and vanishes
on H(A). The rest is just (a).

Proof of Theorem 2. To prove that (i) and (ii) are equivalent, we observe first
that if H (A) separates points in A', it certainly separates points in Q(A')^A', so
(ii) implies (i). Conversely, it suffices to prove that if (i) holds, every fe A' that
vanishes on H(A) vanishes identically, since A' is a vector space. By Theorem 1(a),
if/e A' it can be written in at least one way as f=h + ik with « and k in H(A'). If
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/ vanishes on HiA), then A agrees with - ik there, but then since A and k map
HiA) into R (as in the proof of Lemma C), both A and —ik (thus k) must vanish
on HiA). Hence by Lemma C(a) and contraposition, both A and k vanish every-
where (otherwise we could find o>x / w2 which were not separated by HiA), contrary
to (i)). Consequently /vanishes everywhere and (i) implies (ii).

The proof will now be complete if we establish equivalence of (i) and (iii). If
HiA) separates points in Í2(yí')> then Lemma C(b) shows by contraposition that
NiA')={0}, so (iii) follows by Theorem 1(b). Conversely, if A admits a C* involu-
tion, we know that il(A')=P(A') by [2], and HiA) = {a e A : a* = a) by [7]. Since
positive functionals a> e PiA') on a unital C*-algebra are real on HiA), and since
A = HiA)©iHiA) ia = 2~1ia + a*) + ii2i)-1ia-a*)) it is clear that if ^-w2
vanishes on HiA), it vanishes on A and o)1 = o>2. Hence HiA) separates points in
P(A')-alias-Cl(A') and (i) follows.

The second proof differs from the first only in that the implication (ii) => (iii)
replaces "(i) => (iii)" and is proved in a different way. The following lemma
contains most of the methodology.

Lemma D. Let A be a complex unital B-algebra, and let JiA) = HiA) + iHiA).
(a) 77je subset JiA)<^A is a complex subspace which is both weakly closed and

norm-closed.
(b) If JiA) separates points in A', then JiA) is weakly dense in A, hence JiA) = A.

Proof, (a) (Due essentially to Vidav [10].) Every o> in the separating set QL4')
maps HiA) n iHiA) into R n iR={0}, so HiA) n iHiA)={0}. Moreover, HiA)
is norm-closed, since a limit a = lim ha in HiA)' has cu(a) = lim oj(Aa) e R for every
co e Í2L4'). Thus the projections Er and Et onto HiA) and iHiA) are continuous
real-linear and disjoint, so E=Ei + Er is continuous real-linear and its range JiA)
is norm-closed real-linear. Closure under complex multiples is obvious. Since
JiA) is clearly convex, Mazur's theorem (Corollary 2 to II.9.2 in Schaefer [9])
insures that it is weakly closed.

(b) A subspace of any locally convex space is weakly dense iff it separates points
in the dual (IV. 1.3 in [9]). This is proved using the Hahn-Banach theorem in the
weak topology, with the obvious fact that every weakly continuous functional is
continuous: if J were not weakly dense, there would exist a nontrivial fe A'
vanishing on the weak closure of J.

Second proof of Theorem 2. Suppose (ii) is true: HiA) separates points in A'.
Then JiA) certainly separates points, so by Lemma D(b), JiA) = A. Then by the
Vidav-Palmer theorem [8], A admits a C* involution, proving (iii).

The first paragraph of the first proof then establishes (i) o (ii) => (iii), and the
implication (iii) => (i) from the second paragraph completes the network of
implications.

Remark. The fact that Theorem 2 can be proved without recourse to the
5-algebra A" raises the natural question of whether Theorem 1(b) might not admit a
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similar "intrinsic" proof. However, the present proof relies heavily upon the fact
that H(A') is closed in A'; assuming that this fact is crucial, it is difficult to see
how to exploit it without reference to A".

4. Weak topologies on A : an open problem. The following easy corollary of
Theorem 1 part (a) is the primary reason for its interest, and provides the basis for
most applications known to this author.

Corollary 3. The weak topology induced on A by A', a(A, A'), is exactly the
coarsest vector topology on A such that every w e C1(A') is continuous.

Proof. Since a(A, A') is the coarsest vector topology such that every fe A' is
continuous, it is finer that the " Q(A') topology". But if every w e Q.(Ä) is continu-
ous with respect to some topology t for A, so is every/e {complex span (Q(A'))},
whence by Theorem 1(a), every feA' is r-continuous. This proves the reverse
inclusion of topologies.

As a typical application, let p : G —> A be a homomorphism of a locally compact
group G into the multiplicative semigroup of a complex unital 5-algebra A such
that p carries the identity e e G into /. It is not difficult to prove that if the maps
g -*■ œ(p(g)) e C are continuous for every o> e Q(A'), then g -a p(g) is norm-
continuous into A. First, the hypothesis asserts exactly that g -> p(g) is continuous
into A when the latter carries the "state topology", so it is continuous when A
carries the weak topology. Thus, by continuity of multiplication in A, every pair
(/, a) e A' xA induces a continuous map g -^-f(p(g)a) by composition. This means
that g->L0geB(a) defined by L°ga = p(g)a is a weak-operator continuous repre-
sentation into B(A), the bounded operators on A. But by Theorem 2.8 in DeLeeuw-
Glicksberg [4], L is then strongly continuous: g^-L%a is norm-continuous into A
for all ae A. But then in particular g-*■ LgI= p(g)I= p(g) is norm-continuous as
claimed.

In many cases of practical interest, the unital B-algebra A which one considers
is either the algebra B(X) of all bounded operators on a 5-space or perhaps a
subalgebra of it. In that case, various weak-operator topologies are naturally
defined on X. When X is a Hubert space with inner product ( , ), the situation is
very simple: one is led to consider the weak-operator topology on A, defined as the
coarsest topology such that for all u and ¡) in I the "matrix element" map
a —> (au, v) e C is continuous. By the Cauchy inequality, one sees that each of the
matrix element functionals (-u, v) is in A', so the weak operator topology is coarser
than the weak topology (properly coarser in the general infinite-dimensional case).
When || u \\ = 1, the functional a -+ (au, u) is a positive functional on B(X) and a
state of every unital 5-subalgebra A of B(X) (a point state), and the point state
topology is the coarsest such that all of these functionals are continuous. The analog
of Corollary 3 turns out to hold, for much the same reason.
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Proposition 4. The weak operator and point state topologies coincide on every
A^B(X). Indeed, every matrix element functional f=(u, v) has the form

(1) (au, v) = 2 i'iaÂawi> M'y) : 0 á y á 3}.

Proof. First we write

(2) a = 2-1(a + a*) + i(2i)-\a-a*) = h + ik

so that «* = «, k* = k in B(X) (not necessarily in A). Then both (u,v)h = (hu,v)
and (u, v)k = (ku, v) are sesquilinear forms, and by the polarization identity twice

(Aw, v) - 4"» 2 {''(«("+ft»), « + ft) : 0 ^ / Ú 3},
(te, i?) = 4"1 J f/OKK+ft), w+ft) : 0 ^ / ^ 3}.

Hence

(4) (au, v) = 4-1 2 {ftXw+i't?), w + i't?) : 0 g y g 3}.

By taking w;= ||w+/'yt;||~1(w + iV) and a,=4"~1||z/+/yt>||2, we obtain (1) from (4).
Then since every matrix-element functional is in the complex span of the point
states, the topologies induced by the two sets of functionals coincide, just as in
Corollary 3.

This result also applies to homomorphisms p of a locally compact group into
B(X) for X a Hubert space (alias group representations) to show that if
g^-(p(g)u,u) is continuous for all ueX with ||w|| = l, then g->(p(g)u,v) is
continuous for all u, v in X. Then by DeLeeuw-Glicksberg [4] again, g -*■ p(g)u is
continuous into X for all ue X.

Open Question. For which 5-spaces X and unital algebras A<=B(X) does
Proposition 4 admit a reasonable extension?

This question was one of the primary motives behind the author's study of the
easier questions affirmatively answered by Theorem 1(a) and Corollary 3. These
results indicate at least that not all such phenomena depend upon C* structures
and/or inner products, although the proof of Proposition 4 certainly relies upon
these.

It is possible to specify the form that answers to the Open Question might take.
The matrix element functionals are defined for a pair (u, u') in lx X' by a -> u'(au);
these define the weak-operator topology WO. The point states are defined by pairs
(u, u') such that ||u| =u'(u)= ||w'|| = 1 (so that u' is tangent to the unit | • ||-ball at
u e X) by a -> u'(au), and all point states are in Q(A') (indeed, they are convex
generators of Ü.(A'):Q(A') is the weak-* closed convex hull of the point states [7]).
One can then define the point state topology PS and ask when PS= WO on all of
B(X) or when relativized to a subalgebra. It is not difficult to check that the Riesz
representation theorem for the dual X' of a Hubert space reduces this question to
the one answered in Proposition 4 when Xis a Hubert space. Clearly all topologies
agree on finite-dimensional subalgebras such as CI or those generated by / and a
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projection or /and an operator of finite rank. No nontrivial answers to the question
are known, if the answer is sought in this form.

Answers to the question could take a second form, which may not be equivalent
to the one just discussed when the unit ball in X is nonsmooth. One takes a semi-
inner-product for X (cf. Lumer [7]) and defines the [ , \-matrix element to be the
functionals of the form a -*■ [au, v] for u, v in X, while the [ , \-point states are of
the form a -> [au, u] for ||w|| = 1. Both of these sets of functionals can be proper
subsets of the corresponding sets of functionals used to define WO and PS, and
may in some cases define topologies on A different from both WO and PS. Very little
seems to be known about the possible interrelationships of these topologies.
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