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Abstract

We completely determine the 2-primary torsion subgroups of the hermitian K-groups

of rings of 2-integers in totally real 2-regular number fields. The result is almost periodic

with period 8. Moreover, the 2-regular case is precisely the class of totally real number

fields that have homotopy cartesian “Bökstedt square”, relating the K-theory of the

2-integers to that of the fields of real and complex numbers and finite fields. We also

identify the homotopy fibers of the forgetful and hyperbolic maps relating hermitian and

algebraic K-theory. The result is then exactly periodic of period 8 in the orthogonal

case. In both the orthogonal and symplectic cases, we prove a 2-primary hermitian

homotopy limit conjecture for these rings.
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1 Introduction and statement of results

Let F be a real number field with r real embeddings, ring of integers OF and ring of 2-
integers RF = OF [1/2]. A key ingredient in the study of the K-theory of these rings is the
commuting square of 2-completed connective K-theory spectra

K(RF )# →
r∨
K(R)c#

↓ ↓

K(Fq)# →
r∨
K(C)c#

(1)

introduced by Bökstedt for the rational case (r = 1) in [10], and in [26], [38] for the general
case; see also Appendix A. Here, Fq is a finite residue field described later in this Introduction.
The K-theory spectrum K(Λ) refers to the spectrum defined by K(Λ)n = ΩBGL(Sn+1Λ)+

for n ≥ 0, where SmΛ denotes the m-iterated suspension of Λ (when Λ is a discrete ring) or
Calkin algebra (Λ a topological ring), as defined in [8, Appendix A]. Throughout this paper,
we use the notation Ec to denote the connective covering of a spectrum E , and # to denote
2-adic completion of connective spectra or groups. The often-used notation Ec# means (Ec)#.

For instance,

K(R)c# = (K(R)c)# and K(RF )c# = (K(RF )c)# = K(RF )#

(see also the discussion after Lemma 3.3). The bottom horizontal map is the Brauer lift,
corresponding to the fibring of Adams’ map ψq − 1 on the 2-completed connective complex
topological K-theory spectrum K(C)c#. The remaining maps are induced from the obvious
ring homomorphisms via Suslin’s identification of the 2-completed algebraic K-theory spectra
of the real and complex numbers with K(R)c# and K(C)c#, respectively, in [45]. If preferred,
one can think of the above in terms of spaces and maps; however, the spaces also have an
infinite loop space structure that is preserved by the maps.

In the rational case, the Dwyer-Friedlander formulation of the Quillen-Lichtenbaum con-
jecture for Z at the prime 2 is that the above square is homotopy cartesian, see [20, Conjecture
1.3, Proposition 4.2]. This has been affirmed in work of Rognes and Weibel [43] (see [52,
Corollary 8]), as a consequence of [10], Voevodsky’s solution of the Milnor Conjecture [48]
and his subsequent joint work with Suslin [46].

In the general number field case, Rognes and Weibel [43] determined the groups Kn(RF )#

up to extensions. It turns out that in the case of 2-regular real number rings, discussed below,
these extension problems disappear [42]. This leads to the above square being homotopy
cartesian in that case too. Many of the foregoing results having been developed for spaces,
we present the transition to spectra in Appendix A. These developments raise the question
of for which class of real number fields F the square (1) is homotopy cartesian.

We turn now to the hermitian analog of the above. For the definition of hermitian K-
theory we refer to [30] and [8, Introduction and Appendix A]. Briefly, for a ring Λ with
involution εKQ0(Λ) denotes the Grothendieck group of isomorphism classes of finitely gen-
erated projective Λ-modules with nondegenerate ε-hermitian form, where we let ε = ±1
according to whether orthogonal (ε = +1) or symplectic (ε = −1) actions on the ring Λ
are involved. If Λ is discrete, BεO(Λ)+ represents the plus-construction of the classifying
space of the limit εO(Λ) of the ε-orthogonal groups εOn,n(Λ). This last group is the group
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of automorphisms of the ε-hyperbolic module εH(Λn), whose elements can be described as
2× 2 matrices written in n-blocks

M =
[
a b

c d

]
such that M∗M = MM∗ = I, where the “ε-hyperbolic adjoint” M∗ is defined as

M∗ =
[

tď ε tb̌

ε̌ tč tǎ

]
.

For a discrete ring A, the ε-hermitian K-theory spectrum εKQ(A) refers to the spectrum
defined by εKQ(A)n = ΩBεO(Sn+1

A)+ for n ≥ 0, where SmA denotes the m-iterated
suspension of A, as defined in [8, Appendix A]. We note that εKQ(A)0 has non-naturally
the homotopy type of εKQ0(A) × BεO(A)+, where εKQ0(A) is endowed with the discrete
topology. The same definition applies for the K-theory spectrum K(A) on replacing the
orthogonal group by the general linear group. There is however a significant difference
between the two theories, at least for regular noetherian rings like fields or Dedekind rings.
For such rings A, K(A) = K(A)c is connective i.e. Kn(A) = 0 for n < 0, whereas εKQ(A) is
not connective in general.

On the other hand, the spectra of topological hermitian K-theory (with trivial involu-
tions on R and C) εKQ(R) and εKQ(C) have been defined in [8, Appendix A]. A geometric
description of these spectra appears in Appendix B below. In order to avoid a potential con-
fusion between hermitian K-theory and surgery theory, we are writing εKQ for the hermitian
K-theory spectrum, and εKQn for the corresponding homotopy groups. (These are denoted
by εL and εLn respectively in [8].)

In [8], the first two authors constructed a Brauer lift in hermitian K-theory and considered
the hermitian analogue of the Bökstedt square for the rational numbers Q, i.e. for r = 1
and RF = Z[1/2]. For general number fields, the commuting Bökstedt square for hermitian
K-theory takes the form:

εKQ(RF )c# →
r∨
εKQ(R)c#

↓ ↓

εKQ(Fq)c# →
r∨
εKQ(C)c#

(2)

It was shown in [8] that when F = Q the square (2) too is homotopy cartesian; the result
leads to another version of the homotopy limit problem related to the Quillen-Lichtenbaum
conjecture, expressed as the 2-adic homotopy equivalence of the fixed point set and the
homotopy fixed point set of the εZ/2 action on K(Z[1/2]). Thus again, one is led to ask for
which class of totally real number fields the square (2) is homotopy cartesian, and for which
the homotopy equivalence generalizes.

These are the principal questions addressed in the present work.

Tackling these questions leads to a focus on a particular class of number fields F with
the associated rings of integers OF , as follows. From a theorem of Tate [47, Theorem 6.2],
one knows that the 2-primary part of the finite abelian group K2(OF ) has order at least 2r,
where r is the number of real embeddings. We call F (and OF , RF ) 2-regular when this
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order is exactly 2r. See Proposition 2.1 below for alternative characterizations. In the totally
real case, which is our concern here, r = [F : Q]. The simplest examples are the rational
numbers Q and the following fields recorded in [42, §4].

1. Let b ≥ 2. The maximal real subfield F = Q(ζ2b + ζ̄2b) of Q(ζ2b) is a totally real
2-regular number field with r = 2b−2.

2. Let m be an odd prime power such that 2 is a primitive root modulo m. Then F =
Q(ζm + ζ̄m) is a totally real 2-regular number field when Euler’s φ-function φ(m) ≤ 66
(except for m = 29), and also for Sophie Germain primes (m and (m−1)/2 both prime)
with m 6≡ 7 (mod 8) (the first few instances are m = 5, 11, 59, 83, 107 and 179). The
number r of real embeddings is φ(m)/2.

3. Let F = Q(
√
d) be a quadratic number field with d > 0 square free. Then F is 2-regular

if and only if d = 2, d = p or d = 2p with p ≡ ±3 (mod 8) prime [15]. Here, r = 2.

The residue field Fq of RF referred to above is now chosen in the following manner.
The number q is a prime number with this property: the elements corresponding to the
Adams operations ψq and ψ−1 in the ring of operations of the periodic complex topological
K-theory spectrum generate the Galois group of F (µ2∞(C))/F obtained by adjoining all 2-
primary roots of unity µ2∞(C) ⊂ C to F [38, §1]. The Cebotarev density theorem guarantees
the existence of infinitely many such prime powers. By Dirichlet’s theorem on arithmetic
progressions we may assume that q is a prime number, an hypothesis we assume throughout
all the paper. According to [38], if aF := (|µ2∞(F (

√
−1))|)2 is the 2-adic valuation, then

q is ≡ ±1 (mod 2a) but not (mod 2a+1). In the examples above: when F = Q(ζ2b + ζ̄2b),
then aF = b; when F = Q(ζm + ζ̄m) or Q(

√
d) with d > 2, aF = 2; and finally, when

F = Q(
√

2) = Q(ζ8 + ζ̄8), we have aF = 3.

We are now ready to state our main results.

Theorem 1.1: For every totally real 2-regular number field F , and for any q as discussed
above, the square (2) is homotopy cartesian for ε = ±1.

Our proof of this theorem is based on the techniques employed in the case of the rational
numbers [8] and the analogous algebraic K-theoretic result established in [26], [38] and [42]
(see Appendix A for an overview).

The next result crystallizes the special role of 2-regular fields in this setting.

Theorem 1.2: Let q be as above. Then, for every totally real number field F , the following
are equivalent.

(i) F is 2-regular.

(ii) The square (2) is homotopy cartesian for F when ε = 1.

(iii) The square (1) is homotopy cartesian for F .

Since the Quillen-Lichtenbaum conjecture has been established for every real number field
by the third author [39], one consequence of this theorem is that, in contrast to the rational
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case, for general real number fields the Quillen-Lichtenbaum conjecture fails to imply that
the square (1) is homotopy cartesian.

Theorem 1.1 allows us to compute explicitly the 2-primary torsion of the nonnegative
hermitian K-groups εKQn(RF ) for F as above. We tabulate and compare these groups with
the corresponding algebraic K-groups Kn(RF ) computed in [26] and [42].

Theorem 1.3: Let F be a totally real 2-regular number field. Up to finite groups of odd order,
the groups εKQn(RF ) are given in the following table. (If m is even, let wm = 2aF +ν2(m);
also, δn0 denotes the Kronecker symbol.)

n ≥ 0 −1KQn(RF ) 1KQn(RF ) Kn(RF )
8k δn0Z δn0Z⊕ Zr ⊕ Z/2 δn0Z
8k + 1 0 (Z/2)r+2 Zr ⊕ Z/2
8k + 2 Zr (Z/2)r+1 (Z/2)r

8k + 3 (Z/2)r−1 ⊕ Z/2w4k+2 Z/w4k+2 (Z/2)r−1 ⊕ Z/2w4k+2

8k + 4 (Z/2)r Zr 0
8k + 5 Z/2 0 Zr

8k + 6 Zr 0 0
8k + 7 Z/w4k+4 Z/w4k+4 Z/w4k+4

The proof of Theorem 1.3 makes use of a splitting result for εKQ(RF )c shown in §4 and
an explicit computation carried out in §5.

We recall that the forgetful and hyperbolic functors induce the two homotopy fiber se-
quences

εV(RF ) −→ εKQ(RF ) −→ K(RF ) and εU(RF ) −→ K(RF ) −→ εKQ(RF ).

The fundamental theorem in hermitian K-theory [31] states that there is a natural homotopy
equivalence

εV(RF ) ' Ω−εU(RF ).

Our next result gives an explicit computation of the homotopy groups of these spectra.

Theorem 1.4: For any totally real 2-regular number field F , the groups

εVn(RF ) := πn(εV(RF )) ∼= πn(Ω−εU(RF )) =: −εUn+1(RF )

are given, up to finite groups of odd order, as below.
More precisely, the spectrum 1V(RF )c# has the homotopy type of

2r∨
K(R)c# ' 1V(RQ)c# ∨

2(r−1)∨
K(R)c# ,

The cup-product with a generator of K8(R) induces a periodicity homotopy equivalence

1V(RF )c# ' (Ω8
1V(RF ))c# .
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n ≥ 0 −1Vn(RF ) 1Vn(RF )
8k Zr ⊕ Z/2 Z2r

8k + 1 0 (Z/2)2r

8k + 2 Zr (Z/2)2r

8k + 3 0 0
8k + 4 Zr Z2r

8k + 5 Z/2 0
8k + 6 Zr ⊕ Z/2 0
8k + 7 Z/2 0

It would be interesting to have more information about the class of number fields for
which the intriguing periodicity result in this theorem holds. Note also that for ε = −1,
the homotopy type of εV(RF )c# is more complicated to determine explicitly, although we
know that its homotopy groups are periodic (in Section 6 and Appendix D we show that an
analogous splitting of the spectrum −1V(RF )c# as the product of classical topological spectra
does not hold).

Recall from [8, §7] that the standard εZ/2-action on K(RF ) defined via conjugation of
the involute transpose of a matrix by

εJn =
[

0 εIn
In 0

]
induces an isomorphism between the fixed point spectrum K(RF )εZ/2 and εKQ(RF ).

Our next result solves in the affirmative a 2-primary homotopy limit problem for εZ/2-
homotopy fixed point K-theory spectra, in the special case of totally real 2-regular number
fields. (In [39] the corresponding problem in algebraic K-theory was solved in the affirmative
for every real number field.) Recall the homotopy fixed point spectrum

K(RF )h(εZ/2) := map
εZ/2(Σ∞E(Z/2)+, K(RF )).

Here map
εZ/2 denotes the function spectrum of εZ/2-equivariant maps and E(Z/2) is a free

contractible Z/2-space, such as the CW-complex S∞ with antipodal action. Our hermitian
analogue is now the following:

Theorem 1.5: For every totally real 2-regular number field F there is a natural homotopy
equivalence of 2-completed spectra

εKQ(RF )c# ' (K(RF )h(εZ/2)
# )c.

The proof of Theorem 1.5 follows from Theorem 1.1 and results established in [8]. Earlier
results in this direction inspired a much more general conjecture formulated by B. Williams in
[50, 3.4.2]. However, in Appendix C below, we provide a counterexample to that conjecture,
in the form of a ring with vanishing K-theory but nontrivial KQ-theory.

Remark 1.6. Most of the theorems in this introduction are also true if we replace the 2-
completions of the spectra involved by their 2-localizations. As we shall see through the
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paper, the proofs of most of our main theorems work as well in this context. There is an
important exception however, namely our Theorem 1.5, which is only true for completions.

In our work in progress [9] the results shown in this paper are used to give the first
algebraic examples of Bott periodicity isomorphisms for hermitianK-groups. Another project
uses these results to provide homological information.

2 Preliminaries

We begin with a list of alternative characterizations of the class of real number fields F of
interest. To fix terminology, recall that the r real embeddings of F define the signature
map F×/(F×)2 → (Z/2)r where a unit is mapped to the signs of its images under the real
embeddings. One says that RF = OF [ 1

2 ], the ring of 2-integers in F , has units of independent
signs if the signature map remains surjective when restricted to the square classes R×F /(R

×
F )2

of R×F . A dyadic prime in F is a prime ideal in the ring of integers OF lying over the rational
prime ideal (2). The narrow Picard group Pic+(RF ) consists of fractional RF -ideals modulo
totally positive principal ideals, defined as in [22, V§1].

The Witt ring W (A) of a commutative unital ring A with involution is defined in terms
of Witt classes of symmetric nondegenerate bilinear forms [36, I (7.1)]; in K-theoretic terms,
as an abelian group it coincides with the cokernel 1W0(A) of the hyperbolic map K0(A) →
1KQ0(A) if 2 is invertible in A [31]. Symmetrically, we define the coWitt group W ′(A) =
1W
′
0(A) as the kernel of the forgetful rank map 1KQ0(A)→ K0(A). In this section especially,

we often use the simplified notations W (A) and W ′(A) instead of 1W0(A) and 1W
′
0(A).

In the statement below, for a finite abelian group G, we write G{2} for its 2-Sylow
subgroup.

Proposition 2.1: Let F be a number field with r real embeddings and c pairs of complex
embeddings. Then the following are equivalent.

1. F is 2-regular; that is, the 2-Sylow subgroup of the finite abelian group K2(OF ) has
order 2r.

2. The real embeddings of F induce isomorphisms on 2-Sylow subgroups

K2(OF ){2}
∼=−→ K2(RF ){2}

∼=−→ ⊕rK2(R) ∼= (Z/2)r.

3. The finite abelian group K2(OF (
√
−1)) has odd order.

4. There is a unique dyadic prime in F and the narrow Picard group Pic+(RF ) has odd
order.

5. There is a unique dyadic prime in F , the Picard group Pic(RF ) has odd order, and RF
has units with independent signs.

6. The nilradical of the Witt ring W (RF ) is a finite abelian group of order 2c+1. In
particular, if F is a totally real number field, so that c = 0, then the nilradical of
W (RF ) has order 2.
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7. The Witt ring W (RF ) is a finitely generated abelian group of rank r with torsion sub-
group of order 2c+1. In particular, if F is a totally real number field, then W (RF ) is
isomorphic to Zr ⊕ Z/2.

If F is a totally real number field and satisfies any of the equivalent conditions above,
then the free part of W (RF ) is generated by elements 〈1〉 , 〈u1〉 , . . . , 〈ur−1〉 where ui ∈ R×F is
negative at the i th embedding and positive elsewhere.

Proof. Obviously, (2) implies (1). For the converse, we apply Tate’s 2-rank formula for K2

[47, Theorem 6.2], which shows that the group K2(OF ) maps, via square power norm residue
symbols, onto the subgroup of the direct sum (over all archimedean places and places over
2) of copies of µ2(F ) = Z/2 that consists of the elements z = (zv) such that

∑
zv = 0. This

forces r to be a lower bound for the 2-rank of K2(OF ). Of course, the unique group of order
2r and 2-rank at least r is (Z/2)r; so, the converse follows.

See [42, Proposition 2.2] for the equivalence between (2) and (4). By [17, (4.1),(4.6)],
again using [47, Theorem 6.2], (2), (3) and (5) are equivalent. The equivalences between
(4), (6), and (7) are immediate from [19, Corollary 3.6, Theorem 4.7]. Finally, the claim
concerning the generators of the free part of W (RF ) follows as in [36, IV (4.3)]. �

Remark 2.2. 1. Further equivalent conditions, in terms of étale cohomology, appear in [42,
Proposition 2.2].

2. Berger [7] calls a totally real number field F satisfying (5) above 2+-regular, and
has shown in [7] that each totally real 2-regular number field has infinitely many totally
real quadratic field extensions satisfying the equivalent conditions in Proposition 2.1. In
particular, there exist totally real 2-regular number fields of arbitrarily high degree.

3. In the other direction, by [17, (4.1)] every subfield of a totally real 2-regular number
field also enjoys this property.

4. In [36, pg. 95], it is shown that for totally real F there is also an equivalence between
amended conditions (4)–(7) above, in which RF is replaced by OF and 2c+1 by 2c. However,
in view of the surjection Pic+(OF ) �Pic+(RF ), these amended conditions define a strict
subclass of those considered here. After Gauss, one knows that for a real quadratic number
field F = Q(

√
d) the narrow Picard group Pic+(OF ) is an odd torsion group if and only if F

has prime-power discriminant; that is, d = 2 or d = p with p ≡ 1 (mod 4) a prime number.
Thus Q(

√
p) with p ≡ 3 (mod 4) a prime number and Q(

√
2p) with p ≡ ±3 (mod 8) a prime

number fail to lie in the subclass, cf. [18].

Suppose henceforth that 2 is a unit in a domain A of dimension at most 1, e.g. a subring of
some number field F . Let k0(A) denote the 0 th Tate cohomology group Ĥ0(Z/2; K0(A)) of
Z/2 acting on K0(A) by duality as in [31, pg. 278], and k′0(A) denote the 1 st Tate cohomology
group Ĥ1(Z/2; K0(A)).

There is a well defined induced rank map ρ : W (A) → k0(A), whose image always has
a Z/2 summand. From the 12-term exact sequence established in [31, pg. 278] there is an
exact sequence

k′0(A) −→W ′(A)
ϕ−→W (A)

ρ−→ k0(A),

where ϕ is simply the composition W ′(A) ↪→ 1KQ0(A) � W (A).
The next result is almost immediate, but worth recording. Part (c) uses the observation

that K̃0(A) ∼= Pic(A) when A is of dimension at most 1. If further Pic(A) is an odd torsion
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group, then k′0(A) = 0 and k0(A) ∼= Z/2. Also, (d) refers to the fact that, when A is a field,
its fundamental ideal is the unique ideal I of W (A) with W (A)/I ∼= F2 [36, III (3.3)].

Lemma 2.3: (a) In general, ϕ maps the coWitt group of A onto the kernel of the rank map
ρ.

(b) When k′0(A) = 0, then ϕ is an isomorphism between W ′(A) and Kerρ.
(c) When A has dimension at most 1 and Pic(A) is an odd torsion group, then there is a

natural short exact sequence

0→W ′(A)
ϕ−→W (A)

ρ−→ Z/2→ 0.

(d) When A is a field, then ϕ induces an isomorphism between the coWitt group of A and
the fundamental ideal of the Witt ring. �

We can now give a further characterization of the class of 2-regular totally real number
fields, in terms of the coWitt group.

Lemma 2.4: A totally real number field F with r real embeddings is 2-regular if and only if
both

(i) the Picard group Pic(RF ) has odd order, and

(ii) the coWitt group W ′(RF ) is isomorphic to Zr ⊕ Z/2.

Proof. Here we use the fact that, as for both K0 and KQ0, the Witt group W (R) = W0(R)
and the coWitt group W ′(R) = W ′0(R) do not depend on the topology of R.

In both directions of the statement of the lemma (one way uses Proposition 2.1(5)), we
have from Lemma 2.3(c) the map of short exact sequences (where the middle vertical map
is surjective):

0→ W ′(RF )
ϕ−→ W (RF )

ρ−→ Z/2 → 0
↓ ↓ ↓ id

0→ W ′(R)
ϕ−→ W (R)

ρ−→ Z/2 → 0

Since W (R) ∼= Z [36, III (2.7)], in the upper sequence ρ must be trivial on torsion elements.
By combining with Proposition 2.1(7), we obtain the result. �

When F has r real embeddings, for A = RF , F , the map W (A) → W (R)r ∼= Zr is the
total signature σ [36, III (2.9)].

To define further invariants, we recall from [31] generalizations of some of the definitions
above. For ε = ±1, and n ≥ 1, we set

εWn(A) = Coker[Kn(A)→ εKQn(A)],

εW
′
n(A) = Ker[εKQn(A)→ Kn(A)],

kn(A) = Ĥ0(Z/2; Kn(A)),

k′n(A) = Ĥ1(Z/2; Kn(A)).

The next invariant we shall employ is the discriminant map εW
′
0(A)→ k′1(A). To recall

the definition, suppose that M and N are quadratic modules with isomorphic underlying A-
modules. The elements of εW ′0(A) are of the form M−N with M and N isomorphic modules.
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An isomorphism α : M → N induces an automorphism α∗α of M that is antisymmetric for
the Z/2-action. Its class in k′1(A), which is independent of α, defines the desired invariant.
For a generalization of the above we refer to [31].

If SK1(A) = 0 (e.g. A a ring of S-integers in a number field [6, Corollary 4.3] or A a
field), then k′1(A) is isomorphic to the group of square classes A×/(A×)2 of units in A and
k1(A) = {±1}. This affords the following description.

Lemma 2.5: Assume that SK1(A) = 0.

Then the rank/determinant map 1W1(A) → k1(A) = {±1} is surjective, and there is a
short exact sequence

0→ −1W2(A) −→ 1W
′
0(A) disc−→ k′1(A) = A×/(A×)2 → 0.

If A is a field, we may identify W ′(A) = 1W
′
0(A) (resp. −1W2(A)) with the fundamental

ideal in the Witt group W (A) (resp. its square), so that the exact sequence above reduces to

0→ I2 −→ I −→ I/I2 → 0.

The result is still true for the field R and C with their usual topology.

Proof. Since SK1(A) = 0, we have K1(A) = A×. Therefore, k1(A) is reduced to ±1 which
is a 1× 1 unitary matrix. This explains the surjectivity. By the exact sequence

1W1(A) −→ k1(A) −→ −1W2(A) −→ 1W
′
0(A) −→ k′1(A)

from [31], −1W2(A) now identifies with the kernel of the induced discriminant map W ′(A)→
k′1(A) ∼= A×/(A×)2.

Moreover, taking ε = 1, W ′(A) surjects onto A×/(A×)2 since the discriminant maps
〈u〉 − 〈1〉 to u ∈ A×/(A×)2.

When A is a field, by Lemma 2.3 (d) above the coWitt group identifies with the fundamen-
tal ideal I, while by [36, III (5.2)] the discriminant induces an isomorphism I/I2 ∼= A×/(A×)2.
Finally, if A = R or C with the usual topology, it is easy to see that the group−1W2(A) co-
incides with the same group when we regard R and C with the discrete topology, thanks to
the fundamental theorem in topological hermitian K-theory proved in [27]. �

Examples 2.6. In the case of A = R, from [36, III (2.7)] the discriminant map above is the
surjection Z→ Z/2.

For A = Fq by [36, III (5.2), (5.9)] it is the isomorphism A×/(A×)2 ∼= Z/2.
For A = RF , with F totally real, the Dirichlet S-unit theorem for RF [51, Ch. IV

Theorem 9] gives R×F ∼= Zr+d−1 × µ(F ), where d is the number of dyadic places, and the
group of roots of unity µ(F ) has order 2. In the 2-regular case, d = 1 by Proposition 2.1(4),
so R×F /(R

×
F )2 ∼= (Z/2)r+1.

What follows is a key ingredient in the proof of Theorem 1.1.

Proposition 2.7: Suppose that F is a totally real 2-regular number field with r real em-
beddings. Then the residue field map RF → Fq and the real embeddings of F induce an
isomorphism between coWitt groups

W ′(RF )
∼=−→

r⊕
W ′(R)⊕W ′(Fq) ∼= Zr ⊕ Z/2.
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Proof. Recalling that SK1 is trivial for RF and F [6, Corollary 4.3], we obtain from the
last lemma a map of short exact sequences

0→ −1W2(RF ) → W ′(RF ) → R×F /(R
×
F )2 → 0

↓ ↓ ↓

0→
r⊕
−1W2(R)⊕ −1W2(Fq) →

r⊕
W ′(R)⊕W ′(Fq) →

r⊕
R×/(R×)2 ⊕ F×q /(F×q )2 → 0

which by Lemma 2.4 and Example (2.6) above takes the form:

0→ Zr → Zr ⊕ Z/2 → (Z/2)r+1 → 0
↓ ↓ ↓

0→
r⊕

Z⊕ 0 →
r⊕

Z⊕ Z/2 →
r⊕

Z/2⊕ Z/2 → 0

(3)

From the homotopy cartesian square (1) of 2-completed spectra, established in [26] and
[38] – see Appendix A, we deduce the short exact sequence of 2-completed groups

0→
⊕r

K2(C)→ K1(RF )→
⊕r

K1(R)⊕K1(Fq)→ 0. (4)

(The left hand 0 is justified by the facts that K2(Fq) = 0 and K2(R) = Z/2, while K2(C)
is torsion-free.) Therefore, the final vertical map in (3) is an isomorphism. Observe that
commutativity of the right-hand square implies that the middle vertical map in (3) is a
monomorphism on the Z/2 summand. Thus, to show that the middle vertical map is an
isomorphism, because this is equivalent to its being an epimorphism, it suffices to show

that either of the homomorphisms W ′(RF ) →
r⊕
W ′(R) or −1W2(RF ) →

r⊕
−1W2(R) is

surjective.
For the former homomorphism, we use the map of short exact sequences afforded by

Lemma 2.3(c):

0→ W ′(RF ) −→ W (RF ) −→ Z/2 → 0
↓ σ′ ↓ σ ↓ ∆

0→
r⊕
W ′(R) −→

r⊕
W (R) −→

r⊕
Z/2 → 0

Since the diagonal map ∆ is injective, the snake lemma gives the exact sequence

0 −→ Cokerσ′ −→ Cokerσ −→ (Z/2)r−1 −→ 0.

According to [19, Corollary 4.8] (applicable because by Proposition 2.1(4) Pic+(RF ) has odd

order), σ : W (RF )→
r⊕
W (R) has the same cokernel as σ : W (F )→

r⊕
W (R). Now, by [36,

pp. 64-65] (applicable because by Proposition 2.1(5) RF has units with independent signs),
Cokerσ is (Z/2)r−1. Hence, Cokerσ′ = 0, as desired.

The second approach, showing that −1W2(RF ) →
r⊕
−1W2(R) is surjective, instead of

[19] uses the “classical” treatment of [36], by invoking the generalized Hasse-Witt invariant
for quadratic forms.

Recall the map −1W2(A) −→ k2(A) employed in the definition of the 12-term exact
sequence in [31]. If A is a field, then by Lemma 2.5 above we may identify −1W2(A) with
I2(A); according to [24], this map from I2(A) to k2(A) = K2(A)/2 gives an equivalent
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definition of the classical Hasse-Witt invariant. Moreover, the Hasse-Witt invariants for RF
and F induce a commutative diagram with exact rows:

−1W2(RF ) → k2(RF ) → 0
↓ ↓

−1W2(F ) → k2(F ) → 0

Now, from [26] and [38], the real embeddings of F induce a surjective map from R×F to
⊕rK1(R). Hence, −1W2(RF ) surjects onto k2(RF ) ∼= (Z/2)r because the tensor product
(〈u〉 − 〈1〉)⊗ (〈v〉 − 〈1〉) maps to the symbol {u, v} in k2(RF ). By reference to [36, III (5.9)],
where the arguments can be extended to any ringD of S-integers in a number field, the kernels
of the Hasse-Witt surjections for RF and F are isomorphic to I3(F ) ∼=

⊕r
I3(R) ∼= 8Zr via

the signature map, and hence there is a map of short exact sequences:

0→ 8Zr −→ −1W2(RF ) −→ (Z/2)r → 0
↓∼= ↓ ↓∼=

0→ 8Zr −→ ⊕r−1W2(R)
χ−→ (Z/2)r → 0

where the notation 8Zr means the image in ⊕rW (R) = Zr of the kernel of χ by the total
signature map. The 5-lemma now shows that −1W2(RF ) is isomorphic to ⊕r−1W2(R) by the
middle vertical map. �

We finish this section by relating the numbers wm in the formulation of Theorem 1.3 to
tn, the 2-adic valuation (q(n+1)/2 − 1)2 of q(n+1)/2 − 1 for n odd.

Lemma 2.8: Suppose that q ≡ 1 (mod 4), and write (−)2 for the 2-adic valuation. Then
(qm − 1)2 = (q − 1)2(m)2.

Proof. With q = 4r + 1 and t = (m)2, note that qt − 1 is divisible by 4rt but not by 8rt,
due to the binomial identity. Set s = 8t(r)2 and u = m/t. Since (Z/2s)× has even order and
u is odd, qm − 1 = (qt)u − 1 is divisible by s/2 but not by s. �

Lemma 2.9: Let q be an odd number. If m is odd, then (qm − 1)2 = (q − 1)2. If m = 2m′

is even, then (qm − 1)2 = (q2 − 1)2(m′)2.

Proof. Ifm is odd, writing qm−1 = (q−1)(qm−1+· · ·+1) shows that (qm−1)2 = (q−1)2 since
(qm−1 + · · ·+ 1) is odd. If m = 2m′ is even, write qm−1 as (q2)m

′ −1 where q2 ≡ 1 (mod 4),
and apply the previous lemma. �

Returning now to the setting of this paper, we have a prime q defined, as in the Intro-
duction, in terms of the number field F such that q is ≡ ±1 (mod 2aF ) but not (mod 2aF +1).
Thus, for even m, the last lemma above gives

(qm − 1)2 = 2aF (m)2 =: wm,

where the number wm appears in Theorem 1.3. Hence, we have the following description of
tn := (q(n+1)/2 − 1)2 in terms of wm.

Lemma 2.10: Let F be a totally real number field for which q is chosen as in the Introduc-
tion. Then, for n ≡ 3 (mod 4),

tn = w(n+1)/2. �
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3 Proof of Theorem 1.1

Before commencing consideration of Theorem 1.1, we make a few preparatory remarks.
The following result, of independent interest, will be used below.

Proposition 3.1: Let R be any ring of S-integers in a number field F with 1/2 ∈ R. Then
the odd torsion of the generalized Witt groups

εWn(R) = Coker [Kn(R) −→ εKQn(R)]

and the coWitt groups
εW

′

n(R) = Ker [εKQn(R) −→ Kn(R)]

is trivial for all values of n ∈ Z.

Proof. We first remark that the higher Witt groups and coWitt groups have the same odd
torsion because of the 12 term exact sequence proved in [31]. The same exact sequence
shows that we have an isomorphism modulo odd torsion between εWn(R) and −εWn+2(R).
Therefore, we have only to compute the four cases ε = ±1 and n = 0, 1.

For ε = −1, recall that −1KQ1(R) = Sp(R) /[Sp(R), Sp(R)] = 0 according to [6, Corol-
lary 4.3], and therefore its quotient −1W1(R) = 0. By [36, I (3.5)] there are isomorphisms
−1KQ0(R) ∼= Z detected by the (even) rank of the free symplectic R-inner product space.
Therefore, −1W0(R) = Coker [K0(R) −→ −1KQ0(R)] = 0.

For ε = 1, it is well known (see for instance [36, Corollary IV.3.3]) that the Witt group
1W (R) injects in 1W (F ) and that the torsion of 1W (F ) is 2-primary according to the same
book [36, Theorem III.3.10]. Finally, we consider the exact sequence

K1(R) −→ 1KQ1(R) −→ 2Pic(R)⊕ Z2(R) −→ 0

proved in [5, (4.7.6)] with different notations. Here, 2Pic(R) is the 2-torsion of the Picard
group and Z2(R) is the group of locally constant maps from Spec(R) to Z/2. Moreover,
Spec(R) is connected, so that Z2(R) = Z/2, and the previous exact sequence yields the
isomorphism

1W (R) ∼= 2Pic(R)⊕ Z/2. (5)
�

The next follows by comparing the splittings of the hermitian K-theory spectrum and the
K-theory spectrum according to their canonical involutions [31, pg. 253]. We record it for
the sake of completeness: by the previous result, it may be applied to any ring of 2-integers
in a number field.

Proposition 3.2: Let A be any ring, with n an integer such that the odd torsion εWn(A)
vanishes. Then the odd torsion subgroup of εKQn(A) is the invariant part of the odd torsion
subgroup of Kn(A) induced by the involution M 7→ tM−1 on GL(A). �

We now turn to consideration of spectra. The following simple exercise in stable homotopy
theory ((iv), (v) are from [14, Chapter VI (5.1),(5.2)], suitably adopted to spectra in [12,
Proposition 2.5]) will be used implicitly at various times. Here and subsequently, we write
ΩE to indicate the shifted spectrum whose space at level n is En−1 ' Ω(En); similarly for
other shifts. In (iv), Z2∞ denotes the quasicyclic 2-group lim−→Z/2n.
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Lemma 3.3: For any spectrum E and fiber sequence F → E → B of spectra, the connective
covers and 2-completions have the following properties.

(i) Fc → Ec → Bc is a fiber sequence, provided that π0(E)→ π0(B) is an epimorphism.

(ii) (ΩE)c ' Ω(Ec), provided that π0(E) = 0.

(iii) (Ω−1E)c ' Ω−1(Ec), provided that π−1(E) = 0.

(iv) (E#)c ' (Ec)# , provided that Hom(Z2∞ , π−1(E)) = 0, as for example when π−1(E) is
finitely generated.

(v) When all homotopy groups of E are finitely generated, then for all i ∈ Z the 2-completed
spectrum E# has

πi(E#) = πi(E)⊗ Z2. �

Even though (iv) above applies to our spectra whose homotopy groups are finitely gen-
erated, we clarify our convention by defining Ec# as (Ec)#. This spectrum Ec# is named the
2-completed connective spectrum associated to E . For instance,

K(RF )c# = (K(RF )c)# = K(RF )# ,

and for n ≥ 0
πn(K(RF )c#) = Kn(RF )⊗ Z2 ;

while
εKQ(RF )c# = (εKQ(RF )c)# ,

and for n ≥ 0
πn(εKQ(RF )c#) = εKQn(RF )⊗ Z2 .

This uses the result of [8, (3.6), pg. 795.] that the groups εKQn(RF ) are finitely generated.
For completeness’ sake, we give an alternative proof in Proposition 3.13 at the end of this
section.

The following lemma is used later on in our argument.

Lemma 3.4: Let E and F be two spectra with finitely generated homotopy groups in each
degree. Let

f : E −→ F

be a morphism that induces an isomorphism between homotopy groups πi(−; Z/2r) for i ≥ n
and sufficiently large r.

(a) Then f induces an isomorphism between the 2-primary torsion of E and F in all
degrees ≥ n.

(b) Moreover, if also f induces an isomorphism between rational homotopy groups for
degrees ≥ n, then it induces an isomorphism between E and F in these degrees after tensoring
with 2-local integers Z(2), and hence after tensoring with 2-adic integers Z2.
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Proof. (a) We consider the map of Bockstein short exact sequences

0→ πi(E)/2r −→ πi(E ; Z/2r) −→ 2rπi−1(E) → 0
↓ ↓∼= ↓

0→ πi(F)/2r −→ πi(F ; Z/2r) −→ 2rπi−1(F) → 0

Evidently, this implies that for all r the map 2rπi−1(E) → 2rπi−1(F) between 2r-torsion
subgroups is surjective whenever i ≥ n. If now r is sufficiently large, then injectivity of the
map πi(E)/2r → πi(F)/2r yields an isomorphism of the 2-primary torsion subgroups, again
whenever i ≥ n.
(b) Here, following [44, pg.32], we first note that πi commutes with direct limits of coefficient
groups, giving an isomorphism on πi(−; Z2∞). Then, from the exact sequence of homotopy
groups associated to the short exact sequence of coefficients

0→ Z(2) −→ Q −→ Z2∞ → 0,

we obtain an isomorphism on πi(−; Z(2)). However, since Z(2) is a flat Z-module, the Tor
term vanishes in the universal coefficient sequence

0→ πi(E)⊗Z Z(2) −→ πi(E ; Z(2)) −→ TorZ(πi−1(E), Z(2))→ 0.

Finally, of course, we use the fact that Z(2) ⊗Z Z2
∼= Z2. �

Following the exposition in [8, §5], we start out the proof of Theorem 1.1 by choosing
an embedding of the field of q-adic numbers Qq into the complex numbers C such that the
induced composite map

εKQ(Zq)c → εKQ(Qq)c → εKQ(C)c

agrees with Friedlander’s Brauer lift εKQ(Fq)c → εKQ(C)c from [21] under the rigidity
equivalence between εKQ(Zq)c and εKQ(Fq)c, cf. [8, Lemma 5.3]. This idea is the hermitian
analogue of a widely used construction in algebraic K-theory originating in the works of
Bökstedt [10], Dwyer-Friedlander [20], and Friedlander [21].

The ring maps relating RF to Fq, R and C induce the commuting Bökstedt square for
hermitian K-theory spectra (2) in the Introduction.

The same ring maps induce the analogous commuting Bökstedt square for algebraic K-
theory spectra (1) in the Introduction comprising εZ/2-equivariant maps.

Denote by εKQ(RF ) the homotopy cartesian product of εKQ(Fq)c and ∨rεKQ(R)c over
∨rεKQ(C)c, afforded by the Bökstedt square of hermitian K-theory spectra. (εKQ(RF )
is thereby connective because of the epimorphism εKQ0(R) � εKQ0(C). Moreover, since
the spectra εKQ(Fq)c and ∨rεKQ(R)c have finitely generated homotopy groups, so too does
εKQ(RF ).)

Thus, Theorem 1.1 becomes the assertion that there is a homotopy equivalence between
the 2-completed connective spectra associated to the map

εKQ(RF )→ εKQ(RF ). (6)

We write εKQn(RF ) for the homotopy groups of the target spectrum above.
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We prove Theorem 1.1 by means of the following strategy, previously adopted in [8, §5]
in the case of the rational field. The low-dimensional computations in Theorem 3.5 below
show that (6) induces an isomorphism modulo odd torsion, on integral homotopy groups επn
for n = 0, 1. Moreover, these homotopy groups are trivial in degree n = −1. When this is
combined with the fact that the corresponding algebraic K-theory square (1) is homotopy
cartesian (which is shown in both [26] and [38], see also Appendix A), and the induction
methods for hermitian K-groups in [8, §3], we deduce that the morphism of spectra (6)
induces an isomorphism of all homotopy groups both rationally and with finite 2-group
coefficients. Since both spectra have their integral homotopy groups finitely generated in
all dimensions, we may apply Lemma 3.4 to obtain an isomorphism of 2-completions of the
integral homotopy groups of these spectra. Then Lemma 3.3 (v) finishes the proof.

We must therefore establish the following key computational result which extends the
low-dimensional calculations for the rational integers in [8, §4] to every totally real 2-regular
number field.

Theorem 3.5: Let n = −1, 0 or 1 and ε = ±1. Then the map of homotopy groups

επn : εKQn(RF )→ εKQn(RF )

is an isomorphism, except for ε = 1 and n = 0 where it is an isomorphism modulo odd
torsion.

Proof. The theorem will be proved after many preliminary lemmas listed below. According
to the definition of the spectrum εKQ(RF ) as the homotopy cartesian product of εKQ(Fq)c

and ∨rεKQ(R)c over ∨rεKQ(C)c, there is a naturally induced long exact sequence

· · · →
r⊕
εKQn+1(C)→ εKQn(RF )→ εKQn(Fq)⊕

r⊕
εKQn(R)→ · · · . (7)

We shall deal in turn with each of the six cases ε = ±1, n = −1, 0, 1, in the remaining lemmas
of this section.

Lemma 3.6: The map −1π1 : −1KQ1(RF )→ −1KQ1(RF ) is an isomorphism between trivial
groups.

Proof. Recall that −1KQ1(A) = 0 when A = RF ,Fq,R by for example [28, Théorème
2.13] (using [6, Corollary 12.5] ). Thus (7) shows that it suffices to note that −1KQ2(C) =
π1(Sp) = 0 for the infinite symplectic group Sp. �

Lemma 3.7: The map −1π0 : −1KQ0(RF )→ −1KQ0(RF ) ∼= Z is an isomorphism.

Proof. By [36, I (3.5)] again, there are isomorphisms −1KQ0(A) ∼= Z when A = RF ,Fq,R,
and C detected by the (even) rank of the free symplectic A-inner product space. Now since
every ring map preserves the rank, we obtain a cartesian square:

−1KQ0(RF ) →
r⊕
−1KQ0(R)

↓ ↓

−1KQ0(Fq) →
r⊕
−1KQ0(C)

(8)

Combining (7), (8), and the fact that −1KQ1(C) is the trivial group, it follows that −1π0 is
an isomorphism. �
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Lemma 3.8: The map 1π1 : 1KQ1(RF )→ 1KQ1(RF ) is an isomorphism.

Proof. We first show that the determinant and the spinor norm of RF induce an isomorphism

1KQ1(RF )
∼=−→ R×F /(R

×
F )2 ⊕ Z/2. (9)

(Moreover, from (2.6) above we note that the right-hand side reduces to (Z/2)r+2.) To see
this, consider the exact sequence of units, discriminant modules, and Picard groups in [5,
(2.1)]

0→ µ2(F )→ R×F
( )2→ R×F → Discr(RF )→ Pic(RF ) 2·→ Pic(RF ). (10)

Combining (10) with the 2-regular assumption on F and the vanishing of SK1(RF ) [6, Corol-
lary 4.3], the isomorphism in (9) follows from [5, (4.7.6)]. As a corollary, we deduce that the
hyperbolic map R×F

∼= K1(F ) → 1KQ1(F ) ∼= R×F /(R
×
F )2 ⊕ Z/2 may be identified with the

composition of the quotient map R×F � R×F /(R
×
F )2 by the inclusion of this last group in

R×F /(R
×
F )2 ⊕ Z/2, and so that 1W1(RF ) ∼= Z/2. An analogous result holds if we replace RF

by Fq,R or C.
The group 1KQ2(R) ∼= Z/2⊕Z/2 maps split surjectively onto 1KQ2(C) ∼= Z/2, as shown

in the first two lemmas of Appendix B. Hence by (7) there is a short split exact sequence

0→ 1KQ1(RF ) θ→ 1KQ1(Fq)⊕
r⊕

1KQ1(R)
ϕ→

r⊕
1KQ1(C)→ 0 (11)

where we may choose a splitting of ϕ whose image lies in a direct summand of
r⊕

1KQ1(R) ∼=
(Z/2)2r, while

r⊕
1KQ1(C) ∼= (Z/2)r. Therefore, we have an induced isomorphism

1KQ1(RF ) ∼= 1KQ1(Fq)⊕ (Z/2)r.

Thus, since 1KQ1(Fq) ∼= Z/2 ⊕ Z/2, using (9) and (11), we deduce that 1KQ1(RF ) and
1KQ1(RF ) are both abstractly isomorphic to direct sums of r + 2 copies of Z/2. Therefore,
to finish the proof of the lemma, it suffices to show that 1π1 : 1KQ1(RF ) → 1KQ1(RF ) is
surjective. The argument is now broken into three steps.
Step 1. For A = RF ,Fq,R and C, by Lemma 2.5, we have surjections

1KQ1(A) � 1W1(A)
∼=
� k1(A) = {±1}.

Let SKQ1(A) denote the kernel of this determinant map 1KQ1(A) → {±1} which is obvi-
ously split surjective, so that 1KQ1(A) ∼= SKQ1(A) ⊕ Z/2. Naturality of the determinant
map implies that the maps between the various 1KQ1(A) restrict to maps between the corre-
sponding subgroups SKQ1(A). Moreover, because 1W1(A) is the cokernel of the hyperbolic
map, the map K1(A)→ 1KQ1(A) factors through SKQ1(A).

The computations above now imply that in the commutative diagram

R×F
∼= K1(RF ) −→ K1(Fq)⊕

r⊕
K1(R)

↓ ↓

R×F /(R
×
F )2 ∼= SKQ1(RF ) −→ SKQ1(Fq)⊕

r⊕
SKQ1(R)

both the vertical and top horizontal arrows are surjective. Therefore, the lower horizontal
map is also surjective.
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Step 2. In a symmetric way, we introduce a subgroup SKQ1(RF ) of 1KQ1(RF ) as the
kernel of the composition 1KQ1(RF ) ∼= 1KQ1(Fq)⊕ (Z/2)r −→ 1KQ1(Fq)

det−→ {±1} which
is a split surjection. Therefore, we have a decomposition of both 1KQ1(RF ) and 1KQ1(RF )
as compatible direct sums:

1KQ1(RF ) ∼= SKQ1(RF )⊕ Z/2 and 1KQ1(RF ) ∼= SKQ1(RF )⊕ Z/2,

and it is enough to prove the surjectivity of the induced map σ : 1SKQ1(RF )→ 1SKQ1(RF ).
Step 3. Finally, consider the commuting diagram:

SKQ1(RF ) σ−→ SKQ1(RF )
γ−→ SKQ1(Fq)⊕

r⊕
SKQ1(R)

↓ ↓ ↓

1KQ1(RF ) 1π1−→ 1KQ1(RF ) θ−→ 1KQ1(Fq)⊕
r⊕

1KQ1(R)

From (11), θ is a monomorphism; so, its restriction γ is also injective. Meanwhile, from Step
1, the composite γ ◦ σ is surjective. It follows that σ is surjective too, as we sought. �

Lemma 3.9: The map 1π0 : 1KQ0(RF ) → 1KQ0(RF ) is an isomorphism modulo odd tor-
sion.

Proof. Since Pic(A) is an odd torsion group we obtain for A = RF ,Fq,R, and C the short
exact sequence (modulo odd torsion)

0→W ′(A)→ 1KQ0(A)→ K0(A)→ 0. (12)

From the last three of these four cases we obtain the vertical map of short exact sequences:

0→ W ′(Fq)⊕
r⊕
W ′(R) → 1KQ0(Fq)⊕

r⊕
1KQ0(R) → K0(Fq)⊕

r⊕
K0(R) → 0

↓ ↓ ↓

0→
r⊕
W ′(C) →

r⊕
1KQ0(C) →

r⊕
K0(C) → 0

By [26] and [38], K0(RF ) is the kernel of the rightmost vertical map. Further, the bottom
right horizontal epimorphism maps between two copies of Zr, making the coWitt groupW ′(C)
trivial. As already noted, 1KQ1(R) maps onto 1KQ1(C), making 1KQ0(RF ) the kernel of the
center vertical map. Therefore, the desired isomorphism between 1KQ0(RF ) and 1KQ0(RF )
follows by combining the short exact sequence (12) for A = RF and Proposition 2.7. �

Before dealing with the remaining cases n = −1 with ε = ±1, we need a proposition
which is interesting by itself.

Proposition 3.10: Let A be a Dedekind ring and ε = ±1 and let us consider the forgetful
map

εKQ0(A)
ϕ−→ K0(A) = Z⊕ Pic(A).

Its image on the first summand is Z if ε = 1 and 2Z if ε = −1. Its image on the second
summand is a group of order at most 2. Therefore, if A is a 2-regular ring of integers, the
image of ϕ lies in the first summand.

Proof. The projection to the Z summand is given by the rank. On the other hand, if E is
equipped with a symmetric or antisymmetric form, it is isomorphic to its dual. The duality
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on Pic(A) is given by I 7−→ I∗ = I−1. This implies that the image of E in Pic(A) is at most
of order 2. In particular, when Pic(A) is odd torsion, the image of ϕ is included in the Z
summand. �

For the cases n = −1 with ε = ±1, we are going to show that εKQ−1(RF ) is trivial, as
is εKQ−1(RF ) because the spectrum εKQ(RF ) is connective. As in [8], we exploit the two
exact sequences

K1(RF ) −→ −εKQ1(RF ) −→ −εU0(RF ) −→ K0(RF ) −→ −εKQ0(RF ),

and (via the fundamental theorem proved in [31])

εKQ0(RF )
ϕ−→ K0(RF ) −→ −εU0(RF ) −→ εKQ−1(RF ) −→ K−1(RF ) = 0.

Lemma 3.11: The map 1π−1 : 1KQ−1(RF ) → 1KQ−1(RF ) is an isomorphism between
trivial groups.

Proof. For ε = 1, −εKQ1(RF ) = 0 by a well-known theorem of Bass, Milnor and Serre [6,
Corollary 12.5]; and the map K0(RF )→ −εKQ0(RF ) has its kernel identified with Pic(RF )
since −1KQ0(RF ) = Z. Hence −εU0(RF ) ∼= Pic(RF ). On the other hand, according to the
previous proposition, the cokernel of ϕ is also identified with Pic(RF ). The second exact
sequence therefore provides an injective map from Pic(RF ) to itself. Since Pic(RF ) is finite,
this map is bijective, and it follows that 1KQ−1(RF ) is the trivial group. �

Lemma 3.12: The map −1π−1 : −1KQ−1(RF )→ −1KQ−1(RF ) is an isomorphism between
trivial groups.

Proof. In order to compute −1KQ−1(RF ), let us first work modulo odd torsion, which
makes the map K0(RF ) −→ −εKQ0(RF ) injective. The first exact sequence above written
for ε = −1 shows that 1U0(RF ) = Z/2, because 1W1(RF ) = Z/2 by (5). On the other
hand, the cokernel of the map ϕ in the second exact sequence is also Z/2 by Proposition
3.10. It follows that −1KQ−1(RF ) = 0, and so the map −1KQ−1(RF )→ −1KQ−1(RF ) is a
homomorphism between odd order finite groups.

Finally, according to Proposition 3.1, the odd torsion of the Witt groups in degree −1 is
trivial. Since K−1(RF ) = 0, it follows that the odd torsion of −1KQ−1(RF ) is also trivial.�

These various lemmas conclude the proof of Theorem 3.5, and hence of Theorem 1.1 with
the exception of the following proposition which was announced at the beginning:

Proposition 3.13: Let F be a number field and let R be a ring of S-integers in F , where S
is a finite set of primes containing the dyadic ones. Then the groups εKQn(R) are finitely
generated for ε = ±1 and n ∈ Z.

Proof. The same arguments used in the proofs of Lemmas 3.6 and 3.7 show that −1KQ0(R) ≡
Z and −1KQ1(R) = 0. According to [5, (2.1)], 1KQ1(R) (= KO1(R) in Bass’s nota-
tion) is inserted in an exact sequence between two finitely generated groups KSL1(R) and
Disc(R)⊕Z/2, where Disc(R) is described in [5, pg. 156.]. Therefore, 1KQ1(R) and 1W1(R)
are finitely generated.

On the other hand, it is well known (see e.g. [36, Corollary 3.3, pg. 93]), that the
canonical map between classical Witt groups W (R) −→ W (F ) is injective. Moreover, any
element of W (F ) is determined by the classical invariants which are the rank, signature,
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discriminant and Hasse-Witt invariant. Since S is finite, the discriminant and the Hasse-
Witt invariant computed on the elements of W (R), considered as a subgroup of W (F ), can
take only a finite set of values. Moreover, the signature takes integral values defined by the
various real embeddings. Therefore, the group W (R) is finitely generated.

In order to deal with the higher Witt groups εWn(R) and coWitt groups εW
′

n(R) for
n ∈ Z, we use the following two basic tools:

1) According to Quillen [41] the groups Kn(R) are finitely generated. Therefore, the Tate
cohomology groups kn(R) and k

′

n(R) are also finitely generated.
2) There is a 12-term exact sequence detailed in [31, pg. 278.] which shows by double

induction from the cases ε = ±1 and n = 0, 1, that the groups εWn(R) and εW
′

n(R) are
finitely generated for all values of n ∈ Z and ε = ±1.

Finally, from 1) and 2), we deduce that εKQn(R), which lies in an exact sequence between
Kn(R) and εWn(R), is finitely generated. �

Remark 3.14. 1. By means of Lemma 3.4 (b), the proof of Theorem 1.1 also works when
dealing with 2-localizations instead of 2-completions. Likewise, Theorems 1.3 and 1.4 are also
true in the framework of 2-localizations. However, Theorem 1.5 is only true for completions.

2. In this paper, we work with the spectra K(R)c# and K(C)c# and their hermitian analogs.
The Suslin equivalence [45] with K(Rδ)# and K(Cδ)# respectively, where δ means the discrete
topology, enables these spectra to be replaced by those of the discrete rings when considering
completions. However, this method fails if we deal with localizations instead of completions.

4 Splitting results

The purpose of this section is to prove some generic splitting results employed in the proofs
of Theorems 1.3 and 1.4.

To start with, fix some residue field Fq of RF as in paragraph prior to the statement of
Theorem 1.1 in the Introduction, and define the spectrum εKQ(RF ) (this is just a convenient
notation, which we shall use below for K-theory and V -theory too) by the homotopy cartesian
square:

εKQ(RF )

↓

→ εKQ(R)c

↓

εKQ(Fq)c → εKQ(C)c

It is connective because of the epimorphism εKQ0(R)→ εKQ0(C). Similarly, define K(RF )
by the same type of homotopy cartesian square by replacing εKQ by K. It is also connective
because of the epimorphism K0(R)→ K0(C). Finally, we define εV(RF ) by the similar homo-
topy cartesian square replacing εKQ by εV. It too is connective, because of the epimorphism
εV0(R)→ εV0(C) proved in Lemmas B.4, B.5 and B.7 of Appendix B.

The first homotopy cartesian square can be recast as a homotopy fiber sequence

εKQ(RF ) −→ εKQ(R)c ∨ εKQ(Fq)c −→ εKQ(C)c, (13)

and similarly for the others.
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In the next step we form the naturally induced diagram with horizontal homotopy fiber
sequences:

εKQ(RF ) −→ εKQ(R)c ∨ εKQ(Fq)c −→ εKQ(C)c

↓ ↓∇∨id ↓∇

εKQ(RF ) −→
∨r

εKQ(R)c ∨ εKQ(Fq)c −→
∨r

ε
KQ(C)c

↓ ↓ ↓∨r−1

εF −→
∨r−1

εKQ(R)c −→
∨r−1

ε
KQ(C)c

(14)

Note that εF is connective, again from the epimorphism εKQ0(R) → εKQ0(C). Since the
two right-hand columns are also homotopy fiber sequences, the same holds for the left-hand
column, cf. [16, Lemma 2.1]. Using the compatibility of the two evident splittings of the
right-hand columns, we obtain a splitting of εKQ(RF )→ εKQ(RF ). In other words,

εKQ(RF ) ' εKQ(RF ) ∨
r−1∨

εF .

Let us define the connective spectrum K(RF ) as the homotopy pull-back of the diagram

K(RF ) →
r∨
K(R)c

↓ ↓

K(Fq) →
r∨
K(C)c

It is connective because the map K0(R) −→ K0(C) is surjective. By an argument similar
to before, we can split K(RF ) as K(RF ) ' K(RF ) ∨

∨r−1 Ω−1K(R)c, where Ω−1K(R)c =
(Ω−1K(R))c (since K−1(R) = 0) is the homotopy fiber of the map K(R)c → K(C)c by a
direct consequence of a well-known result due to Bott: see for instance [29, Section III.5].
This splitting will be used incidentally in the computation of one V -group later on. It also
implies the explicit computation of the groups Kn(RF ) listed in Theorem 1.3.

In 1KQ-theory, we make use of the following lemma, which is a consequence of (14) and
the homotopy equivalences 1KQ(R) ' K(R)∨K(R) and 1KQ(C) ' K(R) proved in Appendix
B which give the homotopy type of 1F as K(R)c.

Lemma 4.1: There is a homotopy equivalence

1KQ(RF ) ' 1KQ(RF ) ∨
∨r−1

K(R)c. �

Next, we consider the fiber −1F of

−1KQ(R)c = K(C)c −→ −1KQ(C)c = K(H)c

(where H refers to the quaternions with the usual topology). If we write the commutative
diagram due to Bott

K(C)c −→ K(H)c

↓' ↓'
(Ω4(K(C)))c −→ (Ω4(K(R)))c

we see that the homotopy fiber of the map −1KQ(R)c → −1KQ(C)c may be identified with
the homotopy fiber (Ω6K(R))c of (Ω4(K(C)))c → (Ω4(K(R)))c.
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Lemma 4.2: There is a homotopy equivalence

−1KQ(RF ) ' −1KQ(RF ) ∨
r−1∨

(Ω6K(R))c. �

The next proposition is a consequence of the two previous lemmas and Theorem 1.1.

Proposition 4.3: There are homotopy equivalences of 2-completed connective spectra

1KQ(RF )c# ' 1KQ(RF )# ∨
∨r−1

K(R)c#

and

−1KQ(RF )c# ' −1KQ(RF )# ∨
r−1∨

(Ω6K(R))c#. �

In order to obtain the diagram in εV-theory corresponding to (14), we start with the
diagram

εV(RF )c −→
∨r

εV(R)c ∨ εV(Fq)c −→
∨r

εV(C)c

↓ ↓ ↓
εKQ(RF )c −→

∨r
εKQ(R)c ∨ εKQ(Fq)c −→

∨r
εKQ(C)c

↓ ↓ ↓
K(RF ) −→

∨r K(R)c ∨ K(Fq) −→
∨r K(C)c

(15)

in which by definition all three columns are fiber sequences; by Theorem 1.1 and its counter-
part in algebraic K-theory (1). The lower two rows are fiber sequences, and hence the top
row is as well [16, Lemma 2.1]. A similar argument reveals that εV(RF ) is the homotopy
fiber of the map εKQ(RF )→ K(RF ).

Let us define the connective spectrum εV(RF ) as the homotopy pull-back of the diagram

εV(RF ) →
r∨
εV(R)c

↓ ↓

εV(Fq) →
r∨
εV(C)c

This spectrum is connective because the map εV0(R) −→ εV0(C) = 0 is surjective according
to Lemmas B.5 and B.7 of Appendix B.

By considering the homotopy fibers of the map from Diagram 14 to its K-counterpart,
we now obtain the commuting diagram

εV(RF ) −→ εV(R)c ∨ εV(Fq)c −→ εV(C)c

↓ ↓∇∨id ↓∇

εV(RF ) −→
∨r

εV(R)c ∨ εV(Fq)c −→
∨r

ε
V(C)c

↓ ↓ ↓∨r−1

εG −→
∨r−1

εV(R)c −→
∨r−1

ε
V(C)c

(16)

wherein we conclude that the first column is a homotopy fiber sequence, since all other
columns and rows are. As for (14), we deduce that the first column is split. Thus, a complete
determination of εV(RF ) in terms of εV(RF ) requires only a computation of the summand
εG which is (by definition) the homotopy fiber of εσ : εV(R)c → εV(C)c. The following is
included in Appendix B, as Lemmas B.6 and B.8.
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Lemma 4.4: The homotopy fiber εG of εσ : εV(R)c → εV(C)c is{
K(R)c ∨ K(R)c ε = 1,
K(C)c ε = −1. �

The above computations therefore imply the following two lemmas.

Lemma 4.5: There is a homotopy equivalence

1V(RF ) ' 1V(RF ) ∨
r−1∨
K(R)c ∨

r−1∨
K(R)c. �

Lemma 4.6: There is a homotopy equivalence

−1V(RF ) ' −1V(RF ) ∨
r−1∨
K(C)c. �

Let us now consider the following diagram of fibrations

εV(RF )c# −→ εKQ(RF )c# −→ K(RF )c#
↓α ↓β ↓γ

εV(RF )# −→ εKQ(RF )# −→ K(RF )#

Since β and γ are homotopy equivalences, α is a homotopy equivalence. To finish the compu-
tations of the KQ and V -groups, it remains to compute explicitly the groups εKQn(RF ) =
πn(εKQ(RF )) and εVn(RF ) = πn(εV(RF )) in the next two sections.

5 Proof of Theorem 1.3

The splitting results Lemma 4.1 and Lemma 4.2 in §4 show that in order to prove Theorem
1.3, it suffices to compute the groups εKQn(RF ) = πn(εKQ(RF )), and then sum with r − 1
copies of the well-known K-groups of R. We formulate the computation in terms of the
numbers tn = (q(n+1)/2 − 1)2 introduced at the end of §2, where we recall from Lemma 2.10
that they are related to the numbers wm of Theorem 1.3 by the formulae:

t8k+3 = w4k+2 and t8k+7 = w4k+4.

Theorem 5.1: Up to finite groups of odd order, the groups εKQn(RF ) are given in the
following table. (Recall that δn0 denotes the Kronecker symbol.)
Proof. Throughout the proof, we exploit Friedlander’s computation of εKQn(Fq) given in
[21, Theorem 1.7], and work modulo odd torsion.
First case: ε = 1. Applying Lemma B.1 of Appendix B to the homotopy fiber sequence (??)
gives for each n a split short exact sequence

0→ 1KQn(RF ) −→ Kn(R)⊕Kn(R)⊕ 1KQn(Fq) −→ Kn(R)→ 0.

From this splitting we deduce an isomorphism

1KQn(RF ) ∼= Kn(R)⊕ 1KQn(Fq).
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n ≥ 0 −1KQn(RF ) 1KQn(RF )
8k δn0Z δn0Z⊕ Z⊕ Z/2
8k + 1 0 (Z/2)3

8k + 2 Z (Z/2)2

8k + 3 Z/2t8k+3 Z/t8k+3

8k + 4 Z/2 Z
8k + 5 Z/2 0
8k + 6 Z 0
8k + 7 Z/t8k+7 Z/t8k+7

Second case: ε = −1. For the computation of −1KQ(RF ) we need to make several case
distinctions arising from the 2-completed homotopy cartesian square:

−1KQ(RF )c# −→ −1KQ(R)c# ' K(C)c# ' (Ω4(K(C)))c#
↓ ↓

−1KQ(Fq)c# −→ −1KQ(C)c# ' K(H)c# ' (Ω4(K(R)))c#

Note that the vertical homotopy fiber is (Ω6K(R))c# by Lemma 3.3 since the map K4(C) −→
K4(R) is onto. The horizontal homotopy fiber is (Ω5K(R))c# according to [21, Theorem 1.7].
In particular, there is the “vertical” exact sequence

· · · → −1KQn+1(Fq)→ Kn+6(R)→ −1KQn(RF )→ −1KQn(Fq)→ Kn+5(R)→ · · · , (17)

and the “horizontal” exact sequence

· · · → Kn+5(C)→ Kn+5(R)→ −1KQn(RF )→ Kn+4(C)→ Kn+4(R)→ · · · . (18)

If n ≡ 0, 1 (mod 8) is nonzero, then (17) implies −1KQn(RF ) = 0. Likewise, when
n ≡ 2 (mod 8), (17) shows that −1KQn(RF ) ∼= K8(R) ∼= Z.

For n ≡ 4 (mod 8), we use the segment

Kn+5(C) → Kn+5(R) → −1KQn(RF ) → Kn+4(C)

of (18). By analyzing (17), it follows that −1KQn(RF ) is finite. Thus −1KQn(RF ) has order
2.

For n ≡ 5 (mod 8), (18) implies that −1KQn(RF ) is cyclic, whence by (17) there is an
isomorphism −1KQn(RF ) ∼= Z/2.

For n ≡ 3 (mod 8), we use the exact sequence (17) from −1KQn+2(RF ) to Kn+5(R). In
view of the two previous results, this takes the form

Z/2→ Z/2⊕ Z/2→ Z/2→ Z/2→ Z/2→ Z/2→ −1KQn(RF )→ Z/tn → Z.

Chasing this sequence from the left reveals that −1KQn(RF ) is a finite group of order 2tn.
Meanwhile, the exact sequence (18) obliges this group to be cyclic.

For n ≡ 6 (mod 8), (17) implies that −1KQn(RF ) ∼= Z or Z ⊕ Z/2. On the other hand,
the exact sequence (18) shows that −1KQn(RF ) is a subgroup of Z.

Finally, if n ≡ 7 (mod 8) then (17) produces an isomorphism between −1KQn(RF ) and
−1KQn(Fq) ∼= Z/tn. �

We can now prove Theorem 1.2.
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Theorem 5.2: For every totally real number field F , the following are equivalent.

(i) F is 2-regular.

(ii) The square (2) is homotopy cartesian for F when ε = 1.

(iii) The square (1) is homotopy cartesian for F .

Proof. Theorem 1.1 shows that (i) implies (ii).
In the other direction, the preceding proof shows that (ii) leads to the second column

of the table of Theorem 5.1. Since W (RF ) injects into W (F ) [36, IV (3.3)], which has no
odd-order torsion [36, III (3.10)], we may work modulo odd torsion. From the epimorphisms
(i = 0, 1) 1KQi(R) � 1KQi(C), we obtain, from the Mayer-Vietoris sequence following from
Theorem 1.1, a short exact sequence

0→ 1KQ0(RF ) −→ 1KQ0(Fq)⊕
r⊕

1KQ0(R) −→
r⊕

1KQ0(C)→ 0,

which splits because the final group is free abelian. It follows that

1KQ0(RF ) ∼= Z⊕ Zr ⊕ Z/2,

such that its Z/2 summand maps nontrivially in the commuting square

Z⊕ Zr ⊕ Z/2 ∼= 1KQ0(RF ) −→ 1KQ0(Fq) ∼= Z⊕ Z/2
↓ ↓

1W0(RF ) −→ 1W0(Fq) ∼= Z/2⊕ Z/2

whose vertical maps are, by definition, surjective. Thus, in the exact sequence

K0(RF ) H−→ 1KQ0(RF ) −→ 1W0(RF )→ 0

the hyperbolic homomorphism H must map the finite summand Pic(RF ) of K0(RF ) trivially,
and so have its cokernel W (RF ) isomorphic to Zr ⊕Z/2. Then by Proposition 2.1(1), (7), it
follows that F is 2-regular.

Similarly, the K-theoretic theorem of [26] and [38] in case (i) asserts that (i) implies (iii).
Again, the computation K2(RF ){2} ∼= (Z/2)r follows from (iii). Here, Proposition 2.1(1),

(2) yield that F is 2- regular. �

6 Proof of Theorem 1.4

As for Theorem 1.3, the splitting results proven in Lemmas 4.5 and 4.6 show that in order
to prove Theorem 1.4, it suffices to compute the groups εVn(RF ) introduced in the same
section.

Theorem 6.1: Up to finite groups of odd order, the groups

εVn(RF ) := πn(εV(RF ))

are as follows.
More precisely, for ε = 1, the spectrum 1V(RF )c# (resp. 1V(RF )c#) has the homotopy type

of 2 copies (resp. 2r copies) of the spectrum K(R)c#.
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n ≥ 0 −1Vn(RF ) 1Vn(RF )
8k Z⊕ Z/2 Z2

8k + 1 0 (Z/2)2

8k + 2 Z (Z/2)2

8k + 3 0 0
8k + 4 Z Z2

8k + 5 Z/2 0
8k + 6 Z⊕ Z/2 0
8k + 7 Z/2 0

Proof. Throughout the proof, we again work modulo odd torsion.
First case: ε = 1. In the homotopy cartesian square

1V(RF )c# −→ 1V(R)c# ' K(R)c#
↓ ↓1σ

1V(Fq)c#
χ−→ 1V(C)c# ' Ω−1K(R)c#

as noted in Lemma B.6 of Appendix B, the map 1σ is nullhomotopic. If we replace χ by a
Serre fibration, then 1V(RF )c# has the homotopy type of its pullback over the nullhomotopic
map 1σ. This means that 1V(RF )c# has the homotopy type of a fiber homotopy trivial
fibration with base 1V(R)c# = K(R)c#, and fiber of the homotopy type of the fiber of the
lower horizontal map, which has been identified in [21, Corollary 1.6] as K(R)c#. By Lemmas
4.5 and 4.6, a similar argument holds for 1V(RF )c#. Hence, the spectrum 1V(RF )c# (resp
1V(RF )c#) has the homotopy type of ∨2K(R)c# (resp. ∨2rK(R)c#).

Second case: ε = −1. Combining the results of Friedlander [21, Corollary 1.6] and Quillen
[40] via the forgetful map relating algebraic and hermitian K-theory gives a homotopy com-
mutative diagram

−1V(Fq)c# −→ −1V(C)c# −→ −1V(C)c#
↓ ↓ ↓

−1KQ(Fq)c# −→ −1KQ(C)c#
ψq−1−→ −1KQ(C)c#

↓ ↓ ↓
K(Fq)c# −→ K(C)c#

ψq−1−→ K(C)c#

in which all colums and both lower rows are homotopy fibrations/cofibrations. It follows
from [16, Lemma 2.1] once more that the top row is also a fibration/cofibration, with the
cofiber map induced from ψq − 1. It follows that the defining homotopy cartesian square for
−1V(RF )c# from Section 4, by means of substitutions according to Lemma B.7 in Appendix
B, gives rise to a homotopy commutative diagram where the horizontal maps are homotopy
fibrations (note that π0(Ω3K(R)) = 0):

−1V(RF )c# −→ −1V(R)c# ' (Ω2K(R))c#
τ−→ (Ω3K(R))c#

↓ ↓−1σ ↓id

−1V(Fq)c# −→ −1V(C)c# ' (Ω3K(R))c#
ψq−1−→ (Ω3K(R))c#

(19)

From the proof of Lemma B.8 in Appendix B again, the map −1σ corresponds to the
cup-product with the generator of K1(R). Now, the image of −1σ is a torsion element in
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K∗(R); and it is easy to see by a direct checking that, for odd q, any torsion element of K∗(R)
is killed by ψq − 1. Therefore, the homotopy exact sequence for the upper horizontal maps
includes the exact sequence

Kn+4(R) → −1Vn(RF ) → Kn+2(R) → Kn+3(R),

in which the last map is trivial because it is given by the cup-product with the generator
of K1(R) composed with ψq − 1. The groups −1Vn(RF ) are therefore included in the short
exact sequences

0 −→ Kn+4(R) −→ −1Vn(RF ) −→ Kn+2(R) −→ 0

which determine them, except for n ≡ 0 (mod 8), where we can say only that −1Vn(RF ) = Z
or Z/2⊕ Z. One way to resolve this ambiguity is to write the exact sequence

0 = −1KQn+1(RF ) −→ Kn+1(RF ) −→ −1Vn(RF ) −→ −1KQn(RF ) = 0

which implies that Kn+1(RF ) ∼= −1Vn(RF ).
In general, the computation of the groups Kn(RF ) for n > 0 follows from the analog of

Diagram (4) for K(RF ). They are the following for n ≡ k (mod 8), starting from k = 0:

0, Z/2⊕ Z, Z/2, Z/2w4k+2, 0, Z, 0, Z/w4k+1.

This computation is straightforward, except for n ≡ 1 (mod 8), where we have to use two
exact sequences extracted from the analog of the previous square for the spectrum K(RF ).
The first one

0 −→ Kn+1(C) −→ Kn(RF ) −→ Kn(R) −→ Kn(C) = 0

shows as expected that Kn(RF ) = Z or Z/2 ⊕ Z. In the second one, we write the Mayer-
Vietoris exact sequence associated to the same previous square:

0 −→ Kn+1(C) = Z −→ Kn(RF ) −→ Kn(R)⊕Kn(Fq) −→ Kn(C) = 0.

It shows that Kn(RF ) = πn(K(RF )) cannot be isomorphic to Z, since Kn(R) ⊕ Kn(Fq) is
a direct sum of two nontrivial cyclic groups. The computation of the groups −1Vn(RF ) is
therefore accomplished for all values of n. �

Remark 6.2. On the level of spectra the composition τ in (19),

−1V(R)c# ∼ (Ω2K(R))c#
σ−→ (Ω3K(R))c#

Ω3(ψq−1)−→ (Ω3K(R))c#

where σ is induced by the cup-product with the generator of K1(R), is NOT nullhomotopic.
This fact is proved in Appendix D.

We can now use Theorems 1.3 and 1.4 to determine the composition

εKQn(RF ) F−→ Kn(RF ) H−→ εKQn(RF )

of the homomorphisms induced by the forgetful and hyperbolic functors. From their re-
spective induced homotopy fiber sequences εV(RF ) −→ εKQ(RF ) −→ K(RF ), εU(RF ) −→
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K(RF ) −→ εKQ(RF ), and the natural homotopy equivalence εV(RF ) ' Ω−εU(RF ) of [31],
we have the exact sequences

· · · → εVn(RF ) −→ εKQn(RF ) F−→ Kn(RF ) −→ εVn−1(RF )→ · · · ,

and
· · · → −εVn−1(RF ) −→ Kn(RF ) H−→ εKQn(RF ) −→ −εVn−2(RF )→ · · · .

Since all terms are now known (and many are zero), a routine computation gives the following.

Corollary 6.3: For n ≥ 1, the endomorphism HF of the group εKQn(RF ) modulo odd
torsion

(i) is multiplication by 2, when n ≡ 3 (mod 4) (ε = ±1),

(ii) has image of order 2, when both n ≡ 1, 2 (mod 8) and ε = 1, and

(iii) is zero otherwise. �

A similar computation affords the corresponding result for the other composition of F and
H. From [30, pg. 230] we note that this endomorphism of Kn(RF ) is the sum of the identity
and the involution induced by the duality functor. Since this involution is independent of ε,
we need consider only the simpler case ε = −1.

Corollary 6.4: For n ≥ 1 and ε = ±1, the endomorphism FH of Kn(RF ) modulo odd
torsion

(i) is multiplication by 2, when n ≡ 3 (mod 4), and

(ii) is zero, otherwise. �

Corollary 6.5: The canonical involution on Kn(RF ) modulo odd torsion

(i) is the identity, for n = 0 and n ≡ 3 (mod 4), and

(ii) is the opposite of the identity, otherwise. �

Remark 6.6. Concerning the odd torsion, in general the functors F and H induce bijections
between the symmetric parts of the K- and KQ-groups of a ring A. Here the involution on the
K-groups is induced by the duality functor. Clearly the composition FH is the multiplication
by 2 map on the symmetric part. The same result holds for HF on the symmetric part, while
it is trivial on the antisymmetric part. We note that it remains to compute the odd torsion
part of εKQn(RF ), even for F = Q. However, as we have seen more generally in Proposition
3.1, the odd torsion of the higher Witt groups and coWitt groups of RF is trivial.
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7 Proof of Theorem 1.5

In the terminology at the end of the Introduction, consider the naturally induced map between
2-completed connective spectra induced by the forgetful functor and the homotopy fixed point
functor for the εZ/2-action:

εKQ(RF )c# →
r∨
εKQ(R)c#

↓ ↓

εKQ(Fq)c# →
r∨
εKQ(C)c#

→
K(RF )#

h(εZ/2) →
r∨
K(R)c#

h(εZ/2)

↓ ↓

K(Fq)#
h(εZ/2) →

r∨
K(C)c#

h(εZ/2)

(20)

As noted in the beginning of Section 3, the spectrum maps in the Bökstedt square are
εZ/2-equivariant, being induced by ring maps. Theorem 1.1 and the main results in [26],
[38] (cf. Appendix A for more details) show that both the hermitian and the algebraic K-
theory squares are homotopy cartesian squares (since the homotopy fixed point functor is a
homotopy functor).

By [8, Lemmas 7.3-7.5] the map

εKQ(A)c# → (K(A)#
h(εZ/2))c

in (20) is a homotopy equivalence for A = Fq,R,C. It is worth mentioning that the most
delicate case is when A = R, where the machinery of Fredholm operators in an infinite
dimensional real Hilbert space is used. It follows that the induced map of homotopy pullbacks
is also a homotopy equivalence. �

A K-theory background

In this appendix we deduce the homotopy cartesian square of K-theory spectra (1) using
the space level results given in [26]. The examples of étale K-theory spectra of real number
fields at the prime 2 in [38, §5] provide an alternate proof on account of the solution of
the Quillen-Lichtenbaum conjecture in [39]. Throughout we retain the assumptions and
notations employed in the main body of the text. Recall from the Introduction that q is a
prime number.

Recall the construction of the square (1) from the beginning of Section 3: one starts out
by choosing an embedding of the field of q-adic numbers Qq into the complex numbers C
such that the induced composite map

K(Zq)# → K(Qq)# → K(C)c#

agrees with Quillen’s Brauer lift K(Fq)# → K(C)c# from [40] under the rigidity equivalence
between K(Zq)# and K(Fq)# [23]. The ring maps relating RF to Fq, R and C induce the
commuting Bökstedt square (1) via Suslin’s identifications of the 2-completed algebraic K-
theory spectra of the real numbers with K(R)c# and likewise for the complex numbers and
K(C)c# [45].

Theorem A.1: The Bökstedt square (1) is a commuting homotopy cartesian square of 2-
completed spectra:
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Proof. Let JK(q) denote the fiber of the composite map

BO#
c−→ BU#

ψq−1−→ BU#

where c denotes the complexification map and ψq the q th Adams operation on the 2-
completion of the classifying space BU . As usual, U and O are the stable unitary and
orthogonal groups. When q ≡ ±3 (mod 8), JK(q) is a space level model for K(RQ)# [26].
By the main result in [40], the fiber of ψq − 1 identifies with the 2-completed algebraic
K-theory space of Fq. Moreover, the product decomposition

JK(q)×
r−1∏

U#/O#

of the 2-completed algebraic K-theory space of RF established in [26, Theorem 1.1] shows
that the space level analogue of (1) is homotopy cartesian. On the other hand, the Quillen-
Lichtenbaum conjecture for totally real number fields [39] implies that K(RF )# is homotopy
equivalent to the connective cover of its K(1)-localization LK(1)K(RF )#, and likewise for
Fq, R and C. Here K(1) is the first Morava K-theory spectrum at the prime 2. In order to
conclude we incorporate [13], which reduces questions about K(1)-local spectra to space level
questions. That is, applying Bousfield’s homotopy functor T from spaces to spectra yields
the desired conclusion since by loc. cit. LK(1)K(RF )# identifies with TΩ∞K(RF )#. �

We refer the reader to [37] for an extensive background on the stable homotopy-theoretic
interpretation of the Quillen-Lichtenbaum conjecture.

Remark A.2. As we already mentioned in the Introduction (see Remark 3.14), we also
have a “Bökstedt square” if we decide to consider 2-localizations instead of 2-completions,
provided we follow the convention of our paper that the fields R and C are considered with
their usual topology.

B Homology module maps

Most theories in this paper are modules over the graded ring εKQ∗(RF ) in the case F = Q,
in other words, εKQ∗(Z[1/2]). The framework for such considerations is laid out in [32, §3],
using the description of algebraic K-theory in terms of flat “virtual” bundles.

In the topological case when A = R, C, the module structures on K(A), εKQ(A), εU(A)
and εV(A) are much simpler to define. For clarity, we discuss the examples of εV(R) and
εV(C), leading to a determination of the homotopy fiber of the map

εV(R) −→ εV(C)

for both cases ε = ±1.
We start with a geometric viewpoint: the cohomology theory associated to the spectrum

1KQ(R) is constructed as the K-theory of real vector bundles equipped with nondegenerate
quadratic forms. As shown in [29, Exercise 9.22], such a vector bundle E splits as a Whitney
sum

E = E+ ⊕ E−,
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where the quadratic form is positive on E+ and negative on E−. A bundle version of
Sylvester’s theorem tells us that the isomorphism classes of E+ and E− are independent of
the sum decomposition (see also the remarks below). Hence, we have the following assertion.

Lemma B.1: There are splittings

1KQ(R) ' K(R) ∨ K(R) and 1KQ(R)c ' K(R)c ∨ K(R)c.

Moreover, the K-theory of the category of real vector bundles, on a compact space X and
provided with a nondegenerate quadratic form, is canonically isomorphic to the direct sum of
two copies of the usual real K-theory of X. �

Another result of interest is also shown in [29, Exercise 9.22]:

Lemma B.2: There are homotopy equivalences of spectra

1KQ(C) ' K(R) and 1KQ(C)c ' K(R)c.

Moreover, the K-theory of the category of complex vector bundles, on a compact space X and
provided with a nondegenerate quadratic form, is canonically isomorphic to the usual real
K-theory of X.

Remark B.3. A slightly different proof of these lemmas is to use the following classical
result: a Lie group has the homotopy type of its compact form [25, pp. 218–219]. For
instance, the Lie group O(p, q) has the homotopy type of O(p) × O(q). This implies that
the homotopy theory of real vector bundles provided with a quadratic form of type (p, q) is
equivalent to the homotopy theory of couples of real vector bundles (E+, E−), of dimensions
p and q respectively. A similar example of interest is the Lie group O(n,C) which has the
homotopy type of the usual compact Lie group O(n). This implies that the homotopy theory
of complex vector bundles of dimension n provided with a nondegenerate quadratic form is
equivalent to the homotopy theory of real vector bundles of rank n. These results of course
imply the previous lemmas. Moreover, since all theories involved are 8-periodic according to
Bott, the homotopy equivalences on the level of the 0-space imply the homotopy equivalence
of spectra.

In the considerations that follow, we prefer to take the bundle viewpoint which is easier
to handle than its homotopy counterpart, especially for module or ring structures which are
simply given by the tensor product of vector bundles in the appropriate categories.

We illustrate this philosophy by a concrete description of the spectrum 1V(R) which is
the homotopy fiber of the forgetful map 1KQ(R) F→ K(R). Strickly speaking, one should
describe the full spectrum. However, by classical Bott periodicity, it is enough to describe
the 0-part of the spectrum. Since 1KQ(R) splits as K(R)∨K(R), the map F being induced by
the direct sum, the homotopy fiber should be K(R). We want to be more precise in terms of
module structures and consider the “relative” cohomology theory associated to this homotopy
fiber 1V(R). It can be described by a well-known scheme going back to Atiyah-Hirzebruch
[4], reproduced in [29, pp. 59–63] (in a slightly different context) and also in [31, pg 269].
One considers homotopy classes of triples τ = (E,F, α), where E and F are real vector
bundles equipped with nondegenerate quadratic forms, and α is an isomorphism between

31



the underlying real vector bundles. If G is another real vector bundle with a nondegenerate
quadratic form, then its cup-product with τ is given as the triple

(G⊗ E, G⊗ F, id⊗ α).

This defines a 1KQ(R)-module structure on 1V(R). By associating to every real vector
bundle a metric, i.e. a positive quadratic form, we obtain a well-defined map up to homotopy
K(R) → 1KQ(R), which is a right inverse to the forgetful map. Therefore, every 1KQ(R)-
module acquires a naturally induced K(R)-module structure.

Lemma B.4: The spectrum 1V(R) is homotopy equivalent to the real topological K-theory
K(R) as a K(R)-module spectrum, and hence 1V(R)c ' K(R)c as K(R)c-module spectra.

Proof. We can identify 1V(R) with K(R) as modules over K(R) as follows: if E is a real
vector bundle there is an associated triple (E+, E−, id) where E+ is the bundle E equipped
with a positive quadratic form, and likewise for E− but with a negative quadratic form. This
correspondence has an inverse defined by associating to a triple τ = (E,F, α) as above the
formal difference E+ − F+ of the respective positive-form summands. �

Lemma B.5: The spectrum 1V(C) is homotopy equivalent to the spectrum Ω−1(K(R)), and
therefore 1V(C)c ' Ω−1(K(R)c).

Proof. The theory 1V(C) is the homotopy fiber of the map 1KQ(C) F−→ K(C), which arises
from triples (E1, E2, α), where E1 and E2 are real vector bundles and α is an isomorphism
between their corresponding complexified vector bundles. By a well known theorem of Bott
(see for instance [29, Section III.5]) , this homotopy fiber may be identified with Ω−1(K(R)).
Since K−1(R) = 0, we also have 1V(C)c ' Ω−1(K(R)c) according to Lemma 3.3. �

Lemma B.6: The map 1V(R) −→ 1V(C) is nullhomotopic and its homotopy fiber has the ho-
motopy type of K(R)∨K(R). In the same way, the map 1V(R)c −→ 1V(C)c is nullhomotopic
and its homotopy fiber has the homotopy type of K(R)c ∨ K(R)c.

Proof. By the above considerations, the two theories also have a K(R)-module structure.
Since 1V(R) is free of rank one as a K(R)-module, the map 1V(R) −→ 1V(C) is determined
up to homotopy equivalence by its effect on the zeroth homotopy groups. This means that
the map of associated real topological K-theories

Kn
R(X) −→ Kn+1

R (X)

is induced by the cup-product with an element of K1
R(point) = K−1(R) = 0. This shows that

our first map is nullhomotopic. Its fiber has the homotopy type of K(R)∨K(R) since the fiber
of this nullhomotopic fibration has the homotopy type of the product of the total space (see
(B.4)) with the loop space of the base (see (B.5)). The same statements hold for connective
covers since, from the previous lemma for example, the map 1V0(R) −→ 1V0(C) = 0 is an
epimorphism. �

The determination of the map −1V(R) → −1V(C) is more delicate but uses the same
arguments. By definition, the spectrum −1V(R) is the fiber of −1KQ(R) = K(C) → K(R)
and so identifies with Ω2(K(R)), according to a classical result of Bott. For the same reasons,
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−1V(R), which is the fiber of

−1KQ(C) ' Ω4(K(R)) −→ K(C) ' Ω4(K(C)),

is homotopically equivalent to Ω3(K(R)). Summarizing, we have proved the following lemma:

Lemma B.7: The spectrum −1V(R) is homotopy equivalent to Ω2(K(R)), while −1V(C) is
homotopy equivalent to Ω3(K(R)). �

Since all maps are module maps, our geometric viewpoint shows us that the required mor-
phism Ω2(K(R)) −→ Ω3(K(R)) is induced by the cup-product with an element in the group
K1(R) = Z/2. The following lemma resolves this ambiguity and describes the homotopy
fiber of the morphism.

Lemma B.8: The map

−1V(R) ' Ω2(K(R)) −→ −1V(C) ' Ω3(K(R))

is induced by the cup-product with the generator of K1(R) and its fiber has the homotopy type
of K(C). Therefore, the homotopy fiber −1G of the induced map on connective covers

−1V(R)c ' (Ω2(K(R))c −→ −1V(C)c ' (Ω3(K(R)))c

has the homotopy type of K(C)c.

Proof. To decide which element of K1(R) is involved, one may use the fundamental theorem
of hermitian K-theory in a topological context (which is equivalent to Bott periodicity; see
[27]). In other words, we can work in 1U -theory instead of −1V -theory. More precisely, if
we show that the map 1U0(R) −→ 1U0(C) is nontrivial, this implies that our original map
−1V(R)→ −1V(C) is not nullhomotopic and is therefore defined by the cup-product with the
nontrivial element in K1(R). For this purpose, we form the diagram

K1(R) → 1KQ1(R) → 1U0(R)
↓ ↓ ↓

K1(C) → 1KQ1(C) → 1U0(C)

with exact rows. With the aid of Lemmas B.1 and B.2, this can be rewritten as

Z/2 → Z/2⊕ Z/2 → 1U0(R)
↓ ↓ ↓
0 → Z/2 → 1U0(C)

It is important to notice that the map

1KQ(R) ' K(R)×K(R) −→ 1KQ(C) ' K(R)

is the sum map. Therefore, the map Z/2 ⊕ Z/2 → Z/2 in the diagram above is surjective.
Since by exactness 1KQ1(C) → 1U0(C) is injective, it follows that 1KQ1(R) → 1U0(C) is
nontrivial, and thus 1U0(R)→ 1U0(C) is nontrivial too.

Thus we obtain a nontrivial fiber sequence −1V(R) −→ −1V(C) with homotopy fiber
Ω2(K(C)) ' K(C) by taking a double loop of the Bott fibration

K(C) −→ K(R) −→ Ω(K(R))
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whose last map is defined by the cup-product with the nontrivial element in K1(R). Therefore,
we also have a fibration of connective covers

K(C)c −→ −1V(R)c −→ −1V(C)c

since −1V0(C) = 0 by the previous lemma. �

C A ring with trivial K-theory and nontrivial KQ-theory

Our first purpose here is to construct, from any ring A in which 2 is invertible, a ring
R∞ = R∞(A) with the following properties:

(i) For all n ∈ Z, Kn(R∞) = 0; but

(ii) not all groups εKQn(R∞) need be trivial.
In particular, for A a field of characteristic 6= 2 and ε = 1, we have εKQ0(R∞) ∼=
W (A), the Witt group of A.

The existence of such a ring R∞ is used below to provide a counterexample to a conjecture
of [50, 3.4.2].

First recall that the suspension SΛ of a discrete ring Λ is defined to be the quotient ring
CΛ/Λ̃, where the cone CΛ of Λ is the ring of infinite matrices (indexed by N) over Λ for
which there exists a natural number that bounds:

(i) the number of nonzero entries in each row and column; and

(ii) the number of distinct entries in the entire matrix.

The ideal Λ̃ of CΛ comprises matrices with only finitely many nonzero entries.
Writing Z′ = Z[1/2], for a Z′-algebra A denote by P(A) the category of its finitely

generated projective right modules. The tensor product of modules over Z′ then defines a
biadditive functor

P(A)× P(S2Z′) −→ P(S2A),

where S2 refers to the double suspension.
Now provide M2(S2Z′) and M2(S2A) with the involution[

a b

c d

]
7−→

[
d −b
−c a

]
and choose a self-adjoint projection operator p in M2(S2Z′) whose image defines a class in
1KQ0(M2(S2Z′)) ∼= −1KQ−2(Z′) ∼= Z ⊕ Z/2 that is a generator of the free summand [30].
The tensor product with p induces a nonunital map between unital rings

φ : A −→M2(S2A)

defined by a 7→ a⊗ p. It is easy to see that φ induces on K0 and KQ0 the cup-product with
the class in −1KQ−2(Z′) mentioned above.
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In order to deal with the technical problem that φ(1) 6= 1, let us replace the ring A by the
suspension SB of a ring B. We can view A as a bimodule over the cone CB of this ring B.
This allows us to “add a unit” to the ring A by defining R as CB×A with the multiplication
rule

(λ, u)(µ, v) = (λµ, λv + uµ+ uv).

We obtain an exact sequence of rings and nonunital ring homomorphisms

0 −→ A −→ R −→ CB −→ 0

which shows that in negative degrees the K-theories of R and A coincide, as do their KQ-
theories. We then change φ into a map between unital rings

Φ : R −→ R⊗Z′ S
2(Z′) = S2(R) = R1

by the formula Φ(λ, u) = (λ⊗ 1, u⊗ p). This map restricts to φ on the ideal A and we can
safely use Φ as a substitute for φ. Thus, we are able to define a direct system of unital rings
with involution Rt by the inductive formula Rt+1 = (Rt)1.

By a well-known theorem of Wagoner [49] (see also [31]), we have canonical isomorphisms
Kn+1(SD) ∼= Kn(D) and εKQn+1(SD) ∼= εKQn(D). Therefore, if we define R∞ as the
direct limit of the Rt, we have

Kn(R∞) ∼= lim−→Kn(Rt) ∼= lim−→Kn−2t(A) = 0

since K−2(Z′) = 0.
On the other hand εKQn(R∞) ∼= lim−→εKQn−4s(A) is the stabilized Witt group of A [34],

which is not trivial in general. For instance, if A is a commutative regular noetherian ring
and ε = 1, this is the classical Witt group of A. Hence, our construction of the ring R∞ is
complete.

This construction provides many counterexamples to a conjecture of B. Williams [50].
More specifically, we have for instance the following theorem.

Theorem C.1: Let A be a commutative regular noetherian ring with finitely generated ε-
Witt groups in degrees 0 and 1, and let R∞ be the associated ring defined above. Then the
canonical map

1KQ(R∞)c# −→ (K(R∞)#
h(1Z/2))c

is NOT a homotopy equivalence.

Proof. According to the computation before (using Lemma 3.3 (v)), π0(1KQ(R∞)c#) is the
2-completed Witt group W (A)# because W (R∞) = W (A) in this case [34]. The group
W (A)# is not trivial since the rank map induces a surjection from this group to Z/2. On
the other hand, since K(R)# has trivial homotopy groups, it is contractible, which implies
that the group π0 of the right hand side is reduced to 0. �

D Adams operations on the real K-theory spectrum

Here we consider the composite

Ω2K(R) σ−→ Ω3K(R)
Ω3(ψq−1)−→ Ω3K(R)
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where q is odd and σ is induced by the cup-product with the generator H−1 of K1(R) = Z/2,
and the canonical real line bundle H over S1 has H2 = 1.

Proposition D.1: The composite

Ω2K(R)c#
σ−→ (Ω3K(R))c#

Ω3(ψq−1)−→ (Ω3K(R))c#

is NOT nullhomotopic.

Proof. We first show that for any space X, the composition of homotopy groups (where
[X, E ] refers to pointed homotopy classes from X to E0)

[X, K(R)] σ∗−→ [X, ΩK(R)]
Ω(ψq−1)∗−→ [X, ΩK(R)]

is equal to the composite in reverse order

[X, K(R)]
(ψq−1)∗−→ [X, K(R)] σ∗−→ [X, ΩK(R)]

(in other words, σ commutes with ψq). This follows from the following straightforward
computation:

ψq(σ(x)) = ψq((H−1)·x) = ψq(H−1)·ψq(x) = (Hq−1)·ψq(x) = (H−1)·ψq(x) = σ(ψq(x)),

where x ∈ KR(X).
Therefore, on passing to 2-completions of connective covers, our claim will follow from

the nontriviality of the composition

(Ω2K(R))c#
Ω2(ψq−1)−→ (Ω2K(R))c#

σ−→ (Ω3K(R))c#

or
(Ω8K(R))c#

Ω8(ψq−1)−→ (Ω8K(R))c#
σ−→ Ω9K(R)c#. (21)

By a theorem of Bott (see for instance [29, Section III.5]), there is a fiber sequence

K(C) r−→ K(R) σ−→ ΩK(R)

where the homotopy fiber of σ is K(C), the classifying space of complex topological K-theory,
and r is the realification map. Therefore, if the sequence (21) were trivial, one would have a
factorization

Ω8(ψq − 1) : (Ω8K(R))c# −→ (Ω8K(C))c#
r−→ (Ω8K(R))c#

or equally, by Bott periodicity,

q4ψq − 1 : K(R)c# −→ K(C)c#
r−→ K(R)c#.

A way to prove the impossibility of such a factorization is to find a test space X and
map it into the three spaces involved. For such a space we choose the classifying space X =
BG, where G is the connected Lie group SO(3). We thereby transform our problem into an
algebraic one: by Atiyah and Hirzebruch [4, Theorem 4.8], we know that KC(BG) = R̂(G),
the complex representation ring of G completed at its augmentation ideal, while by Anderson
[3], we have KR(BG) = R̂O(G), the completed real representation ring of G.
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It is well-known (for example, [1]) that RO(G) is the polynomial algebra in one variable
Z
[
λ1
]
, where λ1 is the standard representation of SO(3) in R3. The complexification c

induces an isomorphismRO(G)
∼=→ R(G), while the realification fromR(G) toRO(G) ∼= R(G)

is identified with the multiplication by 2 (any complex representation of G is isomorphic to
its conjugate). If we choose SO(2) as a maximal compact torus in SO(3) embedded as cos θ − sin θ 0

sin θ cos θ 0
0 0 1


we may view R(G) as the ring of polynomials on the variable λ1 = t + t−1 + 1, where t
represents the standard one-dimensional representation θ 7→ eiθ of SO(2) = S1.

Now, since G is a compact connected Lie group, R(G) injects into its completion. If
we put t = 1 − u, we may identify the completed representation ring R̂(G) as a subring of
the ring of formal power series Z [[u]]. However, we are considering homotopy classes from
X = BG not just to K(R)0 or K(C)0 but to its 2-adic completion K(R)0# or K(C)0# [2, (v),
pg. 205]. From the algebraic point of view, this means that we have to compute in the power
series ring Z2 [[u]] instead of Z [[u]].

Since t is one-dimensional and ψq commutes with the complexification isomorphism c

between R(G) and RO(G), we can write, in Z2 [[u]]:

c(q4ψq − 1)(λ1) = q4tq + q4t−q + q4 − t− t−1 − 1

= (1− u)−q[q4(1− u)2q − (1− u)q+1 + (q4 − 1)(1− u)q − (1− u)q−1 + q4].

Because multiplication by (1 − u)q leaves an odd coefficient of u2q, the power series is not
divisible by 2. Therefore (q4ψq − 1)(λ1) cannot be in the image of the realification map r

(which furnishes elements divisible by 2 in R̂O(G)
c∼=−→ R̂(G)). This contradiction concludes

the proof of the proposition. �
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