
HERMITIAN MANIFOLDS WITH QUATERNION STRUCTURE

MORIO OBATA

(Received July 24 1957)

in previous papers [3,4] we have studied affine connections in manifolds
with almost complex, quaternion or Hermit'an structure. As to the almost
Hermitian manifold With quaternion structure, some considerations have been
given [3], but results are rather complicated and a more explicit form of the
connection has been required. In the present paper We shall determine, in
an explicit form, all affiαe connections with respect to which the structures
are all covariant constants in a Hermitian manifold With quaternion structure
(§2). Complex coordinates are chosen and the determination of such connections
is reduced to solving linear equations.

Possibility of introducing some special affine connection is in intimate
relation with the integrability of the quaternion structure or with the Kahler's
condition on the Hermitian metric. These relations are discussed in §3.
Transformations preserving the quaternion structure are always considered
as affine transformations with respect to some affine connection [4J. In the
Hermitian case more precise results are obtained (§4).

Since we are considering a complex manifold, which is of complex n
dimensions, we suppose that the Latin indices a,b,c, ...., i j , k, . . . . run over

the range 1,2, , n, 1, 2, , n and the Greek indices a, β, y, ,
ΛΓ, λ, μ, run over the values 1, 2, , n and consequently the indices

a, β, y, , Ίc, X, μ, the range of symbols 57 "2, , n. In case of a
complex manifold with quaternion structure n must be even.

1. Preliminaries. We consider a differentiate manifold with quaternion
structure (φ*Λ, ψi/ι), where a quaternion structure is, by definition, a pair of
two almost complex structures φih, ψth such that

φiaψcίl + ψiaφah = 0.

In a differentiate manifold there always exists a Riemannian metric yih.
Then the tensor defined by

hih = -g (yih + φihφfι

ayba)

is also a Riemannian metric and we have

hih = φibφ,t

ahba,

i. e. hih is an almost Hermitian metric with respect to φih. Furthermore the
tensor defined by

is an almost Hermitian metric with respect to both φt

h and ψιh .
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(1. 1) ΰih = φihφnaΰba = Ψi^ψfgba.

We call a manifold with φ,Λ, ψih, gιh satisfying Π.l) a Hermitian manifold
with quaternion structure. If, furthermore, </,•,, is Kahlerian with respect to
both φih and ψίh, such a manifold is called a Kahlerian manifold with
quaternion structure.

In this paper we assume that the almost complex structure φih gives a

complex analytic structure and we choose a complex coordinate system (zκ, zκ).
Then φih, ψih and gιh take the special forms

<*'>-C - $ • <*•>-&• \ ) +>•*••—*••

(g<>) = ( ° Oλl), 9κτ = ψjψτ-gβ. conj. " ,
v<7λκ U '

and they are, of course, self-adjoint. Throughout this paper all quantities are
assumed to be self-adjoint and also to be real analytic.

Now, on putting

we have

Ψlκ = ψ\κ = 0, ψλκ = —ψvtλ conj.

The condition ψiaψa

h = — δtΛ is equivalent to the condition

ψiaψ-h = ψ^τ/rαί = -δi Λ ' ; COnj.

Now, given a tensor /V ι we put

IL/V' = J (P^'1 - Pjfψatψ*), U,Pjih - J (Pβ

h + PjiTψatψ'*).

By straightforward calculations we have

LEMMA 1. ΠiΠ, = Π b Π,Π 2 - Π2, Π i Π a = Π.Πi = 0, U, -f Π 2 = identity.

LEMMA 2. Given a tensor Qjih, we have Πifti7' =- 0 if and only if there
exists a tensor Pβk such that TL2Pji'L = Q.nh. We have U,Qjih = 0 z/

a tensor PSi

h such that ΠrPβ'1 = Qjt7i.

PROOF. If ΠΛPjih = ζ?^7', by Lemma 1 we have ΠiQ/ ' = rr,Π3P/<Λ = 0.
If, conversely, ΠιO./t/' = 0, by Lemma 1 we have

U.Qji1' = Π,<?/ 4- Π , ^ 7 " = (Π, + Π2) Qjf = <?,,;Λ.

LEMMA 3. //* Γl!©^7' = 0, an equation TliPji1 = ©y7' (P/i;* unknown) has a

solution and the general solution is given by

i71 /s ΛΛ arbitrary tensor.

PROOF. The condition Πiί?;iA = 0 implies that Qβ

h itself is a solution of

the equation. The general solution Pμh is written as

1) The sign "conj." denotes the complex conjugate of the formulas already written.
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Pjth = Qβh + Bμ

h,
where Π*B/ = 0.

By Le nma 2 2?/'' is written as Bjth = ILA^;' for some tensor An1. Further-
more for an arbitrary Ajίh, Qβk + Tl\Ajίh is a solution of the equation. Thus
the general solution is given by

Pβh = Qβh + Π ϋ V ,
Λ;ίΛ being an arbitary tensor.

2. Afϊine connections. Let us assume that an affine connection Γ'J
is a metric (0, ̂ j-connection, i. e., V.>Φ;Λ = Vyψ/ = VjOin. = 0

The condition VJΦ«Λ = 0 implies Γκ

jλ = Γjλ = 0, so that ΓJ, must have com-

ponents ΓJ; = (Γjλ, Γ*). It is to be remarked that the components (Γ*λ) ΓV)

define a self-adjoint tensor.
The condition Vjψih = 0 is written as

from which

(2.1)

From Vj

(2.2;

Substituting

we see

,r;fΛ = 0 we

(2 1) into

find

(2.2) we get

Γ̂  — Γ * - ^ * - 0
fλ€ύ μ. λ

^/Γ^^αj** conj..

conj.,

conj.,

— F * - ί/ακ = 0 conj..

from which

(2.3) <s>agi*)g** - Γ ^ + @μψβ

yyψ>y*gΛχg* - ?%&*&** = 0.

Here from ψβyψy" = — δ q

α we have

(2 4) o μ v > r )Ψvα

and from ^ V λ = ψy"g«λ we have

(2. 5) (d»ψy") g*λ =
From (2. 4) and (2. 5) we get

By using this formula we have from (2. 3)

(2. 6) l^λ + Γfflctrfrt* - -3, . ̂ λ ^ f f κ conj..

On putting Γ^ = Γ £
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and Pjih = (P-κ, Pμλ*) are components of tensors. (2. 6) is then written as

(2.7) μ Π 2 7 V = P μ λ

κ ; conj..

We have, however, Π,/V = ~ 4 ( ( ^ * W - Oμ.Ψβ^^ψyxΨ^)

= - 4 ( ( ^ λ * ) ^ α κ + (9^«λ)^Λlt) = 0; conj.,

and other components of ΏλPjih also vanish. Therefore (1. 7) implies

(2.8) T V = Pμκ

κ + ΓΓΪ Aμλ",

where A/' = (Aμ>Λ Aμλ") is a tensor.
Substituting (2. 8) into (2.1) we get

By (2.4)and (2.5) we have

ΨΛd^βy)ψy^κ=ψΛ^ψβy)9y'PΨ
?aψ^ +

= OμψV*>ΨV.* "I- Oμί/λ«) ί7^K,
so that we obtain

(2.9) Γ* v = A (O^ΛiV-« - (dv.Ψs) Ψ«κ) ~ 2 (^A-xi ψ i." + OKsA^uh conj.,

(2.10) Γ^ = - * (d^«)Ψ*κ + g" ( A ^ κ - A^ΨOKΨ^) conj..

Thus we see that a metric (φ, Λ/r)-connection Γ), is given by (2. 9) and (2.10).

Conversely, it is easy to verify that given any tensor field An1 = (Aμ\*,

Aμv«), the quantities Γ* = (Γμλ, Y^ Γκ

μ-A, fi-) given by (2. 9) and (2.10) define

a metric (φ, ^-connection.

Thus we have

THEOREM 2.1. In a Hermitian manifold with a quaternion structure in
order that an affine connection Γ^ be a metric (φ, ψ)-connection it is necessary

and sufficient that Γ£ be given by Y% = (ΓjM Γ*"-):

Γ M = -2"((3^->/β l β-(3^A-)ψ i"J ~ J - ί ^ A ^ - ψ i + flrΛ-A^V ); conj.,

jiΛ = ( A μ λ

κ , A μ λ κ ) zs ύf̂  arbitrary tensor field.

Since A^Λ is arbitrary, we may put A}i

h = 0, and then we have

THEOREM 2.2. /w a Hermitian manifold an affine connection Γ* = (Γjx,

Γ«λ-) given by
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Γ*λ = I (tftfx*) </κ - OμΨ'λ yψ'- ) conj.,

is a metric (φ, ψ)-connection.

3. Integrability of the quaternion structure and afϊine connections.
0 0 0 -

In a Hermitian manifold, an afϊine connection Γ£ - (Γκ

μ , Γμ^) defined by

Γ j μ = Cdμ9χϊ)0*κ; conj.

0 0

is a metric φ-connection, i.e. Vjΰiu = V/Φ/' = 0. The Hermitian metric gu> is
0

then Kahlerian if and only if the connection Y\ is symmetric, i. e. aμgλ^ =
1 1 1 -

In a quaternion manifold, an affine connection Γ'̂  = (Γjλ, Γμλ) defined by

TU = -(SμψΆ"^* conj.
] 1

is a (φ, ̂ -connection, i. e. \/jφih = Vjψίh = 0. The almost complex structure
ψ1^ is integrable, i. e. it gives another complex structure, if and only if the
connection Γ£ is symmetric, i.e. θμΛK* = 3 A ^ K = 0 [3,4],

On the other hand in a Hennitian manifold with quaternion structure
the condition

(3.1) a^Λκ = 0 conj.

is equivalent to the condition that the tensor field ψih = (ψ \κ,ψίκ) is comp-
lex analytic. Furthermore (3.1) is equivalent to

{oϊψκ

a)g*κ + Ψλadμgaκ = 0

or to

(3.2) (9μ gr«) g»κ = - ( 3 ^ ^ ) ^ ^ .

Since in a Hermitian manifold with quaternion structure it is possible to
0 1

introduce the metric φ-connection ΓJ and (φ, ̂ >C3nnection ΓjV (3.2) means

that the two connections coincide with each other.

THEOREM 3,1. In a Hermitian manifold ivith quaternion structure we in-

troduce a metric φ-connection Γ^ and a (φ, ψ)-connection Tji, each defined by

Γ£λ = (?»-u*»)9"K conj., Γ;λ = - O ^ ) ^ * conj.,

other components being zero. Then the following four conditions are equivalent
with each other:

1) The tensor ψih = (ψ^κ,ψλκ) is complex analytic. dμψλκ = 0; conj..
0 1

2) The two connections coincide with each other: ΓJ 4 = Γj;.
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0 0

3) The metric φ-connection Y:ι

n is a ^-connection: V/ΨV* = 0
O 1

4) 77z£ {φ ^y connection ΓJX is # metric connection-. VjίHh = 0.

PROOF. The equivalence of 1) and 2) has been established above.

That of 2) and 3) will be seen as follows. Since Γ£ is a metric φ-connec-
1 0 1 0

tion and Γ* is a (φ, ψ)-connection, the condition T% = ΓJZ implies that ΓJ,

is a ^-connection. If, conversely, Γ^ is a -^-connection, from the special

form of Γ;. = (Γ«λ, Γ y we have

from which we see

In an analogous way, the equivalence of 2) and 4) can be established.
Next we consider the relations between the integrability of ψ^ and the

Kahler's condition on gifι with respect to both φih and ψih.

THEOREM 3.2. In a Hermitian manifold with quaternion structure the
following six conditions are equivalent with each other:

1) The Riemannian metric g%h is Kάhlerian with respect to both φih and

2) The tensors φjih = qjφf/ii and ψjih = ojψih] vanish identically and the

almost complex structure ψift is integrable . dμψ\κ = o.yjr^.
0

3) The connection Yh

}i is a ^-connection without torsion.

4) The connection ΓjJ; is a metric connection without torsion, i. e. Rieman-

nian connection.

5) The tensor ψih = (ψ>κ, f ^ ) is complex analytic and the almost complex
structure ψih is integrable.

6) The metric gih is Kάhlerian with re:φect to φi'1 and the tensor ψih is
complex analytic.

PROOF. The equivalence of 1) and 2) is well-known.
If gin is Kahlerian with respect to both φιfι and ψih, the Riemannian

connection ΓJf, i. e. one defined by Christoffel symbols, is a (φ, ψ)-connection.
0

Since gih is Kahlerian with respect to φih, Γ£ coincides with ΓJ, so that
0 h °

Yjtis a -v/r-connection without torsion. If, conversely, ΓJ4 is a -ψ-connection
without torsion, it is a metric (φ,^connection without torsion and must
coincide with the Riemannian connection. Hence gih is Kahlerian with respect
to both φih and ψih. Thus the equivalence of 1) and 3) is established. In an
analogous way the equivalence of 1) and 4) will be proved.
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The equivalence of 1) and 5) is proved by use of Theorem 3.1. In fact,
if gih is Kahlerian with respect to both φih and ψih, the Riemannian con-

(1 1

nection coincides with both Y\ and Y\. It follows from Theorem 3.1 that the

tensor ψth = (ψ\κ, ψTΪ) is complex analytic. Since Γ*; must be symmetric,
the integrability condition of ψt

h is satisfied. If, conversely, the condition 5)

is satisfied, the complex-analyticity of ψih implies that ΓJt is a metric (φ, ψ)-

connection by Theorem 3.1. The symmetry of ΓJ< follows from the integrabi-
lity of ψiΊ\

l)-> 6) is obvious. If 6) is satisfied, the analyticity of ψίh implies

(dμjgχa)g*κ = ~(3μ'vίrλα)Ψα'c. Since gth is Kahlerian, the Riemannian connection
0 1

coincides with Yh

H = Γ* and is a ψ-connection, i. e. gih is Kahlerian with
respect to both φth and ψih.

4. Transformations preserving- the quaternion structure. We

consider a differentiable transformation / preserving the quaternion structure :
fφp = φih and fψih = ψih2*>. The former condition means that / is complex
analytic (with respect to φih). The latter condition implies that the field of
partial derivatives of ψιh is also invariant by /. If the tensor ψih = (ψ>κ, Ψ17)

0 1

is complex analytic, the metric (φ, i/Ό-connection ΓJ = Γ^ is defined only by
1

ψih and its partial derivatives by complex coordinates : Tκ

μλ = — (ϋμψλ

a)ψa

κ

conj., others being zero. Therefore Γ£ is remained invariant by /. Thus we
have

THEOREM 4.1. In a Hermitian manifold with quaternion structure we
assume that the tensor ψih is complex analytic. Then a differentiable trans-
formation preserving the quaternion structure is always an affine transformation

0 1

with respect to the metric (φ, ψ)-connection ΓJ ( = T%).

If a Hermitian manifold with quaternion structure is Kahlerian, the
assumptions of Theorem 4.1 are satisfied, so that we have

THEOREM 4.2. In a Kahlerian manifold with quaternion structure, a dif-
ferentiable transformation preserving the quaternion structure is always an affine
transformation with respect to the Riemannian connection.

Since, in a complete, connected irreducible Rienannian manifold, an
affine transformation is always an isometry [1,2], we have

THEOREM 4.3. In a complete, connected irreducible Kάhleήan manifold
with quaternion structure, a differentiable transformation preserving the quater-
nion stucture is always an isometry.

2) As to the notation see [4].



18 M.OBATA

BIBLIOGRAPHY

[1] S.ISHIHARA AND M. OBATA, Affine transformation in a Riemannian manifold,
Tόhoku Math. J., (2)7 (1955), 146-150.

[2] S. KOBAYASHI, A theorem on the affine transformation group of a Riemannian
manifold, Nagoya Math. J. 9(1955), 39-41.

[3] M. OBATA, Affine connections on manifolds with almost complex, quaternion or
Hermitian structure, Jap. J.Math., 26(1956), 37-72.

[4J M. OBATA, Affine connections in a quaternion manifold and transformations pre-
serving the structure, J.Math. Soc. Japan, 9 (1957), 406-416.

TOKYO METROPOLITAN UNIVERSITY.


