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SUMMARY

The elements x and x> of GF(q®) are defined to be conjugate to
one asnother, The square matrix H = ((hi j)) is called Hermitian if h. j
is conjugate to hy, for all i,J. If gc_T = (Xp%Xy5 oees xN), then E(q) is
defined to be the column vector whose elements are xg, x%, P xl% « A
Hermitian variety vN-l in the finite projective space PG(N, q2) has the
equation gc_T H x(Q) = 0, wvhere H is a Hermitian matrix of order N+l. The
present paper studies the geometrical properties of Hermitian varieties.
The theory of pole andpolars has been developed, and the sections of these
varieties by hyperplanes have been studied, The nmumber of flat spaces of
a given dimension contained in a Hermitian variety has been obtained.
Finally the geometry of the surface xg+l+ x%+l+ xgﬂ + x%ﬂ = 0 , has been

studied in some detail leading to a geometric interpretation of some designs.
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1. Introduction.

The geometry of quadric varieties (hypersurfaces) in finite projective
spaces of N dimensions has been studied by Primrose (12) and Ray-Chaudhuri (13).
In this paper we study the geometry of another class of varieties, which we
call Hermitian varieties which have many properties analogous to quadrics,
Hermitian varieties are defined only for finite projective spaces for which
the ground(Galois field) GF(g®), has order ¢, where q is the power of a prime, If h
is any element of GF(q2), then h = h? is defined to be conjugate to h . Since
hq? = h, h is conjugate to h . A square matrix H = ((hij))’ i, = 0,1, 000,
with elements from GF(g®) is called Hermitian if hij = Bsif for all i,J. The
set of all points in PG(N,d") whose row vectors 5? = (xb,xl,...,xw) satisfy
the equation g?H E(Q) = O are said to form a Hermitian variety Vy ., if
H is Hermitian and E(q) is the column vector whose transpose is
(xg, x% y saey x& ) The properties of the curve xg+l+ x%+l+ xg+l =0 in
PG(2,q?), which is a Hermitian variety, were studied in some detail by one of
the authors in (3). The present paper generalizes these results to N dimen-~
sions. The theory of tangent and polar hyperplanes of Hermitian varieties

has been developed, and the sections of these varieties by hyperplanes have

been studied. The number of points on & Hermitian variety has been obtained,

This research was supported by the National Science Foundation Grant
No. GP-3792 and the Air Force Office of Scientific Research Grant No,
AF -AFOSR-760-65.,



It has been shown that if N = 2t+l or 2t+2 , a non-degenerate Hermitian
variety Vﬁ_l contains flat spaces of t dimensions and no higher. The
number of such subspaces contained in Vﬁ_l has been derived. Finally the
geometry of the surface xg*l + a*l + ngl + ngl = 0, has been studied in
some detail, leading to a geometric interpretation of some designs, For
example if q = 2, the surface contains 45 points and is ruled by 27 lines
three of which pass through each point. Corresponding to any point P on the
surface we get a set of 12 points which are joined to P by a line on the
surface, The 45 sets so obtained form the blocks of a balanced incomplete
block design with parameters v =b =45, r =k = 12, A = 3, There are many
other interesting designs and configurations connected with Hermitian

varieties. These will be discussed in a separate communication.

2. Correspondence between the. elements of GF(q) and GF(42).

Iet q = pm ,» where p 1is a prime number and m is a positive integer.
Let GF(q) be a Galois field with q elements, and GF(¢®) an extension of

GF(q). If 6 is a primitive element of GF(q?), then the elements of GF(g2)

are
(2.1) 0, 6, &, vee, 6T o1,

Any non-zero element x of GF(q?) satisfies the fundamental equation
(2;2) xq?-l =1,

Writing
(2.3) o= ot
it follows that
(2.4) 0, 0, @, v, T o1
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are all different and are elements of GF(q). Hence ¢ is a primitive element

of GF(q), and all the elements of GF(q) are given by (2.4).

Corresponding to & given element x of GF(g®), there is a unique

element y belonging to GF(g), given by

(2.5) y = x4

But for a given non-zero y belonging to GF(q), there are precisely

q + 1 distinct elements x of GF(q®) which satisfy (2.5).

Thus if

(2.6) y=ot =@ g g5
then

(2.7) x = gtri(a1) , 3 =1,2, 4es , atl .

If however y is zero, then the corresponding element x of GF(q®) is

Zexro,

3. Conjugate elements of GF(J?).

The primitive element 6 of GF(¢®) satisfies a quadratic equation
(3.1) X -sx+t=0,

vhere s and t belong to GF(q), and the left hand side of (3.1) is

irreducible over GF(aq).
Using the relation 68 - 86 + t = 0, every element x of GF(q®) can
be expressed as

(502) X=8.+b9,

Where a and b belong to GF(q). We then define

(3.3) =22,



as the conjugate of x. Since

2
(Dett) = x,

the conjugate of X is .. If x is given by (3.3), then

(3.5) X = (a+0)? = a+06% = a+b6 .

q

Since x —x* is an automorphism of GF(q®), the second root of (3.1)

is 6% or B « Hence

(3.6) 6+0=s, 0606=t,
(3.7) X+ X=2a+bs,
(3.8) X X = a2 + abs + b2t ,

Hence the sum as well as the product of two conjugate elements of

GF(g®) belongs to GF(q).

It should be noted that the necessary and sufficient condition for

any element of GF(g®) to be self conjugate is that it belongs to GF(q).

The elements s and t of GF(q) appearing in the equation (3.1) are

non-zero. From (3.6), t = oTT # 0 since 6 is a primitive element of GF(q3).
Again if s = 0, it would follow from (3.6) that 6 + 6% = 0, i.e. either
o=0or 61 = .1, Obviously 640. Also 6%% # -1, otherwise
62 a2 _ 1 , which is contradicted by the fact that 6 is a primitive element
of GF(q2) .

Lemma (3.1). If h is a non-zero element of GF(q2), we can find a
non-zero element A of GF(q®) such that hA + hA £ 0 .

Let h = a+b6 and A = ut+vé , where a,b,u,v belong to GF(q). Then

using (3.6)

nA + hA = (2a + bs)u + (2bt + as)v.



Case I, If 2a +bs £ 0, we can choose u = 1, v = 0, i.e. A= 1,
Case II. If 2a + bs = O, then a # 0, since a = 0 would make b = 0,

contradicting h £ 0. Now (2bt + as) = a(s? - 4t)/s £ 0, since s - bt = 0

is the condition for the roots of (3.1) to coincide i.e. for 6 to be equal to

0% , Which is obviously false since 6 is a primitive element of GF(q?).

Hence in this case we can choose u =0, v=1, i,e, A= 0,

L, Hermitian matrices and Hermitian forms,

A square matrix
()‘l"l) H= ((hij)) ) i,§ = 0,2, «es, N
with elements from GF(q®), will be defined to be Hermitian if
(%.2) hiJ = hdi ,

for all i,j. Hence the diagonal elements of a Hermitian matrix belong to

GF(a), and symmetrically situated off diagonal elements are conjugate to

each other,

Given a matrix A = ((aij)) with elements from GF(q®) we define the
conjugate of A by
(a) _ QY (€3
()4'-3) A - ((aiJ )) "((aij))t

Clearly, the conjugate of A(Q) is A itself., Thus the relation of conjugacy

is symmetric. So far as this definition 1s concerned A may or may not be

a square matrix, In particular A may be & row vector or & column vector,
Clearly, the necessary and sufficient condition for A to be self conjugate
is that all its elements belong to GF(q).

The transpose of A will be denoted by A?. Clearly the transpose of

the conjugate is the conjugate of the transpose, i.e.




(b 1) AT(@) _ p(a)T

Lemma (4,1). A square matrix G = ((gij)) with elements from GF(q3)

is Hermitian if and only if

(1.5) ol?) - g® .

The proof is obvious,
Lerma (4.2). Suppose A and B are two matrices of order mxn and

nxh with elements from GF(q®), and C = AB, then

(4.6) ofa) _ pla) gla)

Proof: Now C

((cgy))s where

3: aijbjk .

S Sy = Chy = (Z Jo1 1 by)” =
(q) = 2@ ()

"

Cix

q —
Z‘.ab za,.b
Jlij Jk

Hence by definition C
Iemma (4.3). If H is a Hermitian matrix of order N+l, and A is

any matrix of order (N+1)x m with elements from GF(q®), then

¢ =aTgald
is a Hermitian matrix of order n1 .
From Lermas (4.1) and (4.2), and the equation (4.k),

o = AT g1y _ pT(@) yla) , _ o)

The required result follows from Lemma (4.1).
Corollary, If x is a (N+1)x 1 column vector, and H is a Hermitian
matrix of order N+1 then _}gTH _J_C_(q) is an element of GF(q) .

Proof. _:_gTH 5_((‘1) is a 1 x 1 Hermitian matrix, Hence it is a self

conjugate element of GF(a2) .
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The elements of all the vectors and matrices which we shall consider
belong to GF(q?). When we speak of the dependence or independence of a set of
vectors we shall mean dependence and independence over GF(q®) . The rank of
a vector space or the rank of a matrix shall mean rank over GF(q?).

Two Hermitian metrices H and G of the same order N+l with elements
from GF(¢®), will be called equivalent if we can find a non-singular square
matrix A, with elements from GF(q?) such that

ATHA(q)=G.

If H and G are equivalent we may write H ~ G, It is readily seen
that this relation satisfies the three axioms of equivalence i.e. (1) H ~H,
(ii) if H~G, then G ~H, (iii) if H ~ G and G~ K, then H ~K .

The above follows by noting that (i) v = I(q) = T wvhere I is the
anit matrix of order N + 1 (11) DY = 1T, @yt o -Hy(D
(111) 35T = am)T , a(D5(D) - (a8)(?)  from Lemma (4.2).

Theorem (4.1). A Hermitian matrix H of order N+l and rank r >0,
with elements from GF(q®), is equivalent to a diagonal matrix of order N + 1,
the first r diagonal elements of which are unity and the rest zero.

(&) We can permute the columns of H in any desired manner and
permute its rows in the corresponding manner by post multiplying H with a

(q), and premultiplying H with PT .

suitable permutation matrix P = P
Hence by such operations we can rearrange the rows and columns of H so that
all null rows and columns are at the end. The transformed matrix is equivalent
to H.

(v) We shall denote by Euv(k), a matrix.of order N+1, for which each

diagonal element is unity, the element in the u-th row and v-th column is A,

and all other elements are zero. Such a matrix will be called an elementary



matrix of order N+l, Clearly
T
B (N =E_(N .
The effect of prermltiplying H with EEV()J is to replace the v-th
row of H, by the sum of the v-th row and the u-th row multiplied by A
The effect of post multiplying the matrix so obtained with Eég)()b is to

replace its v-th column by the sum of the v-th column and the u-th column

multiplied with A, Thus if H is given by (k.1),

T (A _ o

Euv(?\) H Euv (7\) - G - ((gij))
where

Ah

* AR v-1,u-1 "’

gv-l,v-l = hv-l,v-l u-l,v-1 +
Ev-1,5 © hv-l,J' ¥ hu-l,:l’ &y,v-1 = h;i,v-l * h;j,u-15 J# vl
gi,j = hi{j ’ (i ié v-1l, J f V-l) .

If the v-th row and column of H are non-null but the diagonal

element hv 1yl = Oy then we can find non-zero conjugate elements
-1,v-
hu-l,v-l and hv-l,u-l belonging to the (u-l1)-th row and column respectively,

By ILerma (3.1) there exists =r element A of GF(q®) such that

ARy vl P Ay g F U

lent to H. and the element &, in the v-th row and column is non-zero.
i =1,v=1

T (a) . :
Then the matrix Euv()) HE S (N) is equiva-

(c) By using (a) and (b) suppose H has already been transformed to
an equivalent form such that the first row and column are non-null and
hOO # 0. We now reduce the non-diagonal elements of the first row and
column to zero, in N steps, the (v-1)-th step consisting of premultiplying
. T
the matrix obtalned in the previous step by Elv('hv-l,o/hoo) and post

: . (2) -
mltiplying it by E)¢ ('hv-l,o/hoo) s V=2,3, ..., N+HL .




If any null rows and columns appear they are transferred to the end by
using (a). If now the diagonal element in the second row is zero, (and the
second row is non-null) we can make it non-zero by using (b). Then as in
(c), we can reduce the non-diagonal elements of the first row and column to
zero. Proceeding in this manner we reduce H to an equivalent diagonal
matrix D, in which the first Ty diagonal elements are non-null, and the
remaining diagonal elements are null, Since all our transformations have been
rank-preserving r, =7T.

() Since D is Hermitian the diagonal elements belong to GF(q).
Let the i-th diagonal element be di . From the correspondence described in
section 2, we can find an element Q, of GF(q®) such that d; = a§+l = o&ﬁ&
(1 = 0,1, vo., r-1). We denote by A(ai) the diagonal matrix, whose i-th
diagonal element 1s a& and the other diagonal elements are zero, We can
finally reduce D to the form desired in the theorem in r steps, the
(i+1)-th step consisting of premultiplying the matrix obtained in the
previous step by D'(a;)™" and post miltiplying it by p(a) ()™,
(i = 0,1, eee, r=1). This completes the proof of the theorem.

Let 5? be the row vector (xo,xl, ceey xN), and x the corresponding

column vector, where Xgr Xys eeer Xy are indefinites, Then the form

5? H E(Q) is called a Hermitian form, if H is a Hermitian matrix, H is

called the matrix of the form. The order and rank of the form are defined

to be the order and rank of H. Note that E?H §(Q) is a homogeneous

polynomial of the (q+l)-th degree in the indefinites X ,%, «es, Xy o
The Hermitian form 5? H §(Q) is transformed into x? AT n A(Q) X(Q)

by the linear transformation x = Ay . Two Hermitian forms are defined to

be equivalent if one can be transformed to the other by a non-singular linear



transformation, Clearly the necessary and sufficient condition for two
Hermitian forms to be equivalent is that their matrices are equivalent,

Corollary The Hermitian fbrmlg? HQ§(Q)
be reduced to the canonical form ¥19, + Yo¥p + eee * Y.V, by a suitable

non-singular linear transformation x =Ay .

5. Hermitian varieties in PG(N,q?)

We denote by PG(N,s) the finite projective space of N dimensions
over the Galois field GF(s) where s is a prime power. The points of the

space can be made to correspond to ordered (N+l)-plets

(5.1) (XO’X.L’ eee, xN) ’

vhere the x,'s belong to GF(s), and are not all zero. The ordered n-plets
* % ' * L

(xo,xl, coes XN) and (xo, Xy 5 eees Xy ) correspond to the same point if and

only if there exists a non-zero element p of GF(s) such that

*
Pxy =X, 1i=0,1, ¢ee, N,
If P is the point corresponding to (5.1), then the row vector
5? = (xo,xl, ces, XN) is called the row vector of P, and its transpose x
is called the column vector of P. The elements XprXqs eee; X 8TE called

the coordinates of P.
If C 4is a matrix with N+1 rows and of rank N-m with elements

from GF(s), then the set of points whose row vectors satisfy
(5.2) fc=0 ,

is called an m-flat or a linear subspace of m dimensians, and (5.2) is

called the equation of the m-flat, Points are linear subspaces of zero

dimensions. Linear subspaces of 1,2 and N-1 dimensions are respectively
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called lines, planes, and hyperplanes.

A set of points will be said to be dependent or independent according
as the corresponding row (column) vectors are dependent or independent. Any
m + 1 independent points determine a unique m-flat containing them,

Let E, be the point for which the (i+l)-th coordinate is unity, and

i
other coordinates are zero (i = 0,1, ..., N). Also let E be the point all of
whose coordinates are unity., Then EO’El’ ees Eg 8re called the fundamental
points and E is called the unit point., Clearly any N of the N+l points
EO’El’ P EN , E are independent, Together they are said to constitute the

reference system,

Let A be an (N+1) x (N+1) non-singular matrix with elements from

GF(s). Then the homogeneous linear transformation

(5.3) y=AX

defines a transformation of coordinates. If x is the original column vector
of P, the transformed column vector is y . This transformation defines new
fundamental points FO,F, seey FN and a new unit point F. Their transformed
coordinates are (1,0,... 0), (0,1, evs, 0), eus (0,0, ¢us, 1) and (1,1, ...,1)
and the original coordinates can be calculated from (5.3). An important
theorem states that given any N+2 points Po,Pl, cee, PN and P, no N+1 of
which are dependent, there exists a unique linear transformation, which
would make PO’Pl’ ooy PN the fundamental points and P the unit point. Thus
in PG(N,s) any N+2 points no N+l of which are dependent may be chosen as the
fundamental points and the unit point. This choice uniquely determines the
coordinates of all other points (up to a non-zero multiple of GF(s)). Pro-

jective geometry studies those properties which are invariant under linear

homogeneous transformations and are thus independent of the choice of a

11



reference system. An excellent account of finite projective spaces will be
found in (1,10,15).

In particular let us choose s = q?, where q 1is a prime power and
consider the finite projective space PG(N,q®). If H is a Hermitian matrix
of order N+l and rank r with elements from GF(q®) then the set of points whose
coordinates satisfy the (g+l)-th degree equation

(5.4) ?STH -}E(Q) =0,

are said to be the points of a Hermitian variety Vﬁ_l of N-1 dimensions and
rank r, The equation (5.k4) ;s said to be the equation of Vi ,. If we apply
the 7inear transformation (5.3) the new equation of Vﬁ_l becomes
(5.5 S AT ;g 2o,

Now AT H A(q) is a Hermitian matrix of rank r equivalent to H. Hence
the ranr -~f a Hermitian variety is invariant under a non-singular linear trans-
format. m. It follows from Theorem (4.1) and its corollary that by a suitable

choice of the frame of reference, the equation of a Hermitian variety of N-1

dimensions and rank r can be reduced to the canonical form

(5.6) xoxo + xl.xl + eee + Xr-lxr-l =0,
A Hermitian variety Vﬁ_l of N-1 dimensions is said to be non-degenerate

if its rank is N+l. Now PG(N,q®) contains linear subspaces of dimensions r<N.,
Let Zr be such a subspace. Then each point of Zr can be characterized by a
set of r+l coordinates (yo,yl, ceey yr). For example if we choose the frame of
reference so that the equations of Zr 8re Y ., = Vpyp = oo T Wy = 0; then if
the point P, when regarded as & point of PG(N,q®), has the row vector

xT = (yo,yl, cees ¥y 0,0, eee 0); then regarded as a point of L_ it has row

*
vector xfT = (yo,yl, eoe yr). Then if H is a Hermitian matrix of order r+l,

* *
the points of Zr which satisfy the equation szH y (a) = 0 will be said to form

*
the Hermitian variety Vf-l of dimensions r-1 and rank equal to the rank of H .
We shall in what follows always denote

12




a Hermitian variety with the letter V and choose our notation so that the
subscript of V denotes the number of dimensions of V.

Let us consider the special case N =1, Our space is now the pro-
jective line PG(l,q?). Let Vb be a non-degenerate Hermitian variety in this

space. Then the equation of Vb can be taken as

' po = g+l qtl _
(5., Xg¥g + Xq¥; =0 or xy o +x' T =0.
The point (0,1) obviously does not lie on V). Hence for points
satisfying (5.7), X £ 0. Now (5.7) gives (xl/xo)q+l = - 1, The correspond-

ence described in section 2, shows that there are precisely q + 1 values of

xl/xo vhich satisfy (5.7). Hence a non-degenerate Hermitian variety VO on

a projective line (over a field of order g2) contains exactly g+l distinct

points. Again suppose the rank of Vb is one.Then by a suitable choice of the
frame of reference its equation cen be reduced to xg+l =
point satisfying this equation is (0,1). Hence in this case Yb consists of

0 . The only

a single point,

The properties of the curve

' +1 +1 +1
(5.8) xg + x% + xg =0,

were studied in some detail in (3). In particular it was shown that a

non-degenerate Hermitian variety V, in PG(2,q%) has exactly g+l points.

6. Conjugate points, polar spaces and tangent spaces.

Consider a Hermitian variety Vy_; with equetion (5.4). A point C with

T . .
row vector ¢~ = (co,cl, ceey cN) will be called a singular point of Vg , if
T (@ .o,

H = 0 or equivalently H ¢
Of course a singular point must lie on Vﬁ-l‘ A point of Vﬁ-l which is

not singular is called a regular point of Vﬁ_l. A point C will be called a

13



non-singular point if it is not a singular point of V. Thus a non-

N-1°

singular point may be a regular point of V. or a point not lying on V .

N-1 N-1

A non-degenerate Hermitian variety cannot possess a singular point,

since in this case there cannot exist a non-null g? satisfying ETH =0 as

H is non-singular. If V. is degenerate let r < N+l be the rank of H,

N-1
Then (6.1) has N+l-r independent solutions

T T T
(6.1) .c_l b -C'Q b e e oy '91\]""1-1‘ L]

Thus the singular points of Vﬁ_l are the points of the (N-r)-flat

determined by the points with row vectors (6.1). This will be said to
constitute the singular space of Vﬁ-l .

All points whose row vectors satisfy the equation
(6.2) 5? H g(q) =0,

constitute the polar space of the point C with row vector g?. When C is

a singular point of Vﬁ_l the polar space of C is identical with the whole

space PG(N,q%). When however C is non-singular the rank of H g(q) is one

and (6.2) is the =quation of a hyperplane, which may be called the polar

hyperplane of C. If g? is the row vector of s point D then the necessary

and sufficient condition for the polar space of C to pass through D is

a* B E(Q) = 0 , vhich is equivalent to g? H g(Q) = 0 . This shows that

if the molar space of C passes through D, then the polar space of D passes
through C. Two such points whose polar spaces mutually pass through each

other are sald to be conjugate to each other with respect to V. In

N-1 °
case Vﬁ_l is degenerate the polar space of C passes through every singular

point of V. and thus contains the singular space of V. Hence any two

N-1 N-1 °
points at least one of which is singular, are always conjugate to one

another,

1k



The condition for the point C to be self conjugate i.e. to lie on its
own polar space is that c_:_T H _g(q) =0, Hence a point is conjugate to itself
with respect to vN-l , if and only if C lies on vN-l .

The polar hyperplane of a regular point C of vN-l is defined to be
the tangent hyperplane to vN—l at C, The tangent hyperplane is defined only
for regular points of vN-l and when vN-l is degenerate contains the singular
space of vN-l .

When V. is non-degenerate, there is no singular point. To every

N-1
point there corresponds a unique polar hyperplane, and at every point of

V. there is a unique tangent hyperplane,

N-1

7. Sections of Hermitian varieties with flat spaces.

Iet V., . be a Hermitian variety of rank r in PG(N,q®) with equation

N-1
(5.4). The set of points common to Vy_, and the m-flat I with equation

(5.2), is defined to be the section of Vy_;

is the whole space and the section is VN-l itself, ILet m < N. Let Zm

by Zm. If m =N, then Zm

be defined by m+l independent points FO,Fl, eeey F_ . Ve can find a non-

m
singular linear transformation y = A x such that FO’Fl’ cosy Fm become the
fundamental points of the reference system. Then the points of zm will

satisfy the equations

(7.1) ym+l = ym+2 = o0 = yN-l= O,

while the equation of VN will become
(7.2) Yy Gy
where G is a Hermitian matrix equivalent to H. Writing (7.2) in full

we have

15



(7.3) g : y y(q) =0.
30 120713 Y173
Hence the points common to » and Vi , satisfy (7.1) and
m m
(7.4) T X gy y§Q) =0.

j=0 i=0
*
Let G be the matrix obtained from G by retaining only the first
*
m+l rows and columns of G Evidently G is Hermitian and the points on the

section of Vy_.by I  satisfy (7.1) and

(7.5) yT et MY .

*
where y = (yo,yl, ceey ym). Regarding ;m as a projective space of m

dimensions, it is clear that the section of a Hermitian variety Vﬁ-l in

PG(N,®) by a flat space %, of m dimensions, is a Hermitian variety V.

contained in ;m » Clearly the rank of V cannot exceed mtl, However

m-1
*
this rank could be less and in particular it may happen that G is mull so

that every point of Zm belongs to the section, which therefore coincides with

the sectiun. In this case the flat space ;m is contained in Vﬁ 1 We will

therefore adopt the convention that a flat-space ;m of dimensions m, can be

regarded as a Hermitian variety vm—l

As a particular case let m = 1, Then Zm is a line, Since the inter-

of dimensions m-l and rank zero.

section of a line with Vﬁ 1 must be a Hermitian variety V of rank 2,1 or O

we see that a line 1ntersects Vg 1o in (i) g+l points (ii) a single point or

(1ii) lies completely in V. Vy.je We shall now prove the following theorem:

Theorem (7.1). If the Hermitian variety V, . with equation

N-1
5? H §(Q) = 0 1s degenerate with rank r < N+l end 1 is a flat space of
dimensions r-1 disjoint with the singular space ZN-r of Vﬁ 10 then VN_l
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and Z intersect in a non-degenerate Hermitian variety V contained

r-1 r-2
in zr-l .

Let Fo,Fl, coe Fr-l be any r inglependent points in zr-l . Also
let Fr’Fr 412 00 FN be any N-r+l independent points in Z‘N-r . Now make
a no‘n'-‘singula.r linear transformation x = A y such that FO’Fl’ veey Fr-l s
Fr’ ceey FN become the fundamental points of the reference system. The
equation of Vy . now becomes _XT G _X(Q) =0 , where G = ((gij))’

(1,3 = 0,1, «vs, N), is equivalent to H and is therefore of rank r. Using
y=-coordinates the row vector of F N is _eg for which the (i+l)-th coordinate

is equel to unity and all other coordinates are equal to zero. The condition

for F and F to be conjugate to each other is e G €(q) 0 or gy = 0.
Since Fr’Fr+l’ essy FN are singular points of VN 12 Fi and Fj are conju-

gate if (1) 0sisr-l, r s jsN (i) r si SN, r= j= N. This shows

that we may write

0 o -,
*
vhere ¢ is a Hermitian matrix of order r. Since the rank of G is »r,
*
the rank of G must also be equal to r, Now the points of Vr_2 satisfy

X ¥ *
P A R

where y_*T = (yo,yl, eee yr_l)l. Hence Vr_2 is a Hermitian variety of rank
r contained in zr-l , and is therefore non-degenerate.

Corollary If V Y Z’N P and Vr._2 have the same meanings
as in the theorem, C* is a point on Vr_2 and Zr_2 is the tangent space
to V. at C*, then the tangent space to V, at C* , 1s the flat space

r-2 N-1
ZN—l of N-1 dimensions containing zr-2 and zN-r .

17



Theorem (7.2), If Vﬁ_l is a degenerate Hermitisn variety of rank

r < N+l, in PG(N,q?), and if C is any point belonging to the singular space

of Vﬁ-l and D is an arbitrary point of Vﬁ_l » then any point on the line CD

belongs to Vﬁ_l .

Let the equation of V.1 be 5? H{g(q) =0, and let g? and gq}be the

row vectors of C and D respectively . Now C and D are self conjugate, and

also C and D are conjugate to each other., Hence

If B is any point on the line CD, then its row vector E? must be of

T T T
the form fyc” + 4, &° or (#c + £,d)” . But

T (a) _
(zlg + 4,d)" H (zl_c_:_ + zzg) =0,
which proves the theorem,

Corollarz. If Vﬁ-l is as in the theorem and Y}_z is the section of

Vy_p bY an (r-1)-flat Z._.1 disjoint with the singular space Hror °F Yy

then every point of Vﬁ_l lies on some line joining a point of Eﬁ-r with a

point of VE-E .

From the theorem if C is a point of zNér and D is a point of V}_a R

then any point on the line joining CD belongs to Vﬁ_l.

Conversely, let D0 be any point on V. - We have to show that it

N-1°

lies on some line joining a point of zN-r with a point of V}_z . This is

obviously true if Do belongs to Zh » OF z We may therefore suppose

r-l °
that D, does not lie on either of these flat spaces. Let I _be the r-flat
containing Do and zr-l‘ Tyen Z} intersects zN-r in a point C0 and CoDo inter=-
sections Zr,l in a point Po' From the theorem Po mist be on Vﬁ-l and there-

fore on V}_e. This proves the corollary.
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We shall next study the nature of the section of a Hermitian variety
with a tangent space, We shall first prove the following:

Theorem (7.3). The tangent spaces at two distinct regular points A
and B of a Hermitian variety VN-l are identical if and only if the line

joining A and B meets the singular space of VN_lin a point, In particular

if VN_lis non-degenerate then the tangent spaces at A and B must be distinct.
Let the equation of VN-:Lbe gc_TH x(q) = 0 , and let the row vectors of

A and B be 9._T and l_a_T . Then the tangent spaces at A and B have the equa-

tions x° H o{®) =0 ana ¥ H (@) = 6, Hence the two tangent spaces are
identical if and only if there exists a non-zero element £ of GF(q¢®) such

that
(7.2) nel® - 4 (@ or (a -z(Q)g)TH =0.

First suppose VN is non-degenerate, In this case H is
non-singular., Hence the homogeneous linear equations gT H = O can only be
satistied by cT = 0 ., Hence af = £(DpT . e vectors of A and B differ
only by a non-zero multiple of an element of GF(q®). Hence the points A and
B must be identical.

Now suppose that VN_lis degenerate and of rank r <N + 1, The
singular space Z‘N__rof VN_lconsists of all points with row vector g_T satisfy-
ing _c_T H=0. Hence (7.2) implies that gT - z(Q)gT = g_T , where gT is the
row vector of some point C belonging to XN-r » Hence the line AB meets
zN-r at C.

Corollary ILet ZN-r +1 be the flat space of N-r+l dimensions contain-
ing a regular point A and the singular space zN-r of & degenerate Hermitian

variety VN_lof rank r <N + 1. Then any point B on zN-r +1 (which is not on
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ZN-r) has the same tangent space as A,
Theorem (7.4). Given a non-degenerate Hermitian variety V., the

tangent space at a point C of Vﬁ-l intersects VN-l in a degenerate Hermitian

variety V of rank N-1 contained in ZN-l « The singular space of VN_

N-2
consists of the single point C,

2

Let the equation of Vy.jbe g?HE(q)=O. Let ;N-l be the tangent space

to Vﬁrl at C. Let FO = C, Fl, oy FN-l be N independent points in

zN-l + We can find a non-singular linear transformation y = A x, such

that Fo,Fl, ese, F become the fundamental points of the reference system,

N-1
Then the equation of zN-l becomes Xy = 0 , and the equation of Vﬁ-l becomes
XF G Z(Q) =0, where G = ((gij))’ (1,3 = 0,1, ¢es, N), is Hermitian and

of rank N+l, Since FO is self conJugete and is conjugate to Fl’Fa’ ooy

we have goj = 0, J = O,l, XX ¥} N"'l, and gio = 0, i-= O’l, ees N-1, We
can therefore write - . -
0«0 0 ... O - S
| 0
® & 6 %9 9o o 6 » e ¢ s e e° IO\T e o o
0 . -gm
O L] ** .
(7.3) G= | ~ - G . By
o, - BN-1,N
| fyo° &1 Bwe By, N OB |,

*%
where G = ((gij))’ i,j‘= 1,2, «es, N-1. Now g, and g, are non-null

since G 1s non-singular. Also

W
(7.4) det G = -gyey det G .

% * .
It follows that det G is non-null so that the rank of G is N-1,

Regarding ZN-l as a projective space of N-1 dimensions, we have seen that

20
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. o JSH* Kq) *T
the equation of the sectlon Vi, , is y "Gy "= 0, where y = = (yo’yl’ coes yN-l)

*
and ¢ is the Hermitian matrix obtained by retaining only the first N rows
* e
end columns of G, Since G_ is the same as G except that it has an addi-
* *%
tional null row and column, rank G = rank G = N-l.

The row vector of C = Fo when regarded as & point of projective spac.

T s *T % . .
By 18 & = (1,0, «ee 0)s Since £ G =0, Cis a singular point of Vy ..

Since the rank of Vﬁ_a is N-1, the singular space has dimension 0, and must
therefore consist of the single point C,

Corollary. Let Vﬁ_l be a degenerate Hermitian variety of rank
r < N+l, with singular space ;N-r . Let zN-l be the tangent space to Vﬁ-l

at a regular point C. Then ZN—l intersects Vﬁ_l in a Hermitian variety

V. of N-2 dimensions and rank r-l, whose singular space is the (N-r+1)-

N-2
flat zN-r+l containing C and zN-r .

8, Number of points on a Hermitian variety. ILet S ¢2) denote

N*l(

the vector space of row vectors of order N+l, with elements from GF(q®), and

let SN+l(q) have a similar meaning with relation to GF(q). To any vector

(xo,xl, coes xﬁ) belonging to SN+l(q?) let there correspond a vector

. +1
= (yg¥ys «e» ¥y) belonging to Sy, (q) where y; =xi , (1 =0,1, ..o, N,.

T
Pt

T
N

It follows from the correspondence between the elements of GF(q?) and GF(q)
discussed in section ?, that to each 5? there corresponds a unique 1? , but
to each x? with r non-zero coordinates there correspond (q+l)r vectors 5?

belonging to S...(a), each with r non-zero coordinates.

N+l
Now let X be any point of PG(N,q®) with row vector 5? having r non-

zero coordinates. Then any one of the g®-1 row vectors p 5? of SN+l(q?)

will represent X, where p is any arbitrary non-zero element of GF(q?).

Let x? be the row vector of SN+l(q) which correspondsto 3? , and let Y be
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the point of PG(N,q) with row vector XT . We then say that Y corresponds to

X. The point Y of PG(N,q) is given uniquely by the point X of PG(N,q) for
if we take p 5? as the vector representing X, then the corresponding vector

.
pq+* » and represents the same point of PG(N,q)

. T _
of SNfl(Q) is ay where a =
as yT o Conversely let y? be a vector of SN+l(q) representing a point Y
of PG(N,q). If x? has r non-zero coordinates then we get (q+1)¥ distinct
vectors of SN+l(q?) corresponding to yT. Now Y can be represented by any

one of the g-1 row vectors ay? of S, ..(q), where 'a' is any arbitrary non-

N+1
zero element of GF(q). To each of these vectors there correspond (q+1)°
vectors of SN+l(q?). Thus to the g-1 vectors am? (where 'a' ranges over
all the non=zero elements of GF(q)) there correspond (q-1)(g+1)* vectors of
SN+l(q?). But any q®-1 of these vectors which differ merely by a multiple

of some non-zero element p of GF(q®) represent the same point of PG(N,q?).

Hence to each point of PG(N,q) with r non-zero coordinates there correspond
(a-1)(a+1)7/(@-1)or (q+1)" ™ points of PG(N,q?).
Now let Vﬁ_l be a non~degenerate Hermitian variety in PG(N,q?).

By a suitable choice of the frame of reference we take its equation in the

N
canonical form I x.X, = O or
i=0
(8.1) ke s 2t =0

Let I be the hyperplane of PG(N,q) with equation
(8'2) yo+yl+ooo +yN=O

In the correspondence between the points of PG(N,q) and PG(N,q®) just

described, if X 1lies on Vﬁ then Y lies on Z and conversely., Let

-1
n, = (q?+l-l)/(q-l) denote the number of points on an r-flat in PG(N,q).
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The number of points on £ which have exactly r non-zero coordinates is
8.3) M (o, + Gy + eee + (1T ECT 0]
g r r-2 ‘1/"r-3 2/ ply 7ot r-270

= M (e1)™ - () a

Hence the total number of points on Vﬁ_l is

N+l
£ ™ (e-1)" - (<17 a
=

(& M - )N/

¢(N.~ q2 )

We have thus proved:

Theorem (8.1). The number of points on a non-degenerate Hermitian

variety Vy_, in PG(N,q®) is

@.4) o, @) = [ - (-1 - (DN (@) .

Corollary. The number of points on a degenerate Hermitian variety

V. . of rank r < N+1 in PG(N,¢®) is

N-1

8.5)  (R-1)e(N-r,q?) ¢ (r-1,#) + £(N-r,¢%) + ®(r-1,0¢%) ,

where 0(N,q2) is given by (8L4), f(k,®) = () 11/(2)

Let zN-r be the singular space of Vﬁ-l then the number of points
. . 2 -1)- i
in B . is f(N-r,q®). Also let %5 be an (r-1)-flat disjoint from Nor
Then from theorem (7.1), zr-l intersects vN-l in a non-degenerate Hermitian
veriety V}_Q contained in zr-l . The number of points on Vr_2 is
¢(r-1,q%). Now from the corollary to theorem (7.2) every point of Vi .
belongs to some line joining a point of zN-r with a point of V}_a . Two

such lines cannot have a pbint in common outside of V}_a or ZN-r . Suppose



if possible the points Al and A2 be in zN-r and the points B1 and B2 in .
Voo * If possible let the lines AlBl and A2B2 intersect in P, a point

not in ZN-r or Vf_z . Then Al snd A2 are distinct. If not they would coin-
cide with the point of intersection of the two lines which would mean that

P lies in zN-r o Similarly Bl and 32 are distinct., However both AlBl

and A2B2 lie in the plane PA1A2 « Hence the lines A1A2 and Ble intersect

in a point Q, which therefore must be common to ZN-r and ;r- This

l .

contradicts the fact that Zr_ and ZN-r are disjoint. Each line joining

1

a point of zN-r and V}_2 contains q®-1 points not contained in either
: 2 2y¢ .2
Ly 20d V., . Hence V. ., contains f(N-r,q®)¢ (r-1,¢%)(¢®-1) points not

on zN-r or Vr-2 . This proves the corollary.

9. Flat spaces contained in Hermitian varieties.

We shall first prove the following lemma.
Lemma (9.1). The line joining two points C and D on a Hermitian

veriety V. is completely contained in Vi ., if and only if C and D are

N-1 N-1

conjugate with respect to Vﬁ-l .
Let the equation of Vﬁ-l be 5? H §(q)= 0, vhere H 1is Hermitian

or order N+l. Let gT and.g_T be the row vectors of C and D, Then

(9.1) ¢ H NGO , &' H ald oo,

The row vector of any point A lying on the line CD can be written

as aT = A cT + 2 dT = ( Lc + 8 d)T . If CD is completely contained in
= 1= 2= 1= o—
vN-l we must have
T (q) _
(9.2) (zlg + zzg) H (zlg_+ zag) =0 for any (zl,zz) # (0,0) .
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Hence from (9.1)

(03) a2l uad® e Vo0 s a,8) 40,0

This implies that g? H Q(Q) =0, i,e, C and D are conjugate. If not
suppose g? H g(q) =h#O0 . Then from lemma (3.1) we can find a non-zero

element A of GF(q®) such that hA + hA # 0. Now let us choose £ =1 by = N,

then leg =A, zaz% =N, g?ag‘Q)= h so that from (9.3) we have

hA + hA =0, This is a contradiction.

Conversely suppose C and D are conjugate. Then g? H g(q) = 0 and

& H E(Q) = 0, so that (9.2) is satisfied. Hence every point of the line

CD is on VN_l .
Corollary. The necessary and sufficient condition for any t-flat Zt
to be completely contained in vN-l is that any two points of Zt are conjugate with

respect to Vﬁ_l . If Zt is contained in Vﬁ-l , and a point C of Z% is a

vegular point of Vﬁ_l then Zt is contained in the tangent space to Vﬁ-l at

C.

The first part is obvious. For the second part we observe that if D
is any point of %, , then D is conjugate to C, and is therefore contained in
the polar hyperplane of C, which in this case is the tangent space to Vﬁ-l
at C,

Theorem (9.1), If N = 2t+l or 2t+2, then & non-degenerate Hermitian
variety Vﬁ_l contains flat spaces of dimensions t and no higher.

We can without loss of generality take the equation of VN in the
canonical form EFé(q) =0, i.e., we teke H = L., , the unit matrix of order
N+l. Suppose V,, contains a t-flat determined by the t+1 independent points

N

UO’Ui’ coey Ut with row vectors UnsUys eees Uy o Any two of these points are

conjugate to each other with respect to Vﬁ_l . Hence
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(9.4) u; 3§Q) =0 3,9 20,1, vee, t . o
Let
T. U.OO U.Ol eee uON ]
Plo ull e ulN
(9.5) S
Y0 %1 vt M |,

T T T
B 2 B3 5 cees By

Since the rows of UT are independent its rank is t+l., Hence we can find at

be the (t+1) x (N+1) matrix whose row vectors are

least t+l independent coluims., We can suppose the first t+1 columns
of UT to be dependent, for if this is not true we can achieve it
merely by a permtation of coordinates. Now the equation (9.4) may be re-

written as

(9.6) o ol o

Let UE be the matrix consisting of the first t+1 columns of UT R

and Ug the matrix consisting of the last N-t columns, Then rank (Ui) = t+l ,

rank (Ug) < N-t . Now from (9.6)

()
U
(907) [UL]'._‘)Ug] 1(') =0 .
q
Ué. _
. q (a) _
(908) o U:{U1+UgU2 =0 .,
Since x - x(q) is an automorphism of GF(d3) ,
rank Ug = rank U2 = t+1 . Hence
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(9.9) 641 = rane (0] 0{%)
= rank( -U":E UéQ))
SN -t,

which shows that N 2 2t+1 .,

Changing t to t+l we find that if Vﬁ_l

dimensions t+1, then N 2 2t+3 . Hence if N = 2t+1 or 2t+2 then Vﬁ-l cannot

contains a flat space of

contain a flat space of dimensions higher than t.
We shall next show that if N = 2t+1 or 2t+2, we can always find t+1

mtually conjugate points on Vﬁ The flat space of t dimensionsdeter-

-]

mined by these points must lie in Vﬁ_l . Choose any point UO on VN-l’

;N-l be the polar space of Ub « Then Zﬁ-l intersects Vﬁ_l in a degenerate

Iet

Hermitian variety Vﬁ_a contained in ;N-l of which Ub is the singuler spsce
(cf. Theorem (7.4)). Now we can find an (N-2)-flat Sy.p lying in 5. .,

disjoint from Ub and intersecting Vﬁ_z in a non-degenerate Hermitian variety

contained in % , (cf, Theorem (7.1)). Let U, be any point on V.

1 3¢
Now let ;N-B be the tangent

Yy-3
Since Ui lies in ZN-l it is conjugate to UO .
space to Vﬁ_j when considered as a variety of the space ;N-2’ and let it
intersect Vﬁ-B in the Hermitian variety Vﬁ-h of which Ui is the singular
space, Again in ZN-B we can find a flat space ZN-h of dimension N-4 disjoint
from Ui and intersecting Vﬁ_h in a non-degenerate Hermitian variety Vﬁ-S con-
tained in ;N-h . let Ué be in Vﬁ_s + Then U2 is conjugate to both Ul and Ub.
Continuing in this way we get points UO’Ul’ veey U£ matually conjugate to

one another, Ui lying on Vﬁ-2t-1 . If N = 2t+1 or 2t+2, we will not be able
to carry this process further., The flat space Zt determined by

UO’Ui’ ooy U£ lies completely in Vﬁ_l .
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Let W(N,t,q?) denote the number of t-flats contained in a non-degenerate

Hermitian veriety Vy_, in PG(N,q®). Then we lmow that

(9.10)  ¥(N,0,¢%) = o(N,q®); w(2t+1,k,q®) = ¥(2t42,k,2)= 0 for k > t,
where ¢(N,q®) is given by (8.4).
We shall next calculate the value of V(N,t,q2) when N = 2t+l or 2t+2 .
First suppose N =2t+1l . ILet C be any point on Vét . Then the
tangent space Zét at C toV cuts it in a Hermitian variety V, con-

2t 2t-1
tained in Zét , for which C is the singular space. We can find a (2t-1)-flat

2t-1
Hermitien variety V,, , . Now V,, , contains ¥(2t-1,t-1,q0%) (t-1)-flats.

Zét-l contained in Zét and disjoint from C intersecting V.

Any of these (t-1)-flatstogether with C determines a t-flat contained in V-1t

Conversely if zt is a t-flat contained in Vﬁ_l and passing through C, then it

is contained in %, and intersects X, , ina (t-1)-flat contained in Vor o *

Hence the number of t-flats contained in V. and passing through a fixed

N-1

point C is ¥(2t-1,t-1,9=). Tut the number of points on Vo

where o(N,q?) is given by (8.4). We thus get (2t-1,t-1,¢%) #(2t+1,q%)

is o(2t+1,q¢?),

t-flats by considering all points of Vét. Here each t-flat has been counted
£(t,F#) = (q?(t+l)- 1)/(a®-1) times since this is the number of points on a
t-flat. Hence

¥(2t-1, t"lLf) o(2t+1, Q.a)
f(t, q2)

¥(2t+1,t,q%) =

2t+1
(q + l)‘l’ (2t'11t'l,q2) .

By successive reduction

't+l+ l) (q2t-l+

wet,t, ) = (o 1) e (041)

since v(1,0,q®) = g+l .
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In the same manner we can prove that
2t+2 2t .
1[!(2t+2,‘b,q2) = (q "'l)(q 1) .ee ((13"'1) .
Theorem (9.2). If V(N,t,q®) denotes the number of t-flats on a non-

degenerate Hermitian variety Vy , in PG(N, g®), then

(9.11) w2t t, @) = (o) (P ) ... (a11) ,
(9.12) w2t t, @) = (20 P4a) (P ) ... (o®4) .

10. Some designs associated with a non-degenerate Hermitian variety

of 2 dimensions in PG(3,d2).

Iet V, be a non-degenerate Hermitian variety in PG(3,d%).

Tt follows from theorem (8,1), that V, contains (¢®+1)(q®+1) points.
The case q = 2 is of special interest. In this case Vé is a cublc surfece
with 45 points. Again from theorems(9.1) and (9.2), Vé does not contain
any plane but is ruled by lines, (q®+1)(q+l) in number. In the special case
q = 2 the number of lines is 27. The lines lying on Vé will be called
genersators of Vé . |

From theorem (7.4), the tangent plane to Vé at any point C, intersects
Vé in a degenerate Hermitian variety V1 of rank 2, with C as a singular
point., It follows from theorem (7.1), that if we take a line £ in the
tangent plane at C, disjoint from C, then £ would intersect Vi in a non-
degenerate Hermitian variety Vb of dimension O, contained in £ . It was
shown in section 5 that Vb consists of a set of g+l distinct points
PysPys eees Booe It now follows from the corollary to theorem (7.2) that
Vi consists of the set of g+l concurrent lines CPO,CPl, eoey CPq o« Thus
the tangent plane to V, at any point C, meets Vé in a set of g+l genersators

2
passing through C. Conversely, from the corollary to Lemma (9.4), any
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generator through C is contained in the tangent plane at C, We hawve thus

shown: Through any point C of V., there pass exactly g+l generators which

constitute the intersection withVé of the tangent plane at C. Now through

C there pass g2+l lines lying in the tangent plane at C, out of which g+l
are generators. The remaining ¢®-q lines through C, which lie in the tangent
plane meet Vé only in the single point. Lines meeting Vé in a single point

C will be called tangents to Vé at the point where they meet V, . Through

C there will pass g% lines not lying in the tangent plane at C. Now the
(q+l) generators through C contain q3+q2+l points of V2 « Hence there are

q° points of Vé not lying on the tangent plane at C. On the other hand any
line through C notlying in the tangent plane must meet Vé in a Hermitian
variety Vg » which must consist of either g+l points or a single point,
according as the rank is 2 or 1, Since each of the q? points of Vé, not con-

tained in the tangent plane must 1ie on some line through C, each of the

q* lines passing through C and not contained in the tangent plane at C must

*
intersect Vé in exactly g+l points, one of which is C, This shows that Vb

mist be of rank 2, Lines intersecting V2 in g+l points may be called

secants, Any arbitrary line not a generator of Vé must either be a tangent
or a secant.,

Iet £ be any generator of V2. From theorem (7.5), the tangents
to Vé at two distinct points of £ must be distinct. There are exactly
P +1 points on £ , and exactly £ +1 planes pass through £ . Hence any
plane through a generator is tangent to Vé at some point, and intersects
in a set of g+l generators through the point of contact. Iet P be a

A

point on Vé disjoint from a given generator £ . Then the plane =n contain-

ing P and £ must be tangent to Vé at some point C on £ . Since P is on
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the intersection of V2 and © , CP must be a generator of Vé . Since 7w can

be tangent to V2 at only one point on CP so n is not the tangent plane at
*
P, Let = be the tangent plane to V2 at P. Thenthe g+l generators of Vé
* *
through P lie on n ., Thus = and =« intersect in a single generator CP,

We have thus shown that given a generator £ of V2 and a point P of V2 not on

zl there passes through P exactly one generator which meets £ in a point.

The concept of a partial geomet:y,(r,k,t) was introduced by one of

the authors in (4), Tt is a system of two kinds of undefined elements called
‘points' and 'lines' and an undefined relation of 'incidence' satisfying the
following axioms.

Al. Any two points are incident with not more than one line,

A2, Each point is incident with r lines,

A3, Each line is incident with k points.

A, If the point P is not incident with the line £, there are
exactly t lines (t > 1) through P intersecting 2.

Theorem (10.1). The configuration of points and generators of a
Hermitian variety V, in PG(3,q2) form a partial geometry (q+1,q®+1,1).

All the axioms Al-Ak are satisfied in view of the results already
proved.

From the connection established between partial geometries and
partially balanced incomplete block (PBIB) designs in (&), it follows that

by identifying the points of Vé with treatments, and the generators of Vé

with blocks we get the PBIB design with parameters

n

(@+1)(®+1), b = (a+1)(g®#1), r = qtl, k = ¢®+l,

1
?(a+l), ny = o, pyy = @1, Py =@l A =1, =0.

(10.1) v

oy
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This design was otherwise obtained by Ray Chaudhuri (14). The case
q = 2 was obtained earlier by Clatworthy and one of the authors (6)., For the
definition and other properties of PBIB designs the reader is referred to
(5, 7, 8, 9).

Let Co and C1 be two distinct points of Vé not on the same gener-

ator, Denote the line joining CO and Cl by Ll . Then zl must be a

secant to Vé and intersectsvs in g-1 other points 02, ooy Cq « Let T and

ﬂl be the tangent planes to Vé at Co and Cl respectively. Now T cannot

pass through Cl‘ Otherwise Cl would be on the section of Vé by T and this

would make COCl a generator contrary to the hypothesis. Similarly ™ can-

not pass through C Let 22 be the line of intersection of =,  and =

0o° 0 1
Then 52 must be skew to zl . Since £2 is a line on T disjoint with CO,

2 2

is conjugate to both CO and Cl . Hence the tangent plane Zi at Di passes

Thus Ci and D

£, meets V, in q+l distinct points D,,D, ..., Dq . Now D, (i=0,1,...,q)

through C. and C. and so through the line ¢ are conjugate

0 1
(i, = 0,1, ..., g-1) and the lines C

1° J
are generators of Vé « We have

on Vé do not lie on a

123
incidentally shown that if two points CO and C

1l

generator then there are exactly g+l points D, on V., such that both DiC

i 3 0

and Dicl are generators of V, .

Now consider the special case q=2 . Then Vé is the cubic surface
xg + xi + xg + xg = 0 in PG(3,22). It has 45 points and 27 generators.
Through each point there pass 3 generators and on each generator lie 5 points.
To each point P of Vé we may associate a set of 12 points viz the points
(other than P) lying on the three generators through P. This set of points
will be called the block corresponding to P, There are exactly 45 blocks,

and each point P of V2 belongs to 12 blocks viz the blocks corresponding to
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the 12 points (other than P) lying on the three generators through P,

Given two distinct points P and Q on Vé we shall show that there are

exactly three blocks which contain both P and Q. We have to consider two
separate cases, Firstly let P and Q lie on a generator L*. Now 3* contains
three other points besides P and Q, and both P and Q belong to the blocks
corresponding to each of these points., Again suppose P and Q lie on a
secant. Then from what has been shown above the line of intersection of the
tangent planes at P and Q meets Vé in g+l = 3 points DO,Dl,D2 such that
;P and D,Q (i = 0,1,2) are both generators., Hence both P and Q belong to
the blocks corresponding to DO,D1 and D2 .

D

Now a balanced incomplete block (BIB) design is a set of v objects
or treatments, arranged into b sets or blocks such that (i) Each block
contains k distinct treatments (ii) Each treatment appears in exactly r
blocks (iii) Any pair of objects occurs in exactly A blocks, The numbers
v,b,r,k, A are called the parameters of the BIB design (2,11). We may thus
state:

Theorem (10.2). If V, 1is a non-degenerate Hermitian veriety in
PG(3,22), and if the points of V, are identified with treatments,and if

2

corresponding to each point P on Vé we define a block consisting of all
points (other than P) on the generators through P, then the treatments and

the blocks form a BIB design with parameters
v="> = U5, r=k=12, A=3,

This design has been otherwise obtained by Shrikhande and Singh (16)

and by Takeuchi (17).

There are many other interesting balanced and partially balanced
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incomplete block designs associated with Hermitian varieties. These shall

be discussed in a separate commnication.

1.

2,

3

5

9.

10.

R.

R.

References

Baer, Linear algebra and projective geometry (New York: Academic
Press, 1952).

C. Bose. On the construction of balanced incomplete block designs,
Ann, Eugen, London, 9 (1939), 358-399,

On the gpplication of finite projective geometry for

deriving a certain series of balanced Kirkman arrangements.

Golden jubilee commem, vol., Cal. Math. Soc., (1958-59), 341-35L,

Strongly regular graphs, partial geometries and partially

balanced designs. Pacific, J. Math., 13 (1963), 389-419.

Combinatorial properties of parially balanced designs

and association schemes. Sankhya, series A, 25 (1963), 109-136

R.

R.

R.

R.

R.

H,

E.

and Contributions to statistics, presented to Professor P, C.
Mahalanobis on the occasion of his 70th birthday (Calcutta:
Statistical Publishing Soc., 1964), 21-L48.

C. Bose and W, H, Clatworthy. Some classes of partially balanced
designs. Ann., Math. Stat., 26 (1955), 212-232,

C. Bose and D. M. Mesner. On linear associative algebras correspond-
ing to association schemes of partially balanced designs. Ann. Math,
Stat., 30 (1959), 21-%%,

C. Bose and K, R. Nair, Partially balanced incomplete block designs.
Sankhya, 4 (1939), 337-372.

C. Bose and T. Shimamoto, <JClassification and analysis of partially
balanced designs with two associate classes, J. Am, Stat, Ass., 47
(1952), 151-184,

Carmichael., Introduction to the theory of groups of finite order
(New York: Dover Publications, 1956), chapters XI and XII.

B, Mann. Analysis and design of experiments (New York: Dover
Publications, 1949), chapter IX.

J. P, Primrose, Quadrics in finite geometries, Proc, Camb. Phil,
Soc., 47 (1951), 299-30L,

3l




13.

14,

15.

16.

17.

D.

K. Ray-Chaundhuri. Some results on quadrics in finite projective
geometries based on Galois fields, Can, J. Math., 14 (1962), 129-138,

Application of the geoemetry of quadrics far

B.

Se

constructing PBIB designs, Ann, Math, Stat., 33 (1962), 1175-1186.

Segre. Lectures on modern geometry (Rome: Edizioni Cremonese, 1960),
chapter 17,

S. Shrikhande and N. K. Singh. On a method of constructing symmetri-
cal balanced incomplete block designs, Sankhya, series A, 2k (1962),
25"320

Takeuchi, On the construction of a series of BIB designs. Stat,
Appl. Res., JUSE, 10 (1963), L8,

35



