
HERMITIAN VECTOR BUNDLES AND EXTENSION GROUPS
ON ARITHMETIC SCHEMES. II.

THE ARITHMETIC ATIYAH EXTENSION

JEAN-BENOÎT BOST AND KLAUS KÜNNEMANN

Abstract. In a previous paper [BK07], we have defined arithmetic extension groups in the
context of Arakelov geometry. In the present one, we introduce an arithmetic analogue of
the Atiyah extension, that defines an element — the arithmetic Atiyah class — in a suitable
arithmetic extension group. Namely, if E is a hermitian vector bundle on an arithmetic

scheme X, its arithmetic Atiyah class bat(E) lies in the group dExt
1

X(E, E ⊗ Ω1
X/Z), and is

an obstruction to the algebraicity of the unitary connection on the vector bundle EC over
the complex manifold X(C) that is compatible with its holomorphic structure.

In the first sections of this article, we develop the basic properties of the arithmetic
Atiyah class which can be used to define characteristic classes in arithmetic Hodge coho-
mology.

Then we study the vanishing of the first Chern class ĉH
1 (L) of a hermitian line bundle L

in the first arithmetic Hodge cohomology group dExt
1

X(OX , Ω1
X/Z). This may be translated

into a concrete problem of diophantine geometry, concerning rational points of the universal
vector extension of the Picard variety of X. We investigate this problem, which was already
considered and solved in some cases by Bertrand, by using a classical transcendence result
of Schneider-Lang, and we derive a finiteness result for the kernel of ĉH

1 .
In the final section, we consider a geometric analog of our arithmetic situation, namely

a smooth, projective variety X which is fibered on a curve C defined over some field k
of characteristic zero. To any line bundle L over X is attached its relative Atiyah class
atX/CL in H1(X, Ω1

X/C). We describe precisely when atX/CL vanishes. In particular,
when the fixed part of the relative Picard variety of X over C is trivial, this holds only
when the restriction of L to the generic fiber XK of X over C is a torsion line bundle.
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0. Introduction

0.1. This paper is a sequel to [BK07], where we have defined and investigated arithmetic
extensions on arithmetic schemes, and the groups they define.

Recall that if X is a scheme over Spec Z, separated of finite type, whose generic fiber XQ
is smooth, then an arithmetic extension of vector bundles over X is the data (E , s) of a short
exact sequence of vector bundles (that is, of locally free coherent sheaves of OX -modules)
on the scheme X,

(0.1) E : 0 −→ G
i−→ E

p−→ F −→ 0,

and of a C∞-splitting
s : FC −→ EC,

invariant under complex conjugation, of the extension of holomorphic vector bundles

EC : 0 −→ GC
iC−→ EC

pC−→ FC −→ 0

on the complex manifold X(C), that is deduced from E by the base change from Z to C
and analytification.

For any two given vector bundles F and G over X, the isomorphism classes of the so-
defined arithmetic extensions of F by G constitute a set Êxt

1

X(F,G) that becomes an abelian
group when equipped with the addition law defined by a variant of the classical construction
of the Baer sum of 1-extension of (sheaves of) modules1.

1Consider indeed two arithmetic extensions of F by G, say Eα := (Eα, sα), α = 1, 2, defined by extensions

of vector bundles Eα : 0 → G
iα→ Eα

pα→ F → 0 and C∞-splittings sα : FC → Eα,C. We may define a vector

bundle E := Ker(p1−p2:E1⊕E2→F )
Im ((i1,−i2):G→E1⊕E2)

over X. The Baer sum of E1 and E2 is the arithmetic extension E defined

by the usual Baer sum of E1 and E2 — namely E : 0 → G
i→ E

p→ F → 0 where the morphisms i : G → E
and p : E → F are defined by p([(g1, g2)]) = p1(f1) = p2(f2) and i(g) = [(i1(g), 0)] = [(0, i2(g))] — equipped
with the C∞-splitting s : FC → EC defined by s(e) := [(s1(e), s2(e))].
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Recall that an hermitian vector bundle E over X is a pair (E, ‖.‖) consisting of a vector
bundle E over X and of a C∞-hermitian metric, invariant under complex conjugation, on
the holomorphic vector bundle EC over X(C). Examples of arithmetic extensions in the
above sense are provided by admissible extensions

(0.2) E : 0 −→ G
i−→ E

p−→ F −→ 0

of hermitian vector bundles over X, namely from the data of an extension

E : 0 −→ G
i−→ E

i−→ F −→ 0

of the underlying OX -modules such that the hermitian metrics ‖.‖G and ‖.‖F on GC and
FC are induced (by restriction and quotients) by the metric ‖.‖E on EC (by means of the
morphisms iC and pC). Indeed, to any such admissible extension is naturally attached its
orthogonal splitting, namely the C∞-splitting

sE : FC −→ EC

that maps FC isomorphically onto the orthogonal complement iC(GC)⊥ of the image of iC
in EC. This splitting is invariant under complex conjugation, and (E , sE) is an arithmetic
extension of F by G. For any two hermitian vector bundles F and G over X, this construc-
tion establishes a bijection from the set of isomorphism classes of admissible extension of
the form (0.2) to the set Êxt

1

X(F,G).
In [BK07] we studied basic properties of the so-defined arithmetic extension groups. In

particular, we introduced the following natural morphisms of abelian groups:

• the “forgetful” morphism

ν : Êxt
1

X(F,G) −→ Ext1OX
(F,G),

which maps the class of an arithmetic extension (E , s) to the one of the underlying
extension E of OX -modules;
• the morphism

b : HomC∞
X(C)

(FC, GC)F∞ −→ Êxt
1

X(F,G),

defined on the real vector space HomC∞
X(C)

(FC, GC)F∞ of C∞-morphisms of vector
bundles over X(C) from FC to GC, invariant under complex conjugation; it sends an
element T in this space to the class of the arithmetic extension (E , s) where E is the
trivial algebraic extension, defined by (0.1) with E := G⊕F and i and p the obvious
injection and projection morphisms, and where s is given by s(f) = (T (f), f);
• the morphism

ι : HomOX
(F,G) −→ HomC∞

X(C)
(FC, GC)F∞

which sends a morphism ϕ : F → G of vector bundles over X to the morphism of
holomorphic vector bundles ϕC : FC → GC deduced from ϕ by base change from Z
to C and analytification;
• the morphism

Ψ : Êxt
1

X(F,G) −→ Z0,1

∂
(XR, F

∨ ⊗G),

that takes values in the real vector space

Z0,1

∂
(XR, F

∨ ⊗G) := Z0,1

∂
(X(C), F∨C ⊗GC)F∞
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of ∂-closed forms of type (0, 1) on X(C) with coefficients in F∨C ⊗ GC, invariant
under complex conjugation. It maps the class of an arithmetic extension (E , s) to
its “second fundamental form” Ψ(E , s) defined by

iC ◦Ψ(E , s) = ∂F∨C ⊗GC(s).

We also established the following basic exact sequence:

(0.3) HomOX
(F,G) ι−→ HomC∞

X(C)
(FC, GC)F∞ b−→ Êxt

1

X(F,G) ν−→ Ext1OX
(F,G) −→ 0,

which displays the arithmetic extension group Êxt
1

X(F,G) as an extension of the “classical”
extension group Ext1OX

(F,G) by a group of analytic type.

The sequel of [BK07] was devoted to the study of the groups Êxt
1

X(F,G) when the base
scheme is an arithmetic curve, that is, the spectrum SpecOK of the ring of integers of
some number field K. In this special case, these extension groups appear as natural tools
in geometry of numbers and reduction theory in their modern guise, namely the study of
hermitian vector bundles over arithmetic curves and their admissible extensions.

In the present paper, we focus on a natural construction of arithmetic extensions attached
to hermitian vector bundles over an arithmetic scheme X as above, their arithmetic Atiyah
extensions. In contrast with the arithmetic extensions over arithmetic curves investigated
in [BK07], for which the interpretation as admissible extensions was crucial, the arithmetic
Atiyah extensions are genuine examples of arithmetic extensions constructed as pairs (E , s)
— where s is a C∞-splitting of an extension E of vector bundles over X — and not de-
rived from an admissible extension. Beside, the vanishing properties of the classes of the
arithmetic Atiyah extensions turn out to be related to transcendence questions on abelian
varieties.
0.2. Atiyah extensions of vector bundles were initially introduced by Atiyah [Ati57] in the
context of complex analytic geometry.

Namely, for any holomorphic vector bundle E over a complex manifold X, Atiyah intro-
duces the holomorphic vector bundle P 1

X(E) of jets of order one of sections of E, whose
fiber P 1

X(E)x at a point x of X is by definition the space of sections of E over the first
order thickening x1 := SpecOX,x/m2

x of x in X. Here, as usual, OX denotes the sheaf of
holomorphic functions over X, and mx the maximal ideal of its stalk OX,x at x.

The vector bundle P 1
X(E) fits into a short exact sequence of holomorphic vector bundles

(0.4) AtXE : 0 −→ E ⊗ Ω1
X

i−→ P 1
X(E)

p−→ E −→ 0,

where the morphism i and p are defined as follows: for any x in X, the map ix : Ex⊗Ω1
X,x →

P 1
X(E)x maps an element v in Ω1

X,x ' HomC(TX,x, Ex) to the section of E over x1 that
vanishes at x and admits v as differential, while the map px : P 1

X(E)x → Ex is simply the
evaluation at x.

The Atiyah extension of E is precisely the extension AtXE of E by E ⊗ Ω1
X so-defined.

According to its very definition, its class atXE in the group Ext1OX
(E,E ⊗ Ω1

X) which
classifies the extensions of holomorphic vector bundles of E by E ⊗ Ω1

X is the obstruction
to the existence of a holomorphic connection

∇ : E −→ E ⊗ Ω1
X

on the vector bundle E.
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The point of Atiyah’s article [Ati57] is that the class atXE also leads to a straightforward
construction of characteristic classes of E with values in the so-called Hodge cohomology
groups of X

(0.5) Hp,p(X) := Hp(X,Ωp
X).

For instance, Atiyah defines a first Chern class cH1 (E) in H1,1(X) = H1(X,Ω1
X) as the

image of atXE by the morphism

Ext1OX
(E,E ⊗ Ω1

X) ' Ext1OX
(OX , EndE ⊗ Ω1

X)
↓ (TrE⊗id

Ω1
X

)◦

Ext1OX
(OX ,Ω1

X) ' H1(X,Ω1
X)

deduced from the canonical trace morphism

TrE : EndE ' E∨ ⊗ E −→ OX ,
λ⊗ v 7→ λ(v).

Higher degree characteristic classes are constructed by means of the successive powers
(atXE)p in ExtpOX

(OX , (EndE)⊗p ⊗Ωp
X), where p denotes a positive integer. For instance,

the p-th Segre class, associated to the p-th Newton polynomial Xp
1 + · · · + Xp

rkE , may be
constructed in the Hodge cohomology group Hp(X,Ωp

X) as

sHp (E) := (TrpE ⊗ idΩp
X

) ◦ (atXE)p,

where
TrpE : (EndE)⊗p −→ OX ,

T1 ⊗ . . .⊗ Tp 7→ TrE(T1 . . . Tp).

When the manifold X is compact and Kähler (e.g., projective), the Hodge cohomology
group Hp(X,Ωp

X) may be identified with a subspace of the complex de Rham cohomology
group H2p

dR(X,C) of X, and Atiyah’s construction of characteristic classes is compatible (up
to normalization) to classical topological constructions.

The definition of the Atiyah class and the construction of the associated characteristic
classes obviously make sense in a purely algebraic context, say over a base field k of char-
acteristic zero. If X is a smooth algebraic scheme over k, for any vector bundle E over
X, its Atiyah class atX/kE is constructed as above, mutatis mutandis, as an element of the
k-vector space Ext1OX

(E,E ⊗ Ω1
X/k), and the associated characteristic classes are elements

of the Hodge cohomology groups of X defined similarly to (0.5), but now using the Zariski
topology of X instead of the analytic one, and the sheaf of Kähler differentials Ωp

X/k instead
of the holomorphic differential forms Ωp

X .
These constructions are especially suited to smooth algebraic schemes X that are proper

over k. In this case, the “Hodge to de Rham” spectral sequence degenerates, and the Hodge
group Hp,p(X) gets identified to a subquotient of the Hodge filtration of the algebraic
de Rham cohomology group H2p

dR(X/k) := H2p(X,Ω·
X/k). Moreover, when X is proper

over k = C, this algebraic construction is compatible with the previous analytic one, as a
consequence of the GAGA principle.

This algebraic version of Atiyah’s constructions has been considerably extended by Illusie
[Ill71]. Instead of a smooth algebraic scheme over a field k, he considers a suitable morphism
of ringed topoi f : X → S, and associates Atiyah classes and characteristic classes to perfect
complexes of sheaves of OX -modules; their definition involve the cotangent complex LX/S
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of X over S, which in this general setting plays the role of the sheaf Ω1
X/k attached to a

smooth scheme X over the field k. Let us also mention the presentation of this “algebraic”
theory and of some of its developments in the monograph of Angéniol and Lejeune-Jalabert
[ALJ89], and the analytic construction of Buchweitz and Flenner [BF00], [BF03]2.
0.3. Let us briefly describe our construction of arithmetic Atiyah classes.

Let E := (E, ‖.‖E) be an hermitian vector bundle over a scheme X which is separated
and of finite type over Z, and which for simplicity will be assumed smooth over Z in this
introduction. The relative version of the exact sequence (0.4) defines the Atiyah extension
of E over Z:

(0.6) AtX/ZE : 0 −→ E ⊗ Ω1
X/Z

i−→ P 1
X/Z(E)

p−→ E −→ 0.

Besides, according to a classical result of Chern and Nakano ([Che46, Nak55]), the holo-
morphic vector bundle EC over the complex manifold X(C), seen as C∞-vector bundle,
admits a unique connection ∇E that is unitary with respect to the hermitian metric ‖.‖E ,
and moreover is compatible with its holomorphic structure in the sense that its component
∇0,1

E
of type (0, 1) coincides with the ∂-operator ∂EC with coefficients in the holomorphic

vector bundle EC. The component ∇1,0

E
of type (1, 0) of ∇E defines a C∞-splitting sE of the

Atiyah extension of the holomorphic vector bundle EC:

AtX(C)EC : 0 −→ Ω1
X(C) ⊗ EC

iC−→ P 1
X(C)(EC)

pC−→ EC −→ 0.

Namely, for any point x in X (C) and any e in Ex, sE(e) is the section of E over x1 that
takes the value e at x and is killed by ∇1,0

E
.

Since the above analytic Atiyah extension AtX(C)EC is precisely the extension deduced
from AtX/ZE by the base change from Z to C and analytification, the pair (AtX/ZE, sE)
defines an arithmetic extension, the arithmetic Atiyah extension ÂtX/ZE of the hermitian

vector bundle E. Its class âtX/ZE in Êxt
1

X(E,E ⊗Ω1
X/Z) — the arithmetic Atiyah class of

E — is mapped by the forgetful morphism ν to the “algebraic” Atiyah class atX/ZE of E in
Ext1OX

(E,E ⊗ Ω1
X/Z) (defined by the extension AtX/ZE) and by the “second fundamental

form” morphism Ψ to the curvature form of the Chern-Nakano connection ∇E (up to a
sign).
0.4. In the first section of this article, we begin by reviewing the constructions of the Atiyah
extension in the classical C-analytic and algebraic frameworks. For the sake of simplicity,
we deal with locally free coherent sheaves only, and follow a naive approach — we work with
relative differentials, and not with their “correct” derived version defined by the cotangent
complex. This naive approach is sufficient when one considers — as we shall in the sequel
— relative situations f : X → S where X is integral, and f is l.c.i. and generically smooth,
in which case LX/S is quasi-isomorphic to Ω1

X/S .

Then, in Section 2, we construct the arithmetic Atiyah class in the following relative
situation, which extends the one considered in the previous paragraphs. Consider arithmetic
schemes X and S, flat over an arithmetic ring (R,Σ, F∞) (in the sense of [GS90a, 3.1.1];
see also [BK07, 1.1]), and a morphism of R-schemes π : X → S, smooth over the fraction

2These authors work in an analytic context as the original article [Ati57], but extend the construction of
Atiyah classes to complex of coherent analytic sheaves over possibly singular complex spaces. Like Illusie’s
construction, this requires to deal with the cotangent complex, now in an analytic context.
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field K of R. Then, to any hermitian vector bundle E over X, we attach a class âtX/SE

in Êxt
1

X(E,E ⊗ Ω1
X/S). Applying a trace morphism to this class, we define the first Chern

class ĉH1 (E) of E in arithmetic Hodge cohomology, that lies in the group

Ĥ1,1(X/S) := Êxt
1

X(OX ,Ω1
X/S).

The class âtX/SE and its trace ĉH1 (E) satisfy compatibility properties with pull-back and
tensor operations on hermitian vector bundles that extend well-known properties of the
classical Atiyah and first Chern classes. In particular we construct of functorial morphism

ĉH1 : P̂ic(X) −→ Ĥ1,1(X/S)

from the group of isomorphism classes of hermitian line bundles over X to the arithmetic
Hodge cohomology group.

In the last sections of this article, we investigate the kernel of this morphism. It trivially
vanishes on the image of

π∗ : P̂ic(S) −→ P̂ic(X),

and we may wonder “how large” this image π∗(P̂ic(S)) is in ker ĉH1 .
This question becomes a concrete problem of Diophantine geometry when the base arith-

metic ring is a number field K equipped with a non-empty set Σ of embeddings σ : K ↪→ C
stable under complex conjugation, and when S is SpecK and X is projective over K. In-
deed, in this case, the class of an hermitian line bundle L = (L, ‖.‖L) over X lies in the
kernel of ĉH1 precisely when L admits an algebraic connection ∇ : L → L ⊗ Ω1

X/K , defined
over K, such that the induced holomorphic connection ∇C : LC → LC ⊗ Ω1

XΣ(C) on the
holomorphic line bundle LC over

XΣ(C) :=
∐
σ∈Σ

Xσ(C)

is unitary with respect to the hermitian metric ‖.‖L.
One easily checks that, if L has a torsion class in Pic(X) and if the metric ‖.‖L has

vanishing curvature on XΣ(C), then their exists such a connection. Moreover the converse
implication, namely
I1X,Σ: if an hermitian line bundle L = (L, ‖.‖L) over X admits an algebraic connection ∇
defined over K such that the connection ∇C on LC over XΣ(C) is unitary with respect to
‖.‖L, then L has a torsion class in Pic(X) and the metric ‖.‖L has vanishing curvature,
turns out to be equivalent with the following condition, where π denotes the structural
morphism from X to SpecK:

I2X,Σ: the image of π∗ : P̂ic(SpecK)→ P̂ic(X) has finite index in the kernel of

ĉH1 : P̂ic(X) −→ Ĥ1,1(X/K).

The equivalent assertions I1X,Σ and I2X,Σ may be translated in terms of K-rational
points of the universal vector extension of the Picard variety of X. In this formulation,
their validity has been established by Bertrand [Ber95, Ber98] when Σ has a unique element
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(necessarily a real embedding of K) and when this Picard variety admits “real multiplica-
tion”3, as a consequence of the analytic subgroup theorem of Wüstholz ([Wüs89]). Inspired
by [Ber95, Ber98] — which we tried to understand in more geometric terms, avoiding the
explicit use of differential forms and their periods, but working with algebraic groups and
their exponential maps— we establish in section 3 the validity of I1X,Σ and I2X,Σ when
Σ is arbitrary. Our proof relies on a classical transcendence theorem of Schneider-Lang
characterizing Lie algebras of algebraic subgroups of commutative algebraic groups over
number fields.

The validity of I1X,Σ and I2X,Σ demonstrates that the first Chern class ĉH1 (L) in the group
Ĥ1,1(X/K) encodes quite non-trivial Diophantine informations. In a later part of this work,
we plan to study characteristic classes of higher degree, with values in the arithmetic Hodge
cohomology groups

Ĥp,p(X/S) := Êxt
p

X(OX ,Ωp
X/S)

defined as special instances of the higher arithmetic extension groups introduced in [BK07,
0.1], that are deduced from the powers of the arithmetic Atiyah class âtX/SE using suitably
defined products on the higher arithmetic extension groups.

Let us also indicate that, starting from the results in Section 3, one may derive finiteness
results on ker ĉH1 /π

∗(P̂ic(S)) for more general smooth projective morphisms π : X → S of
arithmetic schemes over arithmetic rings, by considering the restriction of π over points of
S rational over some number field. We leave this to the interested reader.

In the final section of the article, we establish a geometric analogue of the conditions
I1X,Σ and I2X,Σ. We consider a smooth, projective, geometrically connected curve C over
some field k of characteristic zero, its function field K := k(C), and a smooth projective
variety X over k equipped with a dominant k morphism f : X → C, with geometrically
connected fibers. To any line bundle L over X is attached its relative Atiyah class atX/CL in
H1(X,Ω1

X/C). We show that, when the fixed part of the abelian variety Pic0
XK/K

is trivial,
then atX/CL vanishes iff L is isomorphic to a line bundle of the form f∗M ⊗ L0, where M
is a line bundle over C and L0 is a line bundle over X whose class in Pic(X) is torsion. The
proof relies on the Hodge index theorem in the Hodge cohomology groups of X.

Considering the classical analogy between number fields and number fields, it may be
interesting to observe that, when investigating the kernel of the relative Atiyah class of line
bundles, a transcendence result — in the guise of a criterion for a subspace of the Lie algebra
of a commutative algebraic group to define an algebraic subgroup — plays a key role in the
“number field case”, while our main tool in the “function field case” is intersection theory
in Hodge cohomology.

In Appendix A, we describe arithmetic extension groups in terms of Čech cocycles. Based
on this description, in the main part of the paper we calculate explicit Čech cocycles which
represent the arithmetic Atiyah class and the first Chern class in arithmetic Hodge coho-
mology. Finally Appendix B summarizes basic facts concerning universal vector extensions
of Picard varieties that are used in Sections 3 and 4.

3namely, if this Picard variety A has dimension g, the Q-algebra End(A/K)⊗ZQ is assumed to be a totally
real field of degree g over Q. Actually, Bertrand establishes a more precise result, concerning g independents
extensions of A by the additive group Ga; see [Ber98], Theorem 3, pages 13-14.
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1. Atiyah extensions in algebraic and analytic geometry

1.1. Definition and basic properties. We consider simultaneously the algebraic and the
analytic situation where π : X → S is a morphism of locally ringed spaces which is either

a) a separated morphism of finite presentation of schemes, or
b) a holomorphic morphism of complex analytic spaces.

We denote in both cases by OX the structure sheaf of regular resp. holomorphic functions
on X. Let I denote the ideal sheaf, and

∆(1) : X(1) → X ×S X

the first infinitesimal neighborhood of the diagonal ∆: X → X ×S X. Let qi : X(1) → X
denote the composition of ∆(1) with the i-th projection. We identify (Ω1

X/S , d) with the
OX -module I/I2 and the universal derivation

(1.1) d : OX → I/I2 , d(λ) = q∗2(λ)− q∗1(λ).

The OX -modules q1∗OX(1) and q2∗OX(1) are canonically isomorphic as sheaves of OS-
modules. We denote this OS-module by P 1

X/S and observe that P 1
X/S carries two natural

OX -module structures via the left and right projection q1 and q2. The canonical extension

0→ I/I2 → OX×SX/I
2 → OX×SX/I → 0

yields an exact sequence of OX -modules

(1.2) 0→ Ω1
X/S → P 1

X/S → OX → 0

for both OX -module structures. The left and right OX -module structures yield canonical
but different OX -linear splittings of (1.2) which map 1 mod I to 1 mod I2.

1.1.1. Let F denote a vector bundle on X. We obtain from (1.2) an exact sequence of
OX -modules

J et1X/S(F ) : 0→ F ⊗ Ω1
X/S

iF→ P 1
X/S(F )

pF→ F → 0

where

(1.3) P 1
X/S(F ) = q1∗q

∗
2F.

Indeed we have
P 1
X/S(F ) = F ⊗ P 1

X/S

where the tensor product in the middle is taken using the right OX -module structure, and
then the sequence is viewed as sequence of OX -modules via the left OX -module structure.
The canonical splitting of (1.2) for the right OX -module structure induces a canonical OS-
linear splitting of J et1X/S(F ). We obtain a canonical direct sum decomposition

(1.4) P 1
X/S(F ) = F ⊕ (F ⊗ Ω1

X/S)
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of OS-modules. We use squared brackets [ , ] when we refer to this decomposition. A
straightforward calculation shows that, in terms of this decomposition, the left OX -module
structure of P 1

X/S(F ) is given by

(1.5) λ · [f, w] = [λ · f, λ · w − f ⊗ dλ]

for local sections λ of OX , f of F , and ω of F ⊗Ω1
X/S . It follows that there is a one-to-one

correspondence{
OX -linear splittings

s : F → P 1
X/S(F ) of J et1X/S(F )

}
←→

{
algebraic resp. holomorphic

connections ∇ : F → F ⊗ Ω1
X/S

}
.

Under this correspondence, a connection ∇ corresponds to the splitting s∇ of J et1X/S(F )
given by the formula

(1.6) s∇ : F → P 1
X/S(F ) = F ⊕ (F ⊗ Ω1

X/S) , f 7→
[
f,−∇(f)

]
.

1.1.2. The extension J et1X/S(F ) is called the extension given by the 1-jets or principal parts
of first order associated with F . We denote the class of J et1X/S(F ) in Ext1(F, F ⊗ Ω1

X/S)
by jet1X/S(F ) and abbreviate jet(F ) = jet1X/S(F ) if X/S is clear from the context. We have
followed in (1.1), (1.3), and (1.6) the conventions fixed in [Gro67, 16.7], [Ill71, III. (1.2.6.2)],
and [Del70, (2.3.4)].

1.1.3. We recall from [Ati57, Propositions 6, 7 and 8] that the assignment

{vector bundles on X} −→ {short exact sequences of OX -modules}
F 7−→ J et1X/S(F )

defines an additive, exact functor. Furthermore J etX/S(F ) is a short exact sequence of
vector bundles if π is smooth.

The following Lemma is a slight refinement of [Ati57, Propositions 10].

Lemma 1.1.4. Let E and F denote vector bundles on X.
i) Let

B =
Ker

(
pE ⊗ idF − idE ⊗ pF : P 1

X/S(E)⊗ F ⊕ E ⊗ P 1
X/S(F )→ E ⊗ F

)
Im

(
(iE ⊗ idF ,−idE ⊗ iF ) : E ⊗ F ⊗ Ω1

X/S → P 1
X/S(E)⊗ F ⊕ E ⊗ P 1

X/S(F )
) .

denote the Baer sum of the extensions J et1X/S(E)⊗F and E ⊗J et1X/S(F ). There exists a
canonical isomorphism

(1.7) ϕ : P 1
X/S(E ⊗ F )→ B

which fits into a commutative diagram

0 → E ⊗ F ⊗ Ω1
X/S → P 1

X/S(E ⊗ F ) → E ⊗ F → 0
|| ↓ ϕ ||

0 → E ⊗ F ⊗ Ω1
X/S → B → E ⊗ F → 0.

Consequently we have

jet1X/S(E ⊗ F ) = jet1X/S(E)⊗ F + E ⊗ jet1X/S(F )

in Ext1X(E ⊗ F,E ⊗ F ⊗ Ω1
X/S).
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ii) Let ∇E and ∇F denote connections on E and F . We equip the tensor product E ⊗F
with the product connection

(1.8) ∇E⊗F = ∇E ⊗ idF + idE ⊗∇F .

The connections ∇E, ∇F , and ∇E⊗F induce sections sE,sF , and sE⊗F of J et1X/S(E),
J et1X/S(F ), and J et1X/S(E ⊗ F ) respectively. We have

ϕ ◦ sE⊗F = (sE ⊗ idF , idE ⊗ sF )

where the notation on the right hand side refers to the description of the Baer sum given
above.

Proof. i) Let IM = Im(iE ⊗ idF ,−idE ⊗ iF ). Recall that

P 1
X/S(E ⊗ F ) = (E ⊗ F )⊕ (E ⊗ F ⊗ Ω1

X/S).

There exists a unique OS-linear map (1.7) which satisfies

ϕ
(
[e0 ⊗ f0, e1 ⊗ f1 ⊗ α]

)
=

(
[e0, 0]⊗ f0 + [0, e1 ⊗ α]⊗ f1

)
⊕

(
e0 ⊗ [f0, 0]

)
mod IM

=
(
[e0, 0]⊗ f0

)
⊕

(
e0 ⊗ [f0, 0] + e1 ⊗ [0, f1 ⊗ α]

)
mod IM

for local sections e0, e1 of E, f0, f1 of F and α of Ω1
X/S . It is straightforward to check that

ϕ is well defined and makes our diagram commutative. It remains to show that ϕ is also
OX -linear. This follows from

ϕ
(
λ ·

[
e0 ⊗ f0, 0]

))
= ϕ

(
[λ · e0 ⊗ f0, e0 ⊗ f0 ⊗ dλ]

)
=

(
[λ · e0, 0]⊗ f0 + [0, e0 ⊗ dλ]⊗ f0

)
⊕

(
λ · e0 ⊗ [f0, 0]

)
mod IM

= λ · ϕ
(
[e0 ⊗ f0, 0]

)
as ϕ induces the identity on Ω1

X/S ⊗ E ⊗ F .

ii) For local sections e of E and f of F , we get

ϕ ◦ sE⊗F (e⊗ f) =
(
[e,−∇e]⊗ f

)
⊕

(
e⊗ [f,−∇f ]

)
mod IM

= (sE ⊗ idF , idE ⊗ sF )(e⊗ f)

which proves ii). �

Corollary 1.1.5. Let E be a vector bundle on X and denote by ∆ : OX → E ⊗ E∨ the
canonical map. Then the pullback of the Baer sum of J et1X/S(E)⊗E∨ and E⊗J et1X/S(E∨)
along ∆ admits a canonical splitting.

Proof. The Baer sum of J et1X/S(E)⊗E∨ and E⊗J et1X/S(E∨) is canonically isomorphic to
J et1X/S(E ⊗E∨). Locally on X we may find a connection ∇E on E. There are canonically
associated connections ∇E∨ and ∇E⊗E∨ on E∨ and E ⊗E∨. The composition s∇E⊗E∨ ◦∆
does not depend on the choice of ∇E and induces the desired trivialization. �.

Lemma 1.1.6. Consider a commutative diagram

X̃
f→ X

↓ π̃ ↓ π
S̃

g→ S
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in the category of locally ringed spaces where π̃ and π are morphisms as in situation 1.1 a)
or b). Let E be a vector bundle on X and denote the canonical map f∗Ω1

X/S → Ω1
X̃/S̃

by
f∗.

i) There exists a canonical OX̃-linear map

φ : f∗P 1
X/S(E)→ P 1

X̃/S̃
(f∗E)

which makes the diagram

(1.9)
0 → f∗E ⊗OX̃

f∗Ω1
X/S → f∗P 1

X/S(E) → f∗E → 0
↓ idf∗E⊗f∗ ↓ φ ||

0 → f∗E ⊗OX̃
Ω1
X̃/S̃

→ P 1
X̃/S̃

(f∗E) → f∗E → 0.

commutative. Consequently we have

(idf∗E ⊗ f∗) ◦ jet1X/S(F ) = jet1
X̃/S̃

(f∗F )

in Ext1
X̃

(f∗E ⊗OX̃
Ω1
X̃/S̃

, f∗E).

ii) A connection ∇E on E induces a splitting sE of J et1X/S(E). The splitting

sf∗E := φ ◦ f∗(sE)

induces a connection f∗∇E on f∗E which is uniquely determined by

(1.10) (f∗∇E)(f∗s) = f∗(∇E s)

for local sections s of E.

Proof. i) Observe that the upper sequence in (1.9) is exact as E is locally free. Recall that

(1.11) f∗P 1
X/S(E) =

[
f−1E ⊕ f−1(E ⊗OX

Ω1
X/S)

]
⊗f−1OX

OX̃
and

(1.12) P 1
X̃/S̃

(f∗E) = f∗E ⊕ f∗E ⊗OX̃
Ω1
X̃/S̃

.

We have f−1OX -linear canonical maps

f−1E → f∗E

and

f−1(E ⊗OX
Ω1
X/S)→ f∗(E ⊗OX

Ω1
X/S) ∼→ f∗E ⊗OX̃

f∗Ω1
X/S

idf∗E⊗f∗→ f∗E ⊗OX̃
Ω1
X̃/S̃

).

The direct sum of these maps induces a g−1OS-linear morphism[
f−1E ⊕ f−1(E ⊗OX

Ω1
X/S)

]
→ f∗E ⊕ f∗E ⊗OX̃

Ω1
X̃/S̃

.

It is straightforward to check that this morphism is f−1OX -linear for the module structure
given by formula (1.5). Via (1.11) and (1.12), we obtain the desired morphism φ which fits
by construction in the diagram (1.9).

ii) is a straightforward consequence of the construction of φ in the proof of i). �
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1.2. Cotangent complex and Atiyah class. In situation 1.1 a) or b) the cotangent
complex L·X/S is constructed in [Ill71, II.1.2] resp. [BF03, 2.38] as an object in the derived
category D(OX−mod) of OX -modules. Consider Ω1

X/S as a complex concentrated in degree
zero. The cotangent complex L·X/S comes with a natural morphism

(1.13) L·X/S −→ Ω1
X/S

in D(OX−mod) which is a quasi-isomorphism if X is smooth over S. Given a vector bundle
E over X, the Atiyah class of E is defined in loc. cit. as an element

atX/S(E) ∈ Ext1(E,E ⊗L L·X/S) = HomD(OX−mod)(E,E ⊗L L·X/S [1]).

If X π→ S is a morphism of schemes, the Atiyah class of Illusie maps under the morphism
induced by (1.13) to the class (compare [Ill71, Cor. 2.3.7.4])

jet1X/S(E) ∈ Ext1(E,E ⊗ Ω1
X/S).

If X π→ S is a smooth morphism of complex analytic spaces, the Atiyah class of Buchweitz
and Flenner maps under the morphism induced by (1.13) to the opposite class of jet1X/S(E)
([BF03, 3.27]).

If the canonical morphism (1.13) is a quasi-isomorphism, we call J et1X/S(E) the Atiyah
extension associated with E and denote it by AtX/S(E) . The associated extension class
atX/S(F ) equals the opposite of the Atiyah classes At(F ) in [BF03] and b(F ) in [Ati57,
Section 4]. It coincides with the Atiyah class defined in [ALJ89]. Compare also [BF03, 2.4
and Rem. 3.17] for a discussion of signs related to the Atiyah class.

The following Lemma implies in particular that (1.13) is a quasi-isomorphism in the
geometric situations considered in Section 2 and Section 4.

Lemma 1.2.1. Let π : X → S be a locally complete intersection (l.c.i.) morphism of
schemes such that X is integer and the smooth locus of π is dense in X. Then (1.13) is a
quasi-isomorphism.

Proof. It is sufficient to show our claim locally on X as the formation of (1.13) is compatible
with restrictions to open subsets. Hence we may assume that π admits a factorization

X
j−→ Q

q−→ S

where j is a regular immersion defined by some regular ideal sheaf J and q is smooth. We
obtain an exact sequence

0 −→ J/J2 φ−→ j∗Ω1
Q/S

ψ−→ Ω1
X/S −→ 0.

This is well known up to the injectivity of φ which holds as φ is a morphism of locally free
sheaves which is injective over the smooth locus of π. The complex

J/J2 φ−→ j∗Ω1
Q/S

situated in degrees minus one and zero is a cotangent complex for f by [Ill71, Cor. III.3.2.7].
Furthermore the map (1.13) is induced by ψ and hence a quasi-isomorphism. �
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1.3. Curvature and second fundamental form. Let E denote a holomorphic vector
bundle on a complex manifold X. Recall that a C∞-connection ∇ : A0(X,E) → A1(X,E)
on E is called compatible with the complex structure if its (0, 1)-part coincides with the
Dolbeault operator, i.e. ∇0,1 = ∂E . Consider the Atiyah extension associated with E

AtX(E) : 0→ E ⊗ Ω1
X

iE→ P 1
X/C(E)

pE→ E → 0.

In the same way as before, we obtain a one-to-one correspondence

∇ ↔ s∇1,0

between C∞-connections on the vector bundle E which are compatible with the complex
structure and C∞-splittings

(1.14) s∇1,0 : E → P 1
X/C(E) , f 7→ [f,−∇1,0(f)]

of the extension AtX(E).
Assume that E carries a hermitian metric h. A C∞-connection ∇ on E = (E, h) is called

unitary if and only if it satisfies

dh(s, t) = h(5s, t) + h(s,5t) for all s, t ∈ A0(X,E).

Recall that a hermitian holomorphic vector bundle E = (E, h) carries a unique unitary
connection ∇E which is compatible with the complex structure ([Che46], [Nak55]; see also
[GH78, Ch. 0.5] or [Wel80, Sect. II.2]).

Lemma 1.3.1. Let E = (E, h) be a hermitian holomorphic vector bundle on X. Let
∇ = ∇E denote the unitary C∞-connection on E which is compatible with the complex
structure. The curvature form

∇2 ∈ A1,1
(
X,End(E)

)
and the second fundamental form

α ∈ A0,1
(
X,End(E)⊗ Ω1

X

)
associated with AtX(E) and its C∞-splitting s∇1,0 as in [BK07, A.5.2] satisfy

(1.15) α = −∇2

where we read the canonical isomorphism

A1,1
(
X,End(E)

) ∼→ A0,1
(
X,End(E)⊗ Ω1

X

)
, f ⊗ (α ∧ β) 7→ (f ⊗ α) ∧ β.

(compare [BK07, 1.1.5]) as an identification.

Proof. Recall from [BK07, A.5.2] that α is determined by

∂P 1
X/C(E)⊗E∨

(
s∇1,0

)
= (iE ⊗ id

A0,1
X

)(α).

It is sufficient to verify (1.15) locally on X. Hence we may assume that E admits a holo-
morphic frame. We describe ∇ and ∇2 with respect to this frame by the connection matrix
θ and the curvature matrix Θ. Following the conventions in [Wel80, Ch. III], we have

Θik = dθik +
∑
j

θij ∧ θjk.
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The connection matrix θ has type (1, 0) and the curvature matrix Θ has type (1, 1) by loc.
cit. Hence the equality above becomes

(1.16) Θ = ∂θ.

Let ∇̃ denote the connection on E whose connection matrix is zero. The associated splitting
s∇̃1,0 of atX(E) is holomorphic. Hence (1.16) gives

∂J1
X/C(E)⊗E∨

(
s∇1,0

)
= ∂J1

X/C(E)⊗E∨
(
s∇1,0 − s∇̃1,0

)
= −∂(θ) = −Θ = −∇2.

�

2. The arithmetic Atiyah class of a vector bundle with connection

In this section we fix an arithmetic ring R = (R,Σ, F∞) and a flat arithmetic scheme S
over Spec R.

2.1. Definition and basic properties. Let X be an integral arithmetic scheme with a
generically smooth, l.c.i. morphism π : X → S. Let E be a vector bundle on X. We
consider the commutative square

(XΣ(C),Ohol
XΣ

)
j→ (X,OX)

↓ πC ↓ π
(SΣ(C),Ohol

SΣ
)

j0→ (S,OS).

Lemma 1.1.6 implies that the formation of the Atiyah extension of E is compatible with
base change with respect to this diagram. More precisely, we have a canonical isomorphism

P 1
X/S(E)hol

C
∼→ P 1

XΣ(C)/SΣ(C)(E
hol
C )

where we put F hol
C = j∗F for every OX -module F .

2.1.1. We have seen in 1.3 that there is a one-to-one correspondence between C∞-connections

∇ : A0
(
XΣ(C), EC

)
→ A1

(
XΣ(C), EC

)
which are compatible with the complex structure and commute with the action of F∞ and
sections

s∇ : EC → P 1
X/S(E)C

such that (AtX/SE, s) is an arithmetic extension. This correspondence allows us to associate
with each vector bundle E on X equipped with an F∞-invariant connection ∇ on EC, that
is compatible with the complex structure, its arithmetic Atiyah extension (AtX/SE, s∇) and
its arithmetic Atiyah class

âtX/S(E,∇) ∈ Êxt
1
(E,E ⊗ Ω1

X/S).

If E is a hermitian vector bundle over X, we obtain the arithmetic Atiyah extension
(AtX/SE, s∇E

) of E and its arithmetic Atiyah class

âtX/S(E) := âtX/S(E,∇E) ∈ Êxt
1
(E,E ⊗ Ω1

X/S),
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where ∇E denotes the unitary connection on EC over XΣ(C) that is compatible with the
complex structure. As a direct consequence of this definition and Lemma 1.3.1, we get a
formula for the “second fundamental” form (compare the introduction and [BK07, 2.3.1])

Ψ
(
ât(E)

)
∈ A0,1

(
XR, End(E)⊗ Ω1

X/S

)
.

Namely

(2.1) Ψ
(
âtX/S(E)

)
= −RE ,

under the canonical identification

A1,1
(
XR, End(E)

)
= A0,1

(
XR, End(E)⊗ Ω1

X/S

)
,

where RE := ∇2
E

denotes the curvature of E.

In particular, when E is a hermitian line bundle over X,

(2.2)
1

2πi
Ψ

(
âtX/S(E)

)
= − 1

2πi
RE =: c1(E)

is the first Chern form of E.
We collect basic properties of the arithmetic Atiyah class.

Proposition 2.1.2. i) Let (E,∇E) and (F,∇F ) be vector bundles on the smooth arith-
metic S-scheme X equipped with F∞-invariant C∞-connections compatible with the complex
structure. We equip the tensor product E⊗F with the product connection. Then the equality

âtX/S(E ⊗ F,∇E⊗F ) = âtX/S(E,∇E)⊗ F + E ⊗ âtX/S(F,∇F )

holds in Êxt
1

X(E ⊗ F,E ⊗ F ⊗ Ω1
X/S).

ii) Let E and F be hermitian vector bundles on the smooth arithmetic S-scheme X, and
E ⊗ F their tensor product equipped with the product hermitian metric. Then the equality

âtX/S(E ⊗ F ) = âtX/S(E)⊗ F + E ⊗ âtX/S(F )

holds in Êxt
1

X(E ⊗ F,E ⊗ F ⊗ Ω1
X/S).

iii) Let E be a hermitian vector bundles on the smooth arithmetic S-scheme X, and E∨

the dual hermitian vector bundle. Then we have

(E∨ ⊗ âtX/S(E)) ◦∆ = −(âtX/S(E∨)⊗ E) ◦∆

in Êxt
1

X(OX , End(E)⊗ Ω1
X/S) where . ◦∆ denotes the pushout along ∆ as in [BK07, 2.4].

iv) Let f : X → Y be a morphism of smooth arithmetic S-schemes. Let (E,∇E) be a
vector bundle on Y with F∞-invariant C∞-connection which is compatible with the complex
structure. The canonical map f∗ : f∗Ω1

Y/S → Ω1
X/S induces a homomorphism

Êxt
1

X(f∗E, f∗E ⊗ f∗Ω1
Y/S)→ Êxt

1

X(f∗E, f∗E ⊗ Ω1
X/S)

by pushout along idf∗E ⊗ f∗. We still denote the image of f∗âtY/S(E,∇E) under this map
by f∗âtY/S(E,∇E) and equip f∗Ehol

C with the connection f∗∇E described in (1.10). Then
we have the equality

f∗âtY/S(E,∇E) = âtX/S(f∗E, f∗∇E).

in Êxt
1

X(f∗E, f∗E ⊗ Ω1
X/S).
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v) Let f : X → Y be a morphism of smooth arithmetic S-schemes. Let E denote a hermit-
ian vector bundle on Y , and f∗E its pull-back on X.. Then the inverse image f∗âtY/S(E)

may be defined in Êxt
1

X(f∗E, f∗E ⊗ Ω1
X/S) as in iv) and satisfies

f∗âtY/S(E) = âtX/S(f∗E).

Proof. i) follows from 1.1.4 and ii) is a direct consequence of i) as the induced unitary con-
nections which are compatible with the complex structure satisfy (1.8). iii) is a consequence
of Corollary 1.1.5 and of the compatibility of the splitting in loc. cit. with holomorphic and
hermitian structures. iv) and v) follow from 1.1.6. �

Let E be a hermitian line bundle on X. We give a cocycle description of ât(E) based on
the description of arithmetic extension groups by Čech cocycles given in Appendix A.

Proposition 2.1.3. Let E = (E, h) be a hermitian vector bundle of rank n on a smooth
arithmetic S-scheme X. Choose a locally finite, affine, open cover U = (Ui)i∈I of X such
that E admits a frame

fi : OnUi

∼−→ E|Ui

over Ui. For i ∈ I, we define

hi := h(fi,C, fi,C) =
(
h(fi,C(el), fi,C(ek))

)
1≤k,l≤n ∈ Matn

(
C∞(Ui,Σ(C),C)F∞

)
,

where el := (δαl)1≤α≤n, and

∂ log hi := fi ◦ h−1
i ◦ (∂hi) ◦ f−1

i ∈ A0
(
Ui,R,End(E)⊗ Ω1

X/S

)
.

For i, j ∈ I, we define

fij := f−1
j ◦ fi ∈ Matn

(
OX(Uij)

)
dlog fij := fj ◦ (dfij) ◦ f−1

i ∈ Γ
(
Uij ,End(E)⊗ Ω1

X/S

)
.

Then the isomorphism

ρ̂U ,E,E⊗Ω1
X/S

: Êxt
1

X(E,E ⊗ Ω1
X/S)→ Ȟ0

(
U , C(adEnd(E)⊗Ω1

X/S
)
)

maps âtX/S(E) to the class of (
(dlog fij)i,j∈I , (−∂log hi)i∈I

)
.

Proof. Let ∇ denote the unitary connection on EC which is compatible with the complex
structure. We compute cocycles

(
(αij)i,j , (βi)i

)
which represent the image of the arithmetic

extension (At(E), s∇) under ρ̂U ,E,E⊗Ω1
X/S

. We follow the construction given in Appendix
A. Consider the diagram

(At(E)⊗ E∨) ◦∆ : 0→ End(E)⊗ Ω1
X/S → W → OX → 0

|| ↓ ↓ ∆

At(E)⊗ E∨ : 0→ E ⊗ Ω1
X/S ⊗ E

∨ → P 1
X/S(E)⊗ E∨ → E ⊗ E∨ → 0.

There is a unique connection ∇i : E|Ui → E|Ui ⊗ Ω1
Ui/S

such that ∇i(fi) = 0. It satisfies

∇j(fi) = ∇j(fj · fij) = fj · dfij ,
where the frames fi and fj are seen as “line vectors” with entries sections of E. The
connection ∇i determines an OUi-linear splitting s∇i of At(E) over Ui as in (1.6). We write
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∆(1X) = fi⊗f∨i , where f∨i denotes the dual frame of E∨ — which we may see as a “column
vector” with entries sections of E∨ — and get

αij = (−s∇j ⊗ idE∨ + s∇i ⊗ idE∨) ◦∆(1X)

= (−s∇j + s∇i)fi ⊗ f∨i
=

(
fj · (dfij)

)
⊗ f∨i

= dlog fij .

We observe that we have
∇1,0(fi) = fi · h−1

i · (∂hi)
by [Wel80, III.2, eq. (2.1)]. Hence

βi = (s∇1,0 ⊗ idE∨ − s∇i ⊗ idE∨) ◦∆(1X)

= −fi ◦ h−1
i ◦ (∂hi) ◦ f−1

i

= −∂ log hi.

Our claim follows. �

The properties of the arithmetic Atiyah class in Proposition 2.1.2 may be recovered by
straightforward cocycle computations using Proposition 2.1.3. in this way, one may also
establish the following refined variant of Proposition 2.1.2, iii):

Corollary 2.1.4. For any hermitian vector bundle E on a smooth arithmetic S-scheme X,
we have the equality

âtX/S(E) = −âtX/S(E∨)
in

(2.3) Êxt
1

X(E,E ⊗ Ω1
X/S) ' Êxt

1

X(OX , E∨ ⊗ E ⊗ Ω1
X/S)

' Êxt
1

X(OX , (E∨)∨ ⊗ E∨ ⊗ Ω1
X/S) ' Êxt

1

X(E∨, E∨ ⊗ Ω1
X/S).

The first and last isomorphisms in (2.3) are the canonical isomorphism in [BK07, 2.4.6],
and the second one is deduced from the isomorphism E∨⊗E ' E⊗E∨ exchanging the two
factors and the canonical biduality isomorphism E ' (E∨)∨.

2.2. The first Chern class in arithmetic Hodge cohomology.

2.2.1. For a hermitian vector bundle E on a smooth arithmetic S-scheme X, we put

ĉH1 (E) := ĉH1 (X/S,E) := trE ◦ (âtX/S(E)⊗ E∨) ◦ iE ∈ Êxt
1
(OX ,Ω1

X/S)

where trE : E ⊗ E∨→OX and iE : OX→End(E) ' E ⊗ E∨ are the canonical morphisms.
We call ĉH1 (E) the first Chern class of E in arithmetic Hodge cohomology.

When E is a hermitian line bundle, trE and iE are t he “obvious” isomorphisms, and
ĉH1 (E) is nothing else than âtX/S(E) in

Êxt
1

X(E,E ⊗ Ω1
X/S) ' Êxt

1

X(OX , E∨ ⊗ E ⊗ Ω1
X/S) ' Êxt

1

X(OX ,Ω1
X/S).

Using the the description of in terms of Čech cocycles in Proposition 2.1.3, and the
expression of the differential of the detrminant in terms of the trace, we obtain, after a
straightforward computation:

ĉH1 (E) = ĉH1 (detE).
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Proposition 2.1.3 also leads immediately to the following description of the first Chern
class in arithmetic Hodge cohomology for hermitian line bundles:

Lemma 2.2.2. Let L be a hermitian line bundle on an arithmetic scheme X. Choose
a locally finite, affine, open cover U = (Ui)i∈I of X such that L admits a trivialization
li ∈ Γ(Ui, L) over Ui. Put

fij := l−1
j · li ∈ Γ(Uij ,O∗).

Then
ρ̂U ,Ω1

X/S

(
ĉH1 (L)

)
=

[
(dlog fij)i,j∈I , (−∂log ‖li‖2)i∈I

]
.

2.2.3. Let P̂ic(X) denote the group of isometry classes of hermitian line bundles on X. It
follows immediately from Proposition 2.1.2 that the map

ĉH1 : P̂ic(X)→ Êxt
1

X(OX ,Ω1
X/S)

is a group homomorphism which satisfies

ĉH1 (X/S, . ) ◦ f∗ = f∗ ◦ ĉH1 (Y/S, . )

for every morphism f : X → Y of smooth, arithmetic S-schemes.

2.2.4. We consider the diagrams

(2.4)
O(X)∗ → ker ∂∂|A0,0(XR)

a→ P̂ic(X) → Pic(X)
↓ −dlog ↓ −∂ ↓ ĉ1 ↓ cH1

Γ(X,Ω1
X/S) → A0(XR,Ω1

X/S) b→ Êxt
1

X(OX ,Ω1
X/S) ν→ Ext1X(OX ,Ω1

X/S).

and

(2.5)
P̂ic(X) c1→ A1,1(XR)
↓ ĉH1 ↓ ι

Êxt
1

X(OX ,Ω1
X/S) Ψ→ A0,1(XR,Ω1

X/S).

Here Ap,p(XR) is by definition the space of real (p, p)-forms α on the complex manifold
XΣ(C) which satisfy F∞(α) = (−1)pα (compare [GS90a, 3.2.1]). The monomorphism ι is
defined by

Ap,p(XR) ↪→ A0,p(XR,Ω
p
X/S) , α 7→ (2πi)pα

(compare [BK07, 1.1.5]). Furthermore we consider the following morphisms

O(X)∗ → ker ∂∂|A0(XR) , f 7→ log |f |2,
dlog : O(X)∗ → Γ(X,Ω1

X/S) , f 7→ f−1df,

Γ(X,Ω1
X/S) → A0(XR,Ω1

X/S) , α 7→ αC

∂ : ker ∂∂|A0,0(XR) → A0(XR,Ω1
X/S) , f 7→ ∂f,

a : ker ∂∂|A0,0(XR) → P̂ic(X) , f 7→ [(OX , ‖.‖f )] with ‖1X‖2f = exp f,

b : A0(XR,Ω1
X/S) → Êxt

1
(OX ,Ω1

X/S), T 7→
[
Ω1
X/S → Ω1

X/S ⊕OX → OX , s =
(
T

id

)]
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(compare the introduction and [BK07, 2.2])

P̂ic(X) → Pic(X) , [(L, ‖ . ‖)] 7→ [L]

ν : Êxt
1
(OX ,Ω1

X/S) → Ext1(OX ,Ω1
X/S) , [(E , s)] 7→ [E ]

cH1 : Pic(X) → Ext1(OX ,Ω1
X/S) , [L] 7→ [trL ◦ atX/S(L) ◦ iL]

c1 : P̂ic(X) → A1,1(XR) , [L = (L, ‖ . ‖)] 7→ −(2πi)−1∇2
L
,

Ψ: Êxt
1

X(OX ,Ω1
X/S) → A0,1(XR,Ω1

X/S) is defined in [BK07, 2.3.1].

The horizontal lines in (2.4) are exact by [GS90b, (2.5.2)] and [BK07, 2.2.1]. Observe the
analogy between (2.4) and [GS90b, (2.5.2)].

Proposition 2.2.5. The diagrams (2.4) and (2.5) are commutative.

Proof. For f in O(X)∗, we have

(2.6) ∂ log |f |2 =
∂(ff)
ff

=
∂f

f
=
df

f
= dlog f

which shows the commutativity of the left square in (2.4). The unitary connection ∇f on
(OX , ‖.‖f ) which is compatible with the complex structure is given according to [Wel80,
III.2 formula (2.1)] by the formula

∇1,0
f (1) = ∂f ∈ A0(XR,Ω1

X/S).

Taking into account the correspondence between connections and splittings in 1.3 above (and
notably the sign in (1.14)), it follows that the middle square commutes. The commutativity
of the right square holds by definition. The square (2.5) is commutative by formula (2.2). �

3. Hermitian line bundles with vanishing arithmetic Atiyah class

3.1. A finiteness result for the kernel of ĉH1 . Let K be a number field, and Σ a non-
empty set of field embeddings of K in C, stable under complex conjugation.

To these data is naturally attached the arithmetic ring in the sense of Gillet-Soulé
([GS90a], 3.1.1) defined as the triple (K,Σ, F∞) where F∞ denotes the conjugate linear
involution of CΣ defined by F∞(aσ)σ∈Σ := (aσ)σ∈Σ.

3.1.1. Let X be a smooth, projective, geometrically connected scheme over K, and EX/K
the universal vector extension of Pic0

X/K (see Appendix B for basic facts on Picard varieties
and their universal vector extensions).

In the sequel, we shall consider X and SpecK as arithmetic schemes over the arithmetic
ring (K,Σ, F∞).

In particular, a hermitian line bundle L over X is the data of a line bundle L over X and
of a C∞ hermitian metric ‖.‖L, invariant under complex conjugation, on the holomorphic
line bundle LC over

XΣ(C) :=
∐
σ∈Σ

Xσ(C).

Observe that, for any line bundle L over X, the following conditions are equivalent:
a) the Atiyah class of L in H1,1(X/K) := Ext1X(OX ,Ω1

X/K) vanishes;
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b) there exists a C∞ hermitian metric ‖.‖, invariant under complex conjugation, on the
holomorphic line bundle LC over XΣ(C), with vanishing curvature.
When these conditions are realized, the metric ‖.‖ is unique, up to some multiplicative
constant, on every component Xσ(C) of XΣ(C). Moreover, they hold if the line bundle L is
algebraically equivalent to zero4.

Consider now a hermitian line bundle L := (L, ‖.‖L) over X whose underlying line bundle
L is algebraically equivalent to zero, and such that the curvature of ‖.‖L vanishes. Let ∇L
denote the unitary connection on LC which is compatible with the complex structure.. Then
the (1, 0)-part ∇1,0

L
of ∇L algebraizes, and the pair (LC,∇1,0

L
) determines a point P = PL

in the maximal compact subgroup of

EX/K(R) :=
[∐
σ∈Σ

EX/K(C)
]F∞ .

(Details of this construction can be found in the Appendix in B.7 and B.8 .)
It is a straightforward consequence of our definitions that the following conditions are

equivalent:

1) the line bundle L admits a connection ∇ : L→ L⊗Ω1
X/K such that ∇C equals ∇1,0

L
;

2) âtX/K(L) = 0;

3) the class ĉH1 (L) := ĉH1 (X/SpecK,L) in Ĥ1,1(X/K) := Êxt
1

X(OX ,Ω1
X/K) vanishes;

4) PL is the image of a K-rational point of EX/K .

When L defines a torsion point in Pic(X), these conditions are easily seen to be satisfied.
Indeed, if n is a positive integer and α : OX → L⊗n is an isomorphism of line bundle over
X, there exists a unique connection ∇L on L, defined over K, such that the connection
∇L⊗n on L⊗n deduced from ∇L by taking its n-th tensor power makes α an isomorphism
of line bundles with connections from (OX , d) to (L⊗n,∇L⊗n). Moreover, for any σ in σ, ασ
is a section with constant norm of L⊗nC over Xσ(C) (since the curvature of ‖.‖L vanishes),
and consequently ∇L⊗n,σ coincides with ∇1,0

L
n|Xσ(C)

. This shows that ∇L,σ coincides with

∇1,0

L|Xσ(C)
, and therefore that condition 1) is satisfied by ∇ = ∇L.

It turns out that, conversely, when the above conditions 1-4) hold, then L has a torsion
class in Pic(X). This is indeed the content of the first part of the main result of this Section
3:

Theorem 3.1.2. Let X be a smooth, projective, geometrically connected variety over K,
and let π : X → Spec K its structural morphism, that we consider as a morphism of
arithmetic schemes over the arithmetic ring (K,Σ, F∞). Then we have:

i) If a hermitian line bundle L = (L, ‖.‖L) over X admits an algebraic connection ∇
such that ∇C is unitary with respect to ‖.‖L, then L has a torsion class in Pic(X)
and the metric ‖.‖L has vanishing curvature.

ii) For any hermitian line bundle L on X, the first Chern class ĉH1 (L) in Ĥ1,1(X/K) :=

Êxt
1

X(OX ,Ω1
X/K) vanishes if and only if there exists a positive integer n such that

L
⊗n is isometric to the trivial bundle OX equipped with a metric constant on every

4By definition a line bundle on X is algebraically equivalent to zero if and only if its restriction to the
geometric fiber XK is algebraically equivalent to zero.
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component Xσ(C) of XΣ(C) — or equivalently, such that the class of L⊗n in P̂ic(X)
belongs to the image of π∗ : P̂ic(SpecK)→ P̂ic(X).

iii) The image of π∗ : P̂ic(SpecK)→ P̂ic(X) has finite index in the kernel of

ĉH1 : P̂ic(X)→ Ĥ1,1(X/K).

iv) Let P ∈ EX/K(K) be a K-rational point of the universal vector extension EX/K that
belongs to the maximal compact subgroup of EX/K(R). Then P is a torsion point
in EX/K(K).

Proof. We prove below that the assertions i)–iv) are equivalent for any given variety X
as above. The isomorphism (B.8) shows that it is sufficient to show iv) (and hence any
of the assertions i)–iv)) for abelian varieties. In order to prove i), we may choose σ in Σ
and replace the set of embeddings Σ by {σ} (resp. {σ, σ}) if σ is a real (resp. complex)
embedding. In this situation, i) is proved for abelian varieties as Theorem 3.2.1 in Section
3.2 infra.

The equivalence of i) and ii) is a straightforward consequence of the observations before
the statement of Theorem 3.1.2 and of the implication

ĉH1 (L) = 0⇒ c1(L) = 0,

which follows from the commutativity of (2.5).
i) ⇒ iii). A hermitian metric with curvature zero on the trivial line bundle on X is

constant on every component Xσ(C) of XΣ(C). Therefore, if we introduce the canonical
map

w : P̂ic(X)→ Pic(X) ↪→ PicX/K(K),

then we have:
Ker(ĉH1 ) ∩Ker(w) = Im

(
π∗ : P̂ic(S)→P̂ic(X)

)
.

Hence the map w induces an injection of

(3.1)
Ker

(
ĉH1 : P̂ic(X)→Êxt

1
(OX ,Ω1

X/K)
)

Im
(
π∗ : P̂ic(Spec K)→P̂ic(X)

)
into PicX/K(K). Part i) implies that the image of (3.1) is contained in the torsion subgroup
of PicX/K(K). This is a finite group as the Néron Severi group

NSX/K(K) = PicX/K(K)/Pic0
X/K(K)

and Pic0
X/K(K) are finitely generated abelian groups by [BGI71, Exp. XIII Th. 5.1] and

the theorem of Mordell-Weil.
iii)⇒ iv). Let P ∈ EX/K(K) be a K-rational point of the universal vector extension who

belongs to the maximal compact subgroup of EX/K(R). Replacing K by a finite extension,
we may assume that P is represented by a line bundle L algebraically equivalent to zero with
an integrable connection ∇. If P belongs to the maximal compact subgroup of EX/K(R),
we have ∇C = ∇1,0

L
where L carries a hermitian metric with curvature zero. We have

seen above that this implies ĉH1 (L) = 0. By ii) there exists some m > 0 such that L⊗m
is isometric to the trivial bundle OX with a constant metric. It follows that (L,∇)⊗m is
isomorphic to the trivial bundle OX with the trivial connection. It follows that P is torsion.
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iv) ⇒ i) Let L = (L, ‖.‖L) be an hermitian line bundle over X. Let ∇L denote the
unitary connection which is compatible with the complex structure on LC. We assume that
L admits an algebraic connection ∇ such that ∇C equals ∇1,0

L
. Observe that this implies

in particular that the connection ∇ is integrable. It follows from equation (1.16) that the
curvature ∇2

L
and hence the first Chern class of L vanish. The vanishing of the first Chern

class of L shows that a power L⊗m of L is algebraically equivalent to zero [Kle66, II.2
Cor. 1 to Th. 2]. Hence we may assume that L is algebraically equivalent zero in order
to prove that its class in Pic(X) is torsion. The pair (LC,∇1,0

L
) determines a point P in

the maximal compact subgroup of EX/K(R) which is K-rational as it comes from the point
P ∈ EX/K(K) determined by the pair (L,∇). The point P is torsion in EX/K(K) by iv).
Hence the class of L is torsion in Pic(X). �

Corollary 3.1.3. Let OK denote the ring of integers in a number field K, and let us work
over the arithmetic ring (OK ,Σ, F∞). Let S denote a non-empty open subset of SpecOK ,
and let X be a smooth projective S-scheme with geometrically connected fibers. Then

(3.2)
Ker

(
ĉH1 : P̂ic(X)→Êxt

1

X(OX ,Ω1
X/S)

)
Im

(
π∗ : P̂ic(S)→P̂ic(X)

)
is a finite group.

Proof. Let XK denote the fiber of X over SpecK. We consider XK as an arithmetic scheme
over the arithmetic field K = (K,Σ, F∞). There is a canonical restriction map

ν : P̂ic(X)→ P̂ic(XK).

Any element in Ker ν ∩Ker ĉH1 (X/S, . ) is generically trivial and carries a constant metric.
The sequence

Pic(S)→ Pic(X)→ Pic(XK)

is exact as the fibers of X/S are integral. Hence

Ker (ν) ∩Ker ĉH1 (X/S, . ) ⊆ Im
(
π∗ : P̂ic(S)→P̂ic(X)

)
and ν induces an embedding of (3.2) into (3.1). The latter group is finite by Theorem 3.1.2.
Our claim follows. �

3.2. Transcendence and line bundles with connections on abelian varieties. In
this section, we complete the proof of Theorem 3.1.2 by establishing Theorem 3.1.2, i),
when X is an abelian variety. Indeed, we are going to establish the following result, by
using a classical transcendence result of Schneider-Lang:

Theorem 3.2.1. Let A be an abelian variety over a number field K, and (L,∇) a line
bundle over A equipped with a connection (defined over K).

If there exists a field embedding σ : K ↪→ C and a hermitian metric ‖.‖ on the complex
line bundle Lσ on Aσ(C) such that the connection ∇σ is unitary with respect to ‖.‖, then L
has a torsion class in Pic(A), and the metric ‖.‖ has vanishing curvature.
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3.2.2. Commutative algebraic groups and a theorem of Schneider-Lang. If G is a commu-
tative algebraic group over C, its exponential map will be denoted expG. It is the unique
morphism of C-analytic Lie groups

expG : LieG −→ G(C)

whose differential at 0 ∈ LieG is IdLieG. Its kernel

ΓG := ker expG

is a discrete additive subgroup of LieG. When G is connected, expG is a universal covering
of G(C), and ΓG may be identified with the fundamental group π1(G(C), 0G), or with the
homology group H1(G(C),Z).

In the sequel, we shall use the following classical transcendence result on commutative
algebraic groups:

Theorem 3.2.3. Let K be a number field and σ : K ↪→ C a field embedding, and let G be
a commutative algebraic group over K, and V a K-vector subspace of LieG.

If there exists a basis (γ1, . . . , γv) of the complex vector space Vσ such that, for every
i ∈ {1, . . . , v}, expGσ

(γi) belongs to G(Q), then V is the Lie algebra of some algebraic
subgroup H of G.

We have denoted Q the algebraic closure of Q in C. By means of the embedding σ, it
may be seen as an algebraic closure of K, and the group G(Q) of Q-rational points of G
becomes a subgroup of the group Gσ(C) of its complex points.

Observe also that the subgroup H whose existence is asserted in Theorem 3.2.3 may
clearly be chosen connected, and then H is clearly unique, defined over K, and the group
Hσ(C) of its complex points coincides with expGσ

(Vσ).
Theorem 3.2.3 has been established by Lang ([Lan66], IV.4, Theorem 2), who elaborated

on some earlier work of Schneider on abelian functions and the transcendence of their values
[Sch41]. We refer the reader to [Wal87] (where it appears as Théorème 5.2.1) for more details
on Theorem 3.2.3 and its classical applications.

Let us also recall that Theorem 3.2.3 is now subsumed by various celebrated more recent
results — namely, the transcendence criterion of Bombieri and the analytic subgroup the-
orem of Wüstholz. The reader may find a recent survey of these and related transcendence
results on commutative algebraic groups in the monograph [BW07].

3.2.4. Line bundles with connections on abelian varieties. Let A be an abelian variety over
a field k of characteristic zero, and L a line bundle over A. We may choose a rigidificaction
of L, namely a trivialization φ : k ' Le of its fiber at the zero element e of A(k), or
equivalently the vector ` := φ(1) in Le \ {0}.

In the sequel, we shall assume that the following equivalent conditions are satisfied:
i) the line bundle L is algebraically equivalent to the trivial line bundle;
ii) the Atiyah class atA/kL of L vanishes;
iii) the line bundle L may be equipped with an algebraic connection ∇.
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Observe that the connection ∇ is necessarily flat5 and that the set of connections on A
is a torsor under the k-vector space Γ(A,Ω1

A/k ' (LieA)∨ of regular 1-forms on A, which
acts additively on this set. Moreover, the Gm-torsor L× defined by deleting the zero section
from the total space6 V(L∨) of L admits a unique structure of commutative algebraic group
over k such that the diagram

(3.3) 0 −→ Gm,k
φ−→ L×

π−→ A −→ 0,

— where φ denotes the composite morphism Gm,k
φ
' L×e ↪→ L× and π the restriction of the

“structural morphism” from V(L∨) to A — becomes a short exact sequence of commutative
algebraic groups. Its zero element is the k-point ε ∈ L×(k) defined by `. (See for instance
[Ser59], VII.3.16.)

From (3.3), we derive a short exact sequence of k-vector spaces:

(3.4) 0 −→ Lie Gm,k
Lieφ−→ LieL× Lieπ−→ LieA −→ 0.

Recall that a connection over a vector bundle on a smooth algebraic variety may be
described à la Ehresmann as an equivariant splitting of the differential of the structural
morphism of its frame bundle (see for instance [KN96], Chapter II, or [Spi70], Chapter 8;
the constructions of loc. cit. in a differentiable setting can be immediately transposed in the
algebraic framework of smooth algebraic varieties). In the present situation, a connection
∇ on L may thus be seen as a Gm-equivariant splitting of the surjective morphism of vector
bundles over L× defined by the differential of π:

Dπ : TL× −→ π∗TA.

In particular, its value at the unit element ε of L× defines a k-linear splitting

Σ : LieA −→ LieL×

of (3.4).
Conversely, from any k-linear right inverse Σ of Lieπ, we deduce a Gm-equivariant split-

ting of Dπ by constructing its L×-equivariant extension to L×.
By these constructions, connections on L and k-linear splittings of (3.4) correspond bijec-

tively. Indeed, by means of the identification Lie Gm,k = k.X∂/∂X ' k, the set of k-linear
splittings of (3.4) becomes naturally a torsor under (LieA)∨, and the above constructions
are compatible with the (additive) actions of (LieA)∨ on the set of these splittings and on
the set of connections on L.

This correspondence may also be described as follows. A linear splitting Σ as above may
also be seen as a morphism ˜̀ : Ae,1 → L×ε,1 from the first infinitesimal neighbourhood Ae,1
of e in A to the first infinitesimal neighbourhood L×ε,1 of ε in L× which is a right inverse of
the map πε,1 : L×ε,1 → Ae,1 deduced from π. In other words, ˜̀ is a section of L over Ae,1 such
that ˜̀(e) = l. The connection ∇ associated to Σ is the unique one such that ∇˜̀(e) = 0.

5To check this, we may assume that k is algebraically closed, and observe that the curvature ∇2 of an
algebraic connection on L depends only on the isomorphism class of L and defines a morphism of algebraic
groups over k from the dual abelian variety A∨ to the additive group Γ(A, Ω2

A/k)(' ∧2(Lie A)∨). Since A is

proper and connected, any such morphism is zero.
6namely, the spectrum of the quasi-coherent OA-algebra

L
n∈N L∨⊗n.
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When k = C, the diagram

LieL× Dπ−→ LieA
↓ expL× ↓ expA

L×(C) π−→ A(C).

is commutative. Consequently the morphism of groups

expL× ◦Σ : ΓA −→ L×(C)

takes its value in kerπ ' C∗. It coincides with the monodromy representation

ρ : ΓA = H1(A(C),Z) −→ C∗

of the line bundle with flat connection (L,∇) — or more properly of the corresponding ob-
jects in the analytic category — over A(C). Indeed, the horizontal Gm-equivariant foliation
on L×(C) defined by ∇ is translation invariant, and its leaves are precisely the translates
in L×(C) of the image of expL× ◦Σ.

3.2.5. An application of the Theorem of Schneider-Lang. We keep the notation of paragraph
3.2.4, and we now assume that the base field k is a number field.

Taking into account this relation between the monodromy of connections on L and the
exponential map of the algebraic group L×, we derive from the theorem of Schneider-Lang
(Theorem 3.2.3 above) applied to G = L×:

Corollary 3.2.6. Let A be an abelian variety of dimension g over a number field K, and
(L,∇) a line bundle over L equipped with a flat connection (defined over K).

Let σ : K ↪→ C be a field embedding, and let ρσ : ΓAσ −→ C∗ denote the monodromy
representation attached to the flat complex line bundle (Lσ,∇σ) over Aσ(C).

If there exists γ1, . . . , γg in ΓAσ such that (γ1, . . . , γg) is a basis of the C-vector space
LieAσ and such that, for every i ∈ {1, . . . , g}, ρσ(γi) belongs to Q∗, then L has a torsion
class in Pic(A).

Proof. We consider the K-linear map Σ : LieA −→ LieL× associated to the connection ∇
as above, and its image V := Σ(LieA). The vectors γ̃i := Σσ(γi), 1 ≤ i ≤ g, constitute a
basis of the C-vector space Vσ. Moreover the image expL×σ (γ̃i) of γ̃i by the exponential map
of L×σ is the point of L×σ,e ' C∗ defined by the monodromy ρσ(γi) of γi. According to our
assumption, these images belong to L×(Q).

The theorem of Schneider-Lang now shows that V is the Lie algebra of a connected alge-
braic subgroup H, defined over K. Since Lieπ|H : LieH = V → LieA is an isomorphism of
K-vector spaces, the morphism of algebraic groups π|H : H → A is étale, and consequently,
H is an abelian variety over K, and π|H is an isogeny.

By the very construction of H as a subscheme of L×, the inverse image π∗|HL of L on H
is trivial. If N denotes the degree of π|H , it follows that L⊗N — which is isomorphic to the
norm, relative to π|H , of π∗|HL — is a trivial line bundle. �

3.2.7. Reality I. Let us keep the framework of paragraph 3.2.4, and suppose now that the
base field k is R.

The line bundle with connection (L,∇) defines a real analytic line bundle with flat con-
nection (LR,∇R) over the compact real analytic Lie group A(R). Its monodromy defines a
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representation ρR of the fundamental group π1(A(R), 0A), or equivalently of the homology
group H1(A(R)◦,Z) of the connected component of 0A, with values in R∗.

Actually the inclusion ι : A(R)◦ ↪→ A(C) defines an injective map of free abelian groups,
of respective ranks g and 2g,

ι∗ : H1(A(R)◦,Z) −→ H1(A(C),Z),

and the monodromy representation ρR coincides with the restriction ρC ◦ ι∗ of the mon-
odromy representation

ρC : H1(A(C),Z) −→ C∗

defined by the C-analytic line bundle with flat connection (LC,∇C) over the compact C-
analytic Lie group A(C).

Lemma 3.2.8. The following conditions are equivalent:
(i) There exists an hermitian metric ‖.‖ on the complex line bundle LC on A(C) such

that the connection ∇C is unitary with respect to ‖.‖7.
(ii) The monodromy representation ρC takes its values in U(1) := {z ∈ C | |z| = 1}.
(iii) The monodromy representation ρR takes its values in {1,−1}.

In the sequel, we shall only use the implications (i) ⇒ (ii) ⇒ (iii), which are straight-
forward. The implication (ii) ⇒ (i) also is immediate. To show (iii) ⇒ (i), let Γ+ :=
ι∗(H1(A(R)◦,Z)), and observe that the elements of ΓAC which are “purely imaginary” in
LieAC ' (LieA)⊗RC constitute a subgroup Γ− of rank g such that Γ+ ∩ Γ− = {0}, that
Γ/Γ+ ⊕ Γ− is a 2-torsion group, and that the image ρC(Γ−) of by the monodromy repre-
sentation lies in U(1). We leave the details to the reader.

3.2.9. Reality II. In this paragraph, we still keep the framework of the paragraph 3.2.4,
and we now assume that the base field k is C. We may apply the considerations of the
last paragraph to the abelian variety over R deduced from A by Weil restriction of scalar
from C to R. This leads to the following results, that we may formulate without explicit
reference to Weil restriction.

Let A−, L−, ∇− be respectively the complex abelian variety, the line bundle over A−,
and the connection over L− deduced from A, L, and ∇ by the base change Spec C→ Spec C
defined by the complex conjugation.

Let us consider the complex abelian variety

B := A×A−,
the two projections

pr : B −→ A and pr− : B −→ A−,

and (L̃, ∇̃) the line bundle with connection over B defined as the tensor product of pr∗(L,∇)
and pr∗−(L−,∇−).

Let j : LieA→ LieA− denote the canonical C-antilinear isomorphism. It maps bijectively
ΓA onto ΓA− , and we may introduce the diagonal embedding

∆ : ΓA −→ ΓA ⊕ ΓA− ' ΓB
γ 7−→ (γ, j(γ)).

7or, equivalently, such that ∇C is the Chern connection associated to ‖.‖.
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Observe that any Z-basis (γ1, . . . , γ2g) of ΓA is a R-basis of LieA, and consequently its
image (∆(γ1), . . . ,∆(γ2g)) by ∆ is a C-basis of LieB.

Let ρ (resp. ρ−, ρ̃) be the monodromy representation of ΓA (resp. ΓA− , ΓB) defined by
the line bundle with connection (L,∇) (resp. (L−,∇−), (L̃, ∇̃)).

It is straightforward that, for any γ in ΓA, the following relations hold:

ρ−(j(γ)) = ρ(γ),

and
ρ̃(∆(γ)) = ρ(γ).ρ−(j(γ)) = |ρ(γ)|2.

These observations establish:

Lemma 3.2.10. If there exists an hermitian metric ‖.‖ on the complex line bundle L on
A(C) such that the connection ∇ is unitary with respect to ‖.‖, then the image ∆(Γ) of
the diagonal embedding ∆ contains a C-basis of LieB, and is included in the kernel of the
monodromy representation ρ̃ of (L̃, ∇̃).

3.2.11. Conclusion of the proof of Theorem 3.2.1. The following statement is a straight-
forward consequence of Corollary 3.2.6 to the Theorem of Schneider-Lang, combined with
Lemma 3.2.8 above:

Corollary 3.2.12. Let A be an abelian variety over a number field K, and (L,∇) a line
bundle over A equipped with a flat connection defined over K, and let σ : K ↪→ C be a field
embedding that is real, namely such that its image σ(K) lies in R.

If there exists an hermitian metric ‖.‖ on the complex line bundle Lσ on Aσ(C) such that
the connection ∇σ is unitary with respect to ‖.‖, then L has a torsion class in Pic(A).

If we use Lemma 3.2.10 instead of Lemma 3.2.8, we may prove:

Corollary 3.2.13. Let A be an abelian variety over a number field K, and (L,∇) a line
bundle over A equipped with a flat connection defined over K.

Let σ : K ↪→ C be a field embedding, and let τ be a (necessarily involutive) automorphism
of the field K such that σ ◦ τ = σ.

If there exists an hermitian metric ‖.‖ on the complex line bundle Lσ on Aσ(C) such that
the connection ∇σ is unitary with respect to ‖.‖, then L has a torsion class in Pic(A).

Observe that Corollary 3.2.13 contains as a special case Corollary 3.2.12 above. We have
however chosen to present explicitly the statement of Corollary 3.2.12 and its proof above,
since the basic idea behind the proofs of these two theorems — inspired by Bertrand’s proof
in [Ber95] and [Ber98] — appears more clearly in the first one.
Proof of Corollary 3.2.13. We may define Aτ , Lτ , and ∇τ to be respectively the abelian
variety over K, the line bundle over Aτ , and the connection over Lτ deduced from A, L, and
∇ by the base change SpecK → SpecK defined by τ . We may also introduce the abelian
variety over K

B := A×Aτ ,
the two projections

pr : B −→ A and prτ : B −→ Aτ ,

and (L̃, ∇̃) the line bundle with connection over B defined as the tensor product of pr∗(L,∇)
and pr∗τ (Lτ ,∇τ ).
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Lemma 3.2.10 applied to (Aσ, Lσ,∇σ) shows that the hypotheses of Corollary 3.2.6 are
satisfied by the abelian variety B over K, and the line bundle with connection (L̃, ∇̃) over
B. Consequently L̃ has a torsion class in Pic(B), and so L itself — which is isomorphic to
the restriction of L̃ to A× {e} ' A — has a torsion class in Pic(A).

�

Finally consider K, A, (L,∇), σ and ‖.‖ as in the statement of Theorem 3.2.1.
Let us first show that L has a torsion class inK. To achieve this, let us choose a finite field

extension K ′ of K admitting an automorphism τ and an embedding σ′ in C that extends σ
and satisfies σ′◦τ = σ′ — for instance the subfield K ′ of C generated by σ(K) and its image
by complex conjugation. We may apply Corollary 3.2.13 to the number field K ′ equipped
with the complex embedding σ′, and to the abelian variety AK′ and the line bundle with
connection (LK′ ,∇K′) deduced from A and (L,∇) by the base change SpecK ′ → SpecK.
Therefore LK′ has a torsion class in Pic(AK′). As the base change morphism

Pic(A) −→ Pic(AK′)

is injective, this indeed implies that L has a torsion class in Pic(A).
To complete the proof of Theorem 3.2.1, it is sufficient to observe that the curvature of

‖.‖— or equivalently, of the C∞-connexion ∇C∞ = ∇σ+∂Lσ on Lσ — vanishes for reason of
type8: it is a 2-form on Aσ(C) of type (2, 0), since ∇σ is holomorphic, and purely imaginary,
since ∇C∞ is unitary.

4. A geometric analogue

4.1. Line bundles with vanishing relative Atiyah class on fibered projective va-
rieties.

4.1.1. Notation. In this Section, we consider a smooth projective geometrically connected
curve C over a field k of characteristic 0, and a smooth projective variety V over k equipped
with a dominant k-morphism π : V → C, with geometrically connected fibers.

Observe that the morphism π is flat, and smooth over an open dense subscheme of C,
namely over the complement of finite set ∆ of closed points P in C such that the (scheme
theoretic) fiber π∗(P ) is not smooth over k.

Let K := k(C) denote the function field of C. The generic fiber VK of π is a smooth
projective geometrically connected variety over K. Conversely, according to Hironaka’s res-
olution of singularity, any such variety over K may be constructed from the data of a
k-variety V and of a k-morphism π : V → C as above.

Recall also that a divisor E in V is called vertical if it belongs to the group of divisors
generated by components of closed fibers of π, or equivalently, if its restriction EK to its
generic fiber vanishes.

In the sequel, we assume that the dimension n of V is at least 2. Moreover we choose
an ample line bundle O(1) over V , we denote H its first Chern class in the Chow group
CH1(X), and for any integral subscheme D of positive dimension in V we let:

degH,D L := degk(c1(L).HdimD−1.[D]).

8One could also argue that this curvature coincides with the one of the holomorphic connection ∇σ, which
vanishes, as recalled above.
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Actually, we shall use this definition only when D is a vertical divisor in V . Consequently,
we could require O(1) to be ample relatively to π only, and when n = 2 the choice of O(1)
is immaterial.

Observe that, if O(1) is very ample and defines a projective embedding ι : V ↪→ PNk , then,
for any general enough (dimD − 1)-tuple (H1, . . . ,HdimD−1) of projective hyperplanes in
PNk , the subscheme

C := D ∩ ι−1(H1) ∩ . . . ∩ ι−1(HdimD−1)

in PNk is integral, one-dimensional, and projective over k, and its class [C] in CH1(X)
coincide withHdimD−1.[D]. Consequently degH,D L is nothing but the degree degk c1(L).[C]
of the restriction of L to the “general linear section” C of D.

Let us recall that, if M is a smooth projective geometrically connected scheme over
some field k0 of characteristic zero, then the Picard functor PicM/k0 is representable by a
separated group scheme over k0, and that its identity component is an abelian variety over
k0. A line bundle L over M will be said algebraically equivalent to zero when the point in
PicM/k0(k0) it defines belongs to Pic0

M/k0
(k0), or equivalently, if its class in the Néron-Severi

group of M over k0 — defined as PicM/k0(k0)/Pic0
M/k0

(k0) — vanishes9.

In particular, we may consider the identity component Pic0
VK/K

of the Picard variety of
the generic fiber VK of π; it is an abelian variety over K, and we shall denote (B, τ) its
K/k-trace. By definition, B is an abelian variety over k, and τ is a morphism of abelian
varieties over K:

τ : BK −→ Pic0
VK/K

.

Since the base field k is assumed to be of characteristic zero, this morphism is actually a
closed immersion. We refer the reader to Section 4.6 infra for a discussion and references
concerning the definition of Pic0

VK/K
and (B, τ).

4.1.2. The following theorem may be seen as a geometric counterpart, valid over the function
field K := k(C), of the main result, Theorem 3.1.2 of Section 3.

Theorem 4.1.3. With the above notation, for any line bundle L over V , the following three
conditions are equivalent:

VA1 The relative Atiyah class jet1V/C(L) vanishes.

VA2 There exists a positive integer N and a line bundle M over C such that the line
bundle L⊗N ⊗ π∗M∨ is algebraically equivalent to zero.

VA3 There exists a positive integer N such that the line bundle L⊗NK on VK is alge-
braically equivalent to zero, and the attached K-rational point of the Picard variety Pic0

VK/K

is defined by a k-rational point of the K/k-trace of Pic0
VK/K

. Moreover, for any component
D of a closed fiber of π, the degree degH,D L vanishes.

Observe that, for any closed point P of C \ ∆, its fiber D := π∗(P ) is a divisor in
V , smooth and geometrically connected over k(P ), and that, according to the projection

9The reader should beware that this definition is weaker than the one occurring in [Ful98]. Namely, if D
is a divisor in M , the line bundle O(D) is algebraically equivalent to zero in the above sense iff the divisor

Dk0
on Mk0

is algebraically equivalent to zero in Fulton’s sense, where k0 denotes an algebraic closure of

k0.
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formula,

degH,D L = degk(c1(L).Hn−2.[π∗(P )])

= degk(π∗(c1(L).Hn−2).[P ])

= [k(P ) : k].degK(c1(LK).c1(O(1)K)dimVK−1.[VK ]).

In particular, if some positive power L⊗NK of LK is algebraically equivalent to zero, then
degH,D L vanishes. Consequently, in condition VA3, we may require the vanishing of
degH,D L only for components D of the supports of the singular fibers π∗(P ), where P
varies in ∆.

The proof of the equivalence of conditions VA1 and VA2, which uses the Hodge index
theorem and basic properties of Hodge cohomology groups, will be presented in Sections 4.4
and 4.5 below. Then in Section 4.6 and 4.7 we shall recall some classical facts concerning
the Picard variety Pic0

VK/K
and its K/k-trace, and establish the equivalence of conditions

VA2 and VA3.

4.2. Variants and complements.

4.2.1. Recall that the following conditions are equivalent — when they hold, the Picard
variety Pic0

VK/K
will be said to have no fixed part :

NF1 The K/k-trace of Pic0
VK/K

vanishes, or in other terms, for any abelian variety A
over k, there is no non-zero morphism of abelian varieties over K from AK to Pic0

VK/K
.

NF2 The morphism of k-abelian varieties naturally deduced from π : V −→ C

Pic0
C/k −→ Pic0

V/k

— which has a finite kernel — is an isogeny.
NF3 The injective morphism of k-vector spaces

π∗ : H1(C,OC) −→ H1(V,OV )

is an isomorphism.
NF4 The injective morphism of k-vector spaces

H0(C,Ω1
C/k) −→ H1(V,Ω1

V/k)

is an isomorphism.
Indeed the equivalence of NF1 and NF2 follows from the description of the K/k-trace

of Pic0
VK/K

recalled in Proposition 4.6.1 below. The equivalence of NF2 and NF3 follows
from the identification of H1(C,OC) (resp. H1(V,OV )) with Lie Pic0

C/k (resp. Lie Pic0
V/k).

The equivalence of NF3 and NF4 follows from Hodge theory when k = C, and therefore,
by a standard base change argument, for any base field k of characteristic zero.

As demonstrated by the theorem of Mordell-Weil-Lang-Néron, it is natural to require a
no fixed part condition when searching for statements valid over function fields that are as
close as possible to their arithmetic counterparts. This is indeed the case with Theorem
4.1.3. Namely, when Pic0

VK/K
has no fixed part, Conditions VA1-3 are also equivalent to

the following ones, which look more closely like the conditions appearing in i) and ii) of the
“arithmetic” Theorem 3.1.2:
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VA2’ There exists a positive integer N and a line bundle M over C such that the line
bundle L⊗N is isomorphic to π∗M.

VA3’ The class of LK in the abelian group PicVK/K(K) is torsion. Moreover, for any
component D of a closed fiber of π, the degree degH,D L vanishes.

Indeed, the equivalence of VA3 and VA3’ when NF1 holds is straightforward, and the
equivalence of VA2 and VA2’ easily follows from NF2.

4.2.2. Generalizations of Theorem 4.1.3 concerning a smooth projective variety V over k
fibered over a variety C of dimension > 1 may be deduced from its original version with C
a curve by means of standard techniques, as in the proof of the Mordell-Weil-Lang-Néron
theorem (cf. [LN59]). We leave this to the interested reader.

4.3. Hodge cohomology and first Chern class. Let k be a field of characteristic zero,
and SmPrk the full subcategory of the category of k-schemes whose objects are smooth
projective schemes V over k.

In this Section, we review some basic properties of the Hodge cohomology groups of
objects in SmPrk. These properties are consequence of the duality theory for coherent
sheaves on projective varieties, as explained in [Gro62], exposé 149.

4.3.1. Hodge cohomology groups. To any object V in SmPrk are attached his Hodge coho-
mology groups:

Hp,q(V/k) := Hq(V,Ωp
V/k).

These are finite dimensional k-vector spaces, and vanish if min(p, q) > d := dimV.Moreover,
the cup products

Hp,q(V/k)×Hp′,q′(V/k) −→ Hp+p′,q+q′(V/k)
(α, α′) 7−→ α.α′,

— defined as the compositions of the products

Hq(V,Ωp
V/k)×H

q′(V,Ωp′

V/k) −→ Hq+q′(V,Ωp
V/k ⊗ Ωp′

V/k)

and of the mappings

Hq+q′(V,Ωp
V/k ⊗ Ωp′

V/k) −→ Hq+q′(V,Ωp+p′

V/k )

deduced from the exterior product ∧ : Ωp
V/k ⊗ Ωp′

V/k −→ Ωp+p′

V/k — make the direct sum
H∗,∗(V/k) :=

⊕
(p,q)∈N2 Hp,q(V/k) a bigraded commutative10 k-algebra.

The cohomology group is a one dimensional k-vector space, with basis 1V , if V is a
geometrically connected k-scheme.

Moreover, the “top-dimensional” Hodge cohomology group Hd,d(V/k) is equipped with
a canonical k-linear form: ∫

V/k
. : Hd,d(V/k) −→ k,

and the attached k-bilinear map

< ., . >: H∗,∗(V/k)×H∗,∗(V/k) −→ k
(α, β) 7−→

∫
V/k α.β

10Namely, for any α (resp. α′) in Hq(V, Ωp
V/k) (resp. in Hq′

(V, Ωp′

V/k)), we have α.α′ = (−1)pp′+qq′
α′.α.
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is a perfect pairing.
In particular, when V is a geometrically connected k-scheme — equivalently if the linear

map
k −→ Γ(V,OV ) = H0,0(V/k)
λ 7−→ λ.1V

is an isomorphism, then the “residue map” also is:∫
V/k

. : Hd,d(V/k) ∼−→ k.

Then we let:

µV :=
∫ −1

V/k
(1).

These constructions are compatible in an obvious sense with extensions of the base field
k. Let us also indicate that, when k = C, the trace map∫

V/C
. : Hd,d(V/C) −→ C

satisfies the following compatibility relation with the Dolbeault isomorphism

DolbΩd
V/C

: Hd(V,Ωd
V/C) −→ Hd

Dolb(V,Ω
d
V/C)

(we follow the notation of [BK07], A.5.1) and the integration of top degree forms:∫
V (C)

. : Ad,d(V (C)) −→ C.

For any α in Ad,d(V (C)), of class [α] in Hd
Dolb(V,Ω

d
V/C, we have:∫

V/C
Dolb−1

Ωd
V/C

([α]) = εd
1

(2πi)d

∫
V (C)

α,

where εd denotes a sign, function of d only, depending on the sign conventions followed in
duality theory.

4.3.2. The first Chern class in Hodge cohomology. Any line bundle L over some V in SmPrk
admits a first Chern class c1(L) in H1,1(V/k). It may be defined as the class of the extension
given by the principal parts of first order associated with L

J etX/kL : O −→ Ω1
X/k ⊗ L −→ P 1

X/k(L) −→ L −→ 0

in

Ext1V (L,Ω1
V/k ⊗ L) ' Ext1V (OV ,Ω1

V/k)(4.1)

' H1(V,Ω1
V/k).(4.2)

(The isomorphism (4.1) is the (inverse of the) one defined by applying the functor .⊗ L to
complexes of OV -modules, without intervention of signs. The isomorphism (4.2) is the one
discussed in [BK07], A.2 and A.4.)

The so-defined first Chern class defines a morphism of abelian groups:

Pic(X) −→ H1(V,Ω1
V/k) =: H1,1(V/k)

[L] 7−→ c1(L).
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Moreover, this morphism factorizes through the Néron-Severi group

NSV/k(k) = PicX/k(k)
/
Pic0

X/k(k),

vanishes precisely on its torsion subgroup NSV/k(k)tor (compare for example [Kle66, II.2
Cor. 1 to Th. 2]), and consequently defines an injective morphism of groups

c1 : NSV/k(k)/NSV/k(k)tor −→ H1,1(V/k).

In other words, for any line bundle L on V , the following two conditions are equivalent:
(i) the first Chern class c1(L) in H1,1(V/k) vanishes;
(ii) for some positive integer N , the line bundle L⊗N over V is algebraically equivalent

to zero.
Let us also recall that the construction of the first Chern class in Hodge cohomology is

compatible with pull-back by k-morphisms. It is also compatible with intersection theory.
In particular, we have:

Proposition 4.3.3. For any d-tuple D1, . . . , Dd of divisors in V , the following formula
holds:

(4.3)
∫
V/k

c1(O(D1)). · · · .c1(O(Dd)) = degk([D1]. · · · .[Dd]),

where [Di] denotes the class of Di in the Chow group CH1(V ), [D1]. · · · .[Dd] their product
in CHd(V ) = CH0(V ) and

degk : CH0(V ) π∗−→ CH0(Spec k) ' Z

the degree map, attached to the structural morphism π : V → Spec k of V.
In particular, if d = 1 and V is geometrically irreducible, then

c1(O(D)) = degkD.µV .

Indeed the equality (4.3) follows from [Gro62], exposé 149 (Théorème 1, Théorème 2,
and its proof) when the divisors D1, . . . , Dn and their successive intersections D1 ∩ D2,
D1 ∩ D2 ∩ D3,. . . , D1 ∩ D2 ∩ · · · ∩ Dn are smooth. Together with the invariance of both
sides of (4.3) by linear equivalence of D1, . . . , Dn and Bertini theorem, this shows that (4.3)
holds when D1, . . . , Dn are very ample. The general case of (4.3) follows by multilinearity.

4.4. An application of the Hodge Index Theorem. Our proof of Theorem 4.1.3 will
rely on the an application of Hodge Index Theorem to projective varieties fibered over curves
that we discuss in the present Section.

4.4.1. The Hodge Index Theorem in Hodge cohomology. Let V be smooth projective, geo-
metrically connected, scheme over k, and let h be the first Chern class c1(O(1)) inH1,1(V/k)
of some ample line bundle O(1) on V. (When k = C, we could more generally define h as the
class in H1,1(V/C) — identified with the Dolbeault cohomology group H1

Dolb(V (C),Ω1
V (C))

— of any Kähler form on V (C).)
We shall use the Hodge Index Theorem in the following form, which follows from its usual

version (see for instance [BGI71], XIII.7) combined with Proposition 4.3.3 above:
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Proposition 4.4.2. When d := dimV ≥ 2, for any class α of H1,1(V/k) in the image of
c1 : Pic(V )→ H1,1(V/k), the following conditions are equivalent:

(i) α = 0;
(ii) α2.hd−2 = α.hd−1 = 0 in Hd,d(V/k) ' k.

4.4.3. An application to projective varieties fibered over curves. We keep the notation of
the previous paragraph, and assume that d := dimV is at least 2. Moreover, we consider a
smooth, geometrically connected, projective curve C over k, and a dominant k-morphism
π : V → C. We shall denote K the function field k of C, VK := V ×C SpecK the generic
fiber of π, and O(1)K the pull-back of O(1) to VK .

Let us introduce the class
F := π∗µC

in H1,1(V/k). The “intersection number”
∫
V/k F.h

d−1, which a priori belongs to k, is a
positive integer — namely the degree degO(1)K

VK of VK with respect to O(1)K . Indeed, if
E is a divisor on C with positive degree, and if H is the divisor of some non-zero rational
section of O(1), we have

(4.4) degk([π
∗(E)].[H]d−1) = degk([E].π∗([H]d−1)) = degk E.degO(1)K

VK ,

by basic intersection theory. Besides, the naturality of c1 and Proposition 4.3.3 show that
the left-hand side of (4.4) is also equal to∫

V/k
π∗c1(O(E)).c1(O(1))d−1 =

∫
V/k

π∗(degk E.µC).hd−1 = degk E.
∫
V/k

F.hd−1.

Together with (4.4), this establishes the announced relation∫
V/k

F.hd−1 = degO(1)K
VK .

In particular, the class F is not zero, and the image of π∗ : H1,1(V/k) → H1,1(V/k) is
precisely the k-line k.F.

Observe also that µ2
C = 0 for dimension reasons, and that consequently F 2 = 0.

Proposition 4.4.4. With the above notation, for any class β of H1,1(V/k) in the image of
c1, the following conditions are equivalent:

(i) β belongs to Q.F ;
(ii) β belongs to k.F ;
(iii) β.β = β.F = 0 in H2,2(V/k);
(iv) β2.hd−2 = β.F.hd−2 = 0 in Hd,d(V/k) ' k.

Proof. The implications (i)⇒(ii)⇒(iii)⇒(iv) are straightforward. To establish the converse
implications, consider the class

α := β −

∫
V/k β.h

d−1∫
V/k F.h

d−1
.F

in H1,1(V/k). It satisfies α.hd−1 = 0 by its very definition (recall that
∫
V/k . : H

d,d(V/k) '
k). Moreover, when condition (iv) holds, then α also satisfies α2.hd−2 = 0. Then Hodge
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Index Theorem (Proposition 4.4) shows that α vanishes, or equivalently that

β =

∫
V/k β.h

d−1∫
V/k F.h

d−1
.F.

This establishes (i), since
∫
V/k β.h

d−1/
∫
V/k F.h

d−1 belongs to Q. Indeed, like
∫
V/k F.h

d−1,∫
V/k β.h

d−1 is an integer, since it coincide with the intersection number degk([D].[H]d−1)
where D denotes a divisor on V such that β = c1(O(D)) and H the divisor of some non-zero
rational section of O(1). �

4.5. The equivalence of VA1 and VA2. We keep the notation of the previous paragraph
4.4.3. In other words, the same hypotheses as in Theorem 4.1.3 are supposed to hold, except
the connexity of the geometric fibers of π.

The following result contains the equivalence of Conditions VA1 and VA2 in Theorem
4.1.3:

Theorem 4.5.1. For any line bundle L over V, the following conditions are equivalent:
(i) The relative Atiyah class jetV/CL vanishes in H1,1(V,Ω1

V/C).

(ii)’ c1(L) belongs to Q.F .
(ii)” There exists a positive integer N and a line bundle M over C such that c1(L⊗N ⊗

π∗M) vanishes.

Proof. The equivalence (ii)’ ⇔ (ii)” is straightforward.
To establish the implication (i) ⇔ (ii)’, consider the canonical exact sequence of sheaves

of Kähler differentials on V ,

0 −→ π∗Ω1
C/k

i−→ Ω1
V/k

p−→ Ω1
V/C −→ 0,

and the associated exact sequence of cohomology groups

H1(V, π∗Ω1
C/k)

H1(i)−→ H1(V,Ω1
V/k)

H1(p)−→ H1(V,Ω1
V/C).

As a special case of Lemma 1.1.6, i), the relative class jetV/CL is the image of c1(L) :=
jetV/kL by H1(p). Since F belongs to the image of H1(i), hence to the kernel of H1(p), this
establishes the implication (ii)’ ⇒ (i).

The implication (i)⇒(ii)’ will follow from the implication (iii)⇒(i) in Proposition 4.4.3
combined with the following:

Lemma 4.5.2. For any line bundle L over V , if the relative Atiyah class jetV/CL vanishes
in H1(V,Ω1

V/C), then c1(L).F and c1(L)2 vanish in H2(V,Ω2
V/k).

To establish this lemma, Observe that the cup product

(4.5) H1,1(V/k)⊗H1,1(V/k) −→ H2,2(V/k)

vanishes on imH1(i)⊗ imH1(i). Indeed the map of sheaves of OV -modules defined as the
composition

π∗Ω1
C/k ⊗ π

∗Ω1
C/k

i⊗i−→ Ω1
V/k ⊗ Ω1

V/k
.∧.−→ Ω2

V/k
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vanishes by functoriality of the exterior product, since Ω2
C/k = 0. This entails the vanishing

of the cup product (4.5) on kerH1(p)⊗kerH1(p) and on kerH1(p)⊗imπ∗, where π∗ denotes
the pull-back map in Hodge cohomology π∗ : H1,1(C/k)→ H1,1(V/k).

The relative Atiyah class jetV/CL in H1(V,Ω1
V/C) of a line bundle L on V is the image by

H1(p) of its Atiyah class jetV/kL in H1(V,Ω1
V/k). Consequently, jetV/CL vanishes precisely

when c1(L) = jetV/kL belongs to kerH1(p), in which case c1(L)2 and c1(L).F vanish in
H2(V,Ω2

V/k) by the observation above. This completes the proof of Lemma 4.5.2, hence of
Theorem 4.5.1. �

4.6. The Picard variety of a variety over a function field. In this paragraph, we
recall some classical facts concerning the relations between the Picard varieties of C and V ,
and the K/k-trace of the Picard variety of generic fiber VK of V . (For modern presentations
of Chow’s classical theory of the K/k-trace of abelian varieties over K, we refer to [Con06]
and Hindry’s Appendix A in [Kah06].)

Let (B, τ) be the K/k-trace of Pic0
VK/K

. By construction, B is an abelian variety over k,
and τ is a morphism of abelian varieties over K

τ : BK −→ Pic0
VK/K

.

Actually, since our base field k has characteristic zero, τ is an embedding.
The inclusion VK ↪→ V induces a morphism of abelian varieties over K

φ : Pic0
V/k,K −→ Pic0

VK/K
.

According to the universal property of (B, τ), there exists a unique morphism of abelian
varieties over k

α : Pic0
V/k −→ B

such that
φ = τ ◦ αK .

Beside we may consider the morphism

π∗ : Pic0
C/k −→ Pic0

V/k

defined by functoriality from π : V → C.

The following Proposition is established as Proposition 3.3 in [HPW05], where references
are made to similar earlier results due to Tate, Shioda, and Raynaud.

Proposition 4.6.1. The morphism α is surjective, and the morphism π∗ is an isogeny from
Pic0

C/k onto the abelian variety (kerα)◦ defined as the identity component of the k-group
scheme kerα.

In brief, the following diagram of abelian varieties over k

0 −→ Pic0
C/k

π∗−→ Pic0
V/k

α−→ B −→ 0

is “exact up to some finite group schemes”. Together with Poincaré’s reducibility theorem,
this implies that the diagram of abelian groups

(4.6) 0 −→ Pic0
C/k(k)

π∗−→ Pic0
V/k(k)

α−→ B(k) −→ 0

is “exact up to some finite groups.”
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Corollary 4.6.2. For any line bundle L over V , the following conditions are equivalent:
(i) There exists a positive integer N such that the class of L⊗NK in Pic0

VK/K
(K) belongs

to τ(B(k)).
(ii) There exist a positive integer N and a line bundle L′ over V , algebraically equivalent

to zero, such that, over VK ,
L⊗NK ' L′K .

(iii) There exist a positive integer N , a line bundle L′ over V , algebraically equivalent to
zero, and a vertical divisor E over V such that, over V ,

L⊗N ' L′ ⊗O(E).

Proof. The equivalence of (ii) and (iii) is straightforward. The one of (i) and (ii) follows from
the “almost exactness” of (4.6) and the fact that any element of the group Pic0

V/k(k) has
a positive multiple that may be represented by an actual line bundle over V , algebraically
equivalent to zero. �

4.7. The equivalence of VA2 and VA3. In this section, we complete the proof of The-
orem 4.1.3 by establishing the equivalence of conditions VA2 and VA3.

The implication VA2⇒VA3 follows from the implication (ii)⇒(i) in Corollary 4.6.2 and
from the invariance of degH,D L under algebraic equivalence of line bundles.

Conversely let us consider a line bundle L over V that satisfies VA3.
According to the implication (i)⇒(iii) in Corollary 4.6.2, we may find a positive integer

N , a line bundle L′ over V , algebraically equivalent to zero, and a vertical divisor E in V
such that L⊗N ' L′ ⊗O(E).

Moreover, for every vertical integral divisor D in V , we have

degH,D L
⊗N = N.degH,D L = 0

by VA3, and
degH,D L

′ = 0

since L′ is algebraically equivalent to zero. Therefore,

degH,DO(E) = 0.

Lemma 4.7.1 below shows that, after possibly replacing L and L′ by some positive power,
the divisor E is of the form π∗(E′) for some divisor E′ on C. Consequently,

L⊗N ⊗ π∗O(−E′) ' L′

is algebraically equivalent to zero, and L satisfies VA2.

Lemma 4.7.1. For any vertical divisor E on V , the following conditions are equivalent:
(i) For every vertical divisor D on V,

degH,DO(E) = 0.

(ii) There exist a divisor E′ on C and a positive integer N such that

N.E = π∗E′.
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This is well known, at least when n = 2 and k is algebraically closed, in which case it
is traditionally attributed to Zariski. We refer to [Del73] for a discussion of related results
concerning intersection theory on surfaces, and to [HPW05], Lemme 2.1 for a similar result.
We sketch a proof below for the sake of completeness.

Proof. The implication (ii)⇒(i) is a straightforward consequence of the projection formula.
Indeed, for any integral vertical divisor D on V , the following equality holds in the Chow
group CH0(C)

π∗(Hn−2.D) = 0,
since π(D) is zero-dimensional. Consequently, if E′ is a divisor in C, we have

degH,DO(π∗E′) = degk(H
n−2.D.π∗E′)

= degk(π∗(H
n−2.D).E′)

= 0.

To establish the implication (i)⇒(ii), we may assume that E is supported by the fiber
π∗(P ) of some closed point P of C. Let D1, . . . , Dr be the components of |π∗(P )|, and let
n1, . . . , nr be the positive integers defined by the equality of divisors in V :

π∗P =
r∑
i=1

ni.Di.

We want to prove that if some divisor supported by π∗(P ), E :=
∑r

i=1mi.Di, satisfies

degH,Dj
O(E) = 0,

for every j ∈ {1, . . . , r}, then E is a rational multiple of π∗(P ), or, in other words, there
exists m in Q such that

(m1, . . . ,mr) = m(n1, . . . , nr).
This property is equivalent to the fact that the kernel of the symmetric quadratic form
attached to the matrix (qij)1≤i,j≤r defined by

qij := degk(H
n−2.Di.Dj)

is generated by the vector (n1, . . . , nr).
To establish this, observe that the converse implication (ii)⇒(i), applied to D = Di and

E = π∗P , shows that
r∑
j=1

qijnj = 0

for every i ∈ {1, . . . , r}. This yields the following expression for the quadratic form defined
by the qij ’s:

r∑
i,j=1

qijmimj = −
∑

1≤i<j≤r
qijninj

(
mi

ni
− mj

nj

)2

.

The required property now follows from the following two observations:
(i) For any two distinct elements i and j in {1, . . . , r}, the cycle theoretic intersection

Di.Dj of the Cartier divisors Di and Dj is the cycle attached to the intersection scheme
Di ∩ Dj , which is either empty or purely (n − 2)-dimensional, and consequently, by the
ampleness of H, the degree qij := degk(Hn−2.[Di ∩ Dj ]) is non-negative, and positive if
Di ∩Dj is not empty.
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(ii) The scheme π∗(P ) is connected, and consequently there is no partition of {1, . . . , r}
in two non-empty subsets I and J such that (i, j) ∈ I × J ⇒ qij = 0.

�

Appendix A. A computation in Čech cohomology

Let X be an arithmetic scheme over an arithmetic ring, E a quasi-coherent OX -module
on X and U = (Ui)i∈I a locally finite, affine, open covering of X. We fix a well ordering on
I and consider the (alternating) Čech complex

(
C·(U , E), d

)
where

Cp(U , E) =
∏

i0<...<ip

E(Ui0...ip)

with usual notation
Ui0...ip = Ui0 ∩ . . . ∩ Uip

and differential δ : Cp(U , E)→ Cp+1(U , E) given by the formula

(δα)i0,...,ip+1 =
p+1∑
k=0

(−1)kαi0,...,bik,...,ip+1

∣∣
Ui0

∩...∩Uip+1
.

Recall from [BK07, 2.5] that there is a natural morphism of OX -modules

adE : E → (ρ∗EC)F∞

given by adjunction with respect to the natural morphism of locally ringed spaces

ρ : (XΣ(C), C∞XΣ
)→ (XΣ(C),Ohol

XΣ
)→ (X,OX).

It induces a morphism of Čech complexes

C·(U , adE) : C·(U , E) → C·(U , (ρ∗EC)F∞).

We use the conventions fixed in [BK07, A.1]. The Čech hypercohomology Ȟ0
(
U , C(adE))

)
of the cone C(adE) of adE with respect to the covering U is the cohomology of the complex
C

(
C·(U , adE)

)
in degree zero. This complex starts as

0→ C0(U , E)
( −δ
adE

)
−→ C1(U , E)⊕ C0(U , (ρ∗EC)F∞)

(−δ 0
adE δ)−→ C2(U , E)⊕ C1(U , (ρ∗EC)F∞)

where C0(U , E) sits in degree −1. Hence Ȟ0
(
U , C(adE)

)
is the quotient

(A.1)

{
(α, β) ∈ C1(U , E)⊕ C0

(
U , (ρ∗EC)F∞

) ∣∣ δα = 0 ∧ adE(α) = −δ(β)
}

{(
−δ(γ), adE(γ)

) ∣∣ γ ∈ C0(U , E)
} .

This group fits by the cone construction into a natural exact sequence

Ȟ0
(
U , E)

)
→ Ȟ0

(
U , (ρ∗EC)F∞

)
→ Ȟ0

(
U , C(adE))

)
→ Ȟ1

(
U , E)

)
→ Ȟ1

(
U , (ρ∗EC)F∞)

)
.

Lemma A.0.2. Let E be quasi-coherent OX-module. There exists a canonical commutative
diagram

Γ(X,E) → A0(XR, E) → Êxt
1
(OX , E) → Ext1(OX , E) → 0

↓ ↓ ↓ ρ̂U,E ↓ ρU,E

Ȟ0
(
U , E)

)
→ Ȟ0

(
U , (ρ∗EC)F∞

)
→ Ȟ0

(
U , C(adE)

)
→ Ȟ1

(
U , E)

)
→ 0.

with exact horizontal lines where all vertical maps are isomorphisms.
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Proof. The upper exact sequence is established in [BK07, 2.2]. We have

Ȟ1
(
U , (ρ∗EC)F∞)

)
= Ȟ1

(
ρ−1U , (EC)F∞)

)
and the latter group is zero as Čech cohomology of a fine sheaf (use [Wel80, II 3.2 e)]) with
respect to a locally finite, open covering vanishes [Hir66, 2.11]. We obtain the lower exact
sequence. The two left vertical maps are given by the natural isomorphisms induced by the
restriction maps of the sheaves E and (ρ∗EC)F∞ . We define ρU ,E . Let

E : 0→ E → F
π→ OX → 0

be an extension of OX -modules. The map π admits a section ϕi over each affine scheme Ui.
The difference αij = ϕj |Uij − ϕi|Uij determines an element in Γ(Uij , E). The family (αij)ij
defines a 1-cocycle in C1(U , E) whose class in Ȟ1(U , E) does not depend on the choices of
the ϕi. One obtains a canonical isomorphism (compare for example [Ati57, Prop. 2])

ρU ,E : Ext1X(OX , E)→ Ȟ1(U , E) , [E ] 7→
[
(αij)ij

]
.

Finally we define ρ̂U ,E . Let (E , s) be an arithmetic extension with E as above. Choose the
ϕi as before and define

βi = s|Ui − adE(ϕi) ∈ A0,0(Ui,R, E).

We have adE(αij) = βi|Uij − βj |Uij . Hence the pair
(
(αij)ij , (βi)i

)
determines an element

ρ̂U ,E(E , s) in (A.1), i.e. in Ȟ0
(
U , C(adE)

)
. This class does not depend on the choices of the

ϕi. Given different sections ϕ̃i which led to cocyles
(
(α̃ij)ij , (β̃i)i

)
as above, we consider

γ ∈ C0(U , E) , γi = ϕi − ϕ̃i
and get (

−δ
adE

)
(γ) = (α̃, β̃)− (α, β).

It is straightforward to check that

ρ̂U ,E : Êxt
1
(OX , E)→ Ȟ0

(
U , C(adE)

)
,

[
(E , s)

]
7→

[
(αij), (βi)

]
is a group homomorphism which fits into the above commutative diagram. The five lemma
implies that the map ρ̂U ,E is an isomorphism. �

Corollary A.0.3. Let F , G be quasi-coherent OX-modules such that F is a vector bundle
on X. There exists a canonical isomorphism

ρ̂U ,F,G : Êxt
1
(F,G)→ Ȟ0

(
U , C(adHom(F,G))

)
which identifies Êxt

1
(F,G) with the quotient (A.1) for E = Hom(F,G).

Proof. It is proved in [BK07, 2.4.6] that there is a canonical isomorphism

(A.2) Êxt
1
(F,G) ∼→ Êxt

1
(OX ,Hom(F,G))

which maps the class of an arithmetic extension (E , s) to the pushout of (E , s)⊗ F∨ along
the canonical map ∆ : OX → F ⊗ F∨. Let E = Hom(F,G). We define ρ̂U ,F,G as the
composition of the isomorphisms (A.2) and ρ̂U ,E in A.0.2. �
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Appendix B. The universal vector extension of a Picard variety

In this Appendix, we recall basic facts about universal vector extensions from [Mes73]
and [MM74] and describe the maximal compact subgroup of the Lie group given by their
real and complex valued points.

Let S be a locally noetherian scheme. We consider a morphism f : X → S of schemes
which satisfies:

i) The morphism f is projective, smooth with geometrically connected fibers.
ii) The Hodge to de Rham spectral sequence

Ep,q1 = Rqf∗Ω
p
X/S ⇒ Rp+qf∗Ω·

X/S

degenerates at E1 and the sheaves Rqf∗Ω
p
X/S are locally free.

iii) The identity component Pic0
X/S of the Picard scheme PicX/S is an abelian scheme.

B.1. We observe that i) implies that PicX/S is representable by a S-group scheme [Gro62,
n.232, Thm. 3.1] and that f∗OX = OS holds universally [Gro63, 7.8.6]. Furthermore
i) implies ii) if S is of characteristic zero [Del68, Th. 5.5] and i) implies iii) if S is the
spectrum of a field of characteristic zero [BLR90, 8.4]. It is shown in [Kat70, 8.3] that the
formation of the coherent sheaves Rqf∗Ω

p
X/S and Rnf∗Ω·

X/S commutes with arbitrary base
change if they are locally free.
B.2. We consider the complex

Ω×
X/S : 0→ O∗X

dlog→ Ω1
X/S

d→ Ω2
X/S

d→ . . .

where O∗X sits in degree zero. The group

Pic#(X/S) := H1(Xfppf ,Ω×
X/S)

classifies isomorphism classes of pairs (L,∇) where L is a line bundle on X and ∇ is an
integrable connection

∇ : L→ L⊗ Ω1
X/S

relative to S [Mes73, (2.5.3)]. We denote by

Pic#
X/S := R1f∗,fppfΩ×

X/S

the fppf-sheaf on S associated to the presheaf

T 7→ Pic#(X ×S T/T ).

If XT = X ×S T admits a section over T , we have [Mes73, (2.6.4)]

(B.1) Pic#
X/S(T ) = Coker

(
Pic(T )

f∗→ Pic#(X ×S T/T )
)
.

B.3. If T/S is a fpqc-morphism, we have

(B.2) Pic#
X/S ×S T = Pic#

XT /T
.

This is obvious if T/S is fppf. Hence we may assume without loss of generality that X/S
admits a section. Then one can see as in [BLR90, 8.1, p.204] using rigidifications and
fpqc-descent that Pic#

X/S defines via (B.1) an fpqc-sheaf on S. This implies (B.2).
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B.4. The exact sequence of complexes

(B.3) 0→ τ≥1Ω·
X/S → Ω×

X/S → O
∗
X → 0

induces an exact sequence

0→ H1(Xfppf , τ≥1Ω·
X/S)→ Pic#(X/S)→ H1(Xfppf ,O∗X)→ H2(Xfppf , τ≥1Ω·

X/S).

Observe that exactness on the left follows from the long exact sequence associated with
(B.3) as the map

dlog : Γ(X,O∗X)→ Γ(X,Ω1
X/S)

is zero by Assumption B ii). Using descent and again Assumption B ii), one gets

H1(Xfppf ,O∗X) = Pic(X) , H2(Xfppf , τ≥1Ω·
X/S) = H2(XZar, τ≥1Ω·

X/S)

and

H1(Xfppf , τ≥1Ω·
X/S) = ker

(
H0(Xfppf ,Ω1

X/S)→ H0(Xfppf ,Ω2
X/S)

)
= Γ(S, f∗Ω1

X/S).

Sheafification of the exact sequence yields the exact sequence

0→ f∗Ω1
X/S → Pic#

X/S → PicX/S
c→ R2f∗τ≥1Ω·

X/S .

As there are no non-trivial homomorphisms from the abelian scheme Pic0
X/S to the coherent

sheaf R2f∗τ≥1Ω·
X/S by [MM74, Lemma p.9], we have Pic0

X/S ⊆ ker(c). Hence we obtain an
extension of fppf-sheaves over S of abelian groups

(B.4) 0→ f∗Ω1
X/S → PX/S → Pic0

X/S → 0

where
PX/S = Pic#

X/S ×PicX/S
Pic0

X/S .

B.5. The universal vector extension of the abelian scheme Pic0
X/S is a group scheme EX/S

which fits into an exact sequence of fppf-sheaves

(B.5) 0→ EA/S → EX/S → Pic0
X/S → 0

where EA/S denotes the Hodge bundle of the dual abelian scheme A = (Pic0
X/S)∨. The

universal vector extension can be characterized by its universal property: Given an abelian
fppf-sheaf E′ and a vector group scheme M which fit into an extension of fppf-sheaves of
abelian groups

(B.6) 0→M → E′ → Pic0
X/S → 0,

there exits a unique OS-linear morphism φ : EA/S → M such that (B.6) is isomorphic to
the pushout of (B.5) along φ.

By the universal property there exist unique morphisms f and g such that

(B.7)
0 → EA/S → EX/S → Pic0

X/S → 0
↓ f ↓ g ‖

0 → f∗Ω1
X/S → PX/S → Pic0

X/S → 0

is a pushout diagram. The biduality of abelian schemes yields a canonical isomorphism

(B.8) EX/S
∼→ EA/S .
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It is furthermore shown in [MM74] and [Mes73] that (B.7) with X replaced by A induces a
canonical isomorphism

EA/S
∼→ PA/S .

Assume that X/S admits a section ε. There exits a canonical morphism ϕ : X → A
which pulls a Poincaré bundle for A rigidified along zero back to a Poincaré bundle for X
rigidified along ε. Pullback along ϕ induces morphisms

ϕ∗ : EA/S → f∗Ω1
X/S , α 7→ ϕ∗α

and (using description (B.1))

ϕ∗ : PA/S → PX/S , [L,∇] 7→ [ϕ∗L,ϕ∗∇]

such that

(B.9)
0 → EA/S → PA/S → Pic0

X/S → 0
↓ ϕ∗ ↓ ϕ∗ ‖

0 → f∗Ω1
X/S → PX/S → Pic0

X/S → 0

is commutative. The uniqueness assertion in the universal property implies that the maps
f and g in (B.7) are given under the canonical identifications

EX/S
∼→ EA/S

∼→ PA/S

by pullback along ϕ.
B.6. Let S be the spectrum of a field k of characteristic zero. For a projective, smooth, geo-
metrically connected S-scheme, our assumptions B i)- iii) are satisfied by B.1. Furthermore
the morphism

(B.10) EA/S → f∗Ω1
X/S

given by pullback along ϕ is an isomorphism. In fact (B.10) is injective as X generates A
as an abelian variety and bijective for dimension reasons (compare for example [BLR90, 8.4
Th. 1 b)]).

It follows that EX/k = PX/k is the universal vector extension of Pic0
X/k. Hence (B.1)

gives

(B.11) EX/k(k) =
{
(L,∇)

∣∣L line bundle on X with integrable connection ∇
}
/ ∼

if X(k) 6= ∅. In general, we choose a Galois extension k′/k with Galois group Γ such that
X(k′) 6= ∅ and get

(B.12) EX/k(k) = EXk′/k
′(k′)Γ.

B.7. If k = C, the extension

(B.13) 0→ Γ(X,Ω1
X/C)→ EX/C(C)→ Pic0

X/C(C)→ 0

admits a canonical splitting

(B.14) σ : Pic0
X/C(C)→ EX/C(C)

given as follows. Given an algebraic line bundle L on X with c1(L) = 0, we choose a
hermitian metric h on the holomorphic line bundle LC on X(C) with curvature zero. Let
∇L denote the unitary connection on LC = (LC, h) which is compatible with the complex
structure. Observe that ∇L does not depend on the choice of h. The (1, 0)-part ∇1,0

L
of ∇L

defines a C∞-section of the Atiyah extension atX(LC). This C∞-section is a holomorphic
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section by (1.16). Hence it algebraizes uniquely by GAGA [Ser56] and defines an integrable,
algebraic connection ∇ on L. The assignment

[L] 7→
[
(L,∇)

]
defines the group homomorphism (B.14). The image of σ is the unique maximal compact
subgroup of EX/C(C) as the linear space Γ(X,Ω1

X/C) has no non-trivial compact subgroups.

B.8. If k = R, the extension

(B.15) 0→ Γ(X,Ω1
X/R)→ EX/R(R)→ Pic0

X/R(R)→ 0

is obtained from the extension (B.13) by taking invariants under complex conjugation. We
obtain again a canonical splitting

σR : Pic0
X/R(R)→ EX/R(R)

as the splitting (B.14) is invariant under complex conjugation. The image of σ describes as
before the unique maximal compact subgroup of EX/R(R).
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et L. Illusie, avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Ray-
naud et J. P. Serre.
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52(1-2):37–108, 2006.
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[Gro63] A. Grothendieck. Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux
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