HERMITIAN VECTOR BUNDLES AND EXTENSION GROUPS ON ARITHMETIC SCHEMES. II. THE ARITHMETIC ATIYAH EXTENSION

JEAN-BENOÎT BOST AND KLAUS KÜNNEMANN

Abstract

In a previous paper [BK07], we have defined arithmetic extension groups in the context of Arakelov geometry. In the present one, we introduce an arithmetic analogue of the Atiyah extension, that defines an element - the arithmetic Atiyah class - in a suitable arithmetic extension group. Namely, if \bar{E} is a hermitian vector bundle on an arithmetic scheme X, its arithmetic Atiyah class $\widehat{a t}(\bar{E})$ lies in the group $\widehat{\operatorname{Ext}}_{X}^{1}\left(E, E \otimes \Omega_{X / \mathbb{Z}}^{1}\right)$, and is an obstruction to the algebraicity of the unitary connection on the vector bundle $E_{\mathbb{C}}$ over the complex manifold $X(\mathbb{C})$ that is compatible with its holomorphic structure.

In the first sections of this article, we develop the basic properties of the arithmetic Atiyah class which can be used to define characteristic classes in arithmetic Hodge cohomology.

Then we study the vanishing of the first Chern class $\hat{c}_{1}^{H}(\bar{L})$ of a hermitian line bundle \bar{L} in the first arithmetic Hodge cohomology group $\widehat{\operatorname{Ext}}_{X}^{1}\left(\mathcal{O}_{X}, \Omega_{X / \mathbb{Z}}^{1}\right)$. This may be translated into a concrete problem of diophantine geometry, concerning rational points of the universal vector extension of the Picard variety of X. We investigate this problem, which was already considered and solved in some cases by Bertrand, by using a classical transcendence result of Schneider-Lang, and we derive a finiteness result for the kernel of \hat{c}_{1}^{H}.

In the final section, we consider a geometric analog of our arithmetic situation, namely a smooth, projective variety X which is fibered on a curve C defined over some field k of characteristic zero. To any line bundle L over X is attached its relative Atiyah class at $_{X / C} L$ in $H^{1}\left(X, \Omega_{X / C}^{1}\right)$. We describe precisely when at ${ }_{X / C} L$ vanishes. In particular, when the fixed part of the relative Picard variety of X over C is trivial, this holds only when the restriction of L to the generic fiber X_{K} of X over C is a torsion line bundle.

MSC: Primary 14G40; Secondary 11J81, 14F05, 32L10

Contents

0 . Introduction 2

1. Atiyah extensions in algebraic and analytic geometry 9
1.1. Definition and basic properties 9
1.2. Cotangent complex and Atiyah class 13
1.3. Curvature and second fundamental form 14
2. The arithmetic Atiyah class of a vector bundle with connection 15
2.1. Definition and basic properties 15
2.2. The first Chern class in arithmetic Hodge cohomology 18
3. Hermitian line bundles with vanishing arithmetic Atiyah class 20

3.1. A finiteness result for the kernel of \hat{c}_{1}^{H}
3.2. Transcendence and line bundles with connections on abelian varieties 23
4. A geometric analogue
4.1. Line bundles with vanishing relative Atiyah class on fibered projective varieties 29
4.2. Variants and complements 31
4.3. Hodge cohomology and first Chern class 32
4.4. An application of the Hodge Index Theorem 34
4.5. The equivalence of VA1 and VA2 36
4.6. The Picard variety of a variety over a function field 37
4.7. The equivalence of VA2 and VA3 38

Appendix A. A computation in Čech cohomology 40
Appendix B. The universal vector extension of a Picard variety 42
References

0. Introduction

0.1. This paper is a sequel to [BK07], where we have defined and investigated arithmetic extensions on arithmetic schemes, and the groups they define.

Recall that if X is a scheme over $\operatorname{Spec} \mathbb{Z}$, separated of finite type, whose generic fiber $X_{\mathbb{Q}}$ is smooth, then an arithmetic extension of vector bundles over X is the data (\mathcal{E}, s) of a short exact sequence of vector bundles (that is, of locally free coherent sheaves of \mathcal{O}_{X}-modules) on the scheme X,

$$
\begin{equation*}
\mathcal{E}: 0 \longrightarrow G \xrightarrow{i} E \xrightarrow{p} F \longrightarrow 0, \tag{0.1}
\end{equation*}
$$

and of a \mathcal{C}^{∞}-splitting

$$
s: F_{\mathbb{C}} \longrightarrow E_{\mathbb{C}}
$$

invariant under complex conjugation, of the extension of holomorphic vector bundles

$$
\mathcal{E}_{\mathbb{C}}: 0 \longrightarrow G_{\mathbb{C}} \xrightarrow{i_{\mathbb{C}}} E_{\mathbb{C}} \xrightarrow{p_{\mathbb{C}}} F_{\mathbb{C}} \longrightarrow 0
$$

on the complex manifold $X(\mathbb{C})$, that is deduced from \mathcal{E} by the base change from \mathbb{Z} to \mathbb{C} and analytification.

For any two given vector bundles F and G over X, the isomorphism classes of the sodefined arithmetic extensions of F by G constitute a set $\widehat{\operatorname{Ext}}_{X}^{1}(F, G)$ that becomes an abelian group when equipped with the addition law defined by a variant of the classical construction of the Baer sum of 1 -extension of (sheaves of) modules ${ }^{1}$.

[^0]Recall that an hermitian vector bundle \bar{E} over X is a pair $(E,\|\cdot\|)$ consisting of a vector bundle E over X and of a \mathcal{C}^{∞}-hermitian metric, invariant under complex conjugation, on the holomorphic vector bundle $E_{\mathbb{C}}$ over $X(\mathbb{C})$. Examples of arithmetic extensions in the above sense are provided by admissible extensions

$$
\begin{equation*}
\overline{\mathcal{E}}: 0 \longrightarrow \bar{G} \xrightarrow{i} \bar{E} \xrightarrow{p} \bar{F} \longrightarrow 0 \tag{0.2}
\end{equation*}
$$

of hermitian vector bundles over X, namely from the data of an extension

$$
\mathcal{E}: 0 \longrightarrow G \xrightarrow{i} E \xrightarrow{i} F \longrightarrow 0
$$

of the underlying \mathcal{O}_{X}-modules such that the hermitian metrics $\|\cdot\|_{\bar{G}}$ and $\|\cdot\|_{\bar{F}}$ on $G_{\mathbb{C}}$ and $F_{\mathbb{C}}$ are induced (by restriction and quotients) by the metric $\|\cdot\|_{\bar{E}}$ on $E_{\mathbb{C}}$ (by means of the morphisms $i_{\mathbb{C}}$ and $p_{\mathbb{C}}$. Indeed, to any such admissible extension is naturally attached its orthogonal splitting, namely the \mathcal{C}^{∞}-splitting

$$
s_{\overline{\mathcal{E}}}: F_{\mathbb{C}} \longrightarrow E_{\mathbb{C}}
$$

that maps $F_{\mathbb{C}}$ isomorphically onto the orthogonal complement $i_{\mathbb{C}}\left(G_{\mathbb{C}}\right)^{\perp}$ of the image of $i_{\mathbb{C}}$ in $E_{\mathbb{C}}$. This splitting is invariant under complex conjugation, and $\left(\mathcal{E}, s_{\overline{\mathcal{E}}}\right)$ is an arithmetic extension of F by G. For any two hermitian vector bundles \bar{F} and \bar{G} over X, this construction establishes a bijection from the set of isomorphism classes of admissible extension of the form (0.2) to the set $\widehat{\operatorname{Ext}}_{X}^{1}(F, G)$.

In [BK07] we studied basic properties of the so-defined arithmetic extension groups. In particular, we introduced the following natural morphisms of abelian groups:

- the "forgetful" morphism

$$
\nu: \widehat{\operatorname{Ext}}_{X}^{1}(F, G) \longrightarrow \operatorname{Ext}_{\mathcal{O}_{X}}^{1}(F, G),
$$

which maps the class of an arithmetic extension (\mathcal{E}, s) to the one of the underlying extension \mathcal{E} of \mathcal{O}_{X}-modules;

- the morphism

$$
b: \operatorname{Hom}_{\mathcal{C}_{X(\mathbb{C})}^{\infty}}\left(F_{\mathbb{C}}, G_{\mathbb{C}}\right)^{F_{\infty}} \longrightarrow \widehat{\operatorname{Ext}}_{X}^{1}(F, G)
$$

defined on the real vector space $\operatorname{Hom}_{\mathcal{C}_{X(\mathbb{C})}^{\infty}}\left(F_{\mathbb{C}}, G_{\mathbb{C}}\right)^{F_{\infty}}$ of \mathcal{C}^{∞}-morphisms of vector bundles over $X(\mathbb{C})$ from $F_{\mathbb{C}}$ to $G_{\mathbb{C}}$, invariant under complex conjugation; it sends an element T in this space to the class of the arithmetic extension (\mathcal{E}, s) where \mathcal{E} is the trivial algebraic extension, defined by (0.1) with $E:=G \oplus F$ and i and p the obvious injection and projection morphisms, and where s is given by $s(f)=(T(f), f)$;

- the morphism

$$
\iota: \operatorname{Hom}_{\mathcal{O}_{X}}(F, G) \longrightarrow \operatorname{Hom}_{\mathcal{C}_{X(\mathbb{C})}^{\infty}}\left(F_{\mathbb{C}}, G_{\mathbb{C}}\right)^{F_{\infty}}
$$

which sends a morphism $\varphi: F \rightarrow G$ of vector bundles over X to the morphism of holomorphic vector bundles $\varphi_{\mathbb{C}}: F_{\mathbb{C}} \rightarrow G_{\mathbb{C}}$ deduced from φ by base change from \mathbb{Z} to \mathbb{C} and analytification;

- the morphism

$$
\Psi: \widehat{\operatorname{Ext}}_{X}^{1}(F, G) \longrightarrow Z_{\bar{\partial}}^{0,1}\left(X_{\mathbb{R}}, F^{\vee} \otimes G\right),
$$

that takes values in the real vector space

$$
Z_{\bar{\partial}}^{0,1}\left(X_{\mathbb{R}}, F^{\vee} \otimes G\right):=Z_{\bar{\partial}}^{0,1}\left(X(\mathbb{C}), F_{\mathbb{C}}^{\vee} \otimes G_{\mathbb{C}}\right)^{F_{\infty}}
$$

of $\bar{\partial}$-closed forms of type $(0,1)$ on $X(\mathbb{C})$ with coefficients in $F_{\mathbb{C}}^{\vee} \otimes G_{\mathbb{C}}$, invariant under complex conjugation. It maps the class of an arithmetic extension (\mathcal{E}, s) to its "second fundamental form" $\Psi(\mathcal{E}, s)$ defined by

$$
i_{\mathbb{C}} \circ \Psi(\mathcal{E}, s)=\bar{\partial}_{F_{\mathbb{C}}^{\vee} \otimes G_{\mathbb{C}}}(s) .
$$

We also established the following basic exact sequence:

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{O}_{X}}(F, G) \xrightarrow{\iota} \operatorname{Hom}_{\mathcal{C}_{X}^{\infty}(\mathbb{C})}\left(F_{\mathbb{C}}, G_{\mathbb{C}}\right)^{F_{\infty}} \xrightarrow{b} \widehat{\operatorname{Ext}}_{X}^{1}(F, G) \xrightarrow{\nu} \operatorname{Ext}_{\mathcal{O}_{X}}^{1}(F, G) \longrightarrow 0, \tag{0.3}
\end{equation*}
$$

which displays the arithmetic extension group $\widehat{\operatorname{Ext}}_{X}^{1}(F, G)$ as an extension of the "classical" extension group $\operatorname{Ext}_{\mathcal{O}_{X}}^{1}(F, G)$ by a group of analytic type.

The sequel of $[\mathrm{BK} 07]$ was devoted to the study of the groups $\widehat{\operatorname{Ext}}_{X}^{1}(F, G)$ when the base scheme is an arithmetic curve, that is, the spectrum $\operatorname{Spec} \mathcal{O}_{K}$ of the ring of integers of some number field K. In this special case, these extension groups appear as natural tools in geometry of numbers and reduction theory in their modern guise, namely the study of hermitian vector bundles over arithmetic curves and their admissible extensions.

In the present paper, we focus on a natural construction of arithmetic extensions attached to hermitian vector bundles over an arithmetic scheme X as above, their arithmetic Atiyah extensions. In contrast with the arithmetic extensions over arithmetic curves investigated in [BK07], for which the interpretation as admissible extensions was crucial, the arithmetic Atiyah extensions are genuine examples of arithmetic extensions constructed as pairs (\mathcal{E}, s) - where s is a \mathcal{C}^{∞}-splitting of an extension \mathcal{E} of vector bundles over X - and not derived from an admissible extension. Beside, the vanishing properties of the classes of the arithmetic Atiyah extensions turn out to be related to transcendence questions on abelian varieties.
0.2. Atiyah extensions of vector bundles were initially introduced by Atiyah [Ati57] in the context of complex analytic geometry.

Namely, for any holomorphic vector bundle E over a complex manifold X, Atiyah introduces the holomorphic vector bundle $P_{X}^{1}(E)$ of jets of order one of sections of E, whose fiber $P_{X}^{1}(E)_{x}$ at a point x of X is by definition the space of sections of E over the first order thickening $x_{1}:=\operatorname{Spec} \mathcal{O}_{X, x} / \mathfrak{m}_{x}^{2}$ of x in X. Here, as usual, \mathcal{O}_{X} denotes the sheaf of holomorphic functions over X, and \mathfrak{m}_{x} the maximal ideal of its stalk $\mathcal{O}_{X, x}$ at x.

The vector bundle $P_{X}^{1}(E)$ fits into a short exact sequence of holomorphic vector bundles

$$
\begin{equation*}
\mathcal{A} t_{X} E: 0 \longrightarrow E \otimes \Omega_{X}^{1} \xrightarrow{i} P_{X}^{1}(E) \xrightarrow{p} E \longrightarrow 0, \tag{0.4}
\end{equation*}
$$

where the morphism i and p are defined as follows: for any x in X, the map $i_{x}: E_{x} \otimes \Omega_{X, x}^{1} \rightarrow$ $P_{X}^{1}(E)_{x}$ maps an element v in $\Omega_{X, x}^{1} \simeq \operatorname{Hom}_{\mathbb{C}}\left(T_{X, x}, E_{x}\right)$ to the section of E over x_{1} that vanishes at x and admits v as differential, while the map $p_{x}: P_{X}^{1}(E)_{x} \rightarrow E_{x}$ is simply the evaluation at x.

The Atiyah extension of E is precisely the extension $\mathcal{A} t_{X} E$ of E by $E \otimes \Omega_{X}^{1}$ so-defined. According to its very definition, its class at ${ }_{X} E$ in the group $\operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(E, E \otimes \Omega_{X}^{1}\right)$ which classifies the extensions of holomorphic vector bundles of E by $E \otimes \Omega_{X}^{1}$ is the obstruction to the existence of a holomorphic connection

$$
\nabla: E \longrightarrow E \otimes \Omega_{X}^{1}
$$

on the vector bundle E.

The point of Atiyah's article [Ati57] is that the class at ${ }_{X} E$ also leads to a straightforward construction of characteristic classes of E with values in the so-called Hodge cohomology groups of X

$$
\begin{equation*}
H^{p, p}(X):=H^{p}\left(X, \Omega_{X}^{p}\right) . \tag{0.5}
\end{equation*}
$$

For instance, Atiyah defines a first Chern class $c_{1}^{H}(E)$ in $H^{1,1}(X)=H^{1}\left(X, \Omega_{X}^{1}\right)$ as the image of at ${ }_{X} E$ by the morphism

$$
\begin{aligned}
\operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(E, E \otimes \Omega_{X}^{1}\right) \simeq & \operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(\mathcal{O}_{X}, \mathcal{E} n d E \otimes \Omega_{X}^{1}\right) \\
& \left.\qquad\left(\operatorname{Tr}_{E} \otimes \mathrm{id}_{\Omega_{X}^{1}}\right)\right)^{\circ}- \\
& \operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(\mathcal{O}_{X}, \Omega_{X}^{1}\right)
\end{aligned} H^{1}\left(X, \Omega_{X}^{1}\right)
$$

deduced from the canonical trace morphism

$$
\begin{aligned}
& \operatorname{Tr}_{E}: \mathcal{E} n d E \simeq E^{\vee} \otimes E \longrightarrow \mathcal{O}_{X}, \\
& \lambda \otimes v \mapsto \\
& \lambda(v) .
\end{aligned}
$$

Higher degree characteristic classes are constructed by means of the successive powers $\left(\operatorname{at}_{X} E\right)^{p}$ in $\operatorname{Ext}_{\mathcal{O}_{X}}^{p}\left(\mathcal{O}_{X},(\mathcal{E} n d E)^{\otimes p} \otimes \Omega_{X}^{p}\right)$, where p denotes a positive integer. For instance, the p-th Segre class, associated to the p-th Newton polynomial $X_{1}^{p}+\cdots+X_{\mathrm{rk} E}^{p}$, may be constructed in the Hodge cohomology group $H^{p}\left(X, \Omega_{X}^{p}\right)$ as

$$
s_{p}^{H}(E):=\left(\operatorname{Tr}_{E}^{p} \otimes \operatorname{id}_{\Omega_{X}^{p}}\right) \circ\left(\operatorname{at}_{X} E\right)^{p},
$$

where

$$
\begin{array}{rlll}
\operatorname{Tr}_{E}^{p}: & (\mathcal{E} n d E)^{\otimes p} & \longrightarrow \mathcal{O}_{X}, \\
T_{1} \otimes \ldots \otimes T_{p} & \mapsto \operatorname{Tr}_{E}\left(T_{1} \ldots T_{p}\right) .
\end{array}
$$

When the manifold X is compact and Kähler (e.g., projective), the Hodge cohomology group $H^{p}\left(X, \Omega_{X}^{p}\right)$ may be identified with a subspace of the complex de Rham cohomology group $H_{\mathrm{dR}}^{2 p}(X, \mathbb{C})$ of X, and Atiyah's construction of characteristic classes is compatible (up to normalization) to classical topological constructions.

The definition of the Atiyah class and the construction of the associated characteristic classes obviously make sense in a purely algebraic context, say over a base field k of characteristic zero. If X is a smooth algebraic scheme over k, for any vector bundle E over X, its Atiyah class at ${ }_{X / k} E$ is constructed as above, mutatis mutandis, as an element of the k-vector space $\operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(E, E \otimes \Omega_{X / k}^{1}\right)$, and the associated characteristic classes are elements of the Hodge cohomology groups of X defined similarly to (0.5), but now using the Zariski topology of X instead of the analytic one, and the sheaf of Kähler differentials $\Omega_{X / k}^{p}$ instead of the holomorphic differential forms Ω_{X}^{p}.

These constructions are especially suited to smooth algebraic schemes X that are proper over k. In this case, the "Hodge to de Rham" spectral sequence degenerates, and the Hodge group $H^{p, p}(X)$ gets identified to a subquotient of the Hodge filtration of the algebraic de Rham cohomology group $H_{\mathrm{dR}}^{2 p}(X / k):=H^{2 p}\left(X, \Omega_{X / k}\right)$. Moreover, when X is proper over $k=\mathbb{C}$, this algebraic construction is compatible with the previous analytic one, as a consequence of the GAGA principle.

This algebraic version of Atiyah's constructions has been considerably extended by Illusie [IIl71]. Instead of a smooth algebraic scheme over a field k, he considers a suitable morphism of ringed topoi $f: X \rightarrow S$, and associates Atiyah classes and characteristic classes to perfect complexes of sheaves of \mathcal{O}_{X}-modules; their definition involve the cotangent complex $\mathbb{L}_{X / S}$
of X over S, which in this general setting plays the role of the sheaf $\Omega_{X / k}^{1}$ attached to a smooth scheme X over the field k. Let us also mention the presentation of this "algebraic" theory and of some of its developments in the monograph of Angéniol and Lejeune-Jalabert [ALJ89], and the analytic construction of Buchweitz and Flenner [BF00], [BF03] ${ }^{2}$.
0.3. Let us briefly describe our construction of arithmetic Atiyah classes.

Let $\bar{E}:=\left(E,\|\cdot\|_{E}\right)$ be an hermitian vector bundle over a scheme X which is separated and of finite type over \mathbb{Z}, and which for simplicity will be assumed smooth over \mathbb{Z} in this introduction. The relative version of the exact sequence (0.4) defines the Atiyah extension of E over \mathbb{Z} :

$$
\begin{equation*}
\mathcal{A} t_{X / \mathbb{Z}} E: 0 \longrightarrow E \otimes \Omega_{X / \mathbb{Z}}^{1} \xrightarrow{i} P_{X / \mathbb{Z}}^{1}(E) \xrightarrow{p} E \longrightarrow 0 . \tag{0.6}
\end{equation*}
$$

Besides, according to a classical result of Chern and Nakano ([Che46, Nak55]), the holomorphic vector bundle $E_{\mathbb{C}}$ over the complex manifold $X(\mathbb{C})$, seen as \mathcal{C}^{∞}-vector bundle, admits a unique connection $\nabla_{\bar{E}}$ that is unitary with respect to the hermitian metric $\|.\|_{E}$, and moreover is compatible with its holomorphic structure in the sense that its component $\nabla_{\bar{E}}^{0,1}$ of type $(0,1)$ coincides with the $\bar{\partial}$-operator $\bar{\partial}_{E_{\mathbb{C}}}$ with coefficients in the holomorphic vector bundle $E_{\mathbb{C}}$. The component $\nabla_{\bar{E}}^{1,0}$ of type $(1,0)$ of $\nabla_{\bar{E}}$ defines a \mathcal{C}^{∞}-splitting $s_{\bar{E}}$ of the Atiyah extension of the holomorphic vector bundle $E_{\mathbb{C}}$:

$$
\mathcal{A} t_{X(\mathbb{C})} E_{\mathbb{C}}: 0 \longrightarrow \Omega_{X(\mathbb{C})}^{1} \otimes E_{\mathbb{C}} \xrightarrow{i_{\mathbb{C}}} P_{X(\mathbb{C})}^{1}\left(E_{\mathbb{C}}\right) \xrightarrow{p_{\mathbb{C}}} E_{\mathbb{C}} \longrightarrow 0 .
$$

Namely, for any point x in $\mathcal{X}(\mathbb{C})$ and any e in $E_{x}, s_{\bar{E}}(e)$ is the section of E over x_{1} that takes the value e at x and is killed by $\nabla_{\bar{E}}^{1,0}$.

Since the above analytic Atiyah extension $\mathcal{A} t_{X(\mathbb{C})} E_{\mathbb{C}}$ is precisely the extension deduced from $\mathcal{A} t_{X / \mathbb{Z}} E$ by the base change from \mathbb{Z} to \mathbb{C} and analytification, the pair $\left(\mathcal{A} t_{X / \mathbb{Z}} E, s_{\bar{E}}\right)$ defines an arithmetic extension, the arithmetic Atiyah extension $\widehat{\mathcal{A} t}_{X / \mathbb{Z}} \bar{E}$ of the hermitian vector bundle \bar{E}. Its class $\widehat{a t}_{X / \mathbb{Z}} \bar{E}$ in $\widehat{\operatorname{Ext}}_{X}^{1}\left(E, E \otimes \Omega_{X / \mathbb{Z}}^{1}\right)$ - the arithmetic Atiyah class of \bar{E} - is mapped by the forgetful morphism ν to the "algebraic" Atiyah class at ${ }_{X / \mathbb{Z}} E$ of E in $\operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(E, E \otimes \Omega_{X / \mathbb{Z}}^{1}\right)$ (defined by the extension $\mathcal{A} t_{X / \mathbb{Z}} E$) and by the "second fundamental form" morphism Ψ to the curvature form of the Chern-Nakano connection $\nabla_{\bar{E}}$ (up to a sign).
0.4. In the first section of this article, we begin by reviewing the constructions of the Atiyah extension in the classical \mathbb{C}-analytic and algebraic frameworks. For the sake of simplicity, we deal with locally free coherent sheaves only, and follow a naive approach - we work with relative differentials, and not with their "correct" derived version defined by the cotangent complex. This naive approach is sufficient when one considers - as we shall in the sequel - relative situations $f: X \rightarrow S$ where X is integral, and f is l.c.i. and generically smooth, in which case $\mathbb{L}_{X / S}$ is quasi-isomorphic to $\Omega_{X / S}^{1}$.

Then, in Section 2, we construct the arithmetic Atiyah class in the following relative situation, which extends the one considered in the previous paragraphs. Consider arithmetic schemes X and S, flat over an arithmetic ring $\left(R, \Sigma, F_{\infty}\right)$ (in the sense of [GS90a, 3.1.1]; see also [BK07, 1.1]), and a morphism of R-schemes $\pi: X \rightarrow S$, smooth over the fraction

[^1]field K of R. Then, to any hermitian vector bundle \bar{E} over X, we attach a class $\hat{a t}_{X / S} \bar{E}$ in $\widehat{\operatorname{Ext}}_{X}^{1}\left(E, E \otimes \Omega_{X / S}^{1}\right)$. Applying a trace morphism to this class, we define the first Chern class $\hat{c}_{1}^{H}(\bar{E})$ of \bar{E} in arithmetic Hodge cohomology, that lies in the group
$$
\widehat{H}^{1,1}(X / S):=\widehat{\operatorname{Ext}}_{X}^{1}\left(\mathcal{O}_{X}, \Omega_{X / S}^{1}\right) .
$$

The class $\widehat{a t}_{X / S} \bar{E}$ and its trace $\hat{c}_{1}^{H}(\bar{E})$ satisfy compatibility properties with pull-back and tensor operations on hermitian vector bundles that extend well-known properties of the classical Atiyah and first Chern classes. In particular we construct of functorial morphism

$$
\hat{c}_{1}^{H}: \widehat{\operatorname{Pic}}(X) \longrightarrow \widehat{H}^{1,1}(X / S)
$$

from the group of isomorphism classes of hermitian line bundles over X to the arithmetic Hodge cohomology group.

In the last sections of this article, we investigate the kernel of this morphism. It trivially vanishes on the image of

$$
\pi^{*}: \widehat{\operatorname{Pic}}(S) \longrightarrow \widehat{\operatorname{Pic}}(X)
$$

and we may wonder "how large" this image $\pi^{*}(\widehat{\operatorname{Pic}}(S))$ is in ker \hat{c}_{1}^{H}.
This question becomes a concrete problem of Diophantine geometry when the base arithmetic ring is a number field K equipped with a non-empty set Σ of embeddings $\sigma: K \hookrightarrow \mathbb{C}$ stable under complex conjugation, and when S is Spec K and X is projective over K. Indeed, in this case, the class of an hermitian line bundle $\bar{L}=\left(L,\|\cdot\|_{L}\right)$ over X lies in the kernel of \hat{c}_{1}^{H} precisely when L admits an algebraic connection $\nabla: L \rightarrow L \otimes \Omega_{X / K}^{1}$, defined over K, such that the induced holomorphic connection $\nabla_{\mathbb{C}}: L_{\mathbb{C}} \rightarrow L_{\mathbb{C}} \otimes \Omega_{X_{\Sigma}(\mathbb{C})}^{1}$ on the holomorphic line bundle $L_{\mathbb{C}}$ over

$$
X_{\Sigma}(\mathbb{C}):=\coprod_{\sigma \in \Sigma} X_{\sigma}(\mathbb{C})
$$

is unitary with respect to the hermitian metric $\|.\|_{L}$.
One easily checks that, if L has a torsion class in $\operatorname{Pic}(X)$ and if the metric $\|\cdot\|_{L}$ has vanishing curvature on $X_{\Sigma}(\mathbb{C})$, then their exists such a connection. Moreover the converse implication, namely
$\mathbf{I 1}_{X, \Sigma}$: if an hermitian line bundle $\bar{L}=\left(L,\|\cdot\|_{L}\right)$ over X admits an algebraic connection ∇ defined over K such that the connection $\nabla_{\mathbb{C}}$ on $L_{\mathbb{C}}$ over $X_{\Sigma}(\mathbb{C})$ is unitary with respect to $\|\cdot\|_{L}$, then L has a torsion class in $\operatorname{Pic}(X)$ and the metric $\|\cdot\|_{L}$ has vanishing curvature, turns out to be equivalent with the following condition, where π denotes the structural morphism from X to Spec K :
$\mathbf{I} 2_{X, \Sigma}:$ the image of $\pi^{*}: \widehat{\operatorname{Pic}}(\operatorname{Spec} K) \rightarrow \widehat{\operatorname{Pic}}(X)$ has finite index in the kernel of

$$
\hat{c}_{1}^{H}: \widehat{\operatorname{Pic}}(X) \longrightarrow \widehat{H}^{1,1}(X / K) .
$$

The equivalent assertions $\mathbf{I} \mathbf{1}_{X, \Sigma}$ and $\mathbf{I} \mathbf{2}_{X, \Sigma}$ may be translated in terms of K-rational points of the universal vector extension of the Picard variety of X. In this formulation, their validity has been established by Bertrand [Ber95, Ber98] when Σ has a unique element
(necessarily a real embedding of K) and when this Picard variety admits "real multiplication" ${ }^{3}$, as a consequence of the analytic subgroup theorem of Wüstholz ([Wüs89]). Inspired by [Ber95, Ber98] - which we tried to understand in more geometric terms, avoiding the explicit use of differential forms and their periods, but working with algebraic groups and their exponential maps- we establish in section 3 the validity of $\mathbf{I} \mathbf{1}_{X, \Sigma}$ and $\mathbf{I} 2_{X, \Sigma}$ when Σ is arbitrary. Our proof relies on a classical transcendence theorem of Schneider-Lang characterizing Lie algebras of algebraic subgroups of commutative algebraic groups over number fields.

The validity of $\mathbf{I} \mathbf{1}_{X, \Sigma}$ and $\mathbf{I} \mathbf{2}_{X, \Sigma}$ demonstrates that the first Chern class $\hat{c}_{1}^{H}(\bar{L})$ in the group $\widehat{H}^{1,1}(X / K)$ encodes quite non-trivial Diophantine informations. In a later part of this work, we plan to study characteristic classes of higher degree, with values in the arithmetic Hodge cohomology groups

$$
\widehat{H}^{p, p}(X / S):=\widehat{\operatorname{Ext}}_{X}^{p}\left(\mathcal{O}_{X}, \Omega_{X / S}^{p}\right)
$$

defined as special instances of the higher arithmetic extension groups introduced in [BK07, $0.1]$, that are deduced from the powers of the arithmetic Atiyah class $\widehat{a t}_{X / S} \bar{E}$ using suitably defined products on the higher arithmetic extension groups.

Let us also indicate that, starting from the results in Section 3, one may derive finiteness results on $\operatorname{ker} \hat{c}_{1}^{H} / \pi^{*}(\widehat{\operatorname{Pic}}(S))$ for more general smooth projective morphisms $\pi: X \rightarrow S$ of arithmetic schemes over arithmetic rings, by considering the restriction of π over points of S rational over some number field. We leave this to the interested reader.

In the final section of the article, we establish a geometric analogue of the conditions $\mathbf{I} 1_{X, \Sigma}$ and $\mathbf{I} \mathbf{2}_{X, \Sigma}$. We consider a smooth, projective, geometrically connected curve C over some field k of characteristic zero, its function field $K:=k(C)$, and a smooth projective variety X over k equipped with a dominant k morphism $f: X \rightarrow C$, with geometrically connected fibers. To any line bundle L over X is attached its relative Atiyah class at ${ }_{X / C} L$ in $H^{1}\left(X, \Omega_{X / C}^{1}\right)$. We show that, when the fixed part of the abelian variety $\mathrm{Pic}_{X_{K} / K}^{0}$ is trivial, then $\mathrm{at}_{X / C} L$ vanishes iff L is isomorphic to a line bundle of the form $f^{*} M \otimes L_{0}$, where M is a line bundle over C and L_{0} is a line bundle over X whose class in $\operatorname{Pic}(X)$ is torsion. The proof relies on the Hodge index theorem in the Hodge cohomology groups of X.

Considering the classical analogy between number fields and number fields, it may be interesting to observe that, when investigating the kernel of the relative Atiyah class of line bundles, a transcendence result - in the guise of a criterion for a subspace of the Lie algebra of a commutative algebraic group to define an algebraic subgroup - plays a key role in the "number field case", while our main tool in the "function field case" is intersection theory in Hodge cohomology.

In Appendix A, we describe arithmetic extension groups in terms of Čech cocycles. Based on this description, in the main part of the paper we calculate explicit Čech cocycles which represent the arithmetic Atiyah class and the first Chern class in arithmetic Hodge cohomology. Finally Appendix B summarizes basic facts concerning universal vector extensions of Picard varieties that are used in Sections 3 and 4.

[^2]It is a pleasure to thank A. Chambert-Loir and D. Bertrand for helpful discussions and S. Kudla, M. Rapoport and J. Schwermer for invitations to the ESI in Vienna where part of the work on this paper was done. We are grateful to the TMR network 'Arithmetic geometry' and the DFG-Forschergruppe 'Algebraische Zykel und L-Funktionen' for their support and to the universities of Regensburg and Paris-Sud (Orsay) for their hospitality.

1. Atiyah extensions in algebraic and analytic geometry

1.1. Definition and basic properties. We consider simultaneously the algebraic and the analytic situation where $\pi: X \rightarrow S$ is a morphism of locally ringed spaces which is either
a) a separated morphism of finite presentation of schemes, or
b) a holomorphic morphism of complex analytic spaces.

We denote in both cases by \mathcal{O}_{X} the structure sheaf of regular resp. holomorphic functions on X. Let I denote the ideal sheaf, and

$$
\Delta^{(1)}: X^{(1)} \rightarrow X \times_{S} X
$$

the first infinitesimal neighborhood of the diagonal $\Delta: X \rightarrow X \times_{S} X$. Let $q_{i}: X^{(1)} \rightarrow X$ denote the composition of $\Delta^{(1)}$ with the i-th projection. We identify $\left(\Omega_{X / S}^{1}, d\right)$ with the \mathcal{O}_{X}-module I / I^{2} and the universal derivation

$$
\begin{equation*}
d: \mathcal{O}_{X} \rightarrow I / I^{2}, d(\lambda)=q_{2}^{*}(\lambda)-q_{1}^{*}(\lambda) \tag{1.1}
\end{equation*}
$$

The \mathcal{O}_{X}-modules $q_{1 *} \mathcal{O}_{X^{(1)}}$ and $q_{2 *} \mathcal{O}_{X^{(1)}}$ are canonically isomorphic as sheaves of $\mathcal{O}_{S^{-}}$ modules. We denote this \mathcal{O}_{S}-module by $P_{X / S}^{1}$ and observe that $P_{X / S}^{1}$ carries two natural \mathcal{O}_{X}-module structures via the left and right projection q_{1} and q_{2}. The canonical extension

$$
0 \rightarrow I / I^{2} \rightarrow \mathcal{O}_{X \times_{S} X} / I^{2} \rightarrow \mathcal{O}_{X \times_{S} X} / I \rightarrow 0
$$

yields an exact sequence of \mathcal{O}_{X}-modules

$$
\begin{equation*}
0 \rightarrow \Omega_{X / S}^{1} \rightarrow P_{X / S}^{1} \rightarrow \mathcal{O}_{X} \rightarrow 0 \tag{1.2}
\end{equation*}
$$

for both \mathcal{O}_{X}-module structures. The left and right \mathcal{O}_{X}-module structures yield canonical but different \mathcal{O}_{X}-linear splittings of (1.2) which map $1 \bmod I$ to $1 \bmod I^{2}$.
1.1.1. Let F denote a vector bundle on X. We obtain from (1.2) an exact sequence of \mathcal{O}_{X}-modules

$$
\mathcal{J} e t_{X / S}^{1}(F): 0 \rightarrow F \otimes \Omega_{X / S}^{1} \xrightarrow{i_{F}} P_{X / S}^{1}(F) \xrightarrow{p_{F}} F \rightarrow 0
$$

where

$$
\begin{equation*}
P_{X / S}^{1}(F)=q_{1 *} q_{2}^{*} F . \tag{1.3}
\end{equation*}
$$

Indeed we have

$$
P_{X / S}^{1}(F)=F \otimes P_{X / S}^{1}
$$

where the tensor product in the middle is taken using the right \mathcal{O}_{X}-module structure, and then the sequence is viewed as sequence of \mathcal{O}_{X}-modules via the left \mathcal{O}_{X}-module structure. The canonical splitting of (1.2) for the right \mathcal{O}_{X}-module structure induces a canonical $\mathcal{O}_{S^{-}}$ linear splitting of $\mathcal{J} e t_{X / S}^{1}(F)$. We obtain a canonical direct sum decomposition

$$
\begin{equation*}
P_{X / S}^{1}(F)=F \oplus\left(F \otimes \Omega_{X / S}^{1}\right) \tag{1.4}
\end{equation*}
$$

of \mathcal{O}_{S}-modules. We use squared brackets [,] when we refer to this decomposition. A straightforward calculation shows that, in terms of this decomposition, the left \mathcal{O}_{X}-module structure of $P_{X / S}^{1}(F)$ is given by

$$
\begin{equation*}
\lambda \cdot[f, w]=[\lambda \cdot f, \lambda \cdot w-f \otimes d \lambda] \tag{1.5}
\end{equation*}
$$

for local sections λ of \mathcal{O}_{X}, f of F, and ω of $F \otimes \Omega_{X / S}^{1}$. It follows that there is a one-to-one correspondence

$$
\left\{\begin{array}{c}
\mathcal{O}_{X} \text {-linear splittings } \\
s: F \rightarrow P_{X / S}^{1}(F) \text { of } \mathcal{J} e t_{X / S}^{1}(F)
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { algebraic resp. holomorphic } \\
\text { connections } \nabla: F \rightarrow F \otimes \Omega_{X / S}^{1}
\end{array}\right\}
$$

Under this correspondence, a connection ∇ corresponds to the splitting s_{∇} of $\mathcal{J} e t_{X / S}^{1}(F)$ given by the formula

$$
\begin{equation*}
s_{\nabla}: F \rightarrow P_{X / S}^{1}(F)=F \oplus\left(F \otimes \Omega_{X / S}^{1}\right), f \mapsto[f,-\nabla(f)] . \tag{1.6}
\end{equation*}
$$

1.1.2. The extension $\mathcal{J} e t_{X / S}^{1}(F)$ is called the extension given by the 1-jets or principal parts of first order associated with F. We denote the class of $\mathcal{J} e t_{X / S}^{1}(F)$ in $\operatorname{Ext}^{1}\left(F, F \otimes \Omega_{X / S}^{1}\right)$ by jet ${ }_{X / S}^{1}(F)$ and abbreviate $\operatorname{jet}(F)=\operatorname{jet}_{X / S}^{1}(F)$ if X / S is clear from the context. We have followed in (1.1), (1.3), and (1.6) the conventions fixed in [Gro67, 16.7], [Ill71, III. (1.2.6.2)], and [Del70, (2.3.4)].
1.1.3. We recall from [Ati57, Propositions 6, 7 and 8] that the assignment

$$
\begin{aligned}
\{\text { vector bundles on } X\} & \longrightarrow\left\{\text { short exact sequences of } \mathcal{O}_{X} \text {-modules }\right\} \\
F & \longmapsto \mathcal{J} e t_{X / S}^{1}(F)
\end{aligned}
$$

defines an additive, exact functor. Furthermore $\mathcal{J} e t_{X / S}(F)$ is a short exact sequence of vector bundles if π is smooth.

The following Lemma is a slight refinement of [Ati57, Propositions 10].
Lemma 1.1.4. Let E and F denote vector bundles on X.
i) Let

$$
B=\frac{\operatorname{Ker}\left(p_{E} \otimes \operatorname{id}_{F}-\operatorname{id}_{E} \otimes p_{F}: P_{X / S}^{1}(E) \otimes F \oplus E \otimes P_{X / S}^{1}(F) \rightarrow E \otimes F\right)}{\operatorname{Im}\left(\left(i_{E} \otimes \operatorname{id}_{F},-\operatorname{id}_{E} \otimes i_{F}\right): E \otimes F \otimes \Omega_{X / S}^{1} \rightarrow P_{X / S}^{1}(E) \otimes F \oplus E \otimes P_{X / S}^{1}(F)\right)} .
$$

denote the Baer sum of the extensions \mathcal{J} et ${ }_{X / S}^{1}(E) \otimes F$ and $E \otimes \mathcal{J} e t_{X / S}^{1}(F)$. There exists a canonical isomorphism

$$
\begin{equation*}
\varphi: P_{X / S}^{1}(E \otimes F) \rightarrow B \tag{1.7}
\end{equation*}
$$

which fits into a commutative diagram

$$
\begin{array}{ccccccc}
0 & \rightarrow E \otimes F \otimes \Omega_{X / S}^{1} & \rightarrow & P_{X / S}^{1}(E \otimes F) & \rightarrow & E \otimes F & \rightarrow \\
\| & \| \varphi & & 0 \\
0 & \rightarrow E \otimes F \otimes \Omega_{X / S}^{1} & \rightarrow & B & \rightarrow & E \otimes F & \rightarrow
\end{array}
$$

Consequently we have

$$
\operatorname{jet}_{X / S}^{1}(E \otimes F)=\operatorname{jet}_{X / S}^{1}(E) \otimes F+E \otimes \operatorname{jet}_{X / S}^{1}(F)
$$

in $\operatorname{Ext}_{X}^{1}\left(E \otimes F, E \otimes F \otimes \Omega_{X / S}^{1}\right)$.
ii) Let ∇_{E} and ∇_{F} denote connections on E and F. We equip the tensor product $E \otimes F$ with the product connection

$$
\begin{equation*}
\nabla_{E \otimes F}=\nabla_{E} \otimes \operatorname{id}_{F}+\operatorname{id}_{E} \otimes \nabla_{F} \tag{1.8}
\end{equation*}
$$

The connections ∇_{E}, ∇_{F}, and $\nabla_{E \otimes F}$ induce sections s_{E}, s_{F}, and $s_{E \otimes F}$ of $\mathcal{J} e t_{X / S}^{1}(E)$, $\mathcal{J} e t_{X / S}^{1}(F)$, and $\mathcal{J} e t_{X / S}^{1}(E \otimes F)$ respectively. We have

$$
\varphi \circ s_{E \otimes F}=\left(s_{E} \otimes \operatorname{id}_{F}, \mathrm{id}_{E} \otimes s_{F}\right)
$$

where the notation on the right hand side refers to the description of the Baer sum given above.

Proof. i) Let $I M=\operatorname{Im}\left(i_{E} \otimes \mathrm{id}_{F},-\mathrm{id}_{E} \otimes i_{F}\right)$. Recall that

$$
P_{X / S}^{1}(E \otimes F)=(E \otimes F) \oplus\left(E \otimes F \otimes \Omega_{X / S}^{1}\right) .
$$

There exists a unique \mathcal{O}_{S}-linear map (1.7) which satisfies

$$
\begin{aligned}
\varphi\left(\left[e_{0} \otimes f_{0}, e_{1} \otimes f_{1} \otimes \alpha\right]\right) & =\left(\left[e_{0}, 0\right] \otimes f_{0}+\left[0, e_{1} \otimes \alpha\right] \otimes f_{1}\right) \oplus\left(e_{0} \otimes\left[f_{0}, 0\right]\right) \\
& =\left(\left[e_{0}, 0\right] \otimes f_{0}\right) \oplus\left(e_{0} \otimes\left[f_{0}, 0\right]+e_{1} \otimes\left[0, f_{1} \otimes \alpha\right]\right)
\end{aligned} \quad \bmod I M,
$$

for local sections e_{0}, e_{1} of E, f_{0}, f_{1} of F and α of $\Omega_{X / S}^{1}$. It is straightforward to check that φ is well defined and makes our diagram commutative. It remains to show that φ is also \mathcal{O}_{X}-linear. This follows from

$$
\begin{aligned}
\left.\varphi\left(\lambda \cdot\left[e_{0} \otimes f_{0}, 0\right]\right)\right) & =\varphi\left(\left[\lambda \cdot e_{0} \otimes f_{0}, e_{0} \otimes f_{0} \otimes d \lambda\right]\right) \\
& =\left(\left[\lambda \cdot e_{0}, 0\right] \otimes f_{0}+\left[0, e_{0} \otimes d \lambda\right] \otimes f_{0}\right) \oplus\left(\lambda \cdot e_{0} \otimes\left[f_{0}, 0\right]\right) \bmod I M \\
& =\lambda \cdot \varphi\left(\left[e_{0} \otimes f_{0}, 0\right]\right)
\end{aligned}
$$

as φ induces the identity on $\Omega_{X / S}^{1} \otimes E \otimes F$.
ii) For local sections e of E and f of F, we get

$$
\begin{aligned}
\varphi \circ s_{E \otimes F}(e \otimes f) & =([e,-\nabla e] \otimes f) \oplus(e \otimes[f,-\nabla f]) \bmod I M \\
& =\left(s_{E} \otimes \operatorname{id}_{F}, \operatorname{id}_{E} \otimes s_{F}\right)(e \otimes f)
\end{aligned}
$$

which proves ii).
Corollary 1.1.5. Let E be a vector bundle on X and denote by $\Delta: \mathcal{O}_{X} \rightarrow E \otimes E^{\vee}$ the canonical map. Then the pullback of the Baer sum of $\mathcal{J} e t_{X / S}^{1}(E) \otimes E^{\vee}$ and $E \otimes \mathcal{J} e t_{X / S}^{1}\left(E^{\vee}\right)$ along Δ admits a canonical splitting.

Proof. The Baer sum of $\mathcal{J} e t_{X / S}^{1}(E) \otimes E^{\vee}$ and $E \otimes \mathcal{J} e t_{X / S}^{1}\left(E^{\vee}\right)$ is canonically isomorphic to $\mathcal{J} e t_{X / S}^{1}\left(E \otimes E^{\vee}\right)$. Locally on X we may find a connection ∇_{E} on E. There are canonically associated connections $\nabla_{E^{\vee}}$ and $\nabla_{E \otimes E^{\vee}}$ on E^{\vee} and $E \otimes E^{\vee}$. The composition $s_{\nabla_{E \otimes E^{\vee}}} \circ \Delta$ does not depend on the choice of ∇_{E} and induces the desired trivialization.
Lemma 1.1.6. Consider a commutative diagram

in the category of locally ringed spaces where $\tilde{\pi}$ and π are morphisms as in situation 1.1 a) or b). Let E be a vector bundle on X and denote the canonical map $f^{*} \Omega_{X / S}^{1} \rightarrow \Omega_{\tilde{X} / \tilde{S}}^{1}$ by f^{*}.
i) There exists a canonical $\mathcal{O}_{\tilde{X}}$-linear map

$$
\phi: f^{*} P_{X / S}^{1}(E) \rightarrow P_{\tilde{X} / \tilde{S}}^{1}\left(f^{*} E\right)
$$

which makes the diagram

$$
\begin{align*}
& 0 \rightarrow f^{*} E \otimes_{\mathcal{O}_{\tilde{X}}} f^{*} \Omega_{X / S}^{1} \rightarrow f^{*} P_{X / S}^{1}(E) \rightarrow f^{*} E \rightarrow 0 \\
& 0 \rightarrow f^{*} E \otimes_{\mathcal{O}_{\tilde{X}}} \Omega_{\tilde{X} / \tilde{S}}^{1} \quad \rightarrow P_{\tilde{X} / \tilde{S}}^{1}\left(f^{*} E\right) \quad \rightarrow \quad f^{*} E \rightarrow 0 . \tag{1.9}
\end{align*}
$$

commutative. Consequently we have

$$
\left(\operatorname{id}_{f^{*} E} \otimes f^{*}\right) \circ \operatorname{jet}_{X / S}^{1}(F)=\operatorname{jet}_{\tilde{X} / \tilde{S}}^{1}\left(f^{*} F\right)
$$

in $\operatorname{Ext}_{\tilde{X}}^{1}\left(f^{*} E \otimes_{\mathcal{O}_{\tilde{X}}} \Omega_{\tilde{X} / \tilde{S}}^{1}, f^{*} E\right)$.
ii) A connection ∇_{E} on E induces a splitting s_{E} of $\mathcal{J} e t_{X / S}^{1}(E)$. The splitting

$$
s_{f^{*} E}:=\phi \circ f^{*}\left(s_{E}\right)
$$

induces a connection $f^{*} \nabla_{E}$ on $f^{*} E$ which is uniquely determined by

$$
\begin{equation*}
\left(f^{*} \nabla_{E}\right)\left(f^{*} s\right)=f^{*}\left(\nabla_{E} s\right) \tag{1.10}
\end{equation*}
$$

for local sections s of E.
Proof. i) Observe that the upper sequence in (1.9) is exact as E is locally free. Recall that

$$
\begin{equation*}
f^{*} P_{X / S}^{1}(E)=\left[f^{-1} E \oplus f^{-1}\left(E \otimes_{\mathcal{O}_{X}} \Omega_{X / S}^{1}\right)\right] \otimes_{f^{-1} \mathcal{O}_{X}} \mathcal{O}_{\tilde{X}} \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{\tilde{X} / \tilde{S}}^{1}\left(f^{*} E\right)=f^{*} E \oplus f^{*} E \otimes_{\mathcal{O}_{\tilde{X}}} \Omega_{\tilde{X} / \tilde{S}}^{1} \tag{1.12}
\end{equation*}
$$

We have $f^{-1} \mathcal{O}_{X}$-linear canonical maps

$$
f^{-1} E \rightarrow f^{*} E
$$

and

$$
\left.f^{-1}\left(E \otimes_{\mathcal{O}_{X}} \Omega_{X / S}^{1}\right) \rightarrow f^{*}\left(E \otimes_{\mathcal{O}_{X}} \Omega_{X / S}^{1}\right) \xrightarrow{\sim} f^{*} E \otimes_{\mathcal{O}_{\tilde{X}}} f^{*} \Omega_{X / S}^{1} \xrightarrow{\mathrm{id}_{f^{*} E} \otimes f^{*}} f^{*} E \otimes_{\mathcal{O}_{\tilde{X}}} \Omega_{\tilde{X} / \bar{S}}^{1}\right)
$$

The direct sum of these maps induces a $g^{-1} \mathcal{O}_{S^{-}}$-linear morphism

$$
\left[f^{-1} E \oplus f^{-1}\left(E \otimes_{\mathcal{O}_{X}} \Omega_{X / S}^{1}\right)\right] \rightarrow f^{*} E \oplus f^{*} E \otimes_{\mathcal{O}_{\tilde{X}}} \Omega_{\tilde{X} / \tilde{S}}^{1}
$$

It is straightforward to check that this morphism is $f^{-1} \mathcal{O}_{X}$-linear for the module structure given by formula (1.5). Via (1.11) and (1.12), we obtain the desired morphism ϕ which fits by construction in the diagram (1.9).
ii) is a straightforward consequence of the construction of ϕ in the proof of i).
1.2. Cotangent complex and Atiyah class. In situation 1.1 a) or b) the cotangent complex $\mathbb{L}_{X / S}$ is constructed in [Ill71, II.1.2] resp. [BF03, 2.38] as an object in the derived category $D\left(\mathcal{O}_{X}-\bmod \right)$ of \mathcal{O}_{X}-modules. Consider $\Omega_{X / S}^{1}$ as a complex concentrated in degree zero. The cotangent complex $\mathbb{L}_{X / S}$ comes with a natural morphism

$$
\begin{equation*}
\mathbb{L}_{X / S} \longrightarrow \Omega_{X / S}^{1} \tag{1.13}
\end{equation*}
$$

in $D\left(\mathcal{O}_{X}-\bmod \right)$ which is a quasi-isomorphism if X is smooth over S. Given a vector bundle E over X, the Atiyah class of E is defined in loc. cit. as an element

$$
\operatorname{at}_{X / S}(E) \in \operatorname{Ext}^{1}\left(E, E \otimes^{\mathbb{L}} \mathbb{L}_{X / S}\right)=\operatorname{Hom}_{D\left(\mathcal{O}_{X}-\bmod \right)}\left(E, E \otimes^{\mathbb{L}} \mathbb{L}_{X / S}[1]\right)
$$

If $X \xrightarrow{\pi} S$ is a morphism of schemes, the Atiyah class of Illusie maps under the morphism induced by (1.13) to the class (compare [Ill71, Cor. 2.3.7.4])

$$
\operatorname{jet}_{X / S}^{1}(E) \in \operatorname{Ext}^{1}\left(E, E \otimes \Omega_{X / S}^{1}\right)
$$

If $X \xrightarrow{\pi} S$ is a smooth morphism of complex analytic spaces, the Atiyah class of Buchweitz and Flenner maps under the morphism induced by (1.13) to the opposite class of jet ${ }_{X / S}^{1}(E)$ ([BF03, 3.27]).

If the canonical morphism (1.13) is a quasi-isomorphism, we call $\mathcal{J} e t_{X / S}^{1}(E)$ the Atiyah extension associated with E and denote it by $\mathcal{A} t_{X / S}(E)$. The associated extension class $\operatorname{at}_{X / S}(F)$ equals the opposite of the Atiyah classes $\operatorname{At}(F)$ in $[\mathrm{BF} 03]$ and $b(F)$ in [Ati57, Section 4]. It coincides with the Atiyah class defined in [ALJ89]. Compare also [BF03, 2.4 and Rem. 3.17] for a discussion of signs related to the Atiyah class.

The following Lemma implies in particular that (1.13) is a quasi-isomorphism in the geometric situations considered in Section 2 and Section 4.

Lemma 1.2.1. Let $\pi: X \rightarrow S$ be a locally complete intersection (l.c.i.) morphism of schemes such that X is integer and the smooth locus of π is dense in X. Then (1.13) is a quasi-isomorphism.

Proof. It is sufficient to show our claim locally on X as the formation of (1.13) is compatible with restrictions to open subsets. Hence we may assume that π admits a factorization

$$
X \xrightarrow{j} Q \xrightarrow{q} S
$$

where j is a regular immersion defined by some regular ideal sheaf J and q is smooth. We obtain an exact sequence

$$
0 \longrightarrow J / J^{2} \xrightarrow{\phi} j^{*} \Omega_{Q / S}^{1} \xrightarrow{\psi} \Omega_{X / S}^{1} \longrightarrow 0
$$

This is well known up to the injectivity of ϕ which holds as ϕ is a morphism of locally free sheaves which is injective over the smooth locus of π. The complex

$$
J / J^{2} \xrightarrow{\phi} j^{*} \Omega_{Q / S}^{1}
$$

situated in degrees minus one and zero is a cotangent complex for f by [IIl71, Cor. III.3.2.7]. Furthermore the map (1.13) is induced by ψ and hence a quasi-isomorphism.
1.3. Curvature and second fundamental form. Let E denote a holomorphic vector bundle on a complex manifold X. Recall that a \mathcal{C}^{∞}-connection $\nabla: A^{0}(X, E) \rightarrow A^{1}(X, E)$ on E is called compatible with the complex structure if its $(0,1)$-part coincides with the Dolbeault operator, i.e. $\nabla^{0,1}=\bar{\partial}_{E}$. Consider the Atiyah extension associated with E

$$
\mathcal{A} t_{X}(E): 0 \rightarrow E \otimes \Omega_{X}^{1} \xrightarrow{i_{E}} P_{X / \mathbb{C}}^{1}(E) \xrightarrow{p_{E}} E \rightarrow 0 .
$$

In the same way as before, we obtain a one-to-one correspondence

$$
\nabla \leftrightarrow s_{\nabla^{1,0}}
$$

between \mathcal{C}^{∞}-connections on the vector bundle E which are compatible with the complex structure and \mathcal{C}^{∞}-splittings

$$
\begin{equation*}
s_{\nabla^{1,0}}: E \rightarrow P_{X / \mathbb{C}}^{1}(E), f \mapsto\left[f,-\nabla^{1,0}(f)\right] \tag{1.14}
\end{equation*}
$$

of the extension $\mathcal{A} t_{X}(E)$.
Assume that E carries a hermitian metric h. A \mathcal{C}^{∞}-connection ∇ on $\bar{E}=(E, h)$ is called unitary if and only if it satisfies

$$
d h(s, t)=h(\nabla s, t)+h(s, \nabla t) \quad \text { for all } s, t \in A^{0}(X, E)
$$

Recall that a hermitian holomorphic vector bundle $\bar{E}=(E, h)$ carries a unique unitary connection $\nabla_{\bar{E}}$ which is compatible with the complex structure ([Che46], [Nak55]; see also [GH78, Ch. 0.5] or [Wel80, Sect. II.2]).

Lemma 1.3.1. Let $\bar{E}=(E, h)$ be a hermitian holomorphic vector bundle on X. Let $\nabla=\nabla_{\bar{E}}$ denote the unitary \mathcal{C}^{∞}-connection on E which is compatible with the complex structure. The curvature form

$$
\nabla^{2} \in A^{1,1}(X, \operatorname{End}(E))
$$

and the second fundamental form

$$
\alpha \in A^{0,1}\left(X, \operatorname{End}(E) \otimes \Omega_{X}^{1}\right)
$$

associated with $\mathcal{A} t_{X}(E)$ and its \mathcal{C}^{∞}-splitting $s_{\nabla^{1,0}}$ as in [BK07, A.5.2] satisfy

$$
\begin{equation*}
\alpha=-\nabla^{2} \tag{1.15}
\end{equation*}
$$

where we read the canonical isomorphism

$$
A^{1,1}(X, \operatorname{End}(E)) \xrightarrow{\sim} A^{0,1}\left(X, \operatorname{End}(E) \otimes \Omega_{X}^{1}\right), f \otimes(\alpha \wedge \beta) \mapsto(f \otimes \alpha) \wedge \beta .
$$

(compare [BK07, 1.1.5]) as an identification.
Proof. Recall from [BK07, A.5.2] that α is determined by

$$
\bar{\partial}_{P_{X / \mathbb{C}}^{1}(E) \otimes E^{\vee}}\left(s_{\nabla^{1,0}}\right)=\left(i_{E} \otimes \operatorname{id}_{A_{X}^{0,1}}\right)(\alpha) .
$$

It is sufficient to verify (1.15) locally on X. Hence we may assume that E admits a holomorphic frame. We describe ∇ and ∇^{2} with respect to this frame by the connection matrix θ and the curvature matrix Θ. Following the conventions in [Wel80, Ch. III], we have

$$
\Theta_{i k}=d \theta_{i k}+\sum_{j} \theta_{i j} \wedge \theta_{j k}
$$

The connection matrix θ has type $(1,0)$ and the curvature matrix Θ has type $(1,1)$ by loc. cit. Hence the equality above becomes

$$
\begin{equation*}
\Theta=\bar{\partial} \theta \tag{1.16}
\end{equation*}
$$

Let $\tilde{\nabla}$ denote the connection on E whose connection matrix is zero. The associated splitting $s_{\tilde{\nabla}_{1,0}}$ of at ${ }_{X}(E)$ is holomorphic. Hence (1.16) gives

$$
\bar{\partial}_{J_{X / \mathbb{C}}^{1}}(E) \otimes E^{\vee}\left(s_{\nabla^{1,0}}\right)=\bar{\partial}_{J_{X / \mathbb{C}}^{1}(E) \otimes E^{\vee}}\left(s_{\nabla^{1,0}}-s_{\tilde{\nabla}^{1,0}}\right)=-\bar{\partial}(\theta)=-\Theta=-\nabla^{2} .
$$

2. The arithmetic Atiyah class of a vector bundle with connection

In this section we fix an arithmetic ring $R=\left(R, \Sigma, F_{\infty}\right)$ and a flat arithmetic scheme S over $\operatorname{Spec} R$.
2.1. Definition and basic properties. Let X be an integral arithmetic scheme with a generically smooth, l.c.i. morphism $\pi: X \rightarrow S$. Let E be a vector bundle on X. We consider the commutative square

$$
\begin{array}{rlc}
\left(X_{\Sigma}(\mathbb{C}), \mathcal{O}_{X_{\Sigma}}^{\text {hol }}\right) & \xrightarrow{j} & \left(X, \mathcal{O}_{X}\right) \\
\downarrow \pi_{\mathbb{C}} & \downarrow \pi \\
\left(S_{\Sigma}(\mathbb{C}), \mathcal{O}_{S_{\Sigma}}^{\text {hol }}\right) & \xrightarrow{j_{0}} & \left(S, \mathcal{O}_{S}\right) .
\end{array}
$$

Lemma 1.1.6 implies that the formation of the Atiyah extension of E is compatible with base change with respect to this diagram. More precisely, we have a canonical isomorphism

$$
P_{X / S}^{1}(E)_{\mathbb{C}}^{\mathrm{hol}} \xrightarrow{\sim} P_{X_{\Sigma}(\mathbb{C}) / S_{\Sigma}(\mathbb{C})}^{1}\left(E_{\mathbb{C}}^{\mathrm{hol}}\right)
$$

where we put $F_{\mathbb{C}}^{\mathrm{hol}}=j^{*} F$ for every \mathcal{O}_{X}-module F.
2.1.1. We have seen in 1.3 that there is a one-to-one correspondence between \mathcal{C}^{∞}-connections

$$
\nabla: A^{0}\left(X_{\Sigma}(\mathbb{C}), E_{\mathbb{C}}\right) \rightarrow A^{1}\left(X_{\Sigma}(\mathbb{C}), E_{\mathbb{C}}\right)
$$

which are compatible with the complex structure and commute with the action of F_{∞} and sections

$$
s_{\nabla}: E_{\mathbb{C}} \rightarrow P_{X / S}^{1}(E)_{\mathbb{C}}
$$

such that $\left(\mathcal{A} t_{X / S} E, s\right)$ is an arithmetic extension. This correspondence allows us to associate with each vector bundle E on X equipped with an F_{∞}-invariant connection ∇ on $E_{\mathbb{C}}$, that is compatible with the complex structure, its arithmetic Atiyah extension $\left(\mathcal{A} t_{X / S} E, s_{\nabla}\right)$ and its arithmetic Atiyah class

$$
\widehat{\mathrm{at}}_{X / S}(E, \nabla) \in \widehat{\mathrm{Ext}}^{1}\left(E, E \otimes \Omega_{X / S}^{1}\right)
$$

If \bar{E} is a hermitian vector bundle over X, we obtain the arithmetic Atiyah extension $\left(\mathcal{A} t_{X / S} E, s \nabla_{\bar{E}}\right)$ of \bar{E} and its arithmetic Atiyah class

$$
\widehat{\mathrm{at}}_{X / S}(\bar{E}):=\widehat{\mathrm{at}}_{X / S}\left(E, \nabla_{\bar{E}}\right) \in \widehat{\operatorname{Ext}}^{1}\left(E, E \otimes \Omega_{X / S}^{1}\right)
$$

where $\nabla_{\bar{E}}$ denotes the unitary connection on $E_{\mathbb{C}}$ over $X_{\Sigma}(\mathbb{C})$ that is compatible with the complex structure. As a direct consequence of this definition and Lemma 1.3.1, we get a formula for the "second fundamental" form (compare the introduction and [BK07, 2.3.1])

$$
\Psi(\widehat{\operatorname{at}}(\bar{E})) \in A^{0,1}\left(X_{\mathbb{R}}, \mathcal{E} n d(E) \otimes \Omega_{X / S}^{1}\right) .
$$

Namely

$$
\begin{equation*}
\Psi\left(\widehat{\mathrm{at}}_{X / S}(\bar{E})\right)=-R_{\bar{E}} \tag{2.1}
\end{equation*}
$$

under the canonical identification

$$
A^{1,1}\left(X_{\mathbb{R}}, \mathcal{E} n d(E)\right)=A^{0,1}\left(X_{\mathbb{R}}, \mathcal{E} n d(E) \otimes \Omega_{X / S}^{1}\right)
$$

where $R_{\bar{E}}:=\nabla_{\bar{E}}^{2}$ denotes the curvature of \bar{E}.
In particular, when \bar{E} is a hermitian line bundle over X,

$$
\begin{equation*}
\frac{1}{2 \pi i} \Psi\left(\widehat{\mathrm{at}}_{X / S}(\bar{E})\right)=-\frac{1}{2 \pi i} R_{\bar{E}}=: c_{1}(\bar{E}) \tag{2.2}
\end{equation*}
$$

is the first Chern form of \bar{E}.
We collect basic properties of the arithmetic Atiyah class.
Proposition 2.1.2. i) Let $\left(E, \nabla_{E}\right)$ and $\left(F, \nabla_{F}\right)$ be vector bundles on the smooth arithmetic S-scheme X equipped with F_{∞}-invariant \mathcal{C}^{∞}-connections compatible with the complex structure. We equip the tensor product $E \otimes F$ with the product connection. Then the equality

$$
\widehat{\mathrm{at}}_{X / S}\left(E \otimes F, \nabla_{E \otimes F}\right)=\widehat{\mathrm{at}}_{X / S}\left(E, \nabla_{E}\right) \otimes F+E \otimes \widehat{\mathrm{at}}_{X / S}\left(F, \nabla_{F}\right)
$$

holds in $\widehat{\operatorname{Ext}}_{X}^{1}\left(E \otimes F, E \otimes F \otimes \Omega_{X / S}^{1}\right)$.
ii) Let \bar{E} and \bar{F} be hermitian vector bundles on the smooth arithmetic S-scheme X, and $\bar{E} \otimes \bar{F}$ their tensor product equipped with the product hermitian metric. Then the equality

$$
\widehat{\mathrm{at}}_{X / S}(\bar{E} \otimes \bar{F})=\widehat{\mathrm{at}}_{X / S}(\bar{E}) \otimes F+E \otimes \widehat{\mathrm{at}}_{X / S}(\bar{F})
$$

holds in $\widehat{\operatorname{Ext}}_{X}^{1}\left(E \otimes F, E \otimes F \otimes \Omega_{X / S}^{1}\right)$.
iii) Let \bar{E} be a hermitian vector bundles on the smooth arithmetic S-scheme X, and \bar{E}^{\vee} the dual hermitian vector bundle. Then we have

$$
\left(E^{\vee} \otimes \widehat{\mathrm{at}}_{X / S}(\bar{E})\right) \circ \Delta=-\left(\widehat{\mathrm{at}}_{X / S}\left(\bar{E}^{\vee}\right) \otimes E\right) \circ \Delta
$$

in $\widehat{\operatorname{Ext}}_{X}^{1}\left(\mathcal{O}_{X}, \mathcal{E} n d(E) \otimes \Omega_{X / S}^{1}\right)$ where.$\circ \Delta$ denotes the pushout along Δ as in $[\mathrm{BK} 07,2.4]$.
iv) Let $f: X \rightarrow Y$ be a morphism of smooth arithmetic S-schemes. Let $\left(E, \nabla_{E}\right)$ be a vector bundle on Y with F_{∞}-invariant \mathcal{C}^{∞}-connection which is compatible with the complex structure. The canonical map $f^{*}: f^{*} \Omega_{Y / S}^{1} \rightarrow \Omega_{X / S}^{1}$ induces a homomorphism

$$
\widehat{\operatorname{Ext}}_{X}^{1}\left(f^{*} E, f^{*} E \otimes f^{*} \Omega_{Y / S}^{1}\right) \rightarrow \widehat{\operatorname{Ext}}_{X}^{1}\left(f^{*} E, f^{*} E \otimes \Omega_{X / S}^{1}\right)
$$

by pushout along $\mathrm{id}_{f^{*} E} \otimes f^{*}$. We still denote the image of $f^{*} \widehat{\mathrm{at}}_{Y / S}\left(E, \nabla_{E}\right)$ under this map by $f^{*} \widehat{a t}_{Y / S}\left(E, \nabla_{E}\right)$ and equip $f^{*} E_{\mathbb{C}}^{\text {hol }}$ with the connection $f^{*} \nabla_{E}$ described in (1.10). Then we have the equality

$$
f^{*} \widehat{\mathrm{at}}_{Y / S}\left(E, \nabla_{E}\right)=\widehat{\mathrm{at}}_{X / S}\left(f^{*} E, f^{*} \nabla_{E}\right) .
$$

in $\widehat{\operatorname{Ext}}_{X}^{1}\left(f^{*} E, f^{*} E \otimes \Omega_{X / S}^{1}\right)$.
v) Let $f: X \rightarrow Y$ be a morphism of smooth arithmetic S-schemes. Let \bar{E} denote a hermitian vector bundle on Y, and $f^{*} \bar{E}$ its pull-back on X.. Then the inverse image $f^{*} \widehat{a t}_{Y / S}(\bar{E})$ may be defined in $\widehat{\operatorname{Ext}}_{X}^{1}\left(f^{*} E, f^{*} E \otimes \Omega_{X / S}^{1}\right)$ as in iv) and satisfies

$$
f^{*} \widehat{\mathrm{at}}_{Y / S}(\bar{E})=\widehat{\mathrm{at}}_{X / S}\left(f^{*} \bar{E}\right) .
$$

Proof. i) follows from 1.1.4 and ii) is a direct consequence of i) as the induced unitary connections which are compatible with the complex structure satisfy (1.8). iii) is a consequence of Corollary 1.1.5 and of the compatibility of the splitting in loc. cit. with holomorphic and hermitian structures. iv) and v) follow from 1.1.6.

Let \bar{E} be a hermitian line bundle on X. We give a cocycle description of at (\bar{E}) based on the description of arithmetic extension groups by Čech cocycles given in Appendix A.
Proposition 2.1.3. Let $\bar{E}=(E, h)$ be a hermitian vector bundle of rank n on a smooth arithmetic S-scheme X. Choose a locally finite, affine, open cover $\mathcal{U}=\left(U_{i}\right)_{i \in I}$ of X such that E admits a frame

$$
f_{i}:\left.\mathcal{O}_{U_{i}}^{n} \xrightarrow{\sim} E\right|_{U_{i}}
$$

over U_{i}. For $i \in I$, we define

$$
h_{i}:=h\left(f_{i, \mathbb{C}}, f_{i, \mathbb{C}}\right)=\left(h\left(f_{i, \mathbb{C}}\left(e_{l}\right), f_{i, \mathbb{C}}\left(e_{k}\right)\right)\right)_{1 \leq k, l \leq n} \in \operatorname{Mat}_{n}\left(\mathcal{C}^{\infty}\left(U_{i, \Sigma}(\mathbb{C}), \mathbb{C}\right)^{F_{\infty}}\right),
$$

where $e_{l}:=\left(\delta_{\alpha l}\right)_{1 \leq \alpha \leq n}$, and

$$
\partial \log h_{i}:=f_{i} \circ h_{i}^{-1} \circ\left(\partial h_{i}\right) \circ f_{i}^{-1} \in A^{0}\left(U_{i, \mathbb{R}}, E n d(E) \otimes \Omega_{X / S}^{1}\right) .
$$

For $i, j \in I$, we define

$$
\begin{aligned}
f_{i j}:=f_{j}^{-1} \circ f_{i} & \in \operatorname{Mat}_{n}\left(\mathcal{O}_{X}\left(U_{i j}\right)\right) \\
\operatorname{dlog} f_{i j}:=f_{j} \circ\left(d f_{i j}\right) \circ f_{i}^{-1} & \in \Gamma\left(U_{i j}, \operatorname{End}(E) \otimes \Omega_{X / S}^{1}\right) .
\end{aligned}
$$

Then the isomorphism

$$
\hat{\rho}_{\mathcal{U}, E, E \otimes \Omega_{X / S}^{1}}: \widehat{\operatorname{Ext}}_{X}^{1}\left(E, E \otimes \Omega_{X / S}^{1}\right) \rightarrow \check{H}^{0}\left(\mathcal{U}, C\left(\operatorname{ad}_{E n d(E) \otimes \Omega_{X / S}^{1}}\right)\right)
$$

maps $\hat{\mathrm{at}}_{X / S}(\bar{E})$ to the class of

$$
\left(\left(\operatorname{dlog} f_{i j}\right)_{i, j \in I},\left(-\partial \log h_{i}\right)_{i \in I}\right) .
$$

Proof. Let ∇ denote the unitary connection on $E_{\mathbb{C}}$ which is compatible with the complex structure. We compute cocycles $\left(\left(\alpha_{i j}\right)_{i, j},\left(\beta_{i}\right)_{i}\right)$ which represent the image of the arithmetic extension $\left(\mathcal{A} t(E), s_{\nabla}\right)$ under $\hat{\rho}_{\mathcal{U}, E, E \otimes \Omega_{X / S}^{1}}$. We follow the construction given in Appendix
A. Consider the diagram

$$
\begin{array}{rlccccc}
\left(\mathcal{A t}(E) \otimes E^{\vee}\right) \circ \Delta: 0 \rightarrow & \mathcal{E} n d(E) \otimes \Omega_{X / S}^{1} & \rightarrow & W & \rightarrow & \mathcal{O}_{X} & \rightarrow 0 \\
\| & & & \rightarrow 0 \\
\mathcal{A} t(E) \otimes E^{\vee}: 0 & \rightarrow & E \otimes \Omega_{X / S}^{1} \otimes E^{\vee} & \rightarrow & P_{X / S}^{1}(E) \otimes E^{\vee} & \rightarrow & E \otimes \Delta E^{\vee}
\end{array} \rightarrow 0 .
$$

There is a unique connection $\nabla_{i}:\left.\left.E\right|_{U_{i}} \rightarrow E\right|_{U_{i}} \otimes \Omega_{U_{i} / S}^{1}$ such that $\nabla_{i}\left(f_{i}\right)=0$. It satisfies

$$
\nabla_{j}\left(f_{i}\right)=\nabla_{j}\left(f_{j} \cdot f_{i j}\right)=f_{j} \cdot d f_{i j},
$$

where the frames f_{i} and f_{j} are seen as "line vectors" with entries sections of E. The connection ∇_{i} determines an $\mathcal{O}_{U_{i}}$-linear splitting $s_{\nabla_{i}}$ of $\mathcal{A} t(E)$ over U_{i} as in (1.6). We write
$\Delta\left(1_{X}\right)=f_{i} \otimes f_{i}^{\vee}$, where f_{i}^{\vee} denotes the dual frame of E^{\vee} - which we may see as a "column vector" with entries sections of E^{\vee} - and get

$$
\begin{aligned}
\alpha_{i j} & =\left(-s_{\nabla_{j}} \otimes \operatorname{id}_{E^{\vee}}+s_{\nabla_{i}} \otimes \operatorname{id}_{E^{\vee}}\right) \circ \Delta\left(1_{X}\right) \\
& =\left(-s_{\nabla_{j}}+s \nabla_{i}\right) f_{i} \otimes f_{i}^{\vee} \\
& =\left(f_{j} \cdot\left(d f_{i j}\right)\right) \otimes f_{i}^{\vee} \\
& =\operatorname{dlog} f_{i j} .
\end{aligned}
$$

We observe that we have

$$
\nabla^{1,0}\left(f_{i}\right)=f_{i} \cdot h_{i}^{-1} \cdot\left(\partial h_{i}\right)
$$

by [Wel80, III.2, eq. (2.1)]. Hence

$$
\begin{aligned}
\beta_{i} & =\left(s_{\nabla^{1,0}} \otimes \operatorname{id}_{E^{\vee}}-s_{\nabla_{i}} \otimes \operatorname{id}_{E^{\vee}}\right) \circ \Delta\left(1_{X}\right) \\
& =-f_{i} \circ h_{i}^{-1} \circ\left(\partial h_{i}\right) \circ f_{i}^{-1} \\
& =-\partial \log h_{i} .
\end{aligned}
$$

Our claim follows.
The properties of the arithmetic Atiyah class in Proposition 2.1.2 may be recovered by straightforward cocycle computations using Proposition 2.1.3. in this way, one may also establish the following refined variant of Proposition 2.1.2, iii):
Corollary 2.1.4. For any hermitian vector bundle \bar{E} on a smooth arithmetic S-scheme X, we have the equality

$$
\widehat{\mathrm{at}}_{X / S}(\bar{E})=-\widehat{\mathrm{at}}_{X / S}\left(\bar{E}^{\vee}\right)
$$

in

$$
\begin{align*}
\widehat{\operatorname{Ext}}_{X}^{1}\left(E, E \otimes \Omega_{X / S}^{1}\right) & \simeq \widehat{\operatorname{Ext}}_{X}^{1}\left(\mathcal{O}_{X}, E^{\vee} \otimes E \otimes \Omega_{X / S}^{1}\right) \tag{2.3}\\
& \simeq \widehat{\operatorname{Ext}}_{X}^{1}\left(\mathcal{O}_{X},\left(E^{\vee}\right)^{\vee} \otimes E^{\vee} \otimes \Omega_{X / S}^{1}\right) \simeq \widehat{\operatorname{Ext}}_{X}^{1}\left(E^{\vee}, E^{\vee} \otimes \Omega_{X / S}^{1}\right)
\end{align*}
$$

The first and last isomorphisms in (2.3) are the canonical isomorphism in [BK07, 2.4.6], and the second one is deduced from the isomorphism $E^{\vee} \otimes E \simeq E \otimes E^{\vee}$ exchanging the two factors and the canonical biduality isomorphism $E \simeq\left(E^{\vee}\right)^{\vee}$.

2.2. The first Chern class in arithmetic Hodge cohomology.

2.2.1. For a hermitian vector bundle \bar{E} on a smooth arithmetic S-scheme X, we put

$$
\hat{c}_{1}^{H}(\bar{E}):=\hat{c}_{1}^{H}(X / S, \bar{E}):=\operatorname{tr}_{E} \circ\left(\widehat{\operatorname{at}}_{X / S}(\bar{E}) \otimes E^{\vee}\right) \circ i_{E} \in \widehat{\operatorname{Ext}}^{1}\left(\mathcal{O}_{X}, \Omega_{X / S}^{1}\right)
$$

where $\operatorname{tr}_{E}: E \otimes E^{\vee} \rightarrow \mathcal{O}_{X}$ and $i_{E}: \mathcal{O}_{X} \rightarrow E n d(E) \simeq E \otimes E^{\vee}$ are the canonical morphisms. We call $\hat{c}_{1}^{H}(\bar{E})$ the first Chern class of \bar{E} in arithmetic Hodge cohomology.

When \bar{E} is a hermitian line bundle, tr_{E} and i_{E} are the "obvious" isomorphisms, and $\hat{c}_{1}^{H}(\bar{E})$ is nothing else than $\widehat{\text { at }}_{X / S}(\bar{E})$ in

$$
\widehat{\operatorname{Ext}}_{X}^{1}\left(E, E \otimes \Omega_{X / S}^{1}\right) \simeq \widehat{\operatorname{Ext}}_{X}^{1}\left(\mathcal{O}_{X}, E^{\vee} \otimes E \otimes \Omega_{X / S}^{1}\right) \simeq \widehat{\operatorname{Ext}}_{X}^{1}\left(\mathcal{O}_{X}, \Omega_{X / S}^{1}\right)
$$

Using the the description of in terms of Čech cocycles in Proposition 2.1.3, and the expression of the differential of the detrminant in terms of the trace, we obtain, after a straightforward computation:

$$
\hat{c}_{1}^{H}(\bar{E})=\hat{c}_{1}^{H}(\operatorname{det} \bar{E}) .
$$

Proposition 2.1.3 also leads immediately to the following description of the first Chern class in arithmetic Hodge cohomology for hermitian line bundles:
Lemma 2.2.2. Let \bar{L} be a hermitian line bundle on an arithmetic scheme X. Choose a locally finite, affine, open cover $\mathcal{U}=\left(U_{i}\right)_{i \in I}$ of X such that L admits a trivialization $l_{i} \in \Gamma\left(U_{i}, L\right)$ over U_{i}. Put

$$
f_{i j}:=l_{j}^{-1} \cdot l_{i} \in \Gamma\left(U_{i j}, \mathcal{O}^{*}\right) .
$$

Then

$$
\hat{\rho}_{\mathcal{U}, \Omega_{X / S}^{1}}\left(\hat{c}_{1}^{H}(\bar{L})\right)=\left[\left(\operatorname{dlog} f_{i j}\right)_{i, j \in I},\left(-\partial \log \left\|l_{i}\right\|^{2}\right)_{i \in I}\right] .
$$

2.2.3. Let $\widehat{\operatorname{Pic}}(X)$ denote the group of isometry classes of hermitian line bundles on X. It follows immediately from Proposition 2.1.2 that the map

$$
\hat{c}_{1}^{H}: \widehat{\operatorname{Pic}}(X) \rightarrow \widehat{\operatorname{Ext}}_{X}^{1}\left(\mathcal{O}_{X}, \Omega_{X / S}^{1}\right)
$$

is a group homomorphism which satisfies

$$
\hat{c}_{1}^{H}(X / S, .) \circ f^{*}=f^{*} \circ \hat{c}_{1}^{H}(Y / S, .)
$$

for every morphism $f: X \rightarrow Y$ of smooth, arithmetic S-schemes.
2.2.4. We consider the diagrams

$$
\begin{array}{ccccccc}
\mathcal{O}(X)^{*} & \rightarrow & \left.\operatorname{ker} \partial \bar{\partial}\right|_{A^{0,0}\left(X_{\mathbb{R}}\right)} & \xrightarrow{a} & \widehat{\operatorname{Pic}}(X) & \rightarrow & \operatorname{Pic}(X) \tag{2.4}\\
\downarrow-\operatorname{dog} & & \downarrow-\partial & & \downarrow \hat{c}_{1} & & \begin{array}{l}
\\
\Gamma
\end{array} \\
\Gamma\left(X, \Omega_{X / S}^{1}\right) & \rightarrow & A^{0}\left(X_{\mathbb{R}}, \Omega_{X / S}^{1}\right) & \xrightarrow{b} & \widehat{\operatorname{Ext}}_{X}^{1}\left(\mathcal{O}_{X}, \Omega_{X / S}^{1}\right) & \xrightarrow{\nu} & \operatorname{Ext}_{X}^{1}\left(\mathcal{O}_{X}, \Omega_{X / S}^{1}\right) .
\end{array}
$$

and

$$
\begin{array}{ccc}
\widehat{\operatorname{Pic}}(X) & \xrightarrow{c_{1}} & A^{1,1}\left(X_{\mathbb{R}}\right) \tag{2.5}\\
\downarrow \hat{c}_{1}^{H} & & \downarrow \iota \\
\widehat{\operatorname{Ext}}_{X}^{1}\left(\mathcal{O}_{X}, \Omega_{X / S}^{1}\right) & \xrightarrow{\Psi} & A^{0,1}\left(X_{\mathbb{R}}, \Omega_{X / S}^{1}\right) .
\end{array}
$$

Here $A^{p, p}\left(X_{\mathbb{R}}\right)$ is by definition the space of real (p, p)-forms α on the complex manifold $X_{\Sigma}(\mathbb{C})$ which satisfy $F_{\infty}(\alpha)=(-1)^{p} \alpha$ (compare [GS90a, 3.2.1]). The monomorphism ι is defined by

$$
A^{p, p}\left(X_{\mathbb{R}}\right) \hookrightarrow A^{0, p}\left(X_{\mathbb{R}}, \Omega_{X / S}^{p}\right), \quad \alpha \mapsto(2 \pi i)^{p} \alpha
$$

(compare [BK07, 1.1.5]). Furthermore we consider the following morphisms

$$
\begin{aligned}
\mathcal{O}(X)^{*} & \left.\rightarrow \operatorname{ker} \partial \bar{\partial}\right|_{A^{0}\left(X_{\mathbb{R}}\right)}, f \mapsto \log |f|^{2}, \\
\operatorname{dlog}: \mathcal{O}(X)^{*} & \rightarrow \Gamma\left(X, \Omega_{X / S}^{1}\right), f \mapsto f^{-1} d f, \\
\Gamma\left(X, \Omega_{X / S}^{1}\right) & \rightarrow A^{0}\left(X_{\mathbb{R}}, \Omega_{X / S}^{1}\right), \alpha \mapsto \alpha_{\mathbb{C}} \\
\partial:\left.\operatorname{ker} \partial \bar{\partial}\right|_{A^{0,0}\left(X_{\mathbb{R}}\right)} & \rightarrow A^{0}\left(X_{\mathbb{R}}, \Omega_{X / S}^{1}\right), f \mapsto \partial f, \\
a:\left.\operatorname{ker} \partial \bar{\partial}\right|_{A^{0,0}\left(X_{\mathbb{R}}\right)} & \rightarrow \widehat{\operatorname{Pic}}(X), f \mapsto\left[\left(\mathcal{O}_{X},\|\cdot\| f\right)\right] \text { with }\left\|1_{X}\right\|_{f}^{2}=\exp f, \\
b: A^{0}\left(X_{\mathbb{R}}, \Omega_{X / S}^{1}\right) & \rightarrow \widehat{\operatorname{Ext}}^{1}\left(\mathcal{O}_{X}, \Omega_{X / S}^{1}\right), T \mapsto\left[\Omega_{X / S}^{1} \rightarrow \Omega_{X / S}^{1} \oplus \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}, s=\binom{T}{\mathrm{id}}\right]
\end{aligned}
$$

(compare the introduction and [BK07, 2.2])

$$
\begin{aligned}
\widehat{\operatorname{Pic}}(X) & \rightarrow \operatorname{Pic}(X),[(L,\|\cdot\|)] \mapsto[L] \\
\nu: \widehat{\operatorname{Ext}}^{1}\left(\mathcal{O}_{X}, \Omega_{X / S}^{1}\right) & \rightarrow \operatorname{Ext}^{1}\left(\mathcal{O}_{X}, \Omega_{X / S}^{1}\right),[(\mathcal{E}, s)] \mapsto[\mathcal{E}] \\
c_{1}^{H}: \operatorname{Pic}(X) & \rightarrow \operatorname{Ext}^{1}\left(\mathcal{O}_{X}, \Omega_{X / S}^{1}\right),[L] \mapsto\left[\operatorname{tr}_{L} \circ \operatorname{at}_{X / S}(L) \circ i_{L}\right] \\
c_{1}: \widehat{\operatorname{Pic}}(X) & \rightarrow A^{1,1}\left(X_{\mathbb{R}}\right),[\bar{L}=(L,\|\cdot\|)] \mapsto-(2 \pi i)^{-1} \nabla_{\bar{L}}^{2}, \\
\Psi: \widehat{\operatorname{Ext}}_{X}^{1}\left(\mathcal{O}_{X}, \Omega_{X / S}^{1}\right) & \rightarrow A^{0,1}\left(X_{\mathbb{R}}, \Omega_{X / S}^{1}\right) \quad \text { is defined in }[B K 07,2.3 .1] .
\end{aligned}
$$

The horizontal lines in (2.4) are exact by [GS90b, (2.5.2)] and [BK07, 2.2.1]. Observe the analogy between (2.4) and [GS90b, (2.5.2)].
Proposition 2.2.5. The diagrams (2.4) and (2.5) are commutative.
Proof. For f in $\mathcal{O}(X)^{*}$, we have

$$
\begin{equation*}
\partial \log |f|^{2}=\frac{\partial(f \bar{f})}{f \bar{f}}=\frac{\partial f}{f}=\frac{d f}{f}=\operatorname{dlog} f \tag{2.6}
\end{equation*}
$$

which shows the commutativity of the left square in (2.4). The unitary connection ∇_{f} on $\left(\mathcal{O}_{X},\|\cdot\|_{f}\right)$ which is compatible with the complex structure is given according to [Wel80, III. 2 formula (2.1)] by the formula

$$
\nabla_{f}^{1,0}(1)=\partial f \in A^{0}\left(X_{\mathbb{R}}, \Omega_{X / S}^{1}\right)
$$

Taking into account the correspondence between connections and splittings in 1.3 above (and notably the sign in (1.14)), it follows that the middle square commutes. The commutativity of the right square holds by definition. The square (2.5) is commutative by formula (2.2).

3. Hermitian line bundles with vanishing arithmetic Atiyah class

3.1. A finiteness result for the kernel of \hat{c}_{1}^{H}. Let K be a number field, and Σ a nonempty set of field embeddings of K in \mathbb{C}, stable under complex conjugation.

To these data is naturally attached the arithmetic ring in the sense of Gillet-Soule ([GS90a], 3.1.1) defined as the triple $\left(K, \Sigma, F_{\infty}\right)$ where F_{∞} denotes the conjugate linear involution of \mathbb{C}^{Σ} defined by $F_{\infty}\left(a_{\sigma}\right)_{\sigma \in \Sigma}:=\left(\overline{a_{\bar{\sigma}}}\right)_{\sigma \in \Sigma}$.
3.1.1. Let X be a smooth, projective, geometrically connected scheme over K, and $E_{X / K}$ the universal vector extension of $\operatorname{Pic}_{X / K}^{0}$ (see Appendix B for basic facts on Picard varieties and their universal vector extensions).

In the sequel, we shall consider X and $\operatorname{Spec} K$ as arithmetic schemes over the arithmetic ring $\left(K, \Sigma, F_{\infty}\right)$.

In particular, a hermitian line bundle \bar{L} over X is the data of a line bundle L over X and of a \mathcal{C}^{∞} hermitian metric $\|\cdot\|_{\bar{L}}$, invariant under complex conjugation, on the holomorphic line bundle $L_{\mathbb{C}}$ over

$$
X_{\Sigma}(\mathbb{C}):=\coprod_{\sigma \in \Sigma} X_{\sigma}(\mathbb{C})
$$

Observe that, for any line bundle L over X, the following conditions are equivalent:
a) the Atiyah class of L in $H^{1,1}(X / K):=\operatorname{Ext}_{X}^{1}\left(\mathcal{O}_{X}, \Omega_{X / K}^{1}\right)$ vanishes;
b) there exists a \mathcal{C}^{∞} hermitian metric $\|$.$\| , invariant under complex conjugation, on the$ holomorphic line bundle $L_{\mathbb{C}}$ over $X_{\Sigma}(\mathbb{C})$, with vanishing curvature.
When these conditions are realized, the metric $\|$.$\| is unique, up to some multiplicative$ constant, on every component $X_{\sigma}(\mathbb{C})$ of $X_{\Sigma}(\mathbb{C})$. Moreover, they hold if the line bundle L is algebraically equivalent to zero ${ }^{4}$.

Consider now a hermitian line bundle $\bar{L}:=\left(L,\|\cdot\|_{\bar{L}}\right)$ over X whose underlying line bundle L is algebraically equivalent to zero, and such that the curvature of $\|\cdot\|_{\bar{L}}$ vanishes. Let $\nabla_{\bar{L}}$ denote the unitary connection on $L_{\mathbb{C}}$ which is compatible with the complex structure.. Then the (1,0)-part $\nabla_{\bar{L}}^{1,0}$ of $\nabla_{\bar{L}}$ algebraizes, and the pair $\left(L_{\mathbb{C}}, \nabla_{\bar{L}}^{1,0}\right)$ determines a point $P=P_{\bar{L}}$ in the maximal compact subgroup of

$$
E_{X / K}(\mathbb{R}):=\left[\coprod_{\sigma \in \Sigma} E_{X / K}(\mathbb{C})\right]^{F_{\infty}} .
$$

(Details of this construction can be found in the Appendix in B. 7 and B. 8 .)
It is a straightforward consequence of our definitions that the following conditions are equivalent:

1) the line bundle L admits a connection $\nabla: L \rightarrow L \otimes \Omega_{X / K}^{1}$ such that $\nabla_{\mathbb{C}}$ equals $\nabla_{\frac{1,0}{L}}$;
2) $\widehat{\mathrm{at}}_{X / K}(\bar{L})=0$;
3) the class $\hat{c}_{1}^{H}(\bar{L}):=\hat{c}_{1}^{H}(X / \operatorname{Spec} K, \bar{L})$ in $\hat{H}^{1,1}(X / K):=\widehat{\operatorname{Ext}}_{X}^{1}\left(\mathcal{O}_{X}, \Omega_{X / K}^{1}\right)$ vanishes;
4) $P_{\bar{L}}$ is the image of a K-rational point of $E_{X / K}$.

When L defines a torsion point in $\operatorname{Pic}(X)$, these conditions are easily seen to be satisfied. Indeed, if n is a positive integer and $\alpha: \mathcal{O}_{X} \rightarrow L^{\otimes n}$ is an isomorphism of line bundle over X, there exists a unique connection ∇_{L} on L, defined over K, such that the connection $\nabla_{L^{\otimes n}}$ on $L^{\otimes n}$ deduced from ∇_{L} by taking its n-th tensor power makes α an isomorphism of line bundles with connections from $\left(\mathcal{O}_{X}, d\right)$ to $\left(L^{\otimes n}, \nabla_{L^{\otimes n}}\right)$. Moreover, for any σ in σ, α_{σ} is a section with constant norm of $L_{\mathbb{C}}^{\otimes n}$ over $X_{\sigma}(\mathbb{C})$ (since the curvature of $\|\cdot\|_{\bar{L}}$ vanishes), and consequently $\nabla_{L^{\otimes n}, \sigma}$ coincides with $\nabla_{L^{n} \mid X_{\sigma}(\mathbb{C})}^{1,0}$. This shows that $\nabla_{L, \sigma}$ coincides with $\nabla_{\bar{L} \mid X_{\sigma}(\mathbb{C})}^{1,0}$, and therefore that condition 1) is satisfied by $\nabla=\nabla_{L}$.

It turns out that, conversely, when the above conditions 1-4) hold, then L has a torsion class in $\operatorname{Pic}(X)$. This is indeed the content of the first part of the main result of this Section 3 :

Theorem 3.1.2. Let X be a smooth, projective, geometrically connected variety over K, and let $\pi: X \rightarrow$ Spec K its structural morphism, that we consider as a morphism of arithmetic schemes over the arithmetic ring $\left(K, \Sigma, F_{\infty}\right)$. Then we have:
i) If a hermitian line bundle $\bar{L}=\left(L,\|\cdot\|_{L}\right)$ over X admits an algebraic connection ∇ such that $\nabla_{\mathbb{C}}$ is unitary with respect to $\|\cdot\|_{L}$, then L has a torsion class in $\operatorname{Pic}(X)$ and the metric $\|.\|_{L}$ has vanishing curvature.
ii) For any hermitian line bundle \bar{L} on X, the first Chern class $\hat{c}_{1}^{H}(\bar{L})$ in $\hat{H}^{1,1}(X / K):=$ $\widehat{\operatorname{Ext}}_{X}^{1}\left(\mathcal{O}_{X}, \Omega_{X / K}^{1}\right)$ vanishes if and only if there exists a positive integer n such that $\bar{L}^{\otimes n}$ is isometric to the trivial bundle \mathcal{O}_{X} equipped with a metric constant on every

[^3]component $X_{\sigma}(\mathbb{C})$ of $X_{\Sigma}(\mathbb{C})$ - or equivalently, such that the class of $\bar{L}^{\otimes n}$ in $\widehat{\operatorname{Pic}}(X)$ belongs to the image of $\pi^{*}: \widehat{\operatorname{Pic}}(\operatorname{Spec} K) \rightarrow \widehat{\operatorname{Pic}}(X)$.
iii) The image of $\pi^{*}: \widehat{\operatorname{Pic}}(\operatorname{Spec} K) \rightarrow \widehat{\operatorname{Pic}}(X)$ has finite index in the kernel of
$$
\hat{c}_{1}^{H}: \widehat{\operatorname{Pic}}(X) \rightarrow \widehat{H}^{1,1}(X / K) .
$$
iv) Let $P \in E_{X / K}(K)$ be a K-rational point of the universal vector extension $E_{X / K}$ that belongs to the maximal compact subgroup of $E_{X / K}(\mathbb{R})$. Then P is a torsion point in $E_{X / K}(K)$.

Proof. We prove below that the assertions i)-iv) are equivalent for any given variety X as above. The isomorphism (B.8) shows that it is sufficient to show iv) (and hence any of the assertions i)-iv)) for abelian varieties. In order to prove i), we may choose σ in Σ and replace the set of embeddings Σ by $\{\sigma\}$ (resp. $\{\sigma, \bar{\sigma}\}$) if σ is a real (resp. complex) embedding. In this situation, i) is proved for abelian varieties as Theorem 3.2.1 in Section 3.2 infra.

The equivalence of i) and ii) is a straightforward consequence of the observations before the statement of Theorem 3.1.2 and of the implication

$$
\hat{c}_{1}^{H}(\bar{L})=0 \Rightarrow c_{1}(\bar{L})=0,
$$

which follows from the commutativity of (2.5).
i) \Rightarrow iii). A hermitian metric with curvature zero on the trivial line bundle on X is constant on every component $X_{\sigma}(\mathbb{C})$ of $X_{\Sigma}(\mathbb{C})$. Therefore, if we introduce the canonical map

$$
w: \widehat{\operatorname{Pic}}(X) \rightarrow \operatorname{Pic}(X) \hookrightarrow \operatorname{Pic}_{X / K}(K),
$$

then we have:

$$
\operatorname{Ker}\left(\hat{c}_{1}^{H}\right) \cap \operatorname{Ker}(w)=\operatorname{Im}\left(\pi^{*}: \widehat{\operatorname{Pic}}(S) \rightarrow \widehat{\operatorname{Pic}}(X)\right) .
$$

Hence the map w induces an injection of

$$
\begin{equation*}
\frac{\operatorname{Ker}\left(\hat{c}_{1}^{H}: \widehat{\operatorname{Pic}}(X) \rightarrow \widehat{\operatorname{Ext}}^{1}\left(\mathcal{O}_{X}, \Omega_{X / K}^{1}\right)\right)}{\operatorname{Im}\left(\pi^{*}: \widehat{\operatorname{Pic}}(\operatorname{Spec} K) \rightarrow \widehat{\operatorname{Pic}}(X)\right)} \tag{3.1}
\end{equation*}
$$

into $\operatorname{Pic}_{X / K}(K)$. Part i) implies that the image of (3.1) is contained in the torsion subgroup of $\operatorname{Pic}_{X / K}(K)$. This is a finite group as the Néron Severi group

$$
N S_{X / K}(\bar{K})=\operatorname{Pic}_{X / K}(\bar{K}) / \operatorname{Pic}_{X / K}^{0}(\bar{K})
$$

and $\operatorname{Pic}_{X / K}^{0}(K)$ are finitely generated abelian groups by [BGI71, Exp. XIII Th. 5.1] and the theorem of Mordell-Weil.
iii) \Rightarrow iv). Let $P \in E_{X / K}(K)$ be a K-rational point of the universal vector extension who belongs to the maximal compact subgroup of $E_{X / K}(\mathbb{R})$. Replacing K by a finite extension, we may assume that P is represented by a line bundle L algebraically equivalent to zero with an integrable connection ∇. If P belongs to the maximal compact subgroup of $E_{X / K}(\mathbb{R})$, we have $\nabla_{\mathbb{C}}=\nabla_{\bar{L}}^{1,0}$ where \bar{L} carries a hermitian metric with curvature zero. We have seen above that this implies $\hat{c}_{1}^{H}(\bar{L})=0$. By ii) there exists some $m>0$ such that $\overline{L^{\otimes m}}$ is isometric to the trivial bundle \mathcal{O}_{X} with a constant metric. It follows that $(L, \nabla)^{\otimes m}$ is isomorphic to the trivial bundle \mathcal{O}_{X} with the trivial connection. It follows that P is torsion.
iv) \Rightarrow i) Let $\bar{L}=\left(L,\|\cdot\|_{L}\right)$ be an hermitian line bundle over X. Let $\nabla_{\bar{L}}$ denote the unitary connection which is compatible with the complex structure on $L_{\mathbb{C}}$. We assume that L admits an algebraic connection ∇ such that $\nabla_{\mathbb{C}}$ equals $\nabla_{\frac{1}{L}}^{1,0}$. Observe that this implies in particular that the connection ∇ is integrable. It follows from equation (1.16) that the curvature $\nabla_{\frac{2}{L}}^{2}$ and hence the first Chern class of L vanish. The vanishing of the first Chern class of L shows that a power $L^{\otimes m}$ of L is algebraically equivalent to zero [Kle66, II. 2 Cor. 1 to Th. 2]. Hence we may assume that L is algebraically equivalent zero in order to prove that its class in $\operatorname{Pic}(X)$ is torsion. The pair $\left(L_{\mathbb{C}}, \nabla_{\frac{1}{L}}^{1,0}\right)$ determines a point P in the maximal compact subgroup of $E_{X / K}(\mathbb{R})$ which is K-rational as it comes from the point $P \in E_{X / K}(K)$ determined by the pair (L, ∇). The point P is torsion in $E_{X / K}(K)$ by iv). Hence the class of L is torsion in $\operatorname{Pic}(X)$.

Corollary 3.1.3. Let \mathcal{O}_{K} denote the ring of integers in a number field K, and let us work over the arithmetic ring $\left(\mathcal{O}_{K}, \Sigma, F_{\infty}\right)$. Let S denote a non-empty open subset of $\operatorname{Spec} \mathcal{O}_{K}$, and let X be a smooth projective S-scheme with geometrically connected fibers. Then

$$
\begin{equation*}
\frac{\operatorname{Ker}\left(\hat{c}_{1}^{H}: \widehat{\operatorname{Pic}}(X) \rightarrow \widehat{\operatorname{Ext}}_{X}^{1}\left(\mathcal{O}_{X}, \Omega_{X / S}^{1}\right)\right)}{\operatorname{Im}\left(\pi^{*}: \widehat{\operatorname{Pic}}(S) \rightarrow \widehat{\operatorname{Pic}}(X)\right)} \tag{3.2}
\end{equation*}
$$

is a finite group.
Proof. Let X_{K} denote the fiber of X over Spec K. We consider X_{K} as an arithmetic scheme over the arithmetic field $K=\left(K, \Sigma, F_{\infty}\right)$. There is a canonical restriction map

$$
\nu: \widehat{\operatorname{Pic}}(X) \rightarrow \widehat{\operatorname{Pic}}\left(X_{K}\right)
$$

Any element in $\operatorname{Ker} \nu \cap \operatorname{Ker} \hat{c}_{1}^{H}(X / S,$.$) is generically trivial and carries a constant metric.$ The sequence

$$
\operatorname{Pic}(S) \rightarrow \operatorname{Pic}(X) \rightarrow \operatorname{Pic}\left(X_{K}\right)
$$

is exact as the fibers of X / S are integral. Hence

$$
\operatorname{Ker}(\nu) \cap \operatorname{Ker} \hat{c}_{1}^{H}(X / S, .) \subseteq \operatorname{Im}\left(\pi^{*}: \widehat{\operatorname{Pic}}(S) \rightarrow \widehat{\operatorname{Pic}}(X)\right)
$$

and ν induces an embedding of (3.2) into (3.1). The latter group is finite by Theorem 3.1.2. Our claim follows.
3.2. Transcendence and line bundles with connections on abelian varieties. In this section, we complete the proof of Theorem 3.1.2 by establishing Theorem 3.1.2, i), when X is an abelian variety. Indeed, we are going to establish the following result, by using a classical transcendence result of Schneider-Lang:

Theorem 3.2.1. Let A be an abelian variety over a number field K, and (L, ∇) a line bundle over A equipped with a connection (defined over K).

If there exists a field embedding $\sigma: K \hookrightarrow \mathbb{C}$ and a hermitian metric $\|$.$\| on the complex$ line bundle L_{σ} on $A_{\sigma}(\mathbb{C})$ such that the connection ∇_{σ} is unitary with respect to $\|\cdot\|$, then L has a torsion class in $\operatorname{Pic}(A)$, and the metric $\|$.$\| has vanishing curvature.$
3.2.2. Commutative algebraic groups and a theorem of Schneider-Lang. If G is a commutative algebraic group over \mathbb{C}, its exponential map will be denoted $\exp _{G}$. It is the unique morphism of \mathbb{C}-analytic Lie groups

$$
\exp _{G}: \operatorname{Lie} G \longrightarrow G(\mathbb{C})
$$

whose differential at $0 \in \operatorname{Lie} G$ is $\operatorname{Id}_{\text {Lie } G}$. Its kernel

$$
\Gamma_{G}:=\operatorname{ker} \exp _{G}
$$

is a discrete additive subgroup of $\operatorname{Lie} G$. When G is connected, $\exp _{G}$ is a universal covering of $G(\mathbb{C})$, and Γ_{G} may be identified with the fundamental group $\pi_{1}\left(G(\mathbb{C}), 0_{G}\right)$, or with the homology group $H_{1}(G(\mathbb{C}), \mathbb{Z})$.

In the sequel, we shall use the following classical transcendence result on commutative algebraic groups:

Theorem 3.2.3. Let K be a number field and $\sigma: K \hookrightarrow \mathbb{C}$ a field embedding, and let G be a commutative algebraic group over K, and V a K-vector subspace of Lie G.

If there exists a basis $\left(\gamma_{1}, \ldots, \gamma_{v}\right)$ of the complex vector space V_{σ} such that, for every $i \in\{1, \ldots, v\}, \exp _{G_{\sigma}}\left(\gamma_{i}\right)$ belongs to $G(\overline{\mathbb{Q}})$, then V is the Lie algebra of some algebraic subgroup H of G.

We have denoted $\overline{\mathbb{Q}}$ the algebraic closure of \mathbb{Q} in \mathbb{C}. By means of the embedding σ, it may be seen as an algebraic closure of K, and the group $G(\overline{\mathbb{Q}})$ of $\overline{\mathbb{Q}}$-rational points of G becomes a subgroup of the group $G_{\sigma}(\mathbb{C})$ of its complex points.

Observe also that the subgroup H whose existence is asserted in Theorem 3.2.3 may clearly be chosen connected, and then H is clearly unique, defined over K, and the group $H_{\sigma}(\mathbb{C})$ of its complex points coincides with $\exp _{G_{\sigma}}\left(V_{\sigma}\right)$.

Theorem 3.2.3 has been established by Lang ([Lan66], IV.4, Theorem 2), who elaborated on some earlier work of Schneider on abelian functions and the transcendence of their values [Sch41]. We refer the reader to [Wal87] (where it appears as Théorème 5.2.1) for more details on Theorem 3.2.3 and its classical applications.

Let us also recall that Theorem 3.2.3 is now subsumed by various celebrated more recent results - namely, the transcendence criterion of Bombieri and the analytic subgroup theorem of Wüstholz. The reader may find a recent survey of these and related transcendence results on commutative algebraic groups in the monograph [BW07].
3.2.4. Line bundles with connections on abelian varieties. Let A be an abelian variety over a field k of characteristic zero, and L a line bundle over A. We may choose a rigidificaction of L, namely a trivialization $\phi: k \simeq L_{e}$ of its fiber at the zero element e of $A(k)$, or equivalently the vector $\ell:=\phi(1)$ in $L_{e} \backslash\{0\}$.

In the sequel, we shall assume that the following equivalent conditions are satisfied:
i) the line bundle L is algebraically equivalent to the trivial line bundle;
ii) the Atiyah class at ${ }_{A / k} L$ of L vanishes;
iii) the line bundle L may be equipped with an algebraic connection ∇.

Observe that the connection ∇ is necessarily flat ${ }^{5}$ and that the set of connections on A is a torsor under the k-vector space $\Gamma\left(A, \Omega_{A / k}^{1} \simeq(\operatorname{Lie} A)^{\vee}\right.$ of regular 1-forms on A, which acts additively on this set. Moreover, the \mathbb{G}_{m}-torsor L^{\times}defined by deleting the zero section from the total space ${ }^{6} \mathbb{V}\left(L^{\vee}\right)$ of L admits a unique structure of commutative algebraic group over k such that the diagram

$$
\begin{equation*}
0 \longrightarrow \mathbb{G}_{m, k} \xrightarrow{\phi} L^{\times} \xrightarrow{\pi} A \longrightarrow 0 \tag{3.3}
\end{equation*}
$$

— where ϕ denotes the composite morphism $\mathbb{G}_{m, k} \stackrel{\phi}{\simeq} L_{e}^{\times} \hookrightarrow L^{\times}$and π the restriction of the "structural morphism" from $\mathbb{V}\left(L^{\vee}\right)$ to A - becomes a short exact sequence of commutative algebraic groups. Its zero element is the k-point $\epsilon \in L^{\times}(k)$ defined by ℓ. (See for instance [Ser59], VII.3.16.)

From (3.3), we derive a short exact sequence of k-vector spaces:

$$
\begin{equation*}
0 \longrightarrow \operatorname{Lie} \mathbb{G}_{m, k} \xrightarrow{\text { Lie } \phi} \operatorname{Lie} L^{\times} \xrightarrow{\text { Lie } \pi} \operatorname{Lie} A \longrightarrow 0 . \tag{3.4}
\end{equation*}
$$

Recall that a connection over a vector bundle on a smooth algebraic variety may be described \grave{a} la Ehresmann as an equivariant splitting of the differential of the structural morphism of its frame bundle (see for instance [KN96], Chapter II, or [Spi70], Chapter 8; the constructions of loc. cit. in a differentiable setting can be immediately transposed in the algebraic framework of smooth algebraic varieties). In the present situation, a connection ∇ on L may thus be seen as a \mathbb{G}_{m}-equivariant splitting of the surjective morphism of vector bundles over L^{\times}defined by the differential of π :

$$
D \pi: T_{L^{\times}} \longrightarrow \pi^{*} T_{A} .
$$

In particular, its value at the unit element ϵ of L^{\times}defines a k-linear splitting

$$
\Sigma: \operatorname{Lie} A \longrightarrow \operatorname{Lie} L^{\times}
$$

of (3.4).
Conversely, from any k-linear right inverse Σ of Lie π, we deduce a \mathbb{G}_{m}-equivariant splitting of $D \pi$ by constructing its L^{\times}-equivariant extension to L^{\times}.

By these constructions, connections on L and k-linear splittings of (3.4) correspond bijectively. Indeed, by means of the identification Lie $\mathbb{G}_{m, k}=k \cdot X \partial / \partial X \simeq k$, the set of k-linear splittings of (3.4) becomes naturally a torsor under (Lie $A)^{\vee}$, and the above constructions are compatible with the (additive) actions of $(\operatorname{Lie} A)^{\vee}$ on the set of these splittings and on the set of connections on L.

This correspondence may also be described as follows. A linear splitting Σ as above may also be seen as a morphism $\tilde{\ell}: A_{e, 1} \rightarrow L_{\epsilon, 1}^{\times}$from the first infinitesimal neighbourhood $A_{e, 1}$ of e in A to the first infinitesimal neighbourhood $L_{\epsilon, 1}^{\times}$of ϵ in L^{\times}which is a right inverse of the map $\pi_{\epsilon, 1}: L_{\epsilon, 1}^{\times} \rightarrow A_{e, 1}$ deduced from π. In other words, $\tilde{\ell}$ is a section of L over $A_{e, 1}$ such that $\tilde{\ell}(e)=l$. The connection ∇ associated to Σ is the unique one such that $\nabla \tilde{\ell}(e)=0$.

[^4]When $k=\mathbb{C}$, the diagram

$$
\underset{\substack{\downarrow \exp _{L \times} \times \\ I \times(\mathbb{C})}}{\operatorname{Lie} L^{\times}} \quad \xrightarrow{\square \pi} \quad \underset{\substack{\downarrow \exp _{A} \\ \mathcal{A}(\mathbb{C})}}{\operatorname{Lie} A}
$$

is commutative. Consequently the morphism of groups

$$
\exp _{L^{\times}} \circ \Sigma: \Gamma_{A} \longrightarrow L^{\times}(\mathbb{C})
$$

takes its value in $\operatorname{ker} \pi \simeq \mathbb{C}^{*}$. It coincides with the monodromy representation

$$
\rho: \Gamma_{A}=H_{1}(A(\mathbb{C}), \mathbb{Z}) \longrightarrow \mathbb{C}^{*}
$$

of the line bundle with flat connection (L, ∇) - or more properly of the corresponding objects in the analytic category - over $A(\mathbb{C})$. Indeed, the horizontal \mathbb{G}_{m}-equivariant foliation on $L^{\times}(\mathbb{C})$ defined by ∇ is translation invariant, and its leaves are precisely the translates in $L^{\times}(\mathbb{C})$ of the image of $\exp _{L^{\times}} \circ \Sigma$.
3.2.5. An application of the Theorem of Schneider-Lang. We keep the notation of paragraph 3.2 .4 , and we now assume that the base field k is a number field.

Taking into account this relation between the monodromy of connections on L and the exponential map of the algebraic group L^{\times}, we derive from the theorem of Schneider-Lang (Theorem 3.2.3 above) applied to $G=L^{\times}$:

Corollary 3.2.6. Let A be an abelian variety of dimension g over a number field K, and (L, ∇) a line bundle over L equipped with a flat connection (defined over K).

Let $\sigma: K \hookrightarrow \mathbb{C}$ be a field embedding, and let $\rho_{\sigma}: \Gamma_{A_{\sigma}} \longrightarrow \mathbb{C}^{*}$ denote the monodromy representation attached to the flat complex line bundle $\left(L_{\sigma}, \nabla_{\sigma}\right)$ over $A_{\sigma}(\mathbb{C})$.

If there exists $\gamma_{1}, \ldots, \gamma_{g}$ in $\Gamma_{A_{\sigma}}$ such that $\left(\gamma_{1}, \ldots, \gamma_{g}\right)$ is a basis of the \mathbb{C}-vector space Lie A_{σ} and such that, for every $i \in\{1, \ldots, g\}, \rho_{\sigma}\left(\gamma_{i}\right)$ belongs to $\overline{\mathbb{Q}}^{*}$, then L has a torsion class in $\operatorname{Pic}(A)$.

Proof. We consider the K-linear map $\Sigma:$ Lie $A \longrightarrow$ Lie L^{\times}associated to the connection ∇ as above, and its image $V:=\Sigma(\operatorname{Lie} A)$. The vectors $\tilde{\gamma}_{i}:=\Sigma_{\sigma}\left(\gamma_{i}\right), 1 \leq i \leq g$, constitute a basis of the \mathbb{C}-vector space V_{σ}. Moreover the image $\exp _{L_{\sigma}}\left(\tilde{\gamma}_{i}\right)$ of $\tilde{\gamma}_{i}$ by the exponential map of L_{σ}^{\times}is the point of $L_{\sigma, e}^{\times} \simeq \mathbb{C}^{*}$ defined by the monodromy $\rho_{\sigma}\left(\gamma_{i}\right)$ of γ_{i}. According to our assumption, these images belong to $L^{\times}(\overline{\mathbb{Q}})$.

The theorem of Schneider-Lang now shows that V is the Lie algebra of a connected algebraic subgroup H, defined over K. Since Lie $\pi_{\mid H}$: Lie $H=V \rightarrow$ Lie A is an isomorphism of K-vector spaces, the morphism of algebraic groups $\pi_{\mid H}: H \rightarrow A$ is étale, and consequently, H is an abelian variety over K, and $\pi_{\mid H}$ is an isogeny.

By the very construction of H as a subscheme of L^{\times}, the inverse image $\pi_{\mid H}^{*} L$ of L on H is trivial. If N denotes the degree of $\pi_{\mid H}$, it follows that $L^{\otimes N}$ - which is isomorphic to the norm, relative to $\pi_{\mid H}$, of $\pi_{\mid H}^{*} L$ - is a trivial line bundle.
3.2.7. Reality I. Let us keep the framework of paragraph 3.2.4, and suppose now that the base field k is \mathbb{R}.

The line bundle with connection (L, ∇) defines a real analytic line bundle with flat connection $\left(L^{\mathbb{R}}, \nabla^{\mathbb{R}}\right)$ over the compact real analytic Lie group $A(\mathbb{R})$. Its monodromy defines a
representation $\rho_{\mathbb{R}}$ of the fundamental group $\pi_{1}\left(A(\mathbb{R}), 0_{A}\right)$, or equivalently of the homology group $H_{1}\left(A(\mathbb{R})^{\circ}, \mathbb{Z}\right)$ of the connected component of 0_{A}, with values in \mathbb{R}^{*}.

Actually the inclusion $\iota: A(\mathbb{R})^{\circ} \hookrightarrow A(\mathbb{C})$ defines an injective map of free abelian groups, of respective ranks g and $2 g$,

$$
\iota_{*}: H_{1}\left(A(\mathbb{R})^{\circ}, \mathbb{Z}\right) \longrightarrow H_{1}(A(\mathbb{C}), \mathbb{Z})
$$

and the monodromy representation $\rho_{\mathbb{R}}$ coincides with the restriction $\rho_{\mathbb{C}} \circ \iota_{*}$ of the monodromy representation

$$
\rho_{\mathbb{C}}: H_{1}(A(\mathbb{C}), \mathbb{Z}) \longrightarrow \mathbb{C}^{*}
$$

defined by the \mathbb{C}-analytic line bundle with flat connection $\left(L_{\mathbb{C}}, \nabla_{\mathbb{C}}\right)$ over the compact \mathbb{C} analytic Lie group $A(\mathbb{C})$.
Lemma 3.2.8. The following conditions are equivalent:
(i) There exists an hermitian metric $\|\cdot\|$ on the complex line bundle $L_{\mathbb{C}}$ on $A(\mathbb{C})$ such that the connection $\nabla_{\mathbb{C}}$ is unitary with respect to $\|\cdot\|^{7}$.
(ii) The monodromy representation $\rho_{\mathbb{C}}$ takes its values in $U(1):=\{z \in \mathbb{C}| | z \mid=1\}$.
(iii) The monodromy representation $\rho_{\mathbb{R}}$ takes its values in $\{1,-1\}$.

In the sequel, we shall only use the implications (i) \Rightarrow (ii) \Rightarrow (iii), which are straightforward. The implication (ii) \Rightarrow (i) also is immediate. To show (iii) \Rightarrow (i), let $\Gamma^{+}:=$ $\iota_{*}\left(H_{1}\left(A(\mathbb{R})^{\circ}, \mathbb{Z}\right)\right)$, and observe that the elements of $\Gamma_{A_{\mathbb{C}}}$ which are "purely imaginary" in Lie $A_{\mathbb{C}} \simeq($ Lie $A) \otimes_{\mathbb{R}} \mathbb{C}$ constitute a subgroup Γ^{-}of rank g such that $\Gamma^{+} \cap \Gamma^{-}=\{0\}$, that $\Gamma / \Gamma^{+} \oplus \Gamma^{-}$is a 2-torsion group, and that the image $\rho_{\mathbb{C}}\left(\Gamma^{-}\right)$of by the monodromy representation lies in $U(1)$. We leave the details to the reader.
3.2.9. Reality II. In this paragraph, we still keep the framework of the paragraph 3.2.4, and we now assume that the base field k is \mathbb{C}. We may apply the considerations of the last paragraph to the abelian variety over \mathbb{R} deduced from A by Weil restriction of scalar from \mathbb{C} to \mathbb{R}. This leads to the following results, that we may formulate without explicit reference to Weil restriction.

Let A_{-}, L_{-}, ∇_{-}be respectively the complex abelian variety, the line bundle over A_{-}, and the connection over L_{-}deduced from A, L, and ∇ by the base change Spec $\mathbb{C} \rightarrow \operatorname{Spec} \mathbb{C}$ defined by the complex conjugation.

Let us consider the complex abelian variety

$$
B:=A \times A_{-},
$$

the two projections

$$
\text { pr }: B \longrightarrow A \quad \text { and } \mathrm{pr}_{-}: B \longrightarrow A_{-},
$$

and $(\tilde{L}, \tilde{\nabla})$ the line bundle with connection over B defined as the tensor product of $\operatorname{pr}^{*}(L, \nabla)$ and $\mathrm{pr}_{-}^{*}\left(L_{-}, \nabla_{-}\right)$.

Let $j:$ Lie $A \rightarrow$ Lie A_{-}denote the canonical \mathbb{C}-antilinear isomorphism. It maps bijectively Γ_{A} onto $\Gamma_{A_{-}}$, and we may introduce the diagonal embedding

$$
\begin{aligned}
\Delta: \Gamma_{A} & \longrightarrow \Gamma_{A} \oplus \Gamma_{A_{-}} \simeq \Gamma_{B} \\
\gamma & \longmapsto(\gamma, j(\gamma)) .
\end{aligned}
$$

[^5]Observe that any \mathbb{Z}-basis $\left(\gamma_{1}, \ldots, \gamma_{2 g}\right)$ of Γ_{A} is a \mathbb{R}-basis of Lie A, and consequently its image $\left(\Delta\left(\gamma_{1}\right), \ldots, \Delta\left(\gamma_{2 g}\right)\right)$ by Δ is a \mathbb{C}-basis of Lie B.

Let ρ (resp. $\left.\rho_{-}, \tilde{\rho}\right)$ be the monodromy representation of $\Gamma_{A}\left(\right.$ resp. $\left.\Gamma_{A_{-}}, \Gamma_{B}\right)$ defined by the line bundle with connection (L, ∇) (resp. $\left(L_{-}, \nabla_{-}\right),(\tilde{L}, \tilde{\nabla})$).

It is straightforward that, for any γ in Γ_{A}, the following relations hold:

$$
\rho_{-}(j(\gamma))=\overline{\rho(\gamma)},
$$

and

$$
\tilde{\rho}(\Delta(\gamma))=\rho(\gamma) \cdot \rho_{-}(j(\gamma))=|\rho(\gamma)|^{2} .
$$

These observations establish:
Lemma 3.2.10. If there exists an hermitian metric $\|$.$\| on the complex line bundle L$ on $A(\mathbb{C})$ such that the connection ∇ is unitary with respect to $\|\cdot\|$, then the image $\Delta(\Gamma)$ of the diagonal embedding Δ contains a \mathbb{C}-basis of Lie B, and is included in the kernel of the monodromy representation $\tilde{\rho}$ of $(\tilde{L}, \tilde{\nabla})$.
3.2.11. Conclusion of the proof of Theorem 3.2.1. The following statement is a straightforward consequence of Corollary 3.2.6 to the Theorem of Schneider-Lang, combined with Lemma 3.2.8 above:
Corollary 3.2.12. Let A be an abelian variety over a number field K, and (L, ∇) a line bundle over A equipped with a flat connection defined over K, and let $\sigma: K \hookrightarrow \mathbb{C}$ be a field embedding that is real, namely such that its image $\sigma(K)$ lies in \mathbb{R}.

If there exists an hermitian metric $\|$.$\| on the complex line bundle L_{\sigma}$ on $A_{\sigma}(\mathbb{C})$ such that the connection ∇_{σ} is unitary with respect to $\|\cdot\|$, then L has a torsion class in $\operatorname{Pic}(A)$.

If we use Lemma 3.2.10 instead of Lemma 3.2.8, we may prove:
Corollary 3.2.13. Let A be an abelian variety over a number field K, and (L, ∇) a line bundle over A equipped with a flat connection defined over K.

Let $\sigma: K \hookrightarrow \mathbb{C}$ be a field embedding, and let τ be a (necessarily involutive) automorphism of the field K such that $\sigma \circ \tau=\bar{\sigma}$.

If there exists an hermitian metric $\|$.$\| on the complex line bundle L_{\sigma}$ on $A_{\sigma}(\mathbb{C})$ such that the connection ∇_{σ} is unitary with respect to $\|$.$\| , then L$ has a torsion class in $\operatorname{Pic}(A)$.

Observe that Corollary 3.2.13 contains as a special case Corollary 3.2.12 above. We have however chosen to present explicitly the statement of Corollary 3.2 .12 and its proof above, since the basic idea behind the proofs of these two theorems - inspired by Bertrand's proof in [Ber95] and [Ber98] - appears more clearly in the first one.
Proof of Corollary 3.2.13. We may define A_{τ}, L_{τ}, and ∇_{τ} to be respectively the abelian variety over K, the line bundle over A_{τ}, and the connection over L_{τ} deduced from A, L, and ∇ by the base change Spec $K \rightarrow \operatorname{Spec} K$ defined by τ. We may also introduce the abelian variety over K

$$
B:=A \times A_{\tau},
$$

the two projections

$$
\mathrm{pr}: B \longrightarrow A \quad \text { and } \operatorname{pr}_{\tau}: B \longrightarrow A_{\tau}
$$

and $(\tilde{L}, \tilde{\nabla})$ the line bundle with connection over B defined as the tensor product of $\operatorname{pr}^{*}(L, \nabla)$ and $\operatorname{pr}_{\tau}^{*}\left(L_{\tau}, \nabla_{\tau}\right)$.

Lemma 3.2.10 applied to $\left(A_{\sigma}, L_{\sigma}, \nabla_{\sigma}\right)$ shows that the hypotheses of Corollary 3.2.6 are satisfied by the abelian variety B over K, and the line bundle with connection ($\tilde{L}, \tilde{\nabla}$) over B. Consequently \tilde{L} has a torsion class in $\operatorname{Pic}(B)$, and so L itself - which is isomorphic to the restriction of \tilde{L} to $A \times\{e\} \simeq A$ - has a torsion class in $\operatorname{Pic}(A)$.

Finally consider $K, A,(L, \nabla), \sigma$ and $\|$.$\| as in the statement of Theorem 3.2.1.$
Let us first show that L has a torsion class in K. To achieve this, let us choose a finite field extension K^{\prime} of K admitting an automorphism τ and an embedding σ^{\prime} in \mathbb{C} that extends σ and satisfies $\sigma^{\prime} \circ \tau=\overline{\sigma^{\prime}}$ - for instance the subfield K^{\prime} of \mathbb{C} generated by $\sigma(K)$ and its image by complex conjugation. We may apply Corollary 3.2 .13 to the number field K^{\prime} equipped with the complex embedding σ^{\prime}, and to the abelian variety $A_{K^{\prime}}$ and the line bundle with connection $\left(L_{K^{\prime}}, \nabla_{K^{\prime}}\right)$ deduced from A and (L, ∇) by the base change Spec $K^{\prime} \rightarrow \operatorname{Spec} K$. Therefore $L_{K^{\prime}}$ has a torsion class in $\operatorname{Pic}\left(A_{K^{\prime}}\right)$. As the base change morphism

$$
\operatorname{Pic}(A) \longrightarrow \operatorname{Pic}\left(A_{K^{\prime}}\right)
$$

is injective, this indeed implies that L has a torsion class in $\operatorname{Pic}(A)$.
To complete the proof of Theorem 3.2.1, it is sufficient to observe that the curvature of $\|$.$\| - or equivalently, of the \mathcal{C}^{\infty}$-connexion $\nabla_{\mathcal{C}^{\infty}}=\nabla_{\sigma}+\bar{\partial}_{L_{\sigma}}$ on L_{σ} - vanishes for reason of type ${ }^{8}$: it is a 2 -form on $A_{\sigma}(\mathbb{C})$ of type $(2,0)$, since ∇_{σ} is holomorphic, and purely imaginary, since $\nabla_{\mathcal{C}}$ is unitary.

4. A geometric analogue

4.1. Line bundles with vanishing relative Atiyah class on fibered projective varieties.

4.1.1. Notation. In this Section, we consider a smooth projective geometrically connected curve C over a field k of characteristic 0 , and a smooth projective variety V over k equipped with a dominant k-morphism $\pi: V \rightarrow C$, with geometrically connected fibers.

Observe that the morphism π is flat, and smooth over an open dense subscheme of C, namely over the complement of finite set Δ of closed points P in C such that the (scheme theoretic) fiber $\pi^{*}(P)$ is not smooth over k.

Let $K:=k(C)$ denote the function field of C. The generic fiber V_{K} of π is a smooth projective geometrically connected variety over K. Conversely, according to Hironaka's resolution of singularity, any such variety over K may be constructed from the data of a k-variety V and of a k-morphism $\pi: V \rightarrow C$ as above.

Recall also that a divisor E in V is called vertical if it belongs to the group of divisors generated by components of closed fibers of π, or equivalently, if its restriction E_{K} to its generic fiber vanishes.

In the sequel, we assume that the dimension n of V is at least 2. Moreover we choose an ample line bundle $\mathcal{O}(1)$ over V, we denote H its first Chern class in the Chow group $C H^{1}(X)$, and for any integral subscheme D of positive dimension in V we let:

$$
\operatorname{deg}_{H, D} L:=\operatorname{deg}_{k}\left(c_{1}(L) \cdot H^{\operatorname{dim} D-1} \cdot[D]\right)
$$

[^6]Actually, we shall use this definition only when D is a vertical divisor in V. Consequently, we could require $\mathcal{O}(1)$ to be ample relatively to π only, and when $n=2$ the choice of $\mathcal{O}(1)$ is immaterial.

Observe that, if $\mathcal{O}(1)$ is very ample and defines a projective embedding $\iota: V \hookrightarrow \mathbb{P}_{k}^{N}$, then, for any general enough ($\operatorname{dim} D-1$)-tuple $\left(H_{1}, \ldots, H_{\operatorname{dim} D-1}\right)$ of projective hyperplanes in \mathbb{P}_{k}^{N}, the subscheme

$$
C:=D \cap \iota^{-1}\left(H_{1}\right) \cap \ldots \cap \iota^{-1}\left(H_{\operatorname{dim} D-1}\right)
$$

in \mathbb{P}_{k}^{N} is integral, one-dimensional, and projective over k, and its class $[C]$ in $C H_{1}(X)$ coincide with $H^{\operatorname{dim} D-1}$.[D]. Consequently $\operatorname{deg}_{H, D} L$ is nothing but the degree $\operatorname{deg}_{k} c_{1}(L) .[C]$ of the restriction of L to the "general linear section" C of D.

Let us recall that, if M is a smooth projective geometrically connected scheme over some field k_{0} of characteristic zero, then the Picard functor $\mathrm{Pic}_{M / k_{0}}$ is representable by a separated group scheme over k_{0}, and that its identity component is an abelian variety over k_{0}. A line bundle L over M will be said algebraically equivalent to zero when the point in $\operatorname{Pic}_{M / k_{0}}\left(k_{0}\right)$ it defines belongs to $\mathrm{Pic}_{M / k_{0}}^{0}\left(k_{0}\right)$, or equivalently, if its class in the Néron-Severi group of M over k_{0} - defined as $\operatorname{Pic}_{M / k_{0}}\left(k_{0}\right) / \operatorname{Pic}_{M / k_{0}}^{0}\left(k_{0}\right)$ - vanishes ${ }^{9}$.

In particular, we may consider the identity component $\mathrm{Pic}_{V_{K} / K}^{0}$ of the Picard variety of the generic fiber V_{K} of π; it is an abelian variety over K, and we shall denote (B, τ) its K / k-trace. By definition, B is an abelian variety over k, and τ is a morphism of abelian varieties over K :

$$
\tau: B_{K} \longrightarrow \operatorname{Pic}_{V_{K} / K}^{0}
$$

Since the base field k is assumed to be of characteristic zero, this morphism is actually a closed immersion. We refer the reader to Section 4.6 infra for a discussion and references concerning the definition of $\mathrm{Pic}_{V_{K} / K}^{0}$ and (B, τ).
4.1.2. The following theorem may be seen as a geometric counterpart, valid over the function field $K:=k(C)$, of the main result, Theorem 3.1.2 of Section 3.

Theorem 4.1.3. With the above notation, for any line bundle L over V, the following three conditions are equivalent:

VA1 The relative Atiyah class $\operatorname{jet}_{V / C}^{1}(L)$ vanishes.
VA2 There exists a positive integer N and a line bundle M over C such that the line bundle $L^{\otimes N} \otimes \pi^{*} M^{\vee}$ is algebraically equivalent to zero.

VA3 There exists a positive integer N such that the line bundle $L_{K}^{\otimes N}$ on V_{K} is algebraically equivalent to zero, and the attached K-rational point of the Picard variety $\operatorname{Pic}_{V_{K} / K}^{0}$ is defined by a k-rational point of the K / k-trace of $\mathrm{Pic}_{V_{K} / K}^{0}$. Moreover, for any component D of a closed fiber of π, the degree $\operatorname{deg}_{H, D} L$ vanishes.

Observe that, for any closed point P of $C \backslash \Delta$, its fiber $D:=\pi^{*}(P)$ is a divisor in V, smooth and geometrically connected over $k(P)$, and that, according to the projection

[^7]formula,
\[

$$
\begin{aligned}
\operatorname{deg}_{H, D} L & =\operatorname{deg}_{k}\left(c_{1}(L) \cdot H^{n-2} \cdot\left[\pi^{*}(P)\right]\right) \\
& =\operatorname{deg}_{k}\left(\pi_{*}\left(c_{1}(L) \cdot H^{n-2}\right) \cdot[P]\right) \\
& =[k(P): k] \cdot \operatorname{deg}_{K}\left(c_{1}\left(L_{K}\right) \cdot c_{1}\left(\mathcal{O}(1)_{K}\right)^{\operatorname{dim} V_{K}-1} \cdot\left[V_{K}\right]\right)
\end{aligned}
$$
\]

In particular, if some positive power $L_{K}^{\otimes N}$ of L_{K} is algebraically equivalent to zero, then $\operatorname{deg}_{H, D} L$ vanishes. Consequently, in condition VA3, we may require the vanishing of $\operatorname{deg}_{H, D} L$ only for components D of the supports of the singular fibers $\pi^{*}(P)$, where P varies in Δ.

The proof of the equivalence of conditions VA1 and VA2, which uses the Hodge index theorem and basic properties of Hodge cohomology groups, will be presented in Sections 4.4 and 4.5 below. Then in Section 4.6 and 4.7 we shall recall some classical facts concerning the Picard variety $\mathrm{Pic}_{V_{K} / K}^{0}$ and its K / k-trace, and establish the equivalence of conditions VA2 and VA3.

4.2. Variants and complements.

4.2.1. Recall that the following conditions are equivalent - when they hold, the Picard variety $\operatorname{Pic}_{V_{K} / K}^{0}$ will be said to have no fixed part:

NF1 The K / k-trace of $\operatorname{Pic}_{V_{K} / K}^{0}$ vanishes, or in other terms, for any abelian variety A over k, there is no non-zero morphism of abelian varieties over K from A_{K} to $\mathrm{Pic}_{V_{K} / K}^{0}$.

NF2 The morphism of k-abelian varieties naturally deduced from $\pi: V \longrightarrow C$

$$
\operatorname{Pic}_{C / k}^{0} \longrightarrow \operatorname{Pic}_{V / k}^{0}
$$

- which has a finite kernel - is an isogeny.

NF3 The injective morphism of k-vector spaces

$$
\pi^{*}: H^{1}\left(C, \mathcal{O}_{C}\right) \longrightarrow H^{1}\left(V, \mathcal{O}_{V}\right)
$$

is an isomorphism.
NF4 The injective morphism of k-vector spaces

$$
H^{0}\left(C, \Omega_{C / k}^{1}\right) \longrightarrow H^{1}\left(V, \Omega_{V / k}^{1}\right)
$$

is an isomorphism.
Indeed the equivalence of NF1 and NF2 follows from the description of the K / k-trace of $\mathrm{Pic}_{V_{K} / K}^{0}$ recalled in Proposition 4.6 .1 below. The equivalence of NF2 and NF3 follows from the identification of $H^{1}\left(C, \mathcal{O}_{C}\right)\left(\right.$ resp. $\left.H^{1}\left(V, \mathcal{O}_{V}\right)\right)$ with Lie $\mathrm{Pic}_{C / k}^{0}\left(\right.$ resp. Lie $\left.\mathrm{Pic}_{V / k}^{0}\right)$. The equivalence of NF3 and NF4 follows from Hodge theory when $k=\mathbb{C}$, and therefore, by a standard base change argument, for any base field k of characteristic zero.

As demonstrated by the theorem of Mordell-Weil-Lang-Néron, it is natural to require a no fixed part condition when searching for statements valid over function fields that are as close as possible to their arithmetic counterparts. This is indeed the case with Theorem 4.1.3. Namely, when $\operatorname{Pic}_{V_{K} / K}^{0}$ has no fixed part, Conditions VA1-3 are also equivalent to the following ones, which look more closely like the conditions appearing in i) and ii) of the "arithmetic" Theorem 3.1.2:

VA2' There exists a positive integer N and a line bundle M over C such that the line bundle $L^{\otimes N}$ is isomorphic to $\pi^{*} M$.

VA3' The class of L_{K} in the abelian group $\operatorname{Pic}_{V_{K} / K}(K)$ is torsion. Moreover, for any component D of a closed fiber of π, the degree $\operatorname{deg}_{H, D} L$ vanishes.

Indeed, the equivalence of VA3 and VA3' when NF1 holds is straightforward, and the equivalence of VA2 and VA2' easily follows from NF2.
4.2.2. Generalizations of Theorem 4.1.3 concerning a smooth projective variety V over k fibered over a variety C of dimension >1 may be deduced from its original version with C a curve by means of standard techniques, as in the proof of the Mordell-Weil-Lang-Néron theorem (cf. [LN59]). We leave this to the interested reader.
4.3. Hodge cohomology and first Chern class. Let k be a field of characteristic zero, and $\mathbf{S m P r}_{k}$ the full subcategory of the category of k-schemes whose objects are smooth projective schemes V over k.

In this Section, we review some basic properties of the Hodge cohomology groups of objects in $\mathbf{S m P r}_{k}$. These properties are consequence of the duality theory for coherent sheaves on projective varieties, as explained in [Gro62], exposé 149.
4.3.1. Hodge cohomology groups. To any object V in $\mathbf{S m P r}_{k}$ are attached his Hodge cohomology groups:

$$
H^{p, q}(V / k):=H^{q}\left(V, \Omega_{V / k}^{p}\right) .
$$

These are finite dimensional k-vector spaces, and vanish if $\min (p, q)>d:=\operatorname{dim} V$. Moreover, the cup products

$$
\begin{aligned}
H^{p, q}(V / k) \times H^{p^{\prime}, q^{\prime}}(V / k) & \longrightarrow H^{p+p^{\prime}, q+q^{\prime}}(V / k) \\
\left(\alpha, \alpha^{\prime}\right) & \longmapsto \alpha \cdot \alpha^{\prime},
\end{aligned}
$$

- defined as the compositions of the products

$$
H^{q}\left(V, \Omega_{V / k}^{p}\right) \times H^{q^{\prime}}\left(V, \Omega_{V / k}^{p^{\prime}}\right) \longrightarrow H^{q+q^{\prime}}\left(V, \Omega_{V / k}^{p} \otimes \Omega_{V / k}^{p^{\prime}}\right)
$$

and of the mappings

$$
H^{q+q^{\prime}}\left(V, \Omega_{V / k}^{p} \otimes \Omega_{V / k}^{p^{\prime}}\right) \longrightarrow H^{q+q^{\prime}}\left(V, \Omega_{V / k}^{p+p^{\prime}}\right)
$$

deduced from the exterior product $\wedge: \Omega_{V / k}^{p} \otimes \Omega_{V / k}^{p^{\prime}} \longrightarrow \Omega_{V / k}^{p+p^{\prime}} —$ make the direct sum $H^{*, *}(V / k):=\bigoplus_{(p, q) \in \mathbb{N}^{2}} H^{p, q}(V / k)$ a bigraded commutative ${ }^{10} k$-algebra.

The cohomology group is a one dimensional k-vector space, with basis 1_{V}, if V is a geometrically connected k-scheme.

Moreover, the "top-dimensional" Hodge cohomology group $H^{d, d}(V / k)$ is equipped with a canonical k-linear form:

$$
\int_{V / k}:: H^{d, d}(V / k) \longrightarrow k
$$

and the attached k-bilinear map

$$
\begin{aligned}
<., .>: \quad H^{*, *}(V / k) \times H^{*, *}(V / k) & \longrightarrow k \\
(\alpha, \beta) & \longmapsto \int_{V / k} \alpha . \beta
\end{aligned}
$$

${ }^{10}$ Namely, for any α (resp. $\left.\alpha^{\prime}\right)$ in $H^{q}\left(V, \Omega_{V / k}^{p}\right)$ (resp. in $\left.H^{q^{\prime}}\left(V, \Omega_{V / k}^{p^{\prime}}\right)\right)$, we have $\alpha . \alpha^{\prime}=(-1)^{p p^{\prime}+q q^{\prime}} \alpha^{\prime} . \alpha$.
is a perfect pairing.
In particular, when V is a geometrically connected k-scheme - equivalently if the linear map

$$
\begin{aligned}
k & \longrightarrow \Gamma\left(V, \mathcal{O}_{V}\right)=H^{0,0}(V / k) \\
\lambda & \longmapsto \lambda .1_{V}
\end{aligned}
$$

is an isomorphism, then the "residue map" also is:

$$
\int_{V / k}: H^{d, d}(V / k) \xrightarrow{\sim} k
$$

Then we let:

$$
\mu_{V}:=\int_{V / k}^{-1}(1) .
$$

These constructions are compatible in an obvious sense with extensions of the base field k. Let us also indicate that, when $k=\mathbb{C}$, the trace map

$$
\int_{V / \mathbb{C}}:: H^{d, d}(V / \mathbb{C}) \longrightarrow \mathbb{C}
$$

satisfies the following compatibility relation with the Dolbeault isomorphism

$$
\operatorname{Dolb}_{\Omega_{V / C}^{d}}: H^{d}\left(V, \Omega_{V / \mathbb{C}}^{d}\right) \longrightarrow H_{\operatorname{Dolb}}^{d}\left(V, \Omega_{V / \mathbb{C}}^{d}\right)
$$

(we follow the notation of [BK07], A.5.1) and the integration of top degree forms:

$$
\int_{V(\mathbb{C})}: A^{d, d}(V(\mathbb{C})) \longrightarrow \mathbb{C}
$$

For any α in $A^{d, d}(V(\mathbb{C}))$, of class $[\alpha]$ in $H_{\text {Dolb }}^{d}\left(V, \Omega_{V / \mathbb{C}}^{d}\right.$, we have:

$$
\int_{V / \mathbb{C}} \operatorname{Dolb}_{\Omega_{V / C}^{d}}^{-1}([\alpha])=\varepsilon_{d} \frac{1}{(2 \pi i)^{d}} \int_{V(\mathbb{C})} \alpha,
$$

where ϵ_{d} denotes a sign, function of d only, depending on the sign conventions followed in duality theory.
4.3.2. The first Chern class in Hodge cohomology. Any line bundle L over some V in $\mathbf{S m P r}_{k}$ admits a first Chern class $c_{1}(L)$ in $H^{1,1}(V / k)$. It may be defined as the class of the extension given by the principal parts of first order associated with L

$$
\mathcal{J e t}_{X / k} L: O \longrightarrow \Omega_{X / k}^{1} \otimes L \longrightarrow P_{X / k}^{1}(L) \longrightarrow L \longrightarrow 0
$$

in

$$
\begin{align*}
\operatorname{Ext}_{V}^{1}\left(L, \Omega_{V / k}^{1} \otimes L\right) & \simeq \operatorname{Ext}_{V}^{1}\left(\mathcal{O}_{V}, \Omega_{V / k}^{1}\right) \tag{4.1}\\
& \simeq H^{1}\left(V, \Omega_{V / k}^{1}\right) \tag{4.2}
\end{align*}
$$

(The isomorphism (4.1) is the (inverse of the) one defined by applying the functor.$\otimes L$ to complexes of \mathcal{O}_{V}-modules, without intervention of signs. The isomorphism (4.2) is the one discussed in [BK07], A. 2 and A.4.)

The so-defined first Chern class defines a morphism of abelian groups:

$$
\begin{aligned}
\operatorname{Pic}(X) & \longrightarrow H^{1}\left(V, \Omega_{V / k}^{1}\right)=: H^{1,1}(V / k) \\
{[L] } & \longmapsto c_{1}(L) .
\end{aligned}
$$

Moreover, this morphism factorizes through the Néron-Severi group

$$
\mathrm{NS}_{V / k}(k)=\operatorname{Pic}_{X / k}(k) / \operatorname{Pic}_{X / k}^{0}(k),
$$

vanishes precisely on its torsion subgroup $\mathrm{NS}_{V / k}(k)_{\text {tor }}$ (compare for example [Kle66, II. 2 Cor. 1 to Th. 2]), and consequently defines an injective morphism of groups

$$
c_{1}: \mathrm{NS}_{V / k}(k) / \mathrm{NS}_{V / k}(k)_{\text {tor }} \longrightarrow H^{1,1}(V / k) .
$$

In other words, for any line bundle L on V, the following two conditions are equivalent:
(i) the first Chern class $c_{1}(L)$ in $H^{1,1}(V / k)$ vanishes;
(ii) for some positive integer N, the line bundle $L^{\otimes N}$ over V is algebraically equivalent to zero.

Let us also recall that the construction of the first Chern class in Hodge cohomology is compatible with pull-back by k-morphisms. It is also compatible with intersection theory. In particular, we have:

Proposition 4.3.3. For any d-tuple D_{1}, \ldots, D_{d} of divisors in V, the following formula holds:

$$
\begin{equation*}
\int_{V / k} c_{1}\left(\mathcal{O}\left(D_{1}\right)\right) \cdots . c_{1}\left(\mathcal{O}\left(D_{d}\right)\right)=\operatorname{deg}_{k}\left(\left[D_{1}\right] . \cdots .\left[D_{d}\right]\right), \tag{4.3}
\end{equation*}
$$

where $\left[D_{i}\right]$ denotes the class of D_{i} in the Chow group $C H^{1}(V),\left[D_{1}\right] \ldots .\left[D_{d}\right]$ their product in $C H^{d}(V)=C H_{0}(V)$ and

$$
\operatorname{deg}_{k}: C H_{0}(V) \xrightarrow{\pi_{*}} C H_{0}(\operatorname{Spec} k) \simeq \mathbb{Z}
$$

the degree map, attached to the structural morphism $\pi: V \rightarrow \operatorname{Spec} k$ of V.
In particular, if $d=1$ and V is geometrically irreducible, then

$$
c_{1}(\mathcal{O}(D))=\operatorname{deg}_{k} D \cdot \mu_{V} .
$$

Indeed the equality (4.3) follows from [Gro62], exposé 149 (Théorème 1, Théorème 2, and its proof) when the divisors D_{1}, \ldots, D_{n} and their successive intersections $D_{1} \cap D_{2}$, $D_{1} \cap D_{2} \cap D_{3}, \ldots, D_{1} \cap D_{2} \cap \cdots \cap D_{n}$ are smooth. Together with the invariance of both sides of (4.3) by linear equivalence of D_{1}, \ldots, D_{n} and Bertini theorem, this shows that (4.3) holds when D_{1}, \ldots, D_{n} are very ample. The general case of (4.3) follows by multilinearity.
4.4. An application of the Hodge Index Theorem. Our proof of Theorem 4.1.3 will rely on the an application of Hodge Index Theorem to projective varieties fibered over curves that we discuss in the present Section.
4.4.1. The Hodge Index Theorem in Hodge cohomology. Let V be smooth projective, geometrically connected, scheme over k, and let h be the first Chern class $c_{1}(\mathcal{O}(1))$ in $H^{1,1}(V / k)$ of some ample line bundle $\mathcal{O}(1)$ on V. (When $k=\mathbb{C}$, we could more generally define h as the class in $H^{1,1}(V / \mathbb{C})$ - identified with the Dolbeault cohomology group $H_{\text {Dolb }}^{1}\left(V(\mathbb{C}), \Omega_{V(\mathbb{C})}^{1}\right)$ - of any Kähler form on $V(\mathbb{C})$.)

We shall use the Hodge Index Theorem in the following form, which follows from its usual version (see for instance [BGI71], XIII.7) combined with Proposition 4.3.3 above:

Proposition 4.4.2. When $d:=\operatorname{dim} V \geq 2$, for any class α of $H^{1,1}(V / k)$ in the image of $c_{1}: \operatorname{Pic}(V) \rightarrow H^{1,1}(V / k)$, the following conditions are equivalent:
(i) $\alpha=0$;
(ii) $\alpha^{2} . h^{d-2}=\alpha . h^{d-1}=0$ in $H^{d, d}(V / k) \simeq k$.
4.4.3. An application to projective varieties fibered over curves. We keep the notation of the previous paragraph, and assume that $d:=\operatorname{dim} V$ is at least 2 . Moreover, we consider a smooth, geometrically connected, projective curve C over k, and a dominant k-morphism $\pi: V \rightarrow C$. We shall denote K the function field k of $C, V_{K}:=V \times_{C}$ Spec K the generic fiber of π, and $\mathcal{O}(1)_{K}$ the pull-back of $\mathcal{O}(1)$ to V_{K}.

Let us introduce the class

$$
F:=\pi^{*} \mu_{C}
$$

in $H^{1,1}(V / k)$. The "intersection number" $\int_{V / k} F . h^{d-1}$, which a priori belongs to k, is a positive integer - namely the degree $\operatorname{deg}_{\mathcal{O}(1)_{K}} V_{K}$ of V_{K} with respect to $\mathcal{O}(1)_{K}$. Indeed, if E is a divisor on C with positive degree, and if H is the divisor of some non-zero rational section of $\mathcal{O}(1)$, we have

$$
\begin{equation*}
\operatorname{deg}_{k}\left(\left[\pi^{*}(E)\right] \cdot[H]^{d-1}\right)=\operatorname{deg}_{k}\left([E] \cdot \pi_{*}\left([H]^{d-1}\right)\right)=\operatorname{deg}_{k} E \cdot \operatorname{deg}_{\mathcal{O}(1)_{K}} V_{K}, \tag{4.4}
\end{equation*}
$$

by basic intersection theory. Besides, the naturality of c_{1} and Proposition 4.3.3 show that the left-hand side of (4.4) is also equal to

$$
\int_{V / k} \pi^{*} c_{1}(\mathcal{O}(E)) \cdot c_{1}(\mathcal{O}(1))^{d-1}=\int_{V / k} \pi^{*}\left(\operatorname{deg}_{k} E \cdot \mu_{C}\right) \cdot h^{d-1}=\operatorname{deg}_{k} E \cdot \int_{V / k} F \cdot h^{d-1} .
$$

Together with (4.4), this establishes the announced relation

$$
\int_{V / k} F \cdot h^{d-1}=\operatorname{deg}_{\mathcal{O}(1)_{K}} V_{K}
$$

In particular, the class F is not zero, and the image of $\pi^{*}: H^{1,1}(V / k) \rightarrow H^{1,1}(V / k)$ is precisely the k-line k.F.

Observe also that $\mu_{C}^{2}=0$ for dimension reasons, and that consequently $F^{2}=0$.
Proposition 4.4.4. With the above notation, for any class β of $H^{1,1}(V / k)$ in the image of c_{1}, the following conditions are equivalent:
(i) β belongs to $\mathbb{Q} . F$;
(ii) β belongs to $\mathrm{k} . F$;
(iii) $\beta . \beta=\beta . F=0$ in $H^{2,2}(V / k)$;
(iv) $\beta^{2} . h^{d-2}=\beta . F . h^{d-2}=0$ in $H^{d, d}(V / k) \simeq k$.

Proof. The implications $(\mathrm{i}) \Rightarrow(\mathrm{ii}) \Rightarrow(\mathrm{iii}) \Rightarrow$ (iv) are straightforward. To establish the converse implications, consider the class

$$
\alpha:=\beta-\frac{\int_{V / k} \beta \cdot h^{d-1}}{\int_{V / k} F \cdot h^{d-1}} \cdot F
$$

in $H^{1,1}(V / k)$. It satisfies $\alpha \cdot h^{d-1}=0$ by its very definition (recall that $\int_{V / k}: H^{d, d}(V / k) \simeq$ k). Moreover, when condition (iv) holds, then α also satisfies $\alpha^{2} \cdot h^{d-2}=0$. Then Hodge

Index Theorem (Proposition 4.4) shows that α vanishes, or equivalently that

$$
\beta=\frac{\int_{V / k} \beta \cdot h^{d-1}}{\int_{V / k} F \cdot h^{d-1}} \cdot F .
$$

This establishes (i), since $\int_{V / k} \beta . h^{d-1} / \int_{V / k} F . h^{d-1}$ belongs to \mathbb{Q}. Indeed, like $\int_{V / k} F . h^{d-1}$, $\int_{V / k} \beta . h^{d-1}$ is an integer, since it coincide with the intersection number $\operatorname{deg}_{k}\left([D] .[H]^{d-1}\right)$ where D denotes a divisor on V such that $\beta=c_{1}(\mathcal{O}(D))$ and H the divisor of some non-zero rational section of $\mathcal{O}(1)$.
4.5. The equivalence of VA1 and VA2. We keep the notation of the previous paragraph 4.4.3. In other words, the same hypotheses as in Theorem 4.1.3 are supposed to hold, except the connexity of the geometric fibers of π.

The following result contains the equivalence of Conditions VA1 and VA2 in Theorem 4.1.3:

Theorem 4.5.1. For any line bundle L over V, the following conditions are equivalent:
(i) The relative Atiyah class jet $_{V / C} L$ vanishes in $H^{1,1}\left(V, \Omega_{V / C}^{1}\right)$.
(ii)' $c_{1}(L)$ belongs to $\mathbb{Q} . F$.
(ii)" There exists a positive integer N and a line bundle M over C such that $c_{1}\left(L^{\otimes N} \otimes\right.$ $\left.\pi^{*} M\right)$ vanishes.

Proof. The equivalence (ii) ${ }^{\prime} \Leftrightarrow$ (ii)" is straightforward.
To establish the implication (i) $\Leftrightarrow(\text { (ii })^{\prime}$, consider the canonical exact sequence of sheaves of Kähler differentials on V,

$$
0 \longrightarrow \pi^{*} \Omega_{C / k}^{1} \xrightarrow{i} \Omega_{V / k}^{1} \xrightarrow{p} \Omega_{V / C}^{1} \longrightarrow 0,
$$

and the associated exact sequence of cohomology groups

$$
H^{1}\left(V, \pi^{*} \Omega_{C / k}^{1}\right) \xrightarrow{H^{1}(i)} H^{1}\left(V, \Omega_{V / k}^{1}\right) \xrightarrow{H^{1}(p)} H^{1}\left(V, \Omega_{V / C}^{1}\right) .
$$

As a special case of Lemma 1.1.6, i), the relative class jet ${ }_{V / C} L$ is the image of $c_{1}(L):=$ jet $_{V / k} L$ by $H^{1}(p)$. Since F belongs to the image of $H^{1}(i)$, hence to the kernel of $H^{1}(p)$, this establishes the implication (ii)' \Rightarrow (i).

The implication (i) \Rightarrow (ii)' will follow from the implication (iii) \Rightarrow (i) in Proposition 4.4.3 combined with the following:

Lemma 4.5.2. For any line bundle L over V, if the relative Atiyah class jet $_{V / C} L$ vanishes in $H^{1}\left(V, \Omega_{V / C}^{1}\right)$, then $c_{1}(L) . F$ and $c_{1}(L)^{2}$ vanish in $H^{2}\left(V, \Omega_{V / k}^{2}\right)$.

To establish this lemma, Observe that the cup product

$$
\begin{equation*}
H^{1,1}(V / k) \otimes H^{1,1}(V / k) \longrightarrow H^{2,2}(V / k) \tag{4.5}
\end{equation*}
$$

vanishes on im $H^{1}(i) \otimes \operatorname{im} H^{1}(i)$. Indeed the map of sheaves of \mathcal{O}_{V}-modules defined as the composition

$$
\pi^{*} \Omega_{C / k}^{1} \otimes \pi^{*} \Omega_{C / k}^{1} \xrightarrow{i \otimes i} \Omega_{V / k}^{1} \otimes \Omega_{V / k}^{1} \xrightarrow{. \wedge .} \Omega_{V / k}^{2}
$$

vanishes by functoriality of the exterior product, since $\Omega_{C / k}^{2}=0$. This entails the vanishing of the cup product (4.5) on $\operatorname{ker} H^{1}(p) \otimes \operatorname{ker} H^{1}(p)$ and on $\operatorname{ker} H^{1}(p) \otimes \operatorname{im} \pi^{*}$, where π^{*} denotes the pull-back map in Hodge cohomology $\pi^{*}: H^{1,1}(C / k) \rightarrow H^{1,1}(V / k)$.

The relative Atiyah class jet ${ }_{V / C} L$ in $H^{1}\left(V, \Omega_{V / C}^{1}\right)$ of a line bundle L on V is the image by $H^{1}(p)$ of its Atiyah class jet ${ }_{V / k} L$ in $H^{1}\left(V, \Omega_{V / k}^{1}\right)$. Consequently, jet ${ }_{V / C} L$ vanishes precisely when $c_{1}(L)=\operatorname{jet}_{V / k} L$ belongs to $\operatorname{ker} H^{1}(p)$, in which case $c_{1}(L)^{2}$ and $c_{1}(L) . F$ vanish in $H^{2}\left(V, \Omega_{V / k}^{2}\right)$ by the observation above. This completes the proof of Lemma 4.5.2, hence of Theorem 4.5.1.
4.6. The Picard variety of a variety over a function field. In this paragraph, we recall some classical facts concerning the relations between the Picard varieties of C and V, and the K / k-trace of the Picard variety of generic fiber V_{K} of V. (For modern presentations of Chow's classical theory of the K / k-trace of abelian varieties over K, we refer to [Con06] and Hindry's Appendix A in [Kah06].)

Let (B, τ) be the K / k-trace of $\operatorname{Pic}_{V_{K} / K}^{0}$. By construction, B is an abelian variety over k, and τ is a morphism of abelian varieties over K

$$
\tau: B_{K} \longrightarrow \mathrm{Pic}_{V_{K} / K}^{0}
$$

Actually, since our base field k has characteristic zero, τ is an embedding.
The inclusion $V_{K} \hookrightarrow V$ induces a morphism of abelian varieties over K

$$
\phi: \operatorname{Pic}_{V / k, K}^{0} \longrightarrow \operatorname{Pic}_{V_{K} / K}^{0} .
$$

According to the universal property of (B, τ), there exists a unique morphism of abelian varieties over k

$$
\alpha: \mathrm{Pic}_{V / k}^{0} \longrightarrow B
$$

such that

$$
\phi=\tau \circ \alpha_{K} .
$$

Beside we may consider the morphism

$$
\pi^{*}: \operatorname{Pic}_{C / k}^{0} \longrightarrow \operatorname{Pic}_{V / k}^{0}
$$

defined by functoriality from $\pi: V \rightarrow C$.
The following Proposition is established as Proposition 3.3 in [HPW05], where references are made to similar earlier results due to Tate, Shioda, and Raynaud.

Proposition 4.6.1. The morphism α is surjective, and the morphism π^{*} is an isogeny from $\mathrm{Pic}_{C / k}^{0}$ onto the abelian variety $(\operatorname{ker} \alpha)^{\circ}$ defined as the identity component of the k-group scheme $\operatorname{ker} \alpha$.

In brief, the following diagram of abelian varieties over k

$$
0 \longrightarrow \operatorname{Pic}_{C / k}^{0} \xrightarrow{\pi^{*}} \operatorname{Pic}_{V / k}^{0} \xrightarrow{\alpha} B \longrightarrow 0
$$

is "exact up to some finite group schemes". Together with Poincaré's reducibility theorem, this implies that the diagram of abelian groups

$$
\begin{equation*}
0 \longrightarrow \operatorname{Pic}_{C / k}^{0}(k) \xrightarrow{\pi^{*}} \operatorname{Pic}_{V / k}^{0}(k) \xrightarrow{\alpha} B(k) \longrightarrow 0 \tag{4.6}
\end{equation*}
$$

is "exact up to some finite groups."

Corollary 4.6.2. For any line bundle L over V, the following conditions are equivalent:
(i) There exists a positive integer N such that the class of $L_{K}^{\otimes N}$ in $\operatorname{Pic}_{V_{K} / K}^{0}(K)$ belongs to $\tau(B(k))$.
(ii) There exist a positive integer N and a line bundle L^{\prime} over V, algebraically equivalent to zero, such that, over V_{K},

$$
L_{K}^{\otimes N} \simeq L_{K}^{\prime}
$$

(iii) There exist a positive integer N, a line bundle L^{\prime} over V, algebraically equivalent to zero, and a vertical divisor E over V such that, over V,

$$
L^{\otimes N} \simeq L^{\prime} \otimes \mathcal{O}(E)
$$

Proof. The equivalence of (ii) and (iii) is straightforward. The one of (i) and (ii) follows from the "almost exactness" of (4.6) and the fact that any element of the group $\operatorname{Pic}_{V / k}^{0}(k)$ has a positive multiple that may be represented by an actual line bundle over V, algebraically equivalent to zero.
4.7. The equivalence of VA2 and VA3. In this section, we complete the proof of Theorem 4.1.3 by establishing the equivalence of conditions VA2 and VA3.

The implication VA2 \Rightarrow VA3 follows from the implication (ii) \Rightarrow (i) in Corollary 4.6 .2 and from the invariance of $\operatorname{deg}_{H, D} L$ under algebraic equivalence of line bundles.

Conversely let us consider a line bundle L over V that satisfies VA3.
According to the implication (i) \Rightarrow (iii) in Corollary 4.6.2, we may find a positive integer N, a line bundle L^{\prime} over V, algebraically equivalent to zero, and a vertical divisor E in V such that $L^{\otimes N} \simeq L^{\prime} \otimes \mathcal{O}(E)$.

Moreover, for every vertical integral divisor D in V, we have

$$
\operatorname{deg}_{H, D} L^{\otimes N}=N \cdot \operatorname{deg}_{H, D} L=0
$$

by VA3, and

$$
\operatorname{deg}_{H, D} L^{\prime}=0
$$

since L^{\prime} is algebraically equivalent to zero. Therefore,

$$
\operatorname{deg}_{H, D} \mathcal{O}(E)=0
$$

Lemma 4.7.1 below shows that, after possibly replacing L and L^{\prime} by some positive power, the divisor E is of the form $\pi^{*}\left(E^{\prime}\right)$ for some divisor E^{\prime} on C. Consequently,

$$
L^{\otimes N} \otimes \pi^{*} \mathcal{O}\left(-E^{\prime}\right) \simeq L^{\prime}
$$

is algebraically equivalent to zero, and L satisfies VA2.
Lemma 4.7.1. For any vertical divisor E on V, the following conditions are equivalent:
(i) For every vertical divisor D on V,

$$
\operatorname{deg}_{H, D} \mathcal{O}(E)=0
$$

(ii) There exist a divisor E^{\prime} on C and a positive integer N such that

$$
N . E=\pi^{*} E^{\prime} .
$$

This is well known, at least when $n=2$ and k is algebraically closed, in which case it is traditionally attributed to Zariski. We refer to [Del73] for a discussion of related results concerning intersection theory on surfaces, and to [HPW05], Lemme 2.1 for a similar result. We sketch a proof below for the sake of completeness.

Proof. The implication $(\mathrm{ii}) \Rightarrow(\mathrm{i})$ is a straightforward consequence of the projection formula. Indeed, for any integral vertical divisor D on V, the following equality holds in the Chow group $C H^{0}(C)$

$$
\pi_{*}\left(H^{n-2} \cdot D\right)=0
$$

since $\pi(D)$ is zero-dimensional. Consequently, if E^{\prime} is a divisor in C, we have

$$
\begin{aligned}
\operatorname{deg}_{H, D} \mathcal{O}\left(\pi^{*} E^{\prime}\right) & =\operatorname{deg}_{k}\left(H^{n-2} \cdot D \cdot \pi^{*} E^{\prime}\right) \\
& =\operatorname{deg}_{k}\left(\pi_{*}\left(H^{n-2} \cdot D\right) \cdot E^{\prime}\right) \\
& =0
\end{aligned}
$$

To establish the implication (i) \Rightarrow (ii), we may assume that E is supported by the fiber $\pi^{*}(P)$ of some closed point P of C. Let D_{1}, \ldots, D_{r} be the components of $\left|\pi^{*}(P)\right|$, and let n_{1}, \ldots, n_{r} be the positive integers defined by the equality of divisors in V :

$$
\pi^{*} P=\sum_{i=1}^{r} n_{i} . D_{i} .
$$

We want to prove that if some divisor supported by $\pi^{*}(P), E:=\sum_{i=1}^{r} m_{i} . D_{i}$, satisfies

$$
\operatorname{deg}_{H, D_{j}} \mathcal{O}(E)=0,
$$

for every $j \in\{1, \ldots, r\}$, then E is a rational multiple of $\pi^{*}(P)$, or, in other words, there exists m in \mathbb{Q} such that

$$
\left(m_{1}, \ldots, m_{r}\right)=m\left(n_{1}, \ldots, n_{r}\right)
$$

This property is equivalent to the fact that the kernel of the symmetric quadratic form attached to the matrix $\left(q_{i j}\right)_{1 \leq i, j \leq r}$ defined by

$$
q_{i j}:=\operatorname{deg}_{k}\left(H^{n-2} \cdot D_{i} \cdot D_{j}\right)
$$

is generated by the vector $\left(n_{1}, \ldots, n_{r}\right)$.
To establish this, observe that the converse implication (ii) \Rightarrow (i), applied to $D=D_{i}$ and $E=\pi^{*} P$, shows that

$$
\sum_{j=1}^{r} q_{i j} n_{j}=0
$$

for every $i \in\{1, \ldots, r\}$. This yields the following expression for the quadratic form defined by the $q_{i j}$'s:

$$
\sum_{i, j=1}^{r} q_{i j} m_{i} m_{j}=-\sum_{1 \leq i<j \leq r} q_{i j} n_{i} n_{j}\left(\frac{m_{i}}{n_{i}}-\frac{m_{j}}{n_{j}}\right)^{2}
$$

The required property now follows from the following two observations:
(i) For any two distinct elements i and j in $\{1, \ldots, r\}$, the cycle theoretic intersection $D_{i} . D_{j}$ of the Cartier divisors D_{i} and D_{j} is the cycle attached to the intersection scheme $D_{i} \cap D_{j}$, which is either empty or purely ($n-2$)-dimensional, and consequently, by the ampleness of H, the degree $q_{i j}:=\operatorname{deg}_{k}\left(H^{n-2} \cdot\left[D_{i} \cap D_{j}\right]\right)$ is non-negative, and positive if $D_{i} \cap D_{j}$ is not empty.
(ii) The scheme $\pi^{*}(P)$ is connected, and consequently there is no partition of $\{1, \ldots, r\}$ in two non-empty subsets I and J such that $(i, j) \in I \times J \Rightarrow q_{i j}=0$.

Appendix A. A computation in Čech cohomology

Let X be an arithmetic scheme over an arithmetic ring, E a quasi-coherent \mathcal{O}_{X}-module on X and $\mathcal{U}=\left(U_{i}\right)_{i \in I}$ a locally finite, affine, open covering of X. We fix a well ordering on I and consider the (alternating) CCech complex $(\mathcal{C}(\mathcal{U}, E), d)$ where

$$
\mathcal{C}^{p}(\mathcal{U}, E)=\prod_{i_{0}<\ldots<i_{p}} E\left(U_{i_{0} \ldots i_{p}}\right)
$$

with usual notation

$$
U_{i_{0} \ldots i_{p}}=U_{i_{0}} \cap \ldots \cap U_{i_{p}}
$$

and differential $\delta: \mathcal{C}^{p}(\mathcal{U}, E) \rightarrow \mathcal{C}^{p+1}(\mathcal{U}, E)$ given by the formula

$$
(\delta \alpha)_{i_{0}, \ldots, i_{p+1}}=\left.\sum_{k=0}^{p+1}(-1)^{k} \alpha_{i_{0}, \ldots, \hat{i}_{k}, \ldots, i_{p+1}}\right|_{U_{i_{0}} \cap \ldots \cap U_{i_{p+1}}} .
$$

Recall from $[\mathrm{BK} 07,2.5]$ that there is a natural morphism of \mathcal{O}_{X}-modules

$$
\operatorname{ad}_{E}: E \rightarrow\left(\rho_{*} E_{\mathbb{C}}\right)^{F_{\infty}}
$$

given by adjunction with respect to the natural morphism of locally ringed spaces

$$
\rho:\left(X_{\Sigma}(\mathbb{C}), \mathcal{C}_{X_{\Sigma}}^{\infty}\right) \rightarrow\left(X_{\Sigma}(\mathbb{C}), \mathcal{O}_{X_{\Sigma}}^{\text {hol }}\right) \rightarrow\left(X, \mathcal{O}_{X}\right)
$$

It induces a morphism of Čech complexes

$$
\mathcal{C}^{\prime}\left(\mathcal{U}, \operatorname{ad}_{E}\right): \mathcal{C}(\mathcal{U}, E) \rightarrow \mathcal{C}\left(\mathcal{U},\left(\rho_{*} E_{\mathbb{C}}\right)^{F_{\infty}}\right) .
$$

We use the conventions fixed in [BK07, A.1]. The Čech hypercohomology $\left.\check{H}^{0}\left(\mathcal{U}, C\left(\operatorname{ad}_{E}\right)\right)\right)$ of the cone $C\left(\operatorname{ad}_{E}\right)$ of ad_{E} with respect to the covering \mathcal{U} is the cohomology of the complex $C\left(\mathcal{C} \cdot\left(\mathcal{U}, \operatorname{ad}_{E}\right)\right)$ in degree zero. This complex starts as

$$
0 \rightarrow \mathcal{C}^{0}(\mathcal{U}, E) \xrightarrow{\binom{-\delta}{\operatorname{ad}_{E}}} \mathcal{C}^{1}(\mathcal{U}, E) \oplus \mathcal{C}^{0}\left(\mathcal{U},\left(\rho_{*} E_{\mathbb{C}}\right)^{F_{\infty}}\right) \xrightarrow{\left(\begin{array}{c}
-\delta \\
\operatorname{ad}_{E} \\
\delta
\end{array}\right)} \mathcal{C}^{2}(\mathcal{U}, E) \oplus \mathcal{C}^{1}\left(\mathcal{U},\left(\rho_{*} E_{\mathbb{C}}\right)^{F_{\infty}}\right)
$$

where $\mathcal{C}^{0}(\mathcal{U}, E)$ sits in degree -1 . Hence $\check{H}^{0}\left(\mathcal{U}, C\left(\operatorname{ad}_{E}\right)\right)$ is the quotient

$$
\begin{equation*}
\frac{\left\{(\alpha, \beta) \in \mathcal{C}^{1}(\mathcal{U}, E) \oplus \mathcal{C}^{0}\left(\mathcal{U},\left(\rho_{*} E_{\mathbb{C}}\right)^{F_{\infty}}\right) \mid \delta \alpha=0 \wedge \operatorname{ad}_{E}(\alpha)=-\delta(\beta)\right\}}{\left\{\left(-\delta(\gamma), \operatorname{ad}_{E}(\gamma)\right) \mid \gamma \in \mathcal{C}^{0}(\mathcal{U}, E)\right\}} \tag{A.1}
\end{equation*}
$$

This group fits by the cone construction into a natural exact sequence

$$
\left.\left.\left.\left.\check{H}^{0}(\mathcal{U}, E)\right) \rightarrow \check{H}^{0}\left(\mathcal{U},\left(\rho_{*} E_{\mathbb{C}}\right)^{F_{\infty}}\right) \rightarrow \check{H}^{0}\left(\mathcal{U}, C\left(\operatorname{ad}_{E}\right)\right)\right) \rightarrow \check{H}^{1}(\mathcal{U}, E)\right) \rightarrow \check{H}^{1}\left(\mathcal{U},\left(\rho_{*} E_{\mathbb{C}}\right)^{F_{\infty}}\right)\right) .
$$

Lemma A.0.2. Let E be quasi-coherent \mathcal{O}_{X}-module. There exists a canonical commutative diagram

$$
\begin{aligned}
& \Gamma(X, E) \quad \rightarrow \quad A^{0}\left(X_{\mathbb{R}}, E\right) \quad \rightarrow \quad \widehat{\operatorname{Ext}}^{1}\left(\mathcal{O}_{X}, E\right) \quad \rightarrow \quad \operatorname{Ext}^{1}\left(\mathcal{O}_{X}, E\right) \quad \rightarrow 0
\end{aligned}
$$

with exact horizontal lines where all vertical maps are isomorphisms.

Proof. The upper exact sequence is established in [BK07, 2.2]. We have

$$
\left.\left.\check{H}^{1}\left(\mathcal{U},\left(\rho_{*} E_{\mathbb{C}}\right)^{F_{\infty}}\right)\right)=\check{H}^{1}\left(\rho^{-1} \mathcal{U},\left(E_{\mathbb{C}}\right)^{F_{\infty}}\right)\right)
$$

and the latter group is zero as Čech cohomology of a fine sheaf (use [Wel80, II 3.2 e)]) with respect to a locally finite, open covering vanishes [Hir66, 2.11]. We obtain the lower exact sequence. The two left vertical maps are given by the natural isomorphisms induced by the restriction maps of the sheaves E and $\left(\rho_{*} E_{\mathbb{C}}\right)^{F_{\infty}}$. We define $\rho_{\mathcal{U}, E}$. Let

$$
\mathcal{E}: 0 \rightarrow E \rightarrow F \xrightarrow{\pi} \mathcal{O}_{X} \rightarrow 0
$$

be an extension of \mathcal{O}_{X}-modules. The map π admits a section φ_{i} over each affine scheme U_{i}. The difference $\alpha_{i j}=\left.\varphi_{j}\right|_{U_{i j}}-\left.\varphi_{i}\right|_{U_{i j}}$ determines an element in $\Gamma\left(U_{i j}, E\right)$. The family $\left(\alpha_{i j}\right)_{i j}$ defines a 1-cocycle in $\mathcal{C}^{1}(\mathcal{U}, E)$ whose class in $\breve{H}^{1}(\mathcal{U}, E)$ does not depend on the choices of the φ_{i}. One obtains a canonical isomorphism (compare for example [Ati57, Prop. 2])

$$
\rho_{\mathcal{U}, E}: \operatorname{Ext}_{X}^{1}\left(\mathcal{O}_{X}, E\right) \rightarrow \check{H}^{1}(\mathcal{U}, E),[\mathcal{E}] \mapsto\left[\left(\alpha_{i j}\right)_{i j}\right] .
$$

Finally we define $\hat{\rho}_{\mathcal{U}, E}$. Let (\mathcal{E}, s) be an arithmetic extension with \mathcal{E} as above. Choose the φ_{i} as before and define

$$
\beta_{i}=\left.s\right|_{U_{i}}-\operatorname{ad}_{E}\left(\varphi_{i}\right) \in A^{0,0}\left(U_{i, \mathbb{R}}, E\right) .
$$

We have $\operatorname{ad}_{E}\left(\alpha_{i j}\right)=\left.\beta_{i}\right|_{U_{i j}}-\left.\beta_{j}\right|_{U_{i j}}$. Hence the pair $\left(\left(\alpha_{i j}\right)_{i j},\left(\beta_{i}\right)_{i}\right)$ determines an element $\hat{\rho}_{\mathcal{U}, E}(\mathcal{E}, s)$ in (A.1), i.e. in $\check{H}^{0}\left(\mathcal{U}, C\left(\operatorname{ad}_{E}\right)\right)$. This class does not depend on the choices of the φ_{i}. Given different sections $\tilde{\varphi}_{i}$ which led to cocyles $\left(\left(\tilde{\alpha}_{i j}\right)_{i j},\left(\tilde{\beta}_{i}\right)_{i}\right)$ as above, we consider

$$
\gamma \in \mathcal{C}^{0}(\mathcal{U}, E), \gamma_{i}=\varphi_{i}-\tilde{\varphi}_{i}
$$

and get

$$
\binom{-\delta}{\operatorname{ad}_{E}}(\gamma)=(\tilde{\alpha}, \tilde{\beta})-(\alpha, \beta) .
$$

It is straightforward to check that

$$
\hat{\rho}_{\mathcal{U}, E}: \widehat{\operatorname{Ext}}^{1}\left(\mathcal{O}_{X}, E\right) \rightarrow \check{H}^{0}\left(\mathcal{U}, C\left(\operatorname{ad}_{E}\right)\right),[(\mathcal{E}, s)] \mapsto\left[\left(\alpha_{i j}\right),\left(\beta_{i}\right)\right]
$$

is a group homomorphism which fits into the above commutative diagram. The five lemma implies that the map $\hat{\rho}_{\mathcal{U}, E}$ is an isomorphism.

Corollary A.0.3. Let F, G be quasi-coherent \mathcal{O}_{X}-modules such that F is a vector bundle on X. There exists a canonical isomorphism

$$
\hat{\rho}_{\mathcal{U}, F, G}: \widehat{\operatorname{Ext}}^{1}(F, G) \rightarrow \check{H}^{0}\left(\mathcal{U}, C\left(\operatorname{ad}_{\mathcal{H o m}(F, G)}\right)\right)
$$

which identifies $\widehat{\operatorname{Ext}}^{1}(F, G)$ with the quotient (A.1) for $E=\mathcal{H o m}(F, G)$.
Proof. It is proved in [BK07, 2.4.6] that there is a canonical isomorphism

$$
\begin{equation*}
\widehat{\operatorname{Ext}}^{1}(F, G) \xrightarrow{\sim} \widehat{\operatorname{Ext}}^{1}\left(\mathcal{O}_{X}, \mathcal{H o m}(F, G)\right) \tag{A.2}
\end{equation*}
$$

which maps the class of an arithmetic extension (\mathcal{E}, s) to the pushout of $(\mathcal{E}, s) \otimes F^{\vee}$ along the canonical map $\Delta: \mathcal{O}_{X} \rightarrow F \otimes F^{\vee}$. Let $E=\mathcal{H o m}(F, G)$. We define $\hat{\rho} \mathcal{U}, F, G$ as the composition of the isomorphisms (A.2) and $\hat{\rho}_{\mathcal{U}, E}$ in A.0.2.

Appendix B. The universal vector extension of a Picard variety

In this Appendix, we recall basic facts about universal vector extensions from [Mes73] and [MM74] and describe the maximal compact subgroup of the Lie group given by their real and complex valued points.

Let S be a locally noetherian scheme. We consider a morphism $f: X \rightarrow S$ of schemes which satisfies:
i) The morphism f is projective, smooth with geometrically connected fibers.
ii) The Hodge to de Rham spectral sequence

$$
E_{1}^{p, q}=R^{q} f_{*} \Omega_{X / S}^{p} \Rightarrow R^{p+q} f_{*} \Omega_{X / S}
$$

degenerates at E_{1} and the sheaves $R^{q} f_{*} \Omega_{X / S}^{p}$ are locally free.
iii) The identity component $\operatorname{Pic}_{X / S}^{0}$ of the Picard scheme $\operatorname{Pic}_{X / S}$ is an abelian scheme.
B.1. We observe that i) implies that $\mathrm{Pic}_{X / S}$ is representable by a S-group scheme [Gro62, n.232, Thm. 3.1] and that $f_{*} \mathcal{O}_{X}=\mathcal{O}_{S}$ holds universally [Gro63, 7.8.6]. Furthermore i) implies ii) if S is of characteristic zero [Del68, Th. 5.5] and i) implies iii) if S is the spectrum of a field of characteristic zero [BLR90, 8.4]. It is shown in [Kat70, 8.3] that the formation of the coherent sheaves $R^{q} f_{*} \Omega_{X / S}^{p}$ and $R^{n} f_{*} \Omega_{X / S}$ commutes with arbitrary base change if they are locally free.
B.2. We consider the complex

$$
\Omega_{X / S}^{\times}: 0 \rightarrow \mathcal{O}_{X}^{*} \xrightarrow{\text { dlog }} \Omega_{X / S}^{1} \xrightarrow{\mathrm{~d}} \Omega_{X / S}^{2} \xrightarrow{\mathrm{~d}} \ldots
$$

where \mathcal{O}_{X}^{*} sits in degree zero. The group

$$
\operatorname{Pic}^{\#}(X / S):=H^{1}\left(X_{\mathrm{fppf}}, \Omega_{X / S}^{\times}\right)
$$

classifies isomorphism classes of pairs (L, ∇) where L is a line bundle on X and ∇ is an integrable connection

$$
\nabla: L \rightarrow L \otimes \Omega_{X / S}^{1}
$$

relative to $S[\operatorname{Mes} 73,(2.5 .3)]$. We denote by

$$
\operatorname{Pic}_{X / S}^{\#}:=R^{1} f_{*, \mathrm{fppf}} \Omega_{X / S}^{\times}
$$

the fppf-sheaf on S associated to the presheaf

$$
T \mapsto \operatorname{Pic}^{\#}\left(X \times_{S} T / T\right)
$$

If $X_{T}=X \times_{S} T$ admits a section over T, we have [Mes73, (2.6.4)]

$$
\begin{equation*}
\operatorname{Pic}_{X / S}^{\#}(T)=\operatorname{Coker}\left(\operatorname{Pic}(T) \xrightarrow{f^{*}} \operatorname{Pic}^{\#}\left(X \times_{S} T / T\right)\right) \tag{B.1}
\end{equation*}
$$

B.3. If T / S is a fpqc-morphism, we have

$$
\begin{equation*}
\operatorname{Pic}_{X / S}^{\#} \times{ }_{S} T=\operatorname{Pic}_{X_{T} / T}^{\#} \tag{B.2}
\end{equation*}
$$

This is obvious if T / S is fppf. Hence we may assume without loss of generality that X / S admits a section. Then one can see as in [BLR90, 8.1, p.204] using rigidifications and fpqc-descent that $\mathrm{Pic}_{X / S}^{\#}$ defines via (B.1) an fpqc-sheaf on S. This implies (B.2).
B.4. The exact sequence of complexes

$$
\begin{equation*}
0 \rightarrow \tau_{\geq 1} \Omega_{X / S} \rightarrow \Omega_{X / S}^{\times} \rightarrow \mathcal{O}_{X}^{*} \rightarrow 0 \tag{B.3}
\end{equation*}
$$

induces an exact sequence

$$
0 \rightarrow H^{1}\left(X_{\mathrm{fppf}}, \tau_{\geq 1} \Omega_{X / S}\right) \rightarrow \operatorname{Pic}^{\#}(X / S) \rightarrow H^{1}\left(X_{\mathrm{fppf}}, \mathcal{O}_{X}^{*}\right) \rightarrow H^{2}\left(X_{\mathrm{fppf}}, \tau_{\geq 1} \Omega_{X / S}\right)
$$

Observe that exactness on the left follows from the long exact sequence associated with (B.3) as the map

$$
\operatorname{dlog}: \Gamma\left(X, \mathcal{O}_{X}^{*}\right) \rightarrow \Gamma\left(X, \Omega_{X / S}^{1}\right)
$$

is zero by Assumption B ii). Using descent and again Assumption B ii), one gets

$$
H^{1}\left(X_{\mathrm{fppf}}, \mathcal{O}_{X}^{*}\right)=\operatorname{Pic}(X), H^{2}\left(X_{\mathrm{fppf}}, \tau_{\geq 1} \Omega_{X / S}\right)=H^{2}\left(X_{\mathrm{Zar}}, \tau_{\geq 1} \Omega_{X / S}\right)
$$

and

$$
H^{1}\left(X_{\mathrm{fppf}}, \tau_{\geq 1} \Omega_{X / S}\right)=\operatorname{ker}\left(H^{0}\left(X_{\mathrm{fppf}}, \Omega_{X / S}^{1}\right) \rightarrow H^{0}\left(X_{\mathrm{fppf}}, \Omega_{X / S}^{2}\right)\right)=\Gamma\left(S, f_{*} \Omega_{X / S}^{1}\right)
$$

Sheafification of the exact sequence yields the exact sequence

$$
0 \rightarrow f_{*} \Omega_{X / S}^{1} \rightarrow \operatorname{Pic}_{X / S}^{\#} \rightarrow \operatorname{Pic}_{X / S} \xrightarrow{c} R^{2} f_{*} \tau \geq 1 \Omega_{X / S}
$$

As there are no non-trivial homomorphisms from the abelian scheme $\operatorname{Pic}_{X / S}^{0}$ to the coherent sheaf $R^{2} f_{*} \tau \geq 1 \Omega_{X / S}$ by [MM74, Lemma p.9], we have $\operatorname{Pic}_{X / S}^{0} \subseteq \operatorname{ker}(c)$. Hence we obtain an extension of fppf-sheaves over S of abelian groups

$$
\begin{equation*}
0 \rightarrow f_{*} \Omega_{X / S}^{1} \rightarrow P_{X / S} \rightarrow \operatorname{Pic}_{X / S}^{0} \rightarrow 0 \tag{B.4}
\end{equation*}
$$

where

$$
P_{X / S}=\operatorname{Pic}_{X / S}^{\#} \times_{\operatorname{Pic}_{X / S}} \operatorname{Pic}_{X / S}^{0}
$$

B.5. The universal vector extension of the abelian scheme $\operatorname{Pic}_{X / S}^{0}$ is a group scheme $E_{X / S}$ which fits into an exact sequence of fppf-sheaves

$$
\begin{equation*}
0 \rightarrow \mathbb{E}_{A / S} \rightarrow E_{X / S} \rightarrow \operatorname{Pic}_{X / S}^{0} \rightarrow 0 \tag{B.5}
\end{equation*}
$$

where $\mathbb{E}_{A / S}$ denotes the Hodge bundle of the dual abelian scheme $A=\left(\operatorname{Pic}_{X / S}^{0}\right)^{\vee}$. The universal vector extension can be characterized by its universal property: Given an abelian fppf-sheaf E^{\prime} and a vector group scheme M which fit into an extension of fppf-sheaves of abelian groups

$$
\begin{equation*}
0 \rightarrow M \rightarrow E^{\prime} \rightarrow \operatorname{Pic}_{X / S}^{0} \rightarrow 0 \tag{B.6}
\end{equation*}
$$

there exits a unique \mathcal{O}_{S}-linear morphism $\phi: \mathbb{E}_{A / S} \rightarrow M$ such that (B.6) is isomorphic to the pushout of (B.5) along ϕ.

By the universal property there exist unique morphisms f and g such that
is a pushout diagram. The biduality of abelian schemes yields a canonical isomorphism

$$
\begin{equation*}
E_{X / S} \xrightarrow{\sim} E_{A / S} \tag{B.8}
\end{equation*}
$$

It is furthermore shown in [MM74] and [Mes73] that (B.7) with X replaced by A induces a canonical isomorphism

$$
E_{A / S} \xrightarrow{\sim} P_{A / S} .
$$

Assume that X / S admits a section ϵ. There exits a canonical morphism $\varphi: X \rightarrow A$ which pulls a Poincaré bundle for A rigidified along zero back to a Poincaré bundle for X rigidified along ϵ. Pullback along φ induces morphisms

$$
\varphi^{*}: \mathbb{E}_{A / S} \rightarrow f_{*} \Omega_{X / S}^{1}, \alpha \mapsto \varphi^{*} \alpha
$$

and (using description (B.1))

$$
\varphi^{*}: P_{A / S} \rightarrow P_{X / S},[L, \nabla] \mapsto\left[\varphi^{*} L, \varphi^{*} \nabla\right]
$$

such that

$$
\begin{array}{rllllll}
0 & \rightarrow & \mathbb{E}_{A / S} & \rightarrow & P_{A / S} & \rightarrow & \operatorname{Pic}_{X / S}^{0} \\
& \downarrow \varphi^{*} & & \downarrow \varphi^{*} & & \| \tag{B.9}\\
0 & \rightarrow & f_{*} \Omega_{X / S}^{1} & \rightarrow & P_{X / S} & \rightarrow & \operatorname{Pic}_{X / S}^{0}
\end{array} \rightarrow 0
$$

is commutative. The uniqueness assertion in the universal property implies that the maps f and g in (B.7) are given under the canonical identifications

$$
E_{X / S} \xrightarrow{\sim} E_{A / S} \xrightarrow{\sim} P_{A / S}
$$

by pullback along φ.
B.6. Let S be the spectrum of a field k of characteristic zero. For a projective, smooth, geometrically connected S-scheme, our assumptions B i)- iii) are satisfied by B.1. Furthermore the morphism

$$
\begin{equation*}
\mathbb{E}_{A / S} \rightarrow f_{*} \Omega_{X / S}^{1} \tag{B.10}
\end{equation*}
$$

given by pullback along φ is an isomorphism. In fact (B.10) is injective as X generates A as an abelian variety and bijective for dimension reasons (compare for example [BLR90, 8.4 Th. 1 b$)]$).

It follows that $E_{X / k}=P_{X / k}$ is the universal vector extension of $\operatorname{Pic}_{X / k}^{0}$. Hence (B.1) gives
(B.11) $\quad E_{X / k}(k)=\{(L, \nabla) \mid L$ line bundle on X with integrable connection $\nabla\} / \sim$ if $X(k) \neq \emptyset$. In general, we choose a Galois extension k^{\prime} / k with Galois group Γ such that $X\left(k^{\prime}\right) \neq \emptyset$ and get

$$
\begin{equation*}
E_{X / k}(k)=E_{X_{k^{\prime}} / k^{\prime}}\left(k^{\prime}\right)^{\Gamma} . \tag{B.12}
\end{equation*}
$$

B.7. If $k=\mathbb{C}$, the extension

$$
\begin{equation*}
0 \rightarrow \Gamma\left(X, \Omega_{X / \mathbb{C}}^{1}\right) \rightarrow E_{X / \mathbb{C}}(\mathbb{C}) \rightarrow \operatorname{Pic}_{X / \mathbb{C}}^{0}(\mathbb{C}) \rightarrow 0 \tag{B.13}
\end{equation*}
$$

admits a canonical splitting

$$
\begin{equation*}
\sigma: \operatorname{Pic}_{X / \mathbb{C}}^{0}(\mathbb{C}) \rightarrow E_{X / \mathbb{C}}(\mathbb{C}) \tag{B.14}
\end{equation*}
$$

given as follows. Given an algebraic line bundle L on X with $c_{1}(L)=0$, we choose a hermitian metric h on the holomorphic line bundle $L_{\mathbb{C}}$ on $X(\mathbb{C})$ with curvature zero. Let $\nabla_{\bar{L}}$ denote the unitary connection on $\bar{L}_{\mathbb{C}}=\left(L_{\mathbb{C}}, h\right)$ which is compatible with the complex structure. Observe that $\nabla_{\bar{L}}$ does not depend on the choice of h. The (1,0)-part $\nabla_{\bar{L}}^{1,0}$ of $\nabla_{\bar{L}}$ defines a \mathcal{C}^{∞}-section of the Atiyah extension at ${ }_{X}\left(L_{\mathbb{C}}\right)$. This \mathcal{C}^{∞}-section is a holomorphic
section by (1.16). Hence it algebraizes uniquely by GAGA [Ser56] and defines an integrable, algebraic connection ∇ on L. The assignment

$$
[L] \mapsto[(L, \nabla)]
$$

defines the group homomorphism (B.14). The image of σ is the unique maximal compact subgroup of $E_{X / \mathbb{C}}(\mathbb{C})$ as the linear space $\Gamma\left(X, \Omega_{X / \mathbb{C}}^{1}\right)$ has no non-trivial compact subgroups.
B.8. If $k=\mathbb{R}$, the extension

$$
\begin{equation*}
0 \rightarrow \Gamma\left(X, \Omega_{X / \mathbb{R}}^{1}\right) \rightarrow E_{X / \mathbb{R}}(\mathbb{R}) \rightarrow \operatorname{Pic}_{X / \mathbb{R}}^{0}(\mathbb{R}) \rightarrow 0 \tag{B.15}
\end{equation*}
$$

is obtained from the extension (B.13) by taking invariants under complex conjugation. We obtain again a canonical splitting

$$
\sigma_{\mathbb{R}}: \operatorname{Pic}_{X / \mathbb{R}}^{0}(\mathbb{R}) \rightarrow E_{X / \mathbb{R}}(\mathbb{R})
$$

as the splitting (B.14) is invariant under complex conjugation. The image of σ describes as before the unique maximal compact subgroup of $E_{X / \mathbb{R}}(\mathbb{R})$.

References

[ALJ89] B. Angéniol and M. Lejeune-Jalabert. Calcul différentiel et classes caractéristiques en géométrie algébrique. Hermann, Paris, 1989. With an English summary.
[Ati57] M. F. Atiyah. Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc., 85:181207, 1957.
[Ber95] D. Bertrand. Points rationnels sur les sous-groupes compacts des groupes algébriques. Experiment. Math., 4(2):145-151, 1995.
[Ber98] D. Bertrand. Relative splitting of one-motives. In Number theory (Tiruchirapalli, 1996), pages 3-17. Amer. Math. Soc., Providence, RI, 1998.
[BF00] R.-O. Buchweitz and H. Flenner. The Atiyah-Chern character yields the semiregularity map as well as the infinitesimal Abel-Jacobi map. In The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), pages 33-46. Amer. Math. Soc., Providence, RI, 2000.
[BF03] R.-O. Buchweitz and H. Flenner. A semiregularity map for modules and applications to deformations. Compositio Math., 137(2):135-210, 2003.
[BGI71] P. Berthelot, A. Grothendieck, and L. Illusie. Théorie des intersections et théorème de RiemannRoch. Lecture Notes in Mathematics, Vol. 225. Springer-Verlag, Berlin, 1971. Séminaire de Géométrie Algébrique du Bois-Marie 1966-1967 (SGA 6), dirigé par P. Berthelot, A. Grothendieck et L. Illusie, avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre.
[BK07] J.-B. Bost and K. Künnemann. Hermitian vector bundles and extension groups on arithmetic schemes. I. Geometry of numbers. Preprint, arXiv math.NT/0701343, 2007.
[BLR90] S. Bosch, W. Lütkebohmert, and M. Raynaud. Néron models. Springer-Verlag, Berlin, 1990.
[BW07] A. Baker and G. Wüstholz. Logarithmic forms and Diophantine geometry, volume 9 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2007.
[Che46] S.-s. Chern. Characteristic classes of Hermitian manifolds. Ann. of Math. (2), 47:85-121, 1946.
[Con06] B. Conrad. Chow's K / k-image and K / k-trace, and the Lang-Néron theorem. Enseign. Math. (2), 52(1-2):37-108, 2006.
[Del68] P. Deligne. Théorème de Lefschetz et critères de dégénérescence de suites spectrales. Inst. Hautes Études Sci. Publ. Math., 35:259-278, 1968.
[Del70] P. Deligne. Équations différentielles à points singuliers réguliers. Springer-Verlag, Berlin, 1970. Lecture Notes in Mathematics, Vol. 163.
[Del73] P. Deligne. Intersections sur les surfaces régulières. In Groupes de monodromie en géométrie algébrique (SGA 7 II), volume 340 of Lectures Notes in Mathematics, pages 1-38. Springer-Verlag, 1973.
[Ful98] W. Fulton. Intersection theory. 2nd ed. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 2. Berlin: Springer., 1998.
[GH78] P. Griffiths and J. Harris. Principles of algebraic geometry. Wiley-Interscience [John Wiley \& Sons], New York, 1978. Pure and Applied Mathematics.
[Gro62] A. Grothendieck. Fondements de la géométrie algébrique. [Extraits du Séminaire Bourbaki, 19571962.]. Secrétariat mathématique, Paris, 1962.
[Gro63] A. Grothendieck. Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. II. Inst. Hautes Études Sci. Publ. Math., 17:91, 1963.
[Gro67] A. Grothendieck. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV. Inst. Hautes Études Sci. Publ. Math., 32:361, 1967.
[GS90a] H. Gillet and C. Soulé. Arithmetic intersection theory. Inst. Hautes Études Sci. Publ. Math., 72:93-174, 1990.
[GS90b] H. Gillet and C. Soulé. Characteristic classes for algebraic vector bundles with Hermitian metric. I. Ann. of Math. (2), 131(1):163-203, 1990.
[Hir66] F. Hirzebruch. Topological methods in algebraic geometry. Third enlarged edition. Die Grundlehren der Mathematischen Wissenschaften, Band 131. Springer-Verlag New York, Inc., New York, 1966.
[HPW05] M. Hindry, A. Pacheco, and R. Wazir. Fibrations et conjecture de Tate. J. Number Theory, 112(2):345-368, 2005.
[Ill71] L. Illusie. Complexe cotangent et déformations. I. Springer-Verlag, Berlin, 1971. Lecture Notes in Mathematics, Vol. 239.
[Kah06] B. Kahn. Sur le groupe des classes d'un schéma arithmétique. Bull. Soc. Math. France, 134(3):395415,2006 . With an appendix by Marc Hindry.
[Kat70] N. M. Katz. Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin. Inst. Hautes Études Sci. Publ. Math., 39:175-232, 1970.
[Kle66] S. L. Kleiman. Toward a numerical theory of ampleness. Ann. of Math. (2), 84:293-344, 1966.
[KN96] S. Kobayashi and K. Nomizu. Foundations of differential geometry. Vol. I. Wiley Classics Library. John Wiley \& Sons Inc., New York, 1996. Reprint of the 1963 original, A Wiley-Interscience Publication.
[Lan66] S. Lang. Introduction to transcendental numbers. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966.
[LN59] S. Lang and A. Néron. Rational points of abelian varieties over function fields. Am. J. Math., 81:95-118, 1959.
[Mes73] W. Messing. The universal extension of an abelian variety by a vector group. In Symposia Mathematica, Vol. XI (Convegno di Geometria, INDAM, Rome, 1972), pages 359-372. Academic Press, London, 1973.
[MM74] B. Mazur and W. Messing. Universal extensions and one dimensional crystalline cohomology. Springer-Verlag, Berlin, 1974. Lecture Notes in Mathematics, Vol. 370.
[Nak55] S. Nakano. On complex analytic vector bundles. J. Math. Soc. Japan, 7:1-12, 1955.
[Sch41] Th. Schneider. Zur Theorie der Abelschen Funktionen und Integrale. J. Reine Angew. Math., 183:110-128, 1941.
[Ser56] J.-P. Serre. Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier, Grenoble, 6:1-42, 1955-1956.
[Ser59] J.-P. Serre. Groupes algébriques et corps de classes. Publications de l'institut de mathématique de l'université de Nancago, VII. Hermann, Paris, 1959.
[Spi70] M. Spivak. A comprehensive introduction to differential geometry. Vol. II. Published by M. Spivak, Brandeis Univ., Waltham, Mass., 1970.
[Wal87] M. Waldschmidt. Nombres transcendants et groupes algébriques. Astérisque, (69-70):218, 1987. With appendices by Daniel Bertrand and Jean-Pierre Serre.
[Wel80] R. O. Wells, Jr. Differential analysis on complex manifolds. Springer-Verlag, New York, second edition, 1980.
[Wüs89] G. Wüstholz. Algebraische Punkte auf analytischen Untergruppen algebraischer Gruppen. Ann. of Math. (2), 129(3):501-517, 1989.
J.-B. Bost, Département de Mathématiques, Université Paris-Sud, Bâtiment 425, 91405 Orsay cedex, France

E-mail address: jean-benoit.bost@math.u-psud.fr
K. Künnemann, Mathematik, Universität Regensburg, 93040 Regensburg, Germany

E-mail address: klaus.kuennemann@mathematik.uni-regensburg.de

[^0]: ${ }^{1}$ Consider indeed two arithmetic extensions of F by G, say $\overline{\mathcal{E}}_{\alpha}:=\left(\mathcal{E}_{\alpha}, s_{\alpha}\right), \alpha=1,2$, defined by extensions of vector bundles $\mathcal{E}_{\alpha}: 0 \rightarrow G \xrightarrow{i_{\alpha}} E_{\alpha} \xrightarrow{p_{\alpha}} F \rightarrow 0$ and \mathcal{C}^{∞}-splittings $s_{\alpha}: F_{\mathbb{C}} \rightarrow E_{\alpha, \mathbb{C}}$. We may define a vector bundle $E:=\frac{\operatorname{Ker}\left(p_{1}-p_{2}: E_{1} \oplus E_{2} \rightarrow F\right)}{\operatorname{Im}\left(\left(i_{1},-i_{2}\right): G \rightarrow E_{1} \oplus E_{2}\right)}$ over X. The Baer sum of $\overline{\mathcal{E}}_{1}$ and $\overline{\mathcal{E}}_{2}$ is the arithmetic extension $\overline{\mathcal{E}}$ defined by the usual Baer sum of \mathcal{E}_{1} and $\mathcal{E}_{2} —$ namely $\mathcal{E}: 0 \rightarrow G \xrightarrow{i} E \xrightarrow{p} F \rightarrow 0$ where the morphisms $i: G \rightarrow E$ and $p: E \rightarrow F$ are defined by $p\left(\left[\left(g_{1}, g_{2}\right)\right]\right)=p_{1}\left(f_{1}\right)=p_{2}\left(f_{2}\right)$ and $i(g)=\left[\left(i_{1}(g), 0\right)\right]=\left[\left(0, i_{2}(g)\right)\right]$ - equipped with the \mathcal{C}^{∞}-splitting $s: F_{\mathbb{C}} \rightarrow E_{\mathbb{C}}$ defined by $s(e):=\left[\left(s_{1}(e), s_{2}(e)\right)\right]$.

[^1]: ${ }^{2}$ These authors work in an analytic context as the original article [Ati57], but extend the construction of Atiyah classes to complex of coherent analytic sheaves over possibly singular complex spaces. Like Illusie's construction, this requires to deal with the cotangent complex, now in an analytic context.

[^2]: ${ }^{3}$ namely, if this Picard variety A has dimension g, the \mathbb{Q}-algebra $\operatorname{End}(A / K) \otimes_{\mathbb{Z}} \mathbb{Q}$ is assumed to be a totally real field of degree g over \mathbb{Q}. Actually, Bertrand establishes a more precise result, concerning g independents extensions of A by the additive group \mathbb{G}_{a}; see [Ber98], Theorem 3, pages 13-14.

[^3]: ${ }^{4}$ By definition a line bundle on X is algebraically equivalent to zero if and only if its restriction to the geometric fiber $X_{\bar{K}}$ is algebraically equivalent to zero.

[^4]: ${ }^{5}$ To check this, we may assume that k is algebraically closed, and observe that the curvature ∇^{2} of an algebraic connection on L depends only on the isomorphism class of L and defines a morphism of algebraic groups over k from the dual abelian variety A^{\vee} to the additive group $\Gamma\left(A, \Omega_{A / k}^{2}\right)\left(\simeq \wedge^{2}(\text { Lie } A)^{\vee}\right)$. Since A is proper and connected, any such morphism is zero.
 ${ }^{6}$ namely, the spectrum of the quasi-coherent \mathcal{O}_{A}-algebra $\bigoplus_{n \in \mathbb{N}} L^{V \otimes n}$.

[^5]: $7_{\text {or, equivalently, such that }} \nabla_{\mathbb{C}}$ is the Chern connection associated to $\|$.$\| .$

[^6]: ${ }^{8}$ One could also argue that this curvature coincides with the one of the holomorphic connection ∇_{σ}, which vanishes, as recalled above.

[^7]: ${ }^{9}$ The reader should beware that this definition is weaker than the one occurring in [Ful98]. Namely, if D is a divisor in M, the line bundle $\mathcal{O}(D)$ is algebraically equivalent to zero in the above sense iff the divisor $D_{\bar{k}_{0}}$ on $M_{\bar{k}_{0}}$ is algebraically equivalent to zero in Fulton's sense, where \bar{k}_{0} denotes an algebraic closure of k_{0}.

