Green Data Center : Energy Saving

Reporter : 吳秉學 Advisor : Hsueh-Wen Tseng

Paper introduction

- [1]HERO: Hierarchical energy optimization for data center networks
 - Yan Zhang; Ansari, N.
 - Communications (ICC), 2012 IEEE International Conference on , June 2012
- [2]Energy optimizations for data center network: Formulation and its solution
 - Shuo Fang; Hui Li; Chuan Heng Foh; Yonggang Wen; Khin Mi Mi Aung
 - Global Communications Conference (GLOBECOM), 2012 IEEE , Dec. 2012
- [3]GreenDCN: A General Framework for Achieving Energy Efficiency in Data Center Networks
 - Lin Wang; Fa Zhang; Arjona Aroca, J.; Vasilakos, A.V.; Kai Zheng; Chenying Hou; Dan Li; Zhiyong Liu
 - Selected Areas in Communications, IEEE Journal on ,January 2014

Outline

- Introduction
- Methods
 - Method 1
 - Method 2
 - Method 3
- Conclusions

Introduction

- The energy consumption of data centers has become an essential problem
 - In 2013 U.S. data centers consumed an estimated 91 billion kwh of electricity [4]
 - Increase to roughly 140 billion kwh annually by 2020 [4]
 - \$13 billion annually in electricity bills and 100 million metric tons of carbon pollution per year

[4]http://www.nrdc.org/energy/data-center-efficiency-assessment.asp

Introduction

- The main sources of power consumption in a data center
 - Cooling
 - Computing resources
 - Network elements

Data Center (except cooling)

Cavdar, D.; Alagoz, F., "A survey of research on greening data centers," *Global Communications Conference* (*GLOBECOM*), 2012 IEEE, 2012

HERO: Hierarchical energy optimization for data center networks

Yan Zhang; Ansari, N. Communications (ICC), 2012 IEEE International Conference on , June 2012

- Data center networks become larger and larger
 - The complexity of solving this optimization problem increases
- Hierarchical energy optimization (HERO) model
 - Turning off some elements
 - Without violating the connectivity and QoS constraints

- Five kinds of traffic
 - F1 : intra-edge switch traffic
 - F2 : inter-edge but intra-pod traffic
 - F3 : inter-pod traffic
 - F4 : incoming traffic
 - F5 : outgoing traffic

Fig. 1: Data center network topologies and traffic patterns

- Two level power optimization
 - Core-level
 - Determine the core switches that must stay active to flow the outgoing traffic
 - Determine the aggregation switches which serve the out-pod traffic in each pod
 - Pod-level
 - Determine the aggregation switches that must be powered to flow the intra-pod traffic

Core-level

Pod-level

Algorithm 1 Hierarchical Energy Optimization Algorithm

Stage 1: Determine in descending order of need to be powered on according to the traffic matrix T.

Stage 2: Solve the core-level CMCF optimization problem. **Stage 2.1:** The power status of core switches and corelevel links connecting the aggregation switches and the core switches is decided by solving the core-level CMCF optimization problem.

Stage 2.2: The aggregation switches serving the out-pod traffic in each pod are selected with the power status of the core-level links, and the selected aggregation switches are powered on.

Stage 3: Solve the pod-level CMCF optimization problem. for i = 1 to N^p do

Determine the power status of the aggregation switches and the pod-level links connecting the edge switches and the aggregation switches by solving the pod-level optimization problem.

end for

Stage 4: In order to provision the whole network connectivity and to meet QoS goals, a merging process is performed. ¹⁰

• Large traffic flows

Fig. 3: The power consumption of 4-ary Fat-tree data center networks with different number of traffic flows.

11

• Small traffic flows

Fig. 4: The power consumption of a 4-ary Fat-tree data center network with all-to-all traffic under different traffic load.

Energy optimizations for data center network: Formulation and its solution

Shuo Fang; Hui Li; Chuan Heng Foh; Yonggang Wen; Khin Mi Mi Aung Global Communications Conference (GLOBECOM), 2012 IEEE , Dec. 2012

- Purpose
 - Minimize switch usage to save energy
 - Adjust link rates of switch ports according to traffic loads

Fig. 1. Illustration of 4-ary Fat Tree topology.

• Optimization formulation of the problem

subject to

Arrival load at incoming port k of switch <p,r>

$$\sum_{k} \lambda_{k,d}^{\langle p,r \rangle} = \sum_{k} \mu_{k,d}^{\langle p,r \rangle},$$

$$\sum_{k} \lambda_{k,d}^{\langle p,r \rangle} \leq l_{k}^{\langle p,r \rangle}, l_{i} \in \mathcal{L},$$

$$\sum_{k} \lambda_{k,d}^{\langle p,r \rangle} \leq l_{k}^{\langle p,r \rangle}, l_{i} \in \mathcal{L},$$

- Greedy approach
 - Utilize as few switches, switch links and switch link rates as possible
 - No active switches in the network system at the beginning
 - Switches are only enabled when packet arrives
 - Packets are automatically routed to a path on a spanning tree with the least link rate

Fig. 5. Switch state transition.

TABLE IV SIMULATION SETTINGS FOR MULTIPLE NUMBER OF FLOWS TEST.

Parameter	Value				
Number of flows Sender Receiver Flow starts time Flow ends time	10, 20, 50, 100, 200, 300 H_1 - H_{16} H_1 - H_{16} 1s-6s flow's start time to 15s	TABLE V Energy usage comparison.			
	·	Number of flows	Energy usag	e (J)	
			Our solution	FT	
		10	14009 63%	37800	
		20	21844 40%	36540	
		50	21786 40%	36540	
		100	26250 31%	37800	
		200	29119 23%	37800	
		300	20585 22%	27800	

19

Number of flows ↑, Delay↓

Fig. 9. Hosts delay statistics.

+200 Flows

+300 Flows

H10 H11 H12 H13 H14 H15 H16

GreenDCN: A General Framework for Achieving Energy Efficiency in Data Center Networks

- Lin Wang; Fa Zhang; Arjona Aroca, J.; Vasilakos, A.V.; Kai Zheng; Chenying Hou; Dan Li; Zhiyong Liu
- Selected Areas in Communications, IEEE Journal on ,January 2014

- In a typical data center from Google
 - The network power is approximately 20% of the total power when the servers are utilized at 100%
 - But it increases to 50% when the utilization of servers decreases to 15%

- Purpose
 - Improve the energy efficiency in DCNs
- Explore unique features of data centers
 - Regularity of the topology
 - <u>Fat-Tree</u>, BCube and DCell
 - VM assignment
 - Application characteristics
- Design the VM assignment based on the applications' characteristics and regularity of the topology

• General framework

Fig. 1. A general framework for improving the energy efficiency in DCNs.

• Modeling the energy-saving problem

- Model by integer program $\min \sum_{v \in \mathcal{V}} f(x_v)$ Subject to Total traffic going through node v, which never exceed the switch capacity C Total load carried by link e $\begin{bmatrix} x_v = \frac{1}{2} \sum_{e \in \mathcal{E}:e \text{ is incident to } v} y_e \quad \forall v \\ x_v \leq C \quad \forall v \\ y_e = \sum_{d \in \mathcal{D}(t)} |d| \cdot \Phi_{d,e} \quad \forall e \\ \Phi_{d,e} \in \{0,1\} \quad \forall d, e \\ \Phi_{d,e} : \text{ flow conservation} \\ \end{bmatrix}$

Whether the demand d goes through edge e

Theorem 1. Finding the optimality of the energy-saving problem in DCNs is NP-hard

- Energy-efficient VM assignments
 - Three main principles for minimizing energy
 - 1. At the rack level
 - Compacting VMs into racks as tightly as possible to minimize the power consumption of the ToR switches
 - 2. At the aggregation level
 - Compacting VMs into a single rack is better than distributing the VMs into k racks
 - 3. At the pod level
 - Same job, same pod

Algorithm 1 optEEA

Input: topology $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, servers \mathcal{S} and jobs \mathcal{J} **Output:** Assignments of VMs \mathcal{M}

- 1: for $j \in \mathcal{J}$ do
- Step 1. 2: Transform VMs into super-VMs
 - 3: end for
- Step 2. 4: Cluster jobs in \mathcal{J} into groups \mathcal{H}_i for $i \in [1, N^{pod}]$ and $\mathcal{H}_{N^{pod}+1}$
 - 5: for $1 \leq i \leq N^{pod}$ do
 - 6: Partition the super-VMs for each job $j \in \mathcal{H}_j$ into K
- Step 3.
- parts using the min-k-cut algorithm
- 7: Assign super-VMs to servers according to the partition
- 8: end for
- 9: Assign the VMs of jobs in $\mathcal{H}_{N^{pod}+1}$ into vacant servers in the first N^{pod} pods flexibly.

• Algorithm 1- example

Fig. 2. (a) Original jobs' VMs are transformed to super-VMs; (b) the resulting super-VMs are clustered into pods using the k-means clustering algorithm; (c) after assigning jobs to pods, the super-VMs are assigned to racks using the minimum k-cut algorithm.

MPTCP

• Energy-efficient Routing

Algorithm 2 EER

Input: topology $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and VMs assignments **Output:** routes for flows

- 1: for $t \in [t_1, t_r]$ do
- 2: Obtain the traffic flows on the network at time t according to the VM assignment
- 3: for $i \in [1, N^{pod}]$ do
- 4: Estimate the number N_i^{agg} of the aggregation switches that will be used in the *i*-th pod, and choose them as the first N_i^{agg} switches

5: end for

- 6: Estimate the number N^{core} of core switches that will be used, and choose them
 - Use multipath routing to distribute all of the flows evenly on the network formed by the selected switches
 - Turn the unused switches into sleep mode
- 9: end for

7:

(Normalized by the Greedy-SP result)

Conclusions

- Turn on/off the switches [1][2][3]
- VM assignment and energy-efficient routing[3]
- Power saving
 - IT equipment
 - Server [3]
 - Switch [1][2][3]

Conclusions

		Resource allocation	Power allocation	Topology	QoS	Load Balance
	[1]		0	Fat-Tree	0	0
\supset	[2]	0	0	Fat-Tree		0
>	[3]	0	0	Fat-Tree		0