
 Open access Proceedings Article DOI:10.1109/SRDS.2018.00030

Héron: Taming Tail Latencies in Key-Value Stores Under Heterogeneous Workloads
— Source link

Vikas Jaiman, Vikas Jaiman, Sonia Ben Mokhtar, Vivien Quéma ...+2 more authors

Institutions: Université catholique de Louvain, University of Grenoble, Grenoble Institute of Technology, IBM

Published on: 02 Oct 2018 - Symposium on Reliable Distributed Systems

Related papers:

 The tail at scale

 Size-aware Sharding For Improving Tail Latencies in In-memory Key-value Stores

 Haste makes waste: The On–Off algorithm for replica selection in key–value stores

 PRS: Predication-Based Replica Selection Algorithm for Key-Value Stores

 TTLoC: Taming Tail Latency for Erasure-Coded Cloud Storage Systems

Share this paper:

View more about this paper here: https://typeset.io/papers/heron-taming-tail-latencies-in-key-value-stores-under-
515w29va3a

https://typeset.io/
https://www.doi.org/10.1109/SRDS.2018.00030
https://typeset.io/papers/heron-taming-tail-latencies-in-key-value-stores-under-515w29va3a
https://typeset.io/authors/vikas-jaiman-3nft2s8zm6
https://typeset.io/authors/vikas-jaiman-3nft2s8zm6
https://typeset.io/authors/sonia-ben-mokhtar-1fzxs6nucq
https://typeset.io/authors/vivien-quema-217k53hv3v
https://typeset.io/institutions/universite-catholique-de-louvain-2abwpwl8
https://typeset.io/institutions/university-of-grenoble-1irzuhle
https://typeset.io/institutions/grenoble-institute-of-technology-1q6jcn53
https://typeset.io/institutions/ibm-3vfvs9ir
https://typeset.io/conferences/symposium-on-reliable-distributed-systems-1yon2swq
https://typeset.io/papers/the-tail-at-scale-3dehddoh1t
https://typeset.io/papers/size-aware-sharding-for-improving-tail-latencies-in-in-199a76x0it
https://typeset.io/papers/haste-makes-waste-the-on-off-algorithm-for-replica-selection-r8od2k1vzz
https://typeset.io/papers/prs-predication-based-replica-selection-algorithm-for-key-2d75c1oxma
https://typeset.io/papers/ttloc-taming-tail-latency-for-erasure-coded-cloud-storage-5fqagca86g
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/heron-taming-tail-latencies-in-key-value-stores-under-515w29va3a
https://twitter.com/intent/tweet?text=H%C3%A9ron:%20Taming%20Tail%20Latencies%20in%20Key-Value%20Stores%20Under%20Heterogeneous%20Workloads&url=https://typeset.io/papers/heron-taming-tail-latencies-in-key-value-stores-under-515w29va3a
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/heron-taming-tail-latencies-in-key-value-stores-under-515w29va3a
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/heron-taming-tail-latencies-in-key-value-stores-under-515w29va3a
https://typeset.io/papers/heron-taming-tail-latencies-in-key-value-stores-under-515w29va3a

HAL Id: hal-01896686
https://hal.archives-ouvertes.fr/hal-01896686

Submitted on 16 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Héron: Taming Tail Latencies in Key-Value Stores
under Heterogeneous Workloads

Vikas Jaiman, Sonia Ben Mokhtar, Vivien Quéma, Lydia Chen, Etienne
Rivìere

To cite this version:
Vikas Jaiman, Sonia Ben Mokhtar, Vivien Quéma, Lydia Chen, Etienne Rivìere. Héron: Tam-
ing Tail Latencies in Key-Value Stores under Heterogeneous Workloads. International Sympo-
sium on Reliable Distributed Systems (SRDS) 2018, Oct 2018, Salvador, Brazil. pp.191-200,
10.1109/SRDS.2018.00030. hal-01896686

https://hal.archives-ouvertes.fr/hal-01896686
https://hal.archives-ouvertes.fr

Héron: Taming Tail Latencies in

Key-Value Stores under Heterogeneous Workloads

Vikas Jaiman∗¶, Sonia Ben Mokhtar†, Vivien Quéma∗‡, Lydia Y. Chen§ and Etienne Rivière¶

∗Université Grenoble Alpes, LIG (CNRS UMR 5217), France
†INSA Lyon, LIRIS, CNRS, France ‡Grenoble INP, France

§IBM Research – Zurich, Switzerland ¶Université catholique de Louvain, Belgium
∗{firstname.lastname}@univ-grenoble-alpes.fr, †{firstname.lastname}@insa-lyon.fr, ‡{firstname.lastname}@grenoble-inp.fr,

§{yic}@zurich.ibm.com, ¶{firstname.lastname}@uclouvain.be

Abstract—Avoiding latency variability in distributed storage
systems is challenging. Even in well-provisioned systems, factors
such as the contention on shared resources or the unbalanced
load between servers affect the latencies of requests and in
particular the tail (95th and 99th percentile) of their distribution.
One effective counter measure for reducing tail latency in key-
value stores is to provide efficient replica selection algorithms.
However, existing solutions are based on the assumption that all
requests have almost the same execution time. This is not true
for real workloads. This mismatch leads to increased latencies
for requests with short execution time that get scheduled behind
requests with large execution times. We propose Héron, a replica
selection algorithm that supports workloads with heterogeneous
request execution times. We evaluate Héron in a cluster of
machines using a synthetic dataset inspired from the Facebook
dataset as well as two real datasets from Flickr and WikiMedia.
Our results show that Héron outperforms state-of-the-art algo-
rithms by reducing both median and tail latency by up to 41%.

Index Terms—Distributed Storage, Performance, Scheduling

I. INTRODUCTION

Users of online services have increasingly high expectations

on the performance and responsiveness of these services [1],

[2]. A slow service directly impacts the revenue of its provider,

even if the performance drop is only for a short period of

time [3]. Enforcing predictable performance is a challenging

task even for well-provisioned systems. End user requests go

through hundreds of servers. Performance hiccups at any of

these servers may dramatically inflate the observed latency for

some of these requests. For instance, measurements from a real

Google service [3] running in a cluster of 2,000 servers show

that if one in 100 user requests gets slow (e.g., has a 1 second

latency) while handled by one server that is collecting responses

from 100 other servers in parallel, then 63% of user requests

will take more than one second to execute. This problem

is commonly known as the tail latency problem. Several

approaches have been proposed to reduce tail latency for the

different components of large scale distributed systems [4]–

[11]. They include techniques such as reissuing requests, using

preferential resource allocation, leveraging parallelism for

individual requests or sending redundant requests.

Of the services used for building cloud application, storage

plays a fundamental role for overall services tail latencies.

Key-Value Stores are the dominant class of storage solutions

in this context and are the focus of this paper. In a key-value

store, each piece of data or value is replicated on multiple

servers for fault-tolerance. Replica selection strategies can help

reducing tail latency when the performance of these servers

differ. Specifically, a request attempting to access the value for

a given key can be directed to the presumably best replica, i.e.

the one that is expected to serve the request with the smallest

latency.

State-of-the-art replica selection algorithms that are Cassan-

dra dynamic snitching [12] and C3 [13] have been designed

for workloads where requests access values of the same size.

An analysis of real life key-value stores’ workloads (e.g.,

of Facebook’s Memcached deployment [14]) shows that this

assumption does not hold, as user requests typically access

values of sizes ranging from 1 KB to few MBs. We show in this

paper that under such workloads, the tail latency of a key-value

store using these algorithms increases dramatically compared

to a scenario where all values have the same size. The increase

in tail latency ranges from ⇥10 when clients access 1% of

large values to ⇥126 when this proportion reaches 20%.

The reason why existing algorithms do not perform well

under heterogeneous workloads is that fast requests accessing

small values can get stuck behind slow ones accessing large

values. This can dramatically increase the latency of fast

requests, a phenomenon known as head-of-line-blocking [3].

Selecting the best replica for a request, while preventing fast

requests from being stuck behind slow ones, requires addressing

two challenges. First, when a request for a key arrives at the

entry-point of a key-value store, the size of the corresponding

value is not known. A first challenge is thus to be able to

predict this size based on the key with minimal operational

overhead. Assuming that the size of values can be correctly

estimated at request time, a second challenge is to be able to

choose a replica that can prevents the head-of-line-blocking

scenario.

Contributions. We present Héron, a replica selection algorithm

that reduces tail latencies under heterogeneous workloads.

Héron predicts which requests will require significant time

by keeping track of the keys corresponding to large values. It

does so using a Bloom filter at each server. Once a request

has been identified as accessing a small (respectively, a large)

value, it applies an appropriate replica selection algorithm,

which avoids head-of-line-blocking.

Cassandra [12] Choose replica based on history of read latencies

MongoDB [19] Select nearest node using network latency

OpenStack Swift [20],
Apache Accumulo [21]

Read from a single node, choose a new replica in
case of a node failure

Riak [22] Recommend to use an external load balancer

TABLE I: Replica selection strategies (adapted from [13]).

Node 1

Node 2

Node 3

Node 4

4
5

Client

1
6

Partitioner

Primary

 Key

Token

2

3

R1

R2

R3

 Chosen Replica

 Coordinator

 Replica

Fig. 1: Replica selection in Cassandra.

Héron can be applied to any low latency key-value store

where value replication is enabled. Among such stores, Cas-

sandra [12] implements the most efficient of existing replica

selection algorithms (see Table I). It is therefore the best

reference point for our study. We implemented Héron in

Cassandra and compared its performance to state-of-the-art

algorithms (e.g., dynamic snitching [12] – DS for short – and

C3 [13]) in a public cluster of 15 machines on Grid5000 [15].

We evaluate Héron with four datasets, two synthetic datasets

including one based on access statistics from Facebook [14]

and two real datasets from Flickr [16] and WikiMedia [17].

We use YCSB [18] to generate different requests workloads,

allowing to evaluate the system under different read/write ratios.

Our results show that Héron improves tail latency over state-

of-the-art algorithms without compromising median latency.

The remaining of this paper is structured as follows. We

first present the background on replica selection in key-

value stores (§II) and explain the limitations of the C3 and

DS replica selection strategies in presence of heterogeneous

workloads. Next, we further detail the challenges addressed in

this paper (§III). Afterwards, we present a detailed description

of Héron (§IV) and present its implementation and performance

evaluation (§V). Finally we discuss related work (§VI) and

conclude the paper (§VII).

II. REPLICA SELECTION IN KEY-VALUE STORES

A key-value store maintains a number of tables, each

mapping a collection of keys to values of arbitrary size. A

partitioning scheme distributes keys between servers. To enforce

fault tolerance, key-value stores use data replication. To retrieve

a value for a given key, a client sends a request to one of

the nodes in the system, which then redirects this request to

one of the servers holding a replica. We take the example of

Cassandra [12] in Figure 1. Each value is by default replicated

to three replica servers (in the example, let us consider a value

v replicated on R1, R2 and R3). The request initially arrives at a

node (step 1) that will act as its coordinator. Depending on the

implementation of the coherence mechanisms, the coordinator

has to fetch the value from one or multiple replicas. We consider

the most-common configuration where the coordinator waits

only for the response from a single replica. The coordinator

asks the partitioner to hash the key (step 2) and gets a token

in return (step 3). The coordinator can then identify the first

node holding the key/value pair (i.e., R1). The coordinator

identifies all the nodes holding the key/value pair based on the

replication strategy. Here, replicas of a given pair are placed

in successive nodes clockwise. The coordinator uses a replica

selection algorithm to select the best replica for executing the

query (step 5), and replies to the client (step 6).

A. Dynamic snitching

By default, in Cassandra, replica selection is done using

dynamic snitching (DS for short) [12]. The performance of

read requests from various replicas is monitored over time and

the best replica is selected based on its recent performance

history. DS maintains a score for each replica that is updated

every 100 ms. All replica scores are reset every 600 s, to

allow replicas to possibly recover. One of the limitations of

this approach is that it is solely based on replicas’ past read

performance, without considering the forthcoming load at each

replica (i.e., its queue size). This may lead to overloading

recently-fast replicas and to the appearance of bottlenecks in

the system, ultimately impacting tail latency.

B. The C3 algorithm

C3 [13] is a replica selection algorithm that improves over

DS by handling service time variations among replicas. C3

computes replica scores based on both service time and queue

size. This score is then used by a request coordinator for

choosing the replica that is expected to better help reducing

the request waiting time. Additionally, to avoid overloading

a given replica queue (e.g., because the replica is fast and

thus simultaneously selected by several coordinators), C3 uses

a rate control mechanism at each replica to limit the arrival

of requests. Results show that C3 significantly improves tail

latencies compared to DS [13].

C. Performance of DS and C3 under heterogeneous workloads

Several studies, including the analysis of a Facebook

Memcached deployment [23], show that workloads are het-

erogeneous: key-value stores contain values of sizes ranging

from a few bytes (e.g., text messages) to MB (e.g., photos or

videos). Our analysis of the Flickr [16] and WikiMedia [17]

datasets confirms this trend. Figure 2 shows the CDF of value

sizes for the two datasets, ranging from a few bytes to MBs.

We illustrate the limitations of C3 and DS in presence of

heterogeneous workloads with an example in Figure 4. In the

left figure, three replica servers A, B and C currently have a

service time of 2 ms, 3 ms and 1 ms, respectively, for requests

Fig. 2: CDF of value sizes for WikiMedia (left) and Flickr

(right) datasets.

0% 1% 5% 10% 20%

0

200

400

Requests for large values

R
ea

d
L

at
en

cy
(m

s)

95thPercentile

0% 1% 5% 10% 20%

0

200

400

600

800

Requests for large values

99thPercentile

DS C3

Fig. 3: Tail latency when varying the proportion of requests

for large values with DS and C3.

of values size 1 KB. For the sake of simplicity, let us assume

that the large request depicted with a large square and a dark

color has a size of 512 KB and that small requests depicted

with small rectangles and a fair color have a size of 1 KB. C3

will select replica server A for subsequent requests since it

only considers the queue size and service time for estimating

the fastest replica (queue size ⇥ service time of replica A is

smaller than queue size ⇥ service time for the other replicas).

DS only considers the past read performance (measured every

100 ms). Let us assume that in the recent past replica A only

processed small requests. In that case, DS will select this

replica to process the subsequent requests. As a result, under

both algorithms, the latency of the next small request will be

of (X+2) ms where X�2: X ms waiting for the large request

to be processed, and 2 ms for processing the small request

(central figure).

In an ideal scenario, the next small request should complete

in a much shorter time: it should not be stuck behind the large

request at replica server A. This means that, while processing a

large request, a server should no longer be selected to process

small requests. These small requests should be scheduled

instead on the following best replica based on its score (service

time ⇥ queue size). In the example of Figure 4, the next small

requests should be sent to replica server C, which would yield

a latency of 5 ms (right figure).

More practically, to study the impact of heterogeneous

workloads on DS and C3, we use a synthetic workload

containing small (1 KB) and large (512 KB) values. We use

YCSB [18] to generate a read-heavy workload. We vary the

proportion of large values from 0% to 20%. Our experimental

settings are detailed in Section V. Figure 3 presents the

95th and 99th percentile of the read latency distribution. We

observe a significant increase in tail latency when increasing

the proportion of large values for both DS and C3. For the

95th percentile, the increase ranges from ⇥10 when there are

1% of requests for large values, to ⇥126 when there are 20%

of requests to large values.

III. CHALLENGES

This section details the challenges associated with reducing

tail latencies under heterogeneous workloads, and the design

space for building a key/value store with this goal.

Dealing with heterogeneous requests first requires being able

to distinguish requests accessing small values from requests

accessing large values. This must be done by the coordinator

node, but this node only knows the key that is requested. It

does not hold the value and must therefore use a specific

mechanism to estimate the category of size the value belongs

to. Under the high performance constraints of key-value-stores,

this mechanism must be cost-effective.

Once the coordinator is able to distinguish between requests

for small and large values, it must make appropriate scheduling

decisions, i.e. decide which of the replicas to user for handling

the request. Both static and dynamic scheduling strategies can

be considered.

Static scheduling strategies permanently assign one or

multiple servers to handle requests accessing small (or large)

values. While this has been shown to be effective in other

contexts (e.g., scheduling in high load situations where large

request overwhelm a server [11], [24]), it may lead to the under

utilization of the dedicated servers if the workloads include a

minority of large requests.

With a dynamic scheduling strategy, a particular replica is

reserved at runtime and only for a small amount of time to

handle requests for large values, leaving the others available

for handling requests to small values as shown in figure 5.

Compared to a static assignment policy, this approach has the

benefit of blocking replicas only temporarily. With dynamic

scheduling, a request can be handled by any replica of the value.

Two main approaches are available for selecting this replica,

priority-based and FIFO algorithms. Priority-based algorithms,

such as shortest job first [25] give the priority to fastest jobs

over slower ones. In our context, this means giving priority to

requests accessing small values over requests accessing large

values. This approach is not ideal for a key-value store. It

creates imbalance between the requests of different clients,

and clients accessing larger values can potentially observe a

significant increase in latency. FIFO algorithms process requests

in their order of arrival, regardless of the size of the access

values. They do not incur fairness or consistency problems

and are therefore more appropriate for key/value stores. The

challenge however is to offer a FIFO scheduling algorithm that

avoids the head-of-line-blocking problem.

IV. HÉRON DESIGN AND IMPLEMENTATION

This section presents Héron, a replica selection algorithm that

aims at reducing tail latency under heterogeneous workloads.

Client

Server A

Server C

Server B

Client

Request
Queue

2 ms

3 ms

1 ms

Client

Server A

Server C

Server B

Client

Request
Queue

2 ms

3 ms

1 ms

Client

Server A

Server C

Server B

Client

Request
Queue

Large
Request

Small
Request

2 ms

3 ms

1 ms

Subsequent
Small

Request

Fig. 4: Left: An example scenario where a large request has been scheduled on replica server A. The question is: where should

subsequent small requests be scheduled? Middle: Shows how C3 and DS schedule the subsequent small requests to replica

server A by considering the (queue size ⇥ service time) and past read performance respectively. For C3 and DS we observe

that small requests get stuck behind the large one on replica server A. Right: Shows how Héron dynamically blocks the replica

server A for small period of time until the latter finishes the processing of the large request. Meanwhile, subsequent small

requests are scheduled on replica server C.

N3

N2

N1

N8

N4

N5

N6

N7

1
st re

plic
a

2
nd replica

3rd replica

Par��oner

Primary key

Token

Client

RG1

RG2

Fig. 5: Cassandra placement strategy.

Request Queue

Replica
Scoring

Available

Replica Status

 1

 2

 3

...

Replica 1

Feedback

Request

Response

Replica 2

Replica
Selection

BF
Manager

(1)

(2)

(3)

Small/
Large

Ordered list of
 replicas

Coordinator

Small

Large

Busy

Fig. 6: Operating principle of Héron.

Figure 6 presents the architecture of Héron and how it

handles client requests. When a request from a client reaches

a coordinator, it first goes through a replica scoring module

(step 1). The coordinator retrieves the set of replicas storing the

requested value by querying the partitioner. The replica scoring

module ranks these replicas based on periodic feedback on

their latest service time and queue size. In parallel, the request

is sent to the Bloom filter manager (step 2). This module

estimates whether a given request will access a small or a

large value. It uses a Bloom filter that keeps track of large

requests. The replica selection module (step 3) uses the input

from both modules to select the replica that is expected to

serve the request faster.

We present first the size estimation using Bloom filters

(§IV-A), followed by mechanisms for replica scoring (§IV-B)

and replica selection (§IV-C).

1 64 256 512

0

20

40

Value size (in KB)

R
ea

d
L

at
en

cy
(i

n
m

s)

Fig. 7: Example of requests read latencies.

A. Value size estimation

The objective of Héron is to process fast and slow requests in

a way that avoids head-of-line-blocking. To reach this objective,

Héron needs to predict whether a request will access a large

(slow request) or a small value (fast request). The size threshold

between these two types of requests is application-specific. We

therefore assume that an application and database administrator

will be able to set a threshold value THRL according to the

data distribution over her database. For instance, for a database

containing values ranging from 1 KB to 512 KB, the system

designer may rely on an evaluation of the average read time

latencies of these values as shown by Figure 7. This figure

shows that a request accessing a 512 KB value is 32 times

slower than a request accessing a 1 KB value, and that there

is a significant gap in latency between values of sizes 256 KB

and 512 KB. In this example, the system designer may set the

threshold parameter THRL to 256 KB.

Héron uses Bloom filters to keep track of keys corresponding

to large values. Bloom filters [26] are space-time efficient prob-

abilistic data structures that allow performing set-membership

queries (i.e., testing whether a given item belongs to a set). A

Bloom filter is a vector of m bits initially set to 0, with an

associated set of k hash functions (with k ⌧ m). Inserting

an element in a Bloom filter is done by hashing the element

(in our context the key contained in the request) using the k

hash functions and setting the corresponding bit positions to 1.

Testing the presence of an element in a Bloom filter is done

by hashing the element using the k hash functions and testing

whether all corresponding bit positions are set to 1. Querying

a Bloom filter may lead to false positives but will never lead

to false negatives. The false positive rate depends on the size

of the vector, the number of hash functions and the maximum

number of elements to be inserted in the set. Héron sets these

values so as to maintain the false positive rate below 0.1%.

a) Constructing the Bloom filter: We update the Bloom

filter when new large values get inserted in the database. The

filter is built at each of the replicas. For each write request,

if the value size exceeds THRL, the key is inserted into the

Bloom filter. The Bloom filter is also updated when an existing

small value is replaced by a value whose size exceeds THRL.

We observe that in workloads such as the one from

Facebook [14], different tables have different value distribution

patterns. Some may contain only small values and be relatively

homogeneous, while others are highly heterogeneous. To

account for this fact, Héron allows administrators to set policies

that disable the use of the Bloom filters for tables that have

less than a configurable proportion of large values, as observed

from the collected statistics, and avoid paying the overhead of

querying the Bloom filter when it is not necessary.

b) Synchronizing the Bloom filter between nodes: The

addition of information to the filter is performed at all of the

replicas for a given key. The construction of a common global

filter across all coordinators requires aggregating the filters from

all replicas, i.e. keeping the result of the logical or operation

between all filters. Due to the append-only nature of this

construction, and to the idempotency of the aggregation, there

is no need to complex synchronization involving a consensus

protocol. Héron disseminates updates in an asynchronous,

gossip-like, way. When the local filter is modified by a given

node, upon the addition of a new large value or the replacement

of a small value by a large one, it is piggybacked on the write

acknowledgment sent to the coordinator. Coordinators gradually

construct the global filter by interacting with storage servers,

and merging newly-set bits to their local filter.

c) Handling deletions and growth: Deletion of large

values (or their replacement by small values) would require

removing their keys from the filter aggregated by coordinators.

Bloom filters do not allow this operation, as un-setting the bits

for the corresponding key comes with the risk of un-setting

bits set for keys of other large values still present in the store.

Handling deletions with a compact membership representation

is actually only possible using more complex data structures,

such as counting Bloom filters [27] or counting quotient

filters [28]. These data structures have higher costs in memory

and computation. More importantly, they are less amenable to

the simple, asynchronous synchronization that Héron uses: their

aggregation would require more costly consistency maintenance

for coordinators.

Another linked issue is that of filters that happen to be

insufficiently large after the growth of the dataset. In this

case, the rate of false positives increases and the system is

at risk of incorrectly considering too many keys as being

associated with large values. Again, dynamically-resizable

compact membership representations such as incremental

Bloom filters [29] or counting quotient filters [28] can address

this issue, but they also come at the cost of additional

complexity in particular for aggregation and querying. As

a result, Héron does not implement such features but relies on

periodic system updates as detailed next.

d) Periodic system updates: Our system includes a

number of updates that take place periodically, and using a low-

priority background task. These tasks include the regeneration

of Bloom filters and their synchronization, the periodic updates

of table statistics and possibly the updates on the threshold for

large values. Specifically, the datastore is periodically analyzed

and the distribution of value sizes is updated. Using the gathered

data, each storage node computes a new filter for the values it

owns and whose size exceeds the threshold. The parameters

of this filter (size, number of hash functions) may change

according to some administrator-defined policy, e.g. if the size

of the store exceeds the value initially estimated. Coordinators

aggregate filters for several generations and start using the

latest generation as soon as they have received an update for it

from all storage servers. Similarly, the list of tables that contain

a given proportion of large requests is updated. Finally, if the

distribution of values changes dramatically, the administrator

gets informed and may possibly decide to adjust the threshold

for large values accordingly.

B. Replica scoring

Héron includes a replica scoring mechanism similar to the

one used by C3 [13]. Coordinators periodically collect as

scoring metric for each server the product of its average service

time and its queue size. Replicas with a lower score are better

candidates for serving incoming requests, if all requests are for

value of the same size. The difference with C3 is that Héron

does not rely on a control flow mechanism to balance the load

between servers. Instead, Héron uses differentiated scheduling

in which a dynamic assignment policy is used to schedule

requests as described in the following.

C. Replica selection

The replica selection selects the replica that is expected to

serve an incoming request faster than the other replicas. It uses

three types of information: (i) whether the request is expected

to access a small or a large value, as provided by the Bloom

filter manager; (ii) the relative score of the servers holding

replicas for that key, as provided by the replica scoring module;

(iii) whether these replicas are currently handling a request

for a large value of not. The last information is maintained

over time by the replica selection module. Specifically, the

initial status of a replica having no request to process is set to

available. As long as this replica processes requests accessing

small values, its status remains available. Instead, when a

request accessing a large value is scheduled on a given replica,

its status becomes busy. The latter comes back to the available

status when the processing of the large request is over.

a) Scheduling of requests tagged as large: If the request

is tagged as large by the Bloom filter manager and if there

exists a replica R whose status is available, then the request

is sent to R and R’s status becomes busy. If there is more

than one replica whose status is available, the replica selection

module uses the scores provided by the replica scoring module

to chose the one that is expected to be the fastest. After finishing

processing the request, the replica selection module updates

the status of R to available. If there is no available replica,

then the request is blocked until at least one of the replicas

becomes available.

b) Scheduling of requests tagged as small: If the request

to schedule is tagged as small by the Bloom filter manager,

the replica manager uses the first replica server whose status is

available from the ordered list provided by the replica scoring

module. In this situation, the replica’s status remains unchanged

since short jobs are not expected to affect tail latency by head-

of-line blocking.

c) Synchronizing information about replicas’ status:

A coordinator relies on its local knowledge of the replica

status for making scheduling decisions. This information

is synchronized in a best-effort manner between replicas.

Specifically, the propagation of this information leverages

existing communication between servers and coordinators for

requesting queues sizes and service times for replica scoring.

Storage servers include their current status with all exchanged

messages and coordinators update their replica status table

accordingly when receiving these messages. This asynchronous

and best-effort propagation may lead to inconsistent views

between coordinators about the status of a given storage server.

For instance, a given coordinator may schedule a request to a

given replica and locally update the latter’s status to busy. At the

same time, another coordinator can schedule small requests into

this same replica because it did not yet receive the feedback

that this node was busy. In this situation, the head-of-line-

blocking problem may occur but only for a limited period of

time. We consider this to be an acceptable compromise as a

fully consistent exchange of information about replica status

would greatly impair the horizontal scalability of the key/value

store and its overall performance. Our evaluation show that

Héron still drastically reduces tail latencies despite the potential

inconsistencies in replica state tables.

V. EVALUATION

We implement Héron as an extension of the Cassandra [12]

key/value store. We evaluate its effectiveness in reducing tail

latency using both synthetic datasets generated using the Yahoo

Cloud Serving Benchmark (YCSB) [18], and real datasets from

WikiMedia [17] and Flickr [16]. We compare the reduction

in tail latency with DS [12] and C3 [13]. We conduct the

experiments on a public high-performance cluster representative

of current cloud data centers hardware [15]. We analyze the

impact of three types of heterogeneous workloads, i.e., read

only (100% read), read heavy (95% read-5% write) and update

heavy (50% read-50% write), with varying ratios of requests

for large values and varying large value sizes.

Our evaluation aims at answering the following questions:

1) How does Héron compare to C3 and DS when the dataset

contains a mix of small and large values? (§V-B1)

2) How is the performance of Héron impacted by the

proportion of large values in the key-value store? (§V-B2)

3) How does Héron perform when the proportion of read vs

write requests varies? (§V-B3)

4) Is the impact of Héron confirmed with real datasets?

(§V-C)

We start this section by presenting our evaluation setup (§V-A)

before presenting our results (§V-B and V-C).

A. Experimental setup

Experimental platform. We evaluate Héron on Grid5000 [15].

We use 15 servers equipped with 2 Intel Xeon E5-2630 v3 CPUs

(8 cores per CPU), 128 GB of RAM, and 2 558 GB HDDs.

Servers are interconnected by a 10Gbps Ethernet network and

run the Debian 8 GNU/Linux OS.

Cassandra configuration. We use a replication factor of 3,

which means that each value is available on three replica servers.

We consider a write-all read-from-one coherency mechanism in

which consistency is achieved by reading from a single replica

and not from a quorum. Each experiment involves 2 million

requests accessing small and large values. We systematically

check that Cassandra achieves its maximum throughput (i.e. that

we use enough clients to saturate the system). The measured

peak throughput depends on the proportion of requests for large

values in the system. Figure 8 shows the maximal achieved

throughput across all experiments and value sizes in this section.

When there are no requests to large values, the throughput peaks

at ⇡ 72000 requests/sec. It reduces to ⇡ 2200 requests/sec

when 20% of the requests are for large values.

Synthetic datasets. We use the industry standard Yahoo

Cloud Serving Benchmark (YCSB) [18] to generate synthetic

workloads. YCSB originally only generates workloads with

values of a single size. We modified its source code to generate

a configurable proportion of large and small values. The size of

small and large values is also configurable. The distribution of

access frequency for all stored values (small and large) follows

a Zipfian distribution with a pareto index of α = 0.99. This

means informally that the most popular value is almost twice

as popular as the second-most-popular value, and so on with

decreasing popularities. With a replication factor of 3 and 15

servers, each storage node holds about 170 GB of data.

Real datasets. We evaluate Héron with the publicly available

Flickr [16] and WikiMedia [17] datasets, which contain 1

million images and 225 thousand images, respectively. The

CDF of image sizes on these datasets is shown by Figure 2. We

use YCSB [18] to generate workloads based on these datasets

and considered the 10% largest values of each dataset as large

in all scenarios. The access frequency distribution for stored

values (small and large) follows the same Zipfian distribution

as for the synthetic workloads.

B. Héron on variable configurations of the synthetic dataset

We evaluate Héron along three dimensions of heterogeneous

workloads, i.e., the varying size of large values (§V-B1),

the ratio of requests for large values (§V-B2), and types of

workloads (§V-B3). We compile the absolute latency values

0% 1% 2% 5% 10% 20%

0

2

4

6

·104

Ratio of requests for large values.

T
h
ro

u
g
h
p
u
t

(r
eq

u
es

ts
/s

ec
)

Fig. 8: Maximum throughput attained across all scenarios.

Dataset
Update Heavy Read Heavy Read Only

95th%ile 99th%ile 95th%ile 99th%ile 95th%ile 99th%ile

64 KB 12.5 ms 27.8 ms 21.2 ms 33.7 ms 24 ms 41.8 ms
128 KB 25.2 ms 41.3 ms 51 ms 101 ms 47 ms 86 ms
256 KB 50 ms 81 ms 95 ms 160 ms 105 ms 209 ms
512 KB 130 ms 218 ms 196 ms 340 ms 199 ms 336 ms

1% 19.1 ms 57.2 ms 35.2 ms 89.6 ms 35.3 ms 96.2 ms
2% 38.2 ms 92.7 ms 58.8 ms 114.6 ms 65 ms 134.2 ms
5% 77.6 ms 140 ms 121 ms 216 ms 139 ms 272 ms

10% 130 ms 218 ms 196 ms 340 ms 199 ms 336 ms
20% 183 ms 310 ms 336 ms 549 ms 349 ms 574 ms

TABLE II: Héron absolute performance measurements.

64 128 256 512

10

20

30

Size of large values (KB)

Im
p

ro
v
em

en
ts

(i
n

%
) 95

th
Percentile

64 128 256 512

10

20

30

Size of large values (KB)

99
th
Percentile

DS C3

Fig. 9: Improvement of tail latency with Héron for different

sizes of large values.

measurements of Héron in Table II. We will refer to this table

on the three subsequent sections. We skip the presentation

of absolute values for DS and C3 in the interest of space,

but present the relative improvements between the different

systems in Figures 9, 10 and 11.

1) Varying the size of large values: We start by studying

the impact of the size of large values. We fix the proportion

of requests to large values to 10%. We vary the size of large

values between 64 KB, 128 KB, 256 KB and 512 KB. By

looking at the table of absolute values (Table II), we first note

that, when the size of values increases in the database (e.g.,

64 KB values versus 512 KB values), tail latencies are higher

because the system takes more time to execute the overall

workloads. Moreover, in the case of values of size 512 KB,

the probability of running into head of line blocking in Héron

is higher than in the case of 64 KB. This is not surprising as

requests for large values occupy servers for a longer period of

time.

We present the percentage of improvement of Héron over

DS and C3 for read heavy workloads in Figure 9. For instance,

1% 2% 5% 10% 20%

0

10

20

30

Requests for large values

Im
p

ro
v
em

en
ts

(i
n

%
) 95

th
Percentile

1% 2% 5% 10% 20%

0

10

20

30

Requests for large values

99
th
Percentile

DS C3

Fig. 10: Improvement of Héron for different proportion of

request for large values.

Update
Heavy

Read
Heavy

Read
Only

0

10

20

Im
p

ro
v
em

en
ts

(i
n

%
) 95

th
Percentile

Update
Heavy

Read
Heavy

Read
Only

0

10

20

99
th
Percentile

DS C3

Fig. 11: Improvement of Héron over the average of all

heterogeneous workloads.

the improvement of Héron over DS for large values of size

64 KB is 9% for the 95th percentile, meaning that the tail

latency at this percentile of Héron is 91% that of DS under the

same conditions. The read latency with Héron is lower than

the read latency of both C3 and DS in all tested configurations.

More importantly, the improvement increases with the value

sizes, i.e., Héron achieves higher latency reduction than DS and

C3. For large value sizes of 64 KB, 128 KB, and 256 KB, the

improvements over C3 and DS are relatively modest, ranging

between 8%-10% and 12%-17% for 95th and 99th percentiles

tail latency, respectively. For large values sizes of 512 KB,

Héron improves the tail latency by up to 30% over DS and

28% over C3. This is explained by the fact that Héron is able

to mitigate the waiting time of request for small values by

avoiding scheduling them behind requests for large values. As

C3 and DS are oblivious to the size of the requested value,

not only requests for small but also request for large values

can be scheduled behind requests for large values, significantly

degrading tail latency. Even though not represented in the

interest of space, our measurements further show that the

improvement brought by Héron for median latency ranges

from 1.5 ms to 13 ms for large value sizes ranging from

64 KB to 512 KB.

2) Varying the proportion of requests for large values:

We study the impact of the proportion of requests for large

value on system performance. We fix the size of large values

to 512 KB and we vary their proportion from 1% to 20% for

all three types of workloads. From the absolute values reported

in Table II, for both the 95th and 99th percentiles and for all

three workload types we observe that the latency increases with

the percentage of requests for large values, which is expected

as these requests take longer to execute.

We present the improvement of Héron over DS and C3

for read heavy workloads in Figure 10. We can observe that

Héron outperforms DS and C3 in all configurations. Further,

we observe that the effectiveness of Héron increases with the

percentage of requests for large values. With 10% of requests

for 512 KB values, Héron achieves an improvement of around

25%; however the improvement slightly drops in the case of

20% of such requests. This can be explained by the fact that the

probability that all servers are blocked by a request for a large

value is higher in the case of 20% of such requests than the

same probability in the other configurations. In this situation,

Héron looses part of its ability to dispatch the requests agilely

among servers. In the following we zoom into each specific

percentage of requests for large values.

95-5. In this experiment, 5% of the values in the database are

large ones. Héron shows similar improvement over DS, i.e.,

roughly 15% for the 95th and 99th percentile of tail latency.

Compared to C3, Héron achieves better gain, i.e., roughly 26%

improvement for the 99th percentile.

90-10. In this experiment, 10% of the values of the database

are large ones. Héron shows similar improvement over C3,

i.e., around 27% for the 95th percentile. Against DS, Héron

achieves a slightly better gain for the 99th percentile than for

the 95th percentile, i.e., roughly 23% v.s. 28%. In terms of

absolute latency, say for the 99th percentile, it is 340 ms for

Héron but roughly 486 and 477 ms for DS and CS, respectively.

Héron achieves the best performance for this workload, i.e.,

10% of requests for 512 KB large values, where there is a

sufficient number of available servers for Héron to schedule

requests for large values without blocking incoming requests.

80-20. In this experiment, 20% of the overall values are large

ones. Héron shows consistent improvement over C3 and DS for

both the 95th and 99th percentiles, i.e., roughly 23% and 20%.

This increases up to 41% in case of the 99.9th percentile tail

latency. In terms of absolute latency, for instance for the 95th

percentile, it is 336 ms for Héron but roughly 431 and 420 ms

for DS and CS, respectively. The gap is even more significant

for the 99th percentile, where the observed latencies for Héron,

DS, C3 are 549 ms, 738 ms, and 708 ms, respectively.

In addition to tail latency, we also report the absolute values

of the median latency under the three workloads (Figure 12).

We observe that Héron has a comparable median latency to the

one of DS and C3 when the proportion of requests for large

values is small (1� 5%). When the proportion of requests for

large values exceeds 5% we can observe that Héron improves

over DS and C3 by up to 35%.

In summary, Héron is particularly more effective in reducing

tail latency when the percentage of requests for large values is

higher. Compared to C3 and DS, Héron reduces tail latencies

by up to 41% without compromising median latency in all the

considered synthetic workloads.

3) Consolidated performance improvement: We analyze the

average improvement over 8 heterogeneous read only, read

0

50

Update Heavy

Héron DS C3

0

50

Read Heavy

R
ea

d
L

at
en

cy
(i

n
m

s)

1% 2% 5% 10% 20%

0

50

Read Only

Requests for large values

Fig. 12: Median latency over different proportions of request

for large values.

Fig. 13: Impact of head-of-line-blocking when small requests

are queued behind large requests.

heavy, and update heavy workloads. Figure 11 shows the

average improvement over all configurations (proportion of

requests for large values, and different large value sizes, as

detailed in Table II). Héron achieves the highest improvement

for read heavy workloads ⇡ 23% and the smallest improvement

for update heavy workloads ⇡ 14%. Héron takes scheduling

decisions for read requests only, as write requests have to reach

all replicas in all cases. It can better cut the tail latency for

workloads that contain higher percentages of read requests,

such as read only and read heavy workload. On the other hand,

reading requests take longer time than updating requests in our

particular Cassandra setting (as also illustrated in Table II), as

writes can be buffered to memory while reads most often have

to reach the servers’ disks. Hence, a higher percentage of read

requests can further stress the system. The average response

time of the read only workload is therefore higher than the

one of the read heavy workload.

Finally, we show the consolidated observation of the average

number of requests for small values scheduled behind requests

for large values over all experiments in Figure 13. This

confirms our initial intuition that C3 avoids overwhelming

well-performing replicas with requests compared to DS, but

will let requests accumulate behind requests for large values,

leading to a large number of blocked requests in most cases.

On the other hand, the adaptive strategy used by Héron allows

limiting the number of blocked requests in the queues of all

replicas, limiting the impact of head-of-line blocking.

C. Real workloads

We now proceed to evaluating the performance of Héron in

reducing tail latency under value sizes distributions obtained

from two datasets from WikiMedia and Flickr. The distribution

of these sizes is shown by Figure 2. We generate three access

workloads, update heavy, read heavy and read only, using the

same proportions of accesses as for the previous experiments.

For each dataset, we compute the median, 95th, 99th, and

99.9th percentile latencies for Héron, DS and C3.

Figure 14 present the results for the WikiMedia trace. Héron

yields the lowest latency for almost all combinations of latency

metrics and workload types, whereas the performance of DS

and C3 vary across different combinations. Similar to the

synthetic case, absolute latency improvements of Héron are

more significant for the higher tail latency, e.g., 99th percentile.

Moreover, Héron achieves the best gain for the read heavy

workloads, up to 70%. The only case where Héron has inferior

performance compared to C3 and DS is for the median of the

read only workload. The latency of Héron remains around

1 ms. Actually, Héron achieves rather minor performance

improvements in both median and tail latency against DS

and CS for read only workload in this dataset.

We present the results for the Flickr dataset in Figure 15. We

first note that these results show different latency characteristics

from WikiMedia, i.e., lower tail latency, though their median

latency is in a similar range. This can be explained by the

fact that the Flickr dataset value size distribution has a shorter

tail, that is, the maximal value for sizes is smaller than for the

WikiMedia dataset. Here, Héron achieves the lowest latency

for almost all combinations of latency metrics and workload

types, except for the 99.9 percentile of read heavy workloads.

The overall improvement compared to C3 and DS is also

less significant than with the WikiMedia dataset. Héron is

particularly designed to handle the heterogeneous workload

that have a high variance across requests’ sizes. When the sizes

of requested values have lower variability, the impact of size-

aware scheduling becomes less visible, even if they are still

present. Different from the synthetic data set and WikiMedia,

Héron achieves the best median and tail latency improvement

for update heavy workloads, compared against read only and

read heavy workloads.

VI. RELATED WORK

C3 [13] is a replica selection algorithm as discussed earlier

in this paper, since the incoming request size was assumed to

be the same, C3 does not perform well with heterogeneous

workloads. Héron complements this feedback on service time

and queue size with a differentiated scheduling of requests

according to their estimated value size.

Update
Heavy

Read
Heavy

Read
Only

0.4

0.6

0.8

1

R
ea

d
L

at
en

cy
(m

s)

Median

Update
Heavy

Read
Heavy

Read
Only

2

4

6

95
th
Percentile

Update
Heavy

Read
Heavy

Read
Only

0

10

20

30

R
ea

d
L

at
en

cy
(m

s)

99
th
Percentile

Update
Heavy

Read
Heavy

Read
Only

0

50

100

99.9
th
Percentile

Héron DS C3

Fig. 14: WikiMedia Dataset

Update
Heavy

Read
Heavy

Read
Only

0.4

0.6

0.8

1

R
ea

d
L

at
en

cy
(m

s)
Median

Update
Heavy

Read
Heavy

Read
Only

1.6

1.8

2

95
th
Percentile

Update
Heavy

Read
Heavy

Read
Only

2

2.2

2.4

R
ea

d
L

at
en

cy
(m

s)

99
th
Percentile

Update
Heavy

Read
Heavy

Read
Only

10

20

30

40

99.9
th
Percentile

Héron DS C3

Fig. 15: Flickr Dataset

Besides replica section, other mechanisms have been pro-

posed to reduce tail latency. Dean and Barroso [3] analyze

the reasons for latency variability and describe a set of tail-

latency tolerance techniques implemented in Google’s large

scale systems. Reda et al. propose Rein [30] for reducing tail

latency of Multiget requests, where multiple keys are requested

in a single query. CosTLO [31] reduces high latency variance

by issuing requests redundantly. D-SPTF [32] adapts caching

mechanisms to reduce tail latency. Li et al. [33] explore the

hardware, OS and application-level causes behind tail latencies

and propose mechanisms to overcome these problems. All these

mechanisms can be used complementary to replica selection.

Task scheduling for large computation jobs is another area of

related research. In task aware scheduling, a task decomposes

into tens to hundreds sub-tasks. A slow sub-task can slowdown

the overall response time. Related work shows the impact of

large sub-tasks over small sub-tasks for overall tail latencies.

Baraat [34] dynamically changes the level of multiplexing in

the network to avoid blocking. It schedules the tasks in FIFO

order such that small tasks are not starved behind large tasks.

Hawk [11] and Eagle [24] are two systems proposing a hybrid

scheduler that schedules jobs according to their sizes. Long jobs

are scheduled using a centralized scheduler while small jobs are

scheduled in a fully distributed way. Since long jobs are in fewer

number than small jobs, their centralized scheduling allows

a good placement of jobs without introducing coordination

bottlenecks. Kwiken [8] optimizes the end-to-end latency using

a DAG of interdependent jobs. It further uses latency reduction

techniques such as request reissues to improve the latency of

request-response workflows. Haque et al. [9] propose solutions

for decreasing tail latencies by dynamically increasing the

parallelism of individual requests. They parallelize only long

requests that are the ones contributing the most to the tail

latency. However the algorithm parallelizes long requests on all

servers thus also including slow servers. Héron takes advantage

of the fact that in a key/value store data is replicated on multiple

servers and can perform replica selection.

Recent efforts [9], [10], [35] show that it is challenging to

schedule tasks during the arrival of variable size jobs. These

works try to predict the long running queries and parallelize

them selectively. Instead of targeting the more general problem

of predicting job sizes, which in some cases involves costly

computations, Héron keeps track of value sizes by relying on

Bloom filters for fast and efficient estimation.

VII. CONCLUSION

In this paper, we addressed the problem of tail latency for

heterogeneous workloads in key value stores through replica

selection. We proposed Héron, a replica selection algorithm

that deals with requests accessing large values by avoiding

the head-of-line-blocking of requests accessing small requests

behind these requests. The result is an improved overall

performance of the key-value-store for a wide variety of

heterogeneous workloads. Our experiments with heterogeneous

YCSB workloads in a Cassandra based implementation showed

that Héron outperforms state-of-the-art algorithms (C3 and DS),

reducing tail latencies by up to 41% and reducing the median

latency by up to 31%.

ACKNOWLEDGMENTS

Experiments presented in this paper were carried out using

the Grid’5000 testbed, supported by a scientific interest group

hosted by Inria and including CNRS, RENATER and several

Universities as well as other organizations. This work is

supported by the French PIA OCCIware project, by CHIST-

ERA under project DIONASYS, and by the Swiss National

Science Foundation (SNSF) under grant 155249 and NRP75

project 407540 167266.

REFERENCES

[1] E. Schurman and J. Brutlag, “Performance related changes and their user
impact,” in Velocity: web performance and operations conference, 2009.

[2] J. Brutlag, “Speed matters for google web search,” Google. June, 2009.
[3] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the

ACM, 2013.

[4] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow:
Distributed, low latency scheduling,” in SOSP, 2013.

[5] T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and G. R. Ganger,
“Prioritymeister: Tail latency qos for shared networked storage,” in SoCC,
2014.

[6] C. Stewart, A. Chakrabarti, and R. Griffith, “Zoolander: Efficiently
meeting very strict, low-latency SLOs,” in ICAC, 2013.

[7] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca, “Jockey:
Guaranteed job latency in data parallel clusters,” in EuroSys, 2012.

[8] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin, and C. Yan,
“Speeding up distributed request-response workflows,” in SIGCOMM,
2013.

[9] M. E. Haque, Y. h. Eom, Y. He, S. Elnikety, R. Bianchini, and K. S.
McKinley, “Few-to-many: Incremental parallelism for reducing tail
latency in interactive services,” in ASPLOS, 2015.

[10] M. Jeon, S. Kim, S.-w. Hwang, Y. He, S. Elnikety, A. L. Cox, and
S. Rixner, “Predictive parallelization: Taming tail latencies in web search,”
in SIGIR, 2014.

[11] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel, “Hawk:
Hybrid datacenter scheduling,” in USENIX ATC, 2015.

[12] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” SIGOPS Oper. Syst. Rev., 2010.

[13] L. Suresh, M. Canini, S. Schmid, and A. Feldmann, “C3: Cutting tail
latency in cloud data stores via adaptive replica selection,” in NSDI,
2015.

[14] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in SIGMETRICS,
2012.

[15] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jeannot,
E. Jeanvoine, A. Lèbre, D. Margery, N. Niclausse, L. Nussbaum,
O. Richard, C. Pérez, F. Quesnel, C. Rohr, and L. Sarzyniec, “Adding
virtualization capabilities to the Grid’5000 testbed,” in Cloud Computing

and Services Science, 2013.
[16] M. J. Huiskes and M. S. Lew, “The MIR Flickr retrieval evaluation,” in

MIR, 2008.
[17] “Wikimedia downloads,” http://download.wikimedia.org/.
[18] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with YCSB,” in SoCC, 2010.
[19] “Mongodb,” https://www.mongodb.com/.
[20] “Openstack swift,” https://docs.openstack.org/swift/latest/.
[21] “Apache accumulo,” https://accumulo.apache.org/.
[22] “Riak Load Balancing and Proxy Configuration,” http://docs.basho.com/

riak/1.4.0/cookbooks/Load-Balancing-and-Proxy-Configuration/.
[23] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,

R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani, “Scaling Memcache at Facebook,” in NSDI, 2013.

[24] P. Delgado, D. Didona, F. Dinu, and W. Zwaenepoel, “Job-aware
scheduling in Eagle: Divide and stick to your probes,” in SoCC, 2016.

[25] J. Lenstra, A. R. Kan, and P. Brucker, “Complexity of machine scheduling
problems,” in Studies in Integer Programming, 1977.

[26] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, 1970.

[27] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,
“An improved construction for counting bloom filters,” in European

Symposium on Algorithms, 2009.
[28] P. Pandey, M. A. Bender, R. Johnson, and R. Patro, “A general-purpose

counting filter: Making every bit count,” in SIGMOD, 2017.
[29] F. Hao, M. Kodialam, and T. V. Lakshman, “Incremental bloom filters,”

in INFOCOM, 2008.
[30] W. Reda, M. Canini, L. Suresh, D. Kostić, and S. Braithwaite, “Rein:

Taming tail latency in key-value stores via multiget scheduling,” in
EuroSys, 2017.

[31] Z. Wu, C. Yu, and H. V. Madhyastha, “Costlo: Cost-effective redundancy
for lower latency variance on cloud storage services,” in NSDI, 2015.

[32] C. R. Lumb, R. Golding, and G. R. Ganger, “D-SPTF: Decentralized
request distribution in brick-based storage systems,” in ASPLOS, 2004.

[33] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble, “Tales of the tail:
Hardware, OS, and application-level sources of tail latency,” in SoCC,
2014.

[34] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentralized
task-aware scheduling for data center networks,” in SIGCOMM, 2014.

[35] M. Jeon, Y. He, H. Kim, S. Elnikety, S. Rixner, and A. L. Cox, “TPC:
Target-driven parallelism combining prediction and correction to reduce
tail latency in interactive services,” in ASPLOS, 2016.

