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Most vertebrates are infected with one or more herpesviruses and remain so for the

rest of their lives. The relationship of immunocompetent healthy host with herpesviruses

may sometime be considered as harmonious. However, clinically severe diseases can

occur when host immunity is compromised due to aging, during some stress response,

co-infections or during neoplastic disease conditions. Discord can also occur during

iatrogenic immunosuppression used for controlling graft rejection, in some primary

genetic immunodeficiencies as well as when the virus infects a non-native host. In this

review, we discuss such issues and their influence on host-herpesvirus interaction.
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INTRODUCTION

The members of herpesviridae family are categorized into alpha (α), beta (β), and gamma (γ)
herpesviruses based on their host range, genetic organization and replication strategies (Whitley,
1996). Herpes simplex virus (HSV) 1, 2 and varicella zoster virus (VZV) are α-herpesviruses,
cytomegalovirus (CMV), human herpesvirus (HHV)−6 and 7 are β-herpesviruses while Epstein
Barr Virus (EBV) and human herpesvirus 8 (HHV8) are γ-herpesviruses infecting humans. All
humans become infected with one or more herpesviruses during their life span (Boshoff and
Weiss, 2001; Virgin et al., 2009). Characteristically, herpesviruses persist in the host for an
extended duration following a primary infection, but severe disease and mortality in healthy
immunocompetent individuals caused by α- and γ-herpesviruses are rare. However, CMV infection
involving critical organs of nervous system, hematological and vascular system, gastrointestinal
systemmay be accompanied by severe disease outcome in apparently healthy individuals (Rafailidis
et al., 2008). The influence of any unaccounted for critical conditions remain a possibility in
such cases. The general perception is that herpesviruses are innocuous pathogens, a status that
can probably be attributed to their long association with mankind (Parrish et al., 2008). In some
instances, the persisting herpesvirus infections might even provide some benefits to the host against
other infections and clinical conditions such as malignancies (Barton et al., 2007; White et al.,
2012; Furman et al., 2015; Litjens et al., 2018). Humans not infected with any of the herpesviruses
however, represent a rare subset; therefore in comparison to infected individuals their ability to
handle other infections is not well-established. The outcome of herpesvirus infection is severe in
genetically immunodeficient, very young or aged individuals as well as when the virus gains entry
to certain anatomical locations such as central nervous system or other immunoprivileged sites.
In addition, when herpesviruses infect either a non-native susceptible host or those organisms that
harbor other concurrent infections, severe disease may occur (Figure 1). Evidence that co-infection
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FIGURE 1 | A cartoon to show the circumstances that are responsible for making and breaking herpesviruses and host harmony.

of HSV and human immunodeficiency virus (HIV) can result in
more severe disease outcome is well established (Freeman et al.,
2006; Des Jarlais et al., 2014; Looker et al., 2017). In this review,
we discuss situations and underlying cellular and molecular
mechanisms where the disease pattern caused by herpesviruses
is changed. We focus our analysis on α-herpesviruses while
briefly alluding to the other members of the herpesviridae family
throughout the text.

DYNAMICS OF HOST AND
HERPESVIRUSES INTERACTION

Herpesviruses are considered as highly successful pathogens.
These viruses might have originated from those viruses that
infected a common ancestor of mammals, birds and reptiles
(McGeoch et al., 1995; Virgin et al., 2009; Virgin, 2014). The
evolutionary processes led to the selection of variants with altered
infectivity and tissue tropism probably to ensure survival and
propagation. The sequence analyses of HSV1 and HSV2 revealed
that HSV1 might have infected the ancestors of humans much
earlier than HSV2 and therefore has evolved better to persist in
human host while HSV2 was introduced in humans at a later
time point through an intermediate host. Therefore HSV2 may
not had enough time to evolve with the host (Parrish et al.,
2008; Wertheim et al., 2014; Underdown et al., 2017). This
temporally distinct but longer association of HSV1 with human
host could possibly explain why HSV1 is less pathogenic than
HSV2 (Sedarati and Stevens, 1987; Smith T. J. et al., 2002). In
general, herpesviruses have better adapted for their human host
as compared to many other categories of viruses and therefore
can persist in the host.

Numerous properties of herpesviruses contribute to their

success and these have been discussed in detail by others
(Whitley, 1996; Ploegh, 1998; Kapadia et al., 2002; Orange et al.,
2002). The most important characteristic is their ability to adopt
two different modes of life cycle; the latency and the lytic

cycles. Herpesviruses after a primary productive infection resort
to latency, a transcriptional and translational suppressed state.

However, the latent stage is frequently interrupted by clinically

asymptomatic reactivation episodes (Stevens, 1989; Wald et al.,
2002; Kelly et al., 2006; Mark et al., 2008; Nicoll et al., 2012;
Roizman and Whitley, 2013; Uppal et al., 2014; Virgin, 2014).
Neurotropic viruses such as HSV 1, 2 and VZV preferentially
establish latency in neuronal cells but one particular region of

the virus genome remains transcriptionally active and produces

latency-associated transcripts (LATs) (Roizman and Whitley,
2013). LATs are well characterized for HSV 1 and 2 but not so

well for VZV (Leib et al., 1989; Strelow and Leib, 1995; Depledge
et al., 2017). Functional protein products are rarely detected

during latency (Simmons et al., 1992; Roizman and Whitley,
2013). Moreover most neurons lack MHC molecules and hence

are unlikely to stimulate the immune system even when limited
viral proteins are made under some circumstances (Maehlen
et al., 1989). The immune cells or other non-neuronal cells in the
vicinity of infected neurons could still acquire such antigens and
help trigger or maintain immune reactivity. The overall kinetics,
the magnitude and the contribution of these immune induction
processes are not well understood. The primary infection of
neurons by α-herpesviruses, results in the lysis of a significant
proportion of neurons that may cause neuritis or post herpetic
neuralgia in some infected individuals (Tontodonati et al., 2012).
Fewer neurons are damaged during intermittent reactivation or
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abortive replication events in immunocompetent host and in
such situations clinical symptoms usually do not occur (Antinone
and Smith, 2010; Sawtell and Thompson, 2016).

Unlike α-herpesviruses, β- and γ-herpesviruses such as CMV
and EBV, establish latency in non-neuronal cells that include
macrophages and B cells (Klein et al., 1989; Slobedman and
Mocarski, 1999; Kelly et al., 2006; Sinclair and Sissons, 2006;
Khairallah et al., 2017). Murine cytomegalovirus (MCMV)
infection in mice represents one of the well-studied β-HV
model system to understand the host pathogen interaction. This
infection effectively induces both innate and adaptive immunity.
One of the proteins (m157) encoded by MCMV serves as
a ligand for receptor (Ly49H) expressed by NK cells. This
interaction induces the activation and differentiation of such
cells in a manner CD4+ and CD8+ T cells are signaled. Some
of the responding NK cells can even form a memory pool
(Sun et al., 2009). The conventional αβ- as well as a less-well
characterized γδ-T cell response help control the balance of
lytic and latent virus (Steffens et al., 1998; Couzi et al., 2015;
Khairallah et al., 2017). The entire repertoire of γδ-T cells is not
exhaustively studied but nonetheless include antigenic moieties
from diverse sources such as proteins, lipids, lapidated peptides,
small molecules and antigen recognition by these cells may be
dependent on class IMHCmolecules or other non-classicalMHC
like molecules such as CD1c (Chien et al., 2014). Such cells
were also shown to provide protection to MCMV infected mice
independently of αβ-T cells (Khairallah et al., 2015). Many viral
proteins are expressed in EBV infected B cells during the non-
productive cycle. Many excellent reviews and research articles
can be referred to for further insights (Kelly et al., 2006; Speck
and Ganem, 2010; Nicoll et al., 2012; Roizman and Whitley,
2013; Khairallah et al., 2017). We highlight some of the generally
accepted key points during herpesvirus latency.

The microenvironment, cell autonomous factors as well as
viral elements may all contribute to the latency establishment,
maintenance and reactivation of herpesviruses. Among viral
factors, LATs predominantly regulate herpes simplex virus
latency. LATs can actively regulate the expression of viral lytic
genes such as immediate early protein encoding genes (ICP0,
ICP4) and thymidine kinase of HSV to limit reactivation (Kramer
and Coen, 1995; Chen et al., 1997; Roizman and Whitley, 2013).
LATs can also interfere with cellular metabolism and inhibit the
caspases dependent apoptosis of infected cells (Perng et al., 2000;
Henderson et al., 2002; Roizman and Whitley, 2013). Some have
suggested that epigenetic modifications in HSV genome differ
during latency and lytic cycles (Bloom et al., 2010). In general, the
association of HSV genome with nucleosomes and modification
of histones by methylation and acetylation at specific lysine
residues were shown to determine the lytic and latent viral
replication cycles (Knipe and Cliffe, 2008; Bloom et al., 2010).
The sampled tissues invariably contain both latently infected and
some neurons undergoing recent reactivation of viral genome.
Therefore, the results thus obtained are difficult to interpret but
the technologies that offer analyses on identifiable single cells
might provide better insights.

Nerve growth factors (NGF) produced by multiple cell types
could also be involved in latency (Wilcox et al., 1990). NGF

signaling up-regulates Bcl2 to promote cellular proliferation and
survival (Finkbeiner, 2000; Biswas and Greene, 2002). Nerve
termini express NGFs and physical damage could change NGF
levels and possibly precipitate viral reactivation (Wilcox et al.,
1990; Wilson and Mohr, 2012). This could possibly explain
why some people suffer from frequent HSV reactivation upon
mechanical or infection induced injuries to the skin which
is an extensively innervated organ (Hsieh et al., 1997). The
herpesvirus encoded miRNAs or a modulation of host miRNAs
by herpesvirus infection can influence different aspects of
latency (Rezaee et al., 2006; Umbach et al., 2008; Du et al.,
2015; Grey, 2015). Herpesvirus encoded miRNAs help restrict
replication and favor latency (Umbach et al., 2008). Examples
include miR-UL112-1 of HCMV and miR-K12-9, which target
the immediate early transactivator, IE72 of HCMV and RTA
of KSHV, respectively, to interfere with viral replication (Grey
et al., 2007; Bellare and Ganem, 2009). This interference with
viral replication ensures that the latency is maintenained. Several
cellular miRNAs that are either expressed at a basal level or
induced upon infection may also influence viral gene expression
(Lecellier et al., 2005). An intriguing example is miR138, which
is mainly expressed by neurons and targets ICP0 of HSV to
block the replication cycle and thereby facilitating latency (Pan
et al., 2014). There are also examples of host miRNA such as
miR23a which promotes the lytic life cycle by interfering with the
activity of interferon regulatory factors (IRFs) to compromise the
antiviral state in infected cell (Ru et al., 2014). Some host miRNAs
could interfere with cellular metabolism. Example is miR101,
whose ectopic expression in latently infected cells blocked HSV1
replication while its depletion promoted viral replication. This
miRNA directly interacted with one of the genes whose product
is required for ATP production (Zheng et al., 2011). Therefore,
the expression kinetics of different miRNAs in infected cells may
help decide between a lytic cycle and latency.

Upon viral infection both effector and regulatory cells are
recruited in the response. The magnitude and nature of such cells
may influence the switch between the lytic cycle and latency. How
these cells are maintained in infected ganglionic tissues is still not
clearly understood (Lund et al., 2008; Veiga-Parga et al., 2013).
Thus, during latency, the first signal (peptide-MHC) required
to activate T cells may not be available to maintain the pool
of viral reactive T cells. Some studies suggest that even during
latency, a limited number of neurons permit viral replication to
provide antigenic stimulation for T cells (Wald et al., 2002; Wald
and Corey, 2007). The role of T cells in regulating herpesvirus
latency is frequently studied in mice models as samples obtained
from human cadavers might display pronounced viral reactivity
(Ouwendijk et al., 2012). However, one of the key HSV immune
modulators, ICP47, fails to block the antigen presentation
machinery by interacting with mouse transporter of antigen
processing and presentation (TAP) molecules unlike its human
counterpart (Tomazin et al., 1998; Verweij et al., 2011). This
suggests for a limited direct applicability of mice studies in
humans. Extensive studies supporting a role for CD8+ and
perhaps CD4+ T cells have mainly come from the Hendricks
laboratory (Liu et al., 2000, 2001; Knickelbein et al., 2008).
Basically, those studies implicate the role for granzyme B and
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interferon gamma (IFN-γ) produced by virus specific CD8+

T cells with the major viral glycoprotein, gB and some early
replication proteins providing the peptides for T cell recognition.
Both these immune mediators are responsible for inhibiting viral
replication (Cantin et al., 1995; Liu et al., 2000, 2001; Knickelbein
et al., 2008; Treat et al., 2017). Granzyme B cleaves viral protein
ICP4 to cause abortive replication events (Knickelbein et al.,
2008). In fact, an abundance of virus-specific activated CD8+

T cells that produce effector molecules were found in latently
infected ganglionic tissues and a large majority of these produced
effector molecules such as granzyme B and IFN-γ (Wilson
and Mohr, 2012). Whether local microenvironment provides
sufficient signals to maintain viral reactive T cells or secondary
lymphoid organs are continuously feeding infected ganglionic
tissues remain poorly understood. Regulatory T cells are also
found in latently infected ganglionic tissues and these cells
probably help control the hyper reactivity of immune cells that
may kill irreparable neurons (Suvas et al., 2006). However, some
studies have suggested that the microenvironment within the
infected ganglionic tissues might help induce the expression of
inhibitory ligands to dampen the activity of resident CD8+ T
cells. An impaired activity of CD8+ T cells may help explain the
frequent reactivation episodes. Some of the inhibitory receptor
and their ligands that have been investigated in infected ganglions
include PD1-PDL1, TIM-3-Galectin-9 (Frank et al., 2010; Reddy
et al., 2011). IFN-γ presumably produced by resident T cells could
help induce the ligands (Garcia-Diaz et al., 2017).

Stronger evidence for CD8+ T cells involvement in
maintaining latency came from studies focusing on EBV
latency (Dunne et al., 2002; Angelini et al., 2013). With EBV
latency, some viral proteins are made which can provide the
peptides for T cell recognition. Evidence indicates that the
IFN-γ producing CD8+ T cells are critically involved for
controlling γ-herpesviruses such as MHV68 (Steed et al.,
2006). Infection of mice with MHV68 has provided useful
insights into the contribution of viral reactive CD8+ T cells
in the pathogenesis of γ-herpesviruses (Husain et al., 1999;
Gredmark-Russ et al., 2008; Nash and Dutia, 2008; Freeman
et al., 2010). Additional information on the role of CD8+ T
cells in γ-herpesviruses’ latency in vivo may come from the
newly developed TCR transnuclear mouse model for MHV68
(Sehrawat et al., 2012).

IMMUNE SYSTEM MANAGEMENT BY
HERPESVIRUSES

Herpesviruses evade immune destruction using a number
of strategies. These include infection of tissues with limited
accessibility to immune mediators particularly for α-
herpesviruses, establishment of latency that allows minimal
immune recognition and numerous active immunomodulatory
procedures intrinsic to herpesviruses. Many excellent reviews
have discussed immune evasive or immune managemental
properties of different herpesviruses (Ploegh, 1998; Tortorella
et al., 2000; Orange et al., 2002; Hewitt, 2003; Rezaee et al., 2006).
Table 1 summarizes many such properties. We briefly discuss

how herpesviruses can manage the immune system to ensure
their persistence.

Herpesviruses can even establish a productive infection
in the immune host. This fact reduces enthusiasm for
vaccination strategies and most vaccine candidates have had
only limited success. All herpesviruses blunt immunity either
by interfering with immune induction or by producing anti-
inflammatory molecules. For example, ICP47 of HSV and US6
of HCMV interact with the transporter of antigen presentation
and processing (TAP) molecule thereby blocking efficient
transportation of viral derived cytosolic peptides for loading
on class I MHC (Hill et al., 1995; Ahn et al., 1997; Hengel
et al., 1997). The HCMV protein pp65 can induce retention of
class II MHC molecules in lysosomes for its destruction thereby
minimizing its availability for surface display and limiting the
T cell response (Ploegh, 1998; Odeberg et al., 2003). MCMV
and HCMV can destabilize surface class I MHC by interacting
with surface displayed β2 microglobulin leading to its down
regulation (Jones and Sun, 1997; Halenius et al., 2015). A low
level of MHC expression by infected cells could activate NK cells,
but some herpesviruses have devised strategies to counteract NK
cell mediated lysis of infected cells (Jonjić et al., 2008). These
include modulation of host cell protein expression, encoding
host homologs as well as viral proteins that could dampen NK
cell responses (Grauwet et al., 2014; Campbell et al., 2015).
The EBNA1 protein of EBV is not efficiently recognized by
CD8+ T cells owing to its glycine-alanine repeat sequences which
hinder the generation of immunogenic epitopes (Levitskaya et al.,
1997; Münz and Moormann, 2008). Similarly, latency associated
nuclear antigen (LANA) of KSHV and LANA-homologs of other
γ-herpesviruses also interfere with antigen presentation (Coscoy,
2007). KSHV exhibit numerous immunomodulatory activities
that range from interfering with components of the complement
system, type I IFN signaling, in addition to impairing T and B
cell responses as well as blocking apoptosis (Moore and Chang,
2003; Rezaee et al., 2006). Some herpesviruses encode for anti-
inflammatory molecules (Spencer et al., 2002; Coscoy, 2007).
For example, homologs of host receptors and anti-inflammatory
molecules such as IL-10 and IL-35 are encoded by CMV and EBV,
respectively (Birkenbach et al., 1993; Spencer et al., 2002; Rezaee
et al., 2006; Rouse and Sehrawat, 2010).

Herpesviruses in general are excellent managers of the
immune response and can successfully survive in the immune
host. Since herpesviruses infect most individuals, an idea worth
considering is how herpesviruses influence the outcome of
other concurrent infections, cancers and grafts. Recent studies
have shown that herpesviruses may, in fact, help fine-tune
host immunity. This occurs by modulating one or more
types of immune responses to make the host either more
resistant or susceptible to other disease situations (Barton et al.,
2007; White et al., 2010; Furman et al., 2015; Litjens et al.,
2018) For example, some studies measured the influence of
persisting β-herpesvirus (MCMV) or a γ-herpesvirus (MHV68)
infection on the subsequent infection by Listeria monocytogenes
and Yersinia pestis. Previously infected mice controlled these
infections better than those not infected with MHV68 (Barton
et al., 2007). The enhanced IFN-γ production, presumably
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TABLE 1 | Immune management strategies used by herpesviruses.

Virus Derivative of

virus involved

Evasion mechanism Outcome References

Alpha herpes virus (HSV1) Glycoprotein gI/gE

heterodimer

Binds with Fc domain of IgG Block complement activation

and ADCC mediated cell killing

Lubinski et al., 1998, 2011

Glycoprotein gC Interacts with C3b and blocks C5 and P binding to

C3b

Interfere with complement

activation

Kapadia et al., 2002

ICP47 Inhibits TAP mediated peptide transport Impaired antigen processing and

presentation

Hill et al., 1995; Tortorella

et al., 2000

Glycoprotein gJ

and gD

Prevent apoptosis in infected epithelial cell Viral can survive within infected

cell

Zhou et al., 2000

HSV-2 ICP10PK

and UL14

Prevent apoptosis in infected epithelial and neuron

cells

Perkins et al., 2002

US3 Interacts with programmed cell death domain 4 Tortorella et al., 2000

Y34.5 and US11 Inhibit the activity of antiviral Protein Kinase R (PKR) Upregulation of viral protein

translation

He et al., 1997; Poppers

et al., 2000

ICP0 Abrogates IRF3 mediated transcription regulation Interfere host interferon signaling Peng et al., 2009

ICP27 Hamper nuclear accumulation of STAT-1 Interfere type-I IFN signaling Peng et al., 2009

US3 Blocks the IRF3 activation by

hyperphosphorylating it

Inhibition of IFN-β production Tortorella et al., 2000

VP16 Inhibition of NF-κB activation Peng et al., 2009

UL36 Blocks IRF3 activation by deubiquitination of TRAF3 Peng et al., 2009

Beta herpes virus (HCMV) UL18 Acts as a decoy for NK cell–MHCI homolog Block NK cell mediated killing

US3, US10 Retention of MHCI in endoplasmic reticulum Impaired antigen processing and

presentation

Furman et al., 2002

US2, US11 Degradation of MHCI and MHCII Barel et al., 2003

US6 Attacks the TAP complex and interfere with

cytosolic peptide transport

Ahn et al., 1997; Hengel

et al., 1997

pp65 Inhibits proteasome activity Odeberg et al., 2003

Gamma herpes virus (EBV) BGLF5 Degradation of MHCI molecule mRNA Impaired antigen processing and

presentation

Rowe et al., 2007

BILF1 Degrades the surface and on route MHCI molecules Zuo et al., 2011b

BNLF2 Blocks TAP-mediated peptide transport and MHCI

retained in ER

Croft et al., 2009

BZLF1 Downregulates the invariant chain expression for

MHCII complex generation

Zuo et al., 2011b

BZLF2 Creates stearic hindrance in MHCII and TCR

interaction of CD4+ T cell

Ressing et al., 2003; Zuo

et al., 2011b

BDLF3 Proteasome pathway mediated downregulation of

both MHC I and MHC II molecules

Zuo et al., 2011a

EBNA-1 Interferes with proteasome activity during class I

complex generation

Levitskaya et al., 1997;

Münz et al., 2009

vIL10 Downregulates the TAP activity and hampers in the

class I molecule generation

Zeidler et al., 1997

K5 protein of

HHV-8

Downregulates the NK cell ligand ICAM-1 and B7.2 Block NK cell mediated killing Ishido et al., 2000

ICP47, infected cell protein 47; ICP, infected cell protein; ICP10PK, protein kinase activity of large subunit of HSV-2 ribonucleotide reductase protein; UL14, minor component of HSV-2

tegument; US2, US3, US6, US10, US11, VP16, pp65, UL14, UL18, and UL36, all are tegument protein domains; IRF3, IFN regulatory factor 3; US3, HSV specific serine/threonine

protein kinase; TRAF3, TNF receptor associated factor 3; TAP, transporter associated with antigen processing; EBNA-1, Epstein-Barr nuclear antigen 1; vIL10, viral interleukin 10;

ICAM-1, intercellular adhesion molecule 1; BGLF5, BILF1,BNLF2, BZLF1, BDLF3 are different proteins or open reading frames encoded by EBV and exhibit different activities.

by virus reactive T cells, activated macrophages, which then
controlled bacterial growth. Enhanced NK cell responses as
a result of MHV68 infection might also have participated
in the control of these secondary infections (White et al.,
2010). Prior infection with herpesviruses in humans as well

as mice was also shown to promote immune response to
a subsequent infection or the vaccination (Furman et al.,
2015). CMV positive adults mounted a stronger anti-influenza
virus CD8+ T cell response as compared to CMV negative
individuals (Furman et al., 2015). Genital HSV2 infection
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promotes colonization of group B streptococcus locally in the
genital tract (Cherpes et al., 2005). However, the molecular
and cellular mechanisms involved have not been investigated
but an anti-inflammatory milieu induced by the virus might
have facilitated subsequent bacterial colonization. Another
well established example of herpesvirus infection promoting
secondary bacterial infection is VZV and invasive Group A
streptococcus infections (Wilson et al., 1995; Laupland et al.,
2000; Oyake et al., 2000). Severe lesions such as cellulitis,
necrotizing fasciitis and sometimes endocarditis occur in people
infected with VZV and Group A streptococcus infection
(Zachariadou et al., 2014). A generalized immunosuppression
caused by VZV infection seems to explain the outcome
(Laskey et al., 2000). Cellular and molecular mechanisms for
enhanced disease due to double infection are yet to be fully
investigated.

Herpesviruses may also exhibit altered dynamics with
their host during transplantation. Many humans receive
transplantation to ameliorate malignant diseases or to restore
organ functions. Iatrogenic immunosuppression is usually
induced in patients undergoing solid organ transplants or
hematopoietic stem cell transplants (HSCT). Such procedures
often reactivate any persistent herpesvirus. Depending on
the herpesvirus involved, the outcome of transplantation
procedures might vary. For example, HSCT aimed at improving
the prognosis of acute myeloid leukemia (AML), induced
reactivation of CMV which then expanded a subset of
donor derived NKG2C expressing NK cells as well as
γδ-T cells of a particular phenotype (Vδ2−ve γδ-T cells)
(Litjens et al., 2018). These cells helped control the relapse
of leukemic episodes thereby benefiting the host. CMV in
transplant patients can also cause harmful effects such as
genital tract disease, hepatitis, encephalitis or retinitis. In
some patients undergoing HSCT to improve the outcome
of Hodgkin lymphoma, HHV-6 gets reactivated (Drobyski
et al., 1994). The reactivated virus eventually resulted in
meningioencephalitis and death. Many a time transplant tissues
could also serve as the source of transmitting herpesviruses
in the recipients (Openshaw et al., 1995; Remeijer et al.,
2001). Therefore, in patients undergoing transplantation,
anti-herpesviral drugs are usually infused (McIntosh et al.,
2016).

DISRUPTORS OF
HOST–HERPESVIRUS–HARMONY

The large majority of people harbor herpesviruses as part of
their virome (Virgin et al., 2009) and these infections usually do
not cause major harm in healthy adult host. The scenario can
change, however, under several circumstances such as when the
host has defects in innate or adaptive immunity. Such problems
normally become evident in neonates, children and elderly;
transplant patients as well as cancer patients or patients having
one or more concurrent infections. Such issues are discussed
subsequently.

Genetic Insufficiencies can Result in
Severe Herpetic Disease due to Primary
Infections
A compromised or dysfunctional immune system invariably
results in severe disease outcome due to herpesvirus infections.
Individuals with defects of innate immunity usually fail to control
most herpesviruses (Fitzgerald et al., 1985; Krug et al., 2004).
The activity of NK cells and more importantly signaling through
type I interferons (IFNs) are critical in providing anti-herpesvirus
defense (Fitzgerald et al., 1985; Smith H. R. C. et al., 2002;
Krug et al., 2004; Takeuchi and Akira, 2009). Most studies have
come from animal models, but evidence from human studies
also suggest for the role of innate immune mediators in defense
against herpesvirus infections (Dupuis et al., 2003; Jost and
Altfeld, 2013). Genetic deficiency or mutations in TLR3 and
UNC93B can result in herpes simplex virus encephalitis and
mortality due to impaired type I IFN response (Casrouge et al.,
2006; Zhang et al., 2007; Iwasaki, 2012; Rosato et al., 2015).
One of the typical clinical presentations of HSV 1 infection
is an occurrence of herpes simplex labialis (HLS). However,
only 20-30% of infected individuals exhibit HLS, therefore
attempts were made to identify genetic susceptibility loci (Kriesel
et al., 2011). Specifically, two single nucleotide polymorphism
(SNP) within the chromosome 21orf 91 (C21orf91) exhibited
a strong association with disease development. This reading
frame, also called as cold sore susceptibility gene (CSSG1),
encoded for a cytosolic expressing protein whose function still
remains unknown. The transcripts for this gene were also
recorded in other cells such as immune cells and ganglionic
cells (Kriesel et al., 2011). Therefore, there is possibility that
the protein encoded might have critical function in deciding
the outcome of herpesvirus-mediated encephalitis which also
exhibit some associations with genetic immunodeficiencies.
Additional genetic mutations responsible for defective innate
immunity against herpesviruses include mutations of the NF-
kB essential modulator gene as well as mutation in GATA2
(Zandi et al., 1997; Dropulic and Cohen, 2011). An extended
list of genes responsible for severe herpesvirus infections
is provided in Table 2. Many of these deficiencies result
in uncontrolled and aberrant immune responses in infected
individuals leading to immunopathologies (Parvaneh et al.,
2013). Some of these conditions can also cause neoplastic
transformations, especially in γ-herpesvirus infected individuals
(Parvaneh et al., 2013; Ruffner et al., 2017). Defects in some
anti-inflammatory response such as the inability of host to
mount an appropriate anti-inflammatory response can also result
in severe immunopathologies caused by some herpesviruses.
Extensively studied anti-inflammatory mechanisms include the
cytokine IL-10 and regulatory T cells expressing transcription
factor Foxp3 (Lund et al., 2008; Sarangi et al., 2008; Rouse and
Sehrawat, 2010; Veiga-Parga et al., 2013; Sehrawat and Rouse,
2017).

All primary immunodeficiencies invariably result in severe
disease resulting from primary herpesvirus infections before the
onset of a harmonious relationship with virus.
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TABLE 2 | Primary immunodeficiencies and the outcome of herpesviral infections.

Host molecules Virus involved Outcome References

PRF1, STXBP2 EBV Inefficient immune response and leads to the familial HLHs Reviewed in Parvaneh et al. (2013)

ITK EBV B-cell lymphoproliferation, Hodgkin’s lymphoma, hepatosplenomegaly,

cytopenia, hypogammaglobulinaemia, and high viral load in host

Huck et al., 2009; Stepensky et al.,

2011; Linka et al., 2012

CD27 EBV Hypogammaglobulinaemia, reduced memory B cell count, diminished

CD8+ T cell and iNKT cell function

van Montfrans et al., 2012; Salzer

et al., 2013

MAGT1 EBV Abrogates T cell activation and reduced CD4+ T cell count Li et al., 2011

STK4 EBV Hypergammaglobulinaemia, reduced TCR repertoire, and naive T cell

count, enhanced recurrent infection

Abdollahpour et al., 2012; Nehme

et al., 2012

CORO1A EBV B-cell lymphoproliferation Moshous et al., 2013

SH2D1A EBV HLH Marsh and Filipovich, 2011

MCM4 EBV EBV lymphoma Reviewed in Ruffner et al. (2017)

OX40 KSHV Enhanced susceptibility to mycobacteria

IFNGR1 KSHV, VZV Inadequate cytokine signaling

DOCK8, NEMO, GATA2, STAT1

GOF, STK4, WHIM

HSV, VZV Chronic infection, elevated cutaneous coinfection

STAT3 LOF VZV Altered T cell population leading to immunopathological response

CXCR4 HSV Abnormal neutrophils, pancytopenia

WAS HSV Eczema, thrombocytopenia

UNC-93B HSV Impaired type I and type II IFN responses, HSE Casrouge et al., 2006

TLR3 HSV Impaired type I and type II IFN responses, HSE Casrouge et al., 2006

PRF1 CMV Diminished CD8+ T cell and NK cell mediated killing Kägi et al., 1996

UNC13D CMV Familial HLH Crozat et al., 2007

PRF1, Perforin 1; STXBP2, Syntaxin binding protein 2; ITK, interleukin-2 inducible T cell kinase; EBV, Epstein-Barr virus; MAGT1, magnesium transporter 1; STK4, serine/threonine

protein kinase 4; CORO1A, Coronin-1A; SH2D1A, Src homology 2 domain-containing gene 1A; HLH, hemophagocytic lymphohistiocytosis; XIAP, X-linked inhibitor of apoptosis protein;

MCM4, minichromosome maintenance protein 4; iNKT, invariant natural killer T cell; KSHV, kaposi sarcoma herpes virus; IFNGR1, interferon gamma receptor 1; DOCK8, dedicator

of cytokinesis 8; NEMO, NF-κ B essential modulator; STAT1, signal transducer and activator of transcription 1; GOF, gain of function; LOF, loss of function; STK4, serine/threonine

protein kinase 4; WHIM, warts, hypogammaglobulinemia, infections, and myelokathexis; VZV, varicella zoster virus, CMV, cytomegalovirus, CXCR4, C-X-C chemokine receptor 4; WAS,

Wiskott-Aldrich syndrome; HSE, herpes simplex encephalitis; TLR3, toll like receptor 3.

Interaction of Herpesviruses With HIV can
Alter the Outcome of Both Infections
The emergence of human immunodeficiency virus - acquired
immunodeficiency syndrome (HIV-AIDS) 40 years ago seems
to have altered the relationship of several herpesviruses with
their host. Indeed, co-infection involving HIV and herpesviruses
are frequent. Kaposi sarcomas on the skin caused by HHV-8
or KSHV readily became evident in HIV infected individuals
in the pre-treatment era (Sepkowitz, 2001). Another common
problem in the pre-treatment era was retinitis caused by
HCMV infection, a lesion almost never seen in treated
AIDS patients (Salzberger et al., 2005). Enhanced expression
of proinflammatory molecules such as IL-1β, TNF-α, CCR5,
vCXCL1, vCXCL2 in concurrently infected individuals facilitated
the recruitment of more inflammatory cells that precipitated
HCMV retinitis (Safdar et al., 2002; Heiden et al., 2007;
Lichtner et al., 2015). Similarly individuals receiving profound
iatrogenic immunosuppressive therapies to achieve acceptance
of graft tissues also tend to develop severe HCMV infections
(Dowling et al., 1976). Zostriform infection (commonly known
as shingles) caused by the reactivation of VZV infection is
usually a problem of aged individuals but untreated younger
AIDS patients also exhibit severe manifestation (Buchbinder
et al., 1992; Leppard and Naburi, 1998). There are instances

where co-infection of herpesvirus and HIV can aggravate
the outcome of HIV infections (Kucera et al., 1990; Regezi
et al., 1996; Tobian and Quinn, 2009). Multiple explanations
have been proposed. For example, genital ulcers caused by
herpesviruses (particularly HSV 2) may disrupt the integrity of
the mucosa which can facilitate HIV infection of infiltrating
T cells and macrophages (Kucera et al., 1990; Tobian and
Quinn, 2009). Although HIV can infect resting immune cells,
activated CD4+ T cells are more prone to infection (Okoye
and Picker, 2013). Episodic reactivation of HSV expands
activated CD4+ T cell population which can be easily infected
by HIV (Okoye and Picker, 2013). With the loss of T
cells, host’s susceptibility to HSV and other opportunistic
infections increases (Bartlett et al., 2012; Okoye and Picker,
2013).

Another idea proposed for enhanced susceptibility of HIV by
prior herpesvirus infections included an accelerated phagocytosis
and internalization of HIV (Takeda et al., 1988; McKeating et al.,
1990). Thus, HSV 1 or CMV infections were shown to enhance Fc
receptor expression on some cells (Westmoreland and Watkins,
1974; McKeating et al., 1990). Elevated FcR expression can
efficiently bind to the Fc portion of an antibody molecule some of
which can also form complex with HIV. The immune complexes
thus formed were internalized more efficiently. However, this
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could only be a factor when the pre-existing anti-HIV antibodies
unable to neutralize the virus are present in the host. In addition
this phenomenon may be more relevant to amplify the infection.
Some suggest that the direct interaction of components of
herpesviruses with HIV can enhance HIV replication in infected
cells (Ostrove et al., 1987; Gimble et al., 1988; Albrecht et al.,
1989; Margolis et al., 1992). For instance, ICP0 and ICP4 of
HSV can interact with the long terminal repeats (LTRs) of HIV
to enhance its replication (Gimble et al., 1988; Margolis et al.,
1992). Another theory proposes that concurrent herpesviruses
and HIV infections result in the selection of new HIV variants
with greater infectivity toward new cell types (Grivel et al., 2001).
For example, HIV variants (X4) that predominantly infect CD4+

T cells emergemore frequently in patients co-infected withHHV-
6 and HHV-7 than in those infected with HIV alone (Grivel
et al., 2001). Although detailed molecular mechanisms to explain
such observations are lacking but some studies suggested the
involvement of tissue resident inflammatory cells that included
CD4+ T cells and dendritic cells expressing receptor for HIV
such as DC-SIGN or CD123 in previously HSV 2 infected
individuals (Zhu et al., 2009). Intriguingly such cells persisted
at tissue sites even after virus is controlled effectively by anti-
viral treatment (Zhu et al., 2009). The prolonged persistence
of immune cells in healed genital ulcer could therefore also
help facilitate HIV infection. An association between EBV
induced Burkitt’s lymphoma (BL) and HIV is reasonably well
established (Beral, 1991). BL is a rare cancer of children and
is endemic in some African countries. HIV induces hyper
proliferation of B cells which then can be infected by EBV (Grogg
et al., 2007). This cellular mechanism could enhance lymphoma
development.

We can conclude that individuals having co-infection
with one or more herpesviruses and HIV exhibit more
severe disease by either agent. Accordingly, the clinical
management of such cases would require treating both infections
simultaneously.

Is There a Link Between Herpesvirus
Infections and Malaria?
The severe consequence of co-infection involving the γ-
herpesvirus (EBV) and malaria is well established (Epstein
et al., 1964). The interaction could promote the development
of Burkitt’s lymphoma (BL). Antigens derived from Plasmodium
falciparum (Pf), the causative agent of a severe form of malaria,
induce polyclonal B cell activation (Chêne et al., 2007). B
cells thus activated are more permissive to EBV infection and
undergo hyper proliferation. Pf infection is also known to
down regulate the expression of activation induced cytidine
deaminase, an enzyme responsible for c-myc translocation in
latently EBV infected B cells (Torgbor et al., 2014). This step
is considered critical for the development of cancer. A possible
role of upregulated TLR9 by EBV latently infected B cells and
its subsequent activation by Pf derived agonists is also proposed
as a mechanism for hyperproliferation of B cells (Crompton
et al., 2009; Iskra et al., 2010). Co-infection of EBV and Pf,
especially in children, creates an anti-inflammatory environment

with enhanced IL-10 production. This could blunt the activity
of CD8+ T cells which would fail to clear infected B cells
(Peyron et al., 1994; Medina et al., 2011). In addition, EBV
EBNA1 protein is not a potent stimulator of protective CD8+

T cells and this effect is further enhanced by co-infection with
Pf (Levitskaya et al., 1997). Some studies were performed in
mice to understand the cellular and molecular mechanism of
enhanced severity of coinfection involving γ-herpesvirus and
Plasmodium. Mice coinfected with MHV68 and Plasmodium
displayed severe disease (Matar et al., 2015). An acute but not
latent infection of mice with γ-herpesvirus failed to control the
subsequent non-lethal P. yoelii infection (Haque et al., 2004;
Matar et al., 2015). A compromised anti-plasmodial humoral
immune response mediated by the M2 protein of MHV68 was
suggested to explain the phenomenon (Matar et al., 2015). Other
factors such as the altered responses of immune cells other than
those of the adaptive arm were not investigated and could be also
involved.

Heterologous Immunity and Herpesvirus
Infections
An accumulating body of evidence shows that the outcome
of a herpesvirus infection can be influenced by the host’s past
experience with other infectious agents, as well as the microflora,
which colonize the gut, skin and other sites (Robinson and
Pfeiffer, 2014; Shannon et al., 2017). Cross-reactive B and or
T cell responses to unrelated pathogens can be responsible for
the altered outcome of a subsequent infection. This is known
as heterologous immunity. A series of elegant studies in mice
with multiple infecting viruses was done by Welsh and Selin
group (Welsh and Selin, 2002; Clute et al., 2005; Welsh and
Fujinami, 2007; Welsh et al., 2010). Their studies provided
some rules to explain why a second infection has variable
outcome in terms of disease expression. Accordingly, one of
the influenza virus epitope (M158−66) and EBV derived epitopes
(BMLF1280−288 and BRLF1109−117) were shown to be cross-
reactive. The severity of mononucleosis correlated with specific
expansion of BMLF1280−288 specific CD8+ T cells (Clute et al.,
2005). The presence of a particular MHC haplotype (HLA-
A2+) was suggested to account for the skewed response and
lymphocytosis. The possibility of clinical mononucleosis (kissing
disease) occurring after primary infection with EBV is more
common in young adults who have been previously infected
with influenza virus and generated a particular type of antibody
response (McClain et al., 2003). Additional evidence where
herpesvirus infections could influence responses to heterologous
infections as well as to other diseases such as allergies, metabolic
diseases and perhaps some cancers are awaited.

Harmony Changes to Cacophony When
Herpesviruses Infect a Non-native Host
During the course of evolution, most herpesviruses have adapted
to a single or a limited number of host species. Nevertheless,
when for a variety of reasons they happen to infect non-native
species, aberrant and severe disease can result. A common
example is HSV in mice, a popular model to study HSV
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pathogenesis. In mice, HSV does not behave as it does in its
natural human host. Many strains are highly virulent in mice
and cause lethal encephalitis particularly when higher doses
are used for infection. Encephalitis is a very rare outcome in
healthy humans and not influenced by viral strain type. When
some herpesviruses infect a non-native species, encephalitis can
result. For example humans accidentally infected with herpes
B virus, an α-herpesvirus of monkeys, can suffer from lethal
encephalitis (Wozniakowski and Samorek-Salamonowicz, 2015).
Similarly pseudorabies virus of pigs causes encephalitis in cows
(Crandell et al., 1982). Another example include a β-herpesvirus,
elephant endotheliotropic herpesvirus (EEHV), which normally
infects African elephants but is usually innocuous in the adult
animals (Richman et al., 1999; Fickel et al., 2001). When the virus
happens to infect young animals or Asian elephants, the disease
is invariably severe (Richman et al., 2000; Fickel et al., 2001).
Why encephalitis occurs so commonly in non-native species as
compared to the native species is not known. The virus may be
arrested in ganglionic neurons in latent form and fail to spread
anterograde to the CNS. This retention may not happen in a
non-native host for reasons still not clear.

Do Herpesviruses Influence Pathogenesis
of Autoimmune Diseases?
Multiple events contribute to the onset, progression and severity
of autoimmune diseases. Many have advocated that herpesviruses
can be associated with several autoimmune diseases, perhaps
acting as triggering agents for their onset (Münz et al., 2009; Getts
et al., 2013). However, few if any investigators subscribe to the
hypothesis that some human autoimmunities are directly caused
by herpesviruses or any other virus infection. Circumstantial
evidence suggest that several herpesviruses, particularly EBV and
HHV-6 could initiate the onset of multiple sclerosis, but such
ideas have never been confirmed independently (Wucherpfennig
and Strominger, 1995; Poole et al., 2006; Lünemann et al.,
2007, 2008; Münz et al., 2009). It was advocated that the
HSV induced ocular lesion, stromal keratitis, represented an
autoimmune lesion during its chronic phase (Zhao et al., 1998).
Evidence to support this hypothesis was presented using a
mouse model in which molecular mimicry between a protein of
HSV (UL-6) and an auto-antigen expressed in the cornea was
suggested to cause the disease (Zhao et al., 1998). Such ideas
were never independently confirmed and some data strongly
argued against this hypothesis (Deshpande et al., 2001). At
this stage of investigation, it is probably safe to assume that
while there is no compelling evidence that herpesviruses can
directly cause one or more autoimmune diseases, the viruses
might serve as cofactors in the pathogenesis of autoimmune
diseases.

CONCLUSIONS

For most of us with a normally functioning immune system,
exposure to and living with many herpesviruses has no major

consequences. We usually develop a harmonious relationship
with multiple herpesviruses that persistently infect us. Problems
arise mainly with immune immaturity or when it declines with
age or is dysregulated. The latter occurs most commonly as
a consequence of cancer, infections with some pathogens, or
immunosuppressive therapy to control transplants and tissue
damaging lesions. A particular problem that changed the face
of herpesvirus infections was the emergence of HIV, especially
in the era before effective antiviral therapy. Fortunately, we now
have better mechanistic understanding of the circumstances,
which disrupt herpesvirus-host-harmony and may well be poised
to exploit such information for better management of such
situations. It has also become evident that herpesviruses form
part of our virome and this can impact on susceptibility to other
infections and disease producing agencies. Whether or not the
composition of our virome can help explain the variability of
the outcome of many herpetic diseases such as development
of zosteriform infection, post-herpetic neuralgia as well as the
severity of eye disease remains investigated.

A contentious issue in the herpesvirus field is the development
of vaccines against member viruses. Indeed, studies in mice with
almost any form of HSV vaccine protect them from disease, yet
no vaccine against HSV in humans induces effective immunity,
at least when subjected to double bind independent evaluation
(Koelle and Corey, 2003). There are many enthusiastic advocates
for universal vaccines against herpesviruses but our own view
is that the prophylactic vaccines against some herpesviruses
could be useful only under special circumstances. These
include transplant patients treated with immunosuppressant
drugs and defects in one or more aspects of immunity.
What might really be useful against some herpesviruses is a
therapeutic vaccine that could rewrite the language of immune
responsiveness. This is because herpesviruses are so ubiquitous
and their unmatched prevalence in general population. Making
an inflammatory tissue damaging response into one that
is far more benign particularly against pathogenic epitopes
represents an appealing idea. However, this would require
the identification of those antigens, which are predominantly
pathogenic rather than protective. Progress in this area has been
less than impressive, but we expect useful discovery in this
field.
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