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ABSTRACT

We present 70 and 160 μm Herschel science demonstration images of a field in the Orion A molecular cloud that contains the
prototypical Herbig-Haro objects HH 1 and 2, obtained with the Photodetector Array Camera and Spectrometer (PACS). These
observations demonstrate Herschel’s unprecedented ability to study the rich population of protostars in the Orion molecular clouds
at the wavelengths where they emit most of their luminosity. The four protostars previously identified by Spitzer 3.6–40 μm imaging
and spectroscopy are detected in the 70 μm band, and three are clearly detected at 160 μm. We measure photometry of the protostars
in the PACS bands and assemble their spectral energy distributions (SEDs) from 1 to 870 μm with these data, Spitzer spectra and
photometry, 2MASS data, and APEX sub-mm data. The SEDs are fit to models generated with radiative transfer codes. From these
fits we can constrain the fundamental properties of the protostars. We find luminosities in the range 12–84 L� and envelope densities
spanning over two orders of magnitude. This implies that the four protostars have a wide range of envelope infall rates and evolutionary
states: two have dense, infalling envelopes, while the other two have only residual envelopes. We also show the highly irregular and
filamentary structure of the cold dust and gas surrounding the protostars as traced at 160 μm.

Key words. stars: formation – stars: protostars – circumstellar matter – infrared: ISM – infrared: stars

1. Introduction

The Orion molecular clouds are the most active region of star
formation within 500 pc of the Sun, where the Spitzer Space

� Herschel is an ESA space observatory with science instruments
provided by European-led Principal Investigator consortia and with im-
portant participation from NASA. This work includes data acquired
with the Atacama Pathfinder Experiment (APEX; E-082.F-9807, E-
284.C-5015). APEX is a collaboration between the Max-Planck-Institut
für Radioastronomie, the European Southern Observatory, and the
Onsala Space Observatory.
�� Figures 2 and 3 are only available in electronic format at
http://www.aanda.org

Telescope identified over 400 likely protostars in the Orion
A and B clouds (Megeath et al., in prep.). The region is
home to both clustered and distributed star formation and
hosts both high- and low-mass protostars. The Herschel Space
Observatory’s capabilities in the far infrared are crucial for sam-
pling the expected peak of the spectral energy distributions
(SEDs) of protostars, which are dominated by thermal emission
from a cold (∼10 K) envelope. Measuring the peak of the SED
allows firm estimates of the bolometric luminosities and enve-
lope densities of the protostellar systems.

With the Photodetector Array Camera and Spectrometer
(PACS, Poglitsch et al. 2010) aboard Herschel (Pilbratt et al.
2010), we have obtained 70 and 160 μm images of a field in
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the Lynds 1641 region. The field contains the intermediate-mass
Herbig B9e star V380 Ori (Hillenbrand et al. 1992), 28 infrared
excess sources identified by observations with Spitzer (Megeath
et al., in prep.), and a variety of outflow phenomena including the
well-known HH 1 and 2 (e.g., Bally et al. 2002) and≥8 protostel-
lar outflows (e.g., Stanke et al. 2002). This is the science demon-
stration field for the Herschel Orion Protostar Survey (HOPS),
a 200-h open-time key program that will obtain PACS imaging
of 133 fields, 5′to 8′in diameter, containing 278 protostars and
PACS spectroscopy of a subset of 37 protostars.

Here, we present photometry of the four protostars in the
Herschel field at 70 and 160 μm and combine these data with
Spitzer and ground-based data. With the radiative transfer code
of Whitney et al. (2003), we generate model SEDs and find that
the four protostars exhibit a large range of luminosities (12 <
L/L� < 84) and envelope densities spanning over two orders of
magnitude. This implies that two protostars have dense, infalling
envelopes, while the other two have only residual envelopes.

2. Observations and data reduction
An 8′ square field with central coordinates α = 5h36m22.s05,
δ = −6◦45′41.′′23 (J2000) was observed on 2009 October 9 (ob-
serving day 148; observation IDs 1342185551 and 1342185552)
in the 70 μm (“blue”) and 160 μm (“red”) bands available with
PACS, which have angular resolutions of 5.2′′ and 12′′, respec-
tively. We observed our target field with homogeneous coverage
using two orthogonal scanning directions and a scan speed of
20′′/s. Each scan was repeated 5 times for a total observation
time of 1468 s per scan direction. The effective sampling rate of
the detectors is 10 Hz. The data were processed from raw teleme-
try to final images with the Herschel common software system
(HCSS) version 3.0 build 919, using version 4 of the flux calibra-
tion files1. We followed the standard processing steps for PACS
data described by Poglitsch et al. (2010) with these exceptions:
We identified cosmic rays for each spatial sky pixel as those val-
ues which were larger than 10 standard deviations from the mean
signal. Several extraneous calibration measurements were inter-
spersed with the HOPS target observations. These were masked
and removed from the data cube with an additional 430 readouts
following each of these calibration measurements to mask signal
drifts induced by the calibration source.

After the initial processing, the two orthogonal scan observa-
tions were combined for the final mapmaking step. Two different
mapping approaches are used for this purpose: Method 1 is used
exclusively for point source photometry, while Method 2 is used
to display images.

Method 1: Mapping with local sky subtraction: first, we re-
move the signal drifts (whether correlated or due to the 1/ f
noise) by subtracting a local “sky” value from each readout from
each bolometer pixel. The local sky is estimated as the median
value within a window of size ±20 readouts. The final mosaic
is then created by spatially averaging all overlapping bolome-
ter pixels using the HCSS routine “photProject”. To protect the
integrity of the point source PSF, all readouts within 20′′ of a
point source are ignored during the sky median calculation. This
processing preserves all point and compact sources in the image
and provides the proper photometry comparison between HOPS
target objects and the flux calibration standards, which use the
same reduction scheme. However, this processing removes all
emission at spatial scales larger than the median window size.

1 HCSS is a joint development by the Herschel Science Ground
Segment Consortium, consisting of ESA, the NASA Herschel Science
Center, and the HIFI, PACS, and SPIRE consortia.

Fig. 1. Three-color composite image of the HH 1–2 region. Blue is
NEWFIRM Ks, green is PACS 70 μm, and red is PACS 160 μm.

Method 2: Mapping without local sky subtraction: Method 1
is necessary only for accurate photometry of point sources. We
also create maps by removing only the pixel-to-pixel electronic
offsets in PACS images, using the median value of the entire
time stream of a single pixel to estimate its offset signal value.
Unlike Method 1, this approach does not remove the (spatially)
extended emission. However, it also does not mitigate the 1/ f
drifts, which add so-called “striping” or “banding” in the final
maps. As for Method 1, we use the “photProject” HCSS routine
to spatially coadd individual array readouts for mapmaking.

A Ks image of the field was acquired with NEWFIRM, the
NOAO Extremely Wide Field Infrared Imager, on the KPNO
4 m telescope, and the data were reduced with the NOAO
NEWFIRM Pipeline (Swaters et al. 2009). The on-source time
was 11 min over most of the field of view. Images at 350 and
870 μm were acquired at APEX with SABOCA and LABOCA,
respectively. The observing and data reduction procedures for
the APEX images are described in Stanke et al. (2010).

3. Results
3.1. Imaging and photometry
Figure 1 shows a composite of the final map created using
Method 2 for the 70 and 160 μm PACS channels. Figures 2
and 3, available in electronic form only, show the separate 70
and 160 μm images and are annotated with source names.

The bright blue source in the north of the field is the reflec-
tion nebula NGC 1999; the dark tri-lobed feature seen toward
this nebula is discussed in Stanke et al. (2010). In the center
of the image is a triangular arrangement of protostars. Here we
use their designations for the HOPS program: 165, 166, 168,
and 203. HOPS 166 (HH 147 MMS; Chini et al. 2001) is the
relatively isolated source at the northeastern corner of the trian-
gle, HOPS 168 (HH 1–2 MMS 2) is at the western corner, and
HOPS 165 and 203 are the pair of overlapping sources (sepa-
rated by 13′′) at the southern corner. HOPS 203 (HH 1–2 MMS
1), the brighter of the pair in the PACS bands, is the source of
the HH 1–2 outflow and contains the radio sources VLA 1 and 2
(Rodriguez et al. 1990). Chini et al. report an additional source
HH 1–2 MMS 3, 22′′ southwest of HOPS 168, that corresponds
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Table 1. Protostar photometry.

HOPS RA (J2000) Dec (J2000) [3.6] [4.5] [5.8] [8.0] [24] [70] [160] [350] [870]
Source (h m s) (◦ ′ ′′) (Jy) (Jy) (Jy) (Jy) (Jy) (Jy) (Jy) (Jy) (Jy)
165 . . 5 36 23.54 −6 46 14.6 0.014 0.052 0.11 0.13 0.64 1.1 <0.3 <3 ...
166 . . 5 36 25.13 −6 44 41.8 0.66 0.83 0.97 1.17 4.65 10.9 11.1 4.6 0.33
168 . . 5 36 18.93 −6 45 22.7 0.0077 0.030 0.041 0.038 3.66 87.3 87.7 24 0.94
203 . . 5 36 22.84 −6 46 06.2 ... ... ... 0.0091 0.54 26.6 75.7 28 1.2

Notes. Aperture radii are 3′′ from 1.2 to 2.2 μm (not shown), 2′′ from 3.6 to 8.0 μm, 5′′ at 24 μm, and 16′′ at 70 μm and longward. Systematic
uncertainties are 3% from 1.2 to 2.2 μm, 5% from 3.6 to 24 μm, 10% at 70 μm, 20% at 160 μm, 40% at 350 μm, and 20% at 870 μm.

to extended emission at 160 μm with no apparent point source at
70 μm. Falling nearly along the line between HOPS 168 and 203
is the C-S star, a classical T Tauri star (Cohen & Schwartz 1979).
To the southeast of HOPS 203 at α = 5h36m25.s3, δ = −6◦47′18′′
is a knot of emission presumably shock heated by the HH 2 out-
flow. At 160 μm, only HOPS 166, 168, and 203 appear, while
HOPS 165 is not detected. The 160 μm band also traces cold
dust in the surrounding cloud material, showing an irregular, fil-
amentary structure.

PACS photometry of the four protostars appears in columns
9 and 10 of Table 1. We obtained simple aperture photometry for
the relatively isolated protostars: HOPS 166 and 168 in the blue
and red bands and HOPS 203 in the red band. In these cases,
we used a 16′′ aperture with subtraction of the median signal in
a background annulus extending from 18′′ to 22′′. The results
were corrected according to measurements of the encircled en-
ergy fraction provided by the PACS consortium (priv. comm.).

For the HOPS 165/203 pair at 70 μm, point-spread func-
tion (PSF) fitting was required to separate the fluxes of the two
protostars. We fit the fainter HOPS 165 with a PSF constructed
from observations of Vesta (PACS consortium, priv. comm.).
Aperture photometry for HOPS 165 was performed on the best-
fit PSF, and aperture photometry for HOPS 203 was performed
on the data after subtraction of the HOPS 165 model. At 160 μm,
we report an upper limit for HOPS 165; this is the largest flux
density for which a model PSF can be added at the source posi-
tion before it appears as an asymmetry in the HOPS 203 image.

According to Poglitsch et al. (2010), the calibration accuracy
for PACS is within 10% in the blue band and better than 20% in
the red. The formal uncertainties associated with each source
(i.e., the RMS of the signal in the sky annulus) are much less,
≤1%, except for the case of HOPS 165, where fitting a point-
spread function to a faint source yields a 10% uncertainty.

The PACS photometry data are supplemented by Spitzer
IRAC and MIPS photometry (Megeath et al., in prep.), Spitzer
IRS spectroscopy, and APEX SABOCA and LABOCA sub-mm
photometry (Stanke et al. 2010). For HOPS 166, near-infrared
J/H/K photometry was available from the Two Micron All Sky
Survey2. The Spitzer positions and 3.6–870 μm photometry for
the HOPS protostars appear in Table 1. Systematic uncertainties
are given in a note to the table.

3.2. SED modeling
We use a Monte Carlo radiative transfer code (Whitney et al.
2003) to calculate model SEDs for the four protostars. The code
features a central star and flared disk, which emit photons that
can then be scattered or absorbed and re-emitted by dust in either
the disk or an envelope. The envelope density is defined by the

2 The Two Micron All Sky Survey (2MASS) is a joint project of the
University of Massachusetts and the Infrared Processing and Analysis
Center/California Institute of Technology, funded by NASA and the
National Science Foundation.

Table 2. Adopted model parameters.

HOPS L ρ1
a Renv θcav Mdisk i AV

Source (L�) (g cm−3) (AU) (◦) (M�) (◦)
165 . . 12 7.5 × 10−16 103 30 1 × 10−4 20 35
166 . . 23 1.5 × 10−15 104 25 5 × 10−2 40 4
168 . . 84 3.0 × 10−13 104 40 5 × 10−2 75 0
203 . . 23 2.6 × 10−13 104 40 5 × 10−2 75 0

Notes. (a) The envelope density at 1 AU in the limit of no rotation.

rotating collapse solution of Terebey et al. (1984), plus a bipolar,
evacuated cavity.

We use the same dust model as Tobin et al. (2008), which
contains larger dust grains than a standard ISM dust model. The
grain size distribution is defined by a power law n (a) ∝ a−3.5,
with 0.005 μm ≤ a ≤ 1 μm. We use dust grains composed of
graphite ζgraph = 0.0025, silicates ζsil = 0.004, and water ice
ζice = 0.0005; abundances (ζ) are relative to gas and imply a
gas to dust ratio of 133. Our sub-mm opacities exceed those
of the well-known Milky Way Case B (RV = 5.5) mixture of
Weingartner & Draine (2001) by a factor that reaches a maxi-
mum of 5 at 600 μm.

The model parameters are set to typical values for low-mass
protostars; we fit the SEDs by varying seven of them: the system
luminosity L, the reference envelope density ρ1 (Kenyon et al.
1993), the outer radius of the envelope Renv, the opening angle
of the envelope cavity θcav, the mass of the disk Mdisk, the in-
clination angle i, and the foreground extinction AV. (Foreground
extinction is applied with the laws of McClure 2009, suitable
for star-forming regions.) In fitting the sources, we emphasize
the mid to far IR over the near IR, since the near IR is highly
dependent on the scattering properties of the dust, the geometry
of the inner disk, and the geometry of the outflow cavity. Thus,
when fitting a source we first adjust the luminosity and density
to get the best fit to the mid to far IR, then we find the best com-
bination of cavity opening angle, inclination, and (if necessary)
foreground reddening to fit the 10 μm absorption feature and the
near-IR emission. In general, the fits are insensitive to Renv and
Mdisk. However, for HOPS 165, it was necessary to adjust these
two parameters. The best-fit parameters were determined by vi-
sual comparison of the models to the observed SEDs and are
listed in Table 2.

The models are compared to the photometry and spectra in
Fig. 4. For these models, 4 × 107 photons were run through the
Monte Carlo code. The code generates output for apertures rang-
ing from 1′′ to 16′′ in one-arcsecond steps, and the choice of
aperture for the plotted SED varies with wavelength, as given in
the note to Table 1. An interpolation scheme bridges the gaps
between disparate apertures. We assume a distance of 420 pc
(Menten et al. 2007).
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Fig. 4. Observed SEDs (black) with best-fit models (blue). Plus signs
indicate 2MASS, Spitzer, and APEX photometry; the open triangle is an
upper limit. Black curves show Spitzer spectra. Filled symbols indicate
Herschel photometry: diamonds represent detections, while the filled
triangle is an upper limit.

4. Discussion
The Herschel observations have detected four protostars in the
HH 1–2 region. All were previously identified with Spitzer
(Megeath et al., in prep.), but Herschel has cleanly separated the
sources for the first time in the far IR, allowing accurate pho-
tometry. From the luminosities and densities in Table 2, we esti-
mate the infall rate from the envelope onto the central star-disk
system, the luminosity due to accretion onto the star, and the
evolutionary state for each protostar. Kenyon et al. (1993) show
that for a protostellar envelope, the infall rate is Ṁenv = 1.9 ×
10−7 (ρ1/10−15 g cm−3) (M∗/M�)1/2 M� yr−1. The accretion
luminosity can then be written as Lacc = GM∗Ṁdisk/R∗ =
5.9 (ρ1/10−15 g cm−3) (M∗/M�)3/2 (R∗/R�)−1 (Ṁdisk/Ṁenv) L�,
where Ṁdisk is the accretion rate from the disk onto the star. To
estimate Ṁenv and Lacc, we (initially) assume Ṁdisk = Ṁenv, and
we adopt stellar radii, luminosities, and masses from the Siess
et al. (2000) online models of pre-main-sequence stars at an age
of 3× 105 yr. The final conclusions are not sensitive to the exact
stellar parameters chosen.

HOPS 166 is modeled as a luminous star-disk system with
a low-density envelope seen through a few magnitudes of vi-
sual extinction. (The modeled inclination of 40◦ is considered a
lower limit; Eislöffel et al. 1994 find that the outflow associated
with this source is close to the plane of the sky.) The best-fitting
central star from the Siess et al. models has a mass of 2.2 M�,
implying an envelope infall rate of 4 × 10−7 M� yr−1 and an ac-
cretion luminosity that is 20% of the total luminosity. The low
accretion luminosity and low envelope mass (inferred from the
model parameters) of only 0.02 M� imply that HOPS 166 is in
the late stages of protostellar evolution and that the central star
has accreted most of its mass. (Chini et al. 2001 classified this
source as a deeply embedded Class 0 object based on SCUBA
and IRAM mapping at 450, 850, and 1300 μm.)

In contrast, HOPS 168 is much more embedded and lumi-
nous than HOPS 166. Its envelope mass is 2.7 M�. The im-
plied stellar mass is 0.3 M�, the envelope infall rate is 3 ×
10−5 M� yr−1, and the accretion luminosity is more than 95%

of the total. A star more massive than 0.3 M� is possible if
Ṁdisk < Ṁenv, meaning infalling matter is piling up on the disk,
leading to episodic accretion (e.g., Vorobyov & Basu 2005). For
example, the central star could have a mass as high as 1.8 M� if
Ṁdisk = 0.1 Ṁenv.

The two remaining protostars, HOPS 165 and HOPS 203,
are separated by only 13′′, or a projected 5500 AU. The SED of
HOPS 165 drops off precipitously beyond 30 μm. This requires
a very small, tenuous envelope and a low-mass disk. The flux
from the moderately luminous star-disk system is seen behind
35 mag of visual extinction. Our interpretation is that HOPS
165 must be seen through the dense envelope of the nearby
HOPS 203 (Menv = 2.4 M�). HOPS 203 itself is a 3′′ binary
(Rodriguez et al. 1990). If the proximity of HOPS 165 is not
due to chance, this region is home to a hierarchical multiple sys-
tem of three protostars within a projected radius of 5500 AU.
Accordingly, the small envelope size of the HOPS 165 model
may result from its proximity to HOPS 203. The implied stel-
lar mass of HOPS 165 is 1.4 M�, the envelope infall rate is
2 × 10−7 M� yr−1, and the accretion luminosity is 10% of the
total. On the other hand, the implied stellar mass of HOPS 203
is 0.1 M�, the envelope infall rate is 2 × 10−5 M� yr−1, and the
accretion luminosity is more than 95% of the total. Again, the
central star may have a higher mass if Ṁdisk < Ṁenv. We assume
that the accretion is dominated by one member of the 3′′ bi-
nary, but the results will not change significantly if both accrete
equally. The 160 μm PACS measurement for HOPS 203 exceeds
the fit by a factor of 2; this may be due to cold envelope material
in our aperture that is not accounted for in our models.

We conclude that two of the protostars (HOPS 168 and 203)
are in an active state of mass infall and accretion, while the other
two (HOPS 165 and 166) have only residual envelopes. This
finding demonstrates Herschel’s unique and critical contribution
to the audit of the flow of mass from the outer protostellar enve-
lope onto the central protostar.
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Fig. 2. PACS 70 μm image of the HH 1–2 region.

Fig. 3. PACS 160 μm image of the HH 1–2 region.
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