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Driven by narrow-linewidth bench-top lasers, coherent optical systems spanning optical
communications, metrology and sensing provide unrivalled performance. To transfer
these capabilities from the laboratory to the real world, a key missing ingredient is a
mass-produced integrated laser with superior coherence. Here, we bridge conventional
semiconductor lasers and coherent optical systems using CMOS-foundry-fabricated mi-
croresonators with record high Q factor over 260 million and finesse over 42,000. Five
orders-of-magnitude noise reduction in the pump laser is demonstrated, and for the
first time, fundamental noise below 1 Hz2 Hz−1 is achieved in an electrically-pumped
integrated laser. Moreover, the same configuration is shown to relieve dispersion re-
quirements for microcomb generation that have handicapped certain nonlinear plat-
forms. The simultaneous realization of record-high Q factor, highly coherent lasers and
frequency combs using foundry-based technologies paves the way for volume manufac-
turing of a wide range of coherent optical systems.

The benefits of high coherence lasers extend to many
applications. Hertz-level linewidth is required to inter-
rogate and manipulate atomic transitions with long co-
herence times, which form the basis of optical atomic
clocks1,2. Furthermore, linewidth directly impacts per-
formance in optical sensing and signal generation appli-
cations, such as laser gyroscopes3,4, light detection and
ranging (LIDAR) systems5,6, spectroscopy7, optical fre-
quency synthesis8, microwave photonics9–13, and coher-
ent optical communications14,15. In considering the fu-
ture transfer of such high coherence technologies to a
mass manufacturable form, semiconductor laser sources
represent the most compelling choice. They are directly
electrically pumped, wafer-scale manufacturable and ca-
pable of complex integration with other photonic devices.
Indeed, their considerable advantages have made them
into a kind of ‘photonic engine’ for nearly all modern day
optical source technology, including commercial benchtop
laser sources. Nonetheless, mass manufacturable semi-
conductor lasers, such as used in communications sys-
tems, have linewidths ranging from 100 kHz to a few
MHz14, which is many orders of magnitude too large for
the above mentioned applications.

A powerful method to narrow the linewidth of a laser
is to apply optical feedback through an external reflector,
for which the degree of noise suppression scales with the
square of the Q factor of the reflector16–18. Ultra-high-
Q microresonators are excellent candidates to achieve
substantial linewidth narrowing and have been demon-
strated across a wide range of materials as discrete17,19

or integrated components3,13,20–26. While sub-Hertz fun-
damental linewidth has been realized in semiconduc-
tor lasers that are self-injection-locked to discrete crys-
talline microresonators17, retaining ultra-high Q factor

when moving to higher levels of integration is both of
paramount importance and challenging. As a measure of
the level of difficulty, current demonstrations of narrow-
linewidth integrated lasers, despite many years of effort,
feature fundamental linewidths of 40 Hz to 1 kHz, as
limited by their Q factors27–30.

In this work, we present critical advances in silicon
nitride waveguides, fabricated in a high-volume com-
plementary metal-oxide-semiconductor (CMOS) foundry.
We achieve a Q factor over 260 million – a record among
all integrated resonators. By self-injection locking a
conventional semiconductor distributed-feedback (DFB)
laser to these ultra-high-Q microresonators, we reduce
noise by five orders of magnitude, yielding frequency
noise below 1 Hz2 Hz−1, which is a previously unattain-
able level for integrated lasers. Within the same configu-
ration, a new regime of Kerr comb operation in microres-
onators is supported. Specifically, the comb both oper-
ates turnkey29 and attains coherent comb operation un-
der conditions of normal dispersion without any special
dispersion engineering. The comb’s line spacing is suit-
able for dense (DWDM) communications systems. More-
over, each comb line benefits from the exceptional fre-
quency noise performance of the disciplined pump, rep-
resenting a significant advance for DWDM source tech-
nology. The microwave phase noise performance of the
comb is also comparable to that of existing commercial
microwave oscillators. Overall, experiment and theory
reveal an ultra-low-noise regime in integrated photonics.

Results

CMOS-ready ultra-high-Q microresonators

The ultra-high Q factor resonators use high-aspect-ratio
Si3N4 waveguides as shown in Fig. 1a. The sam-
ples are fabricated in a high-volume CMOS foundry on
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Fig. 1. Ultra-high-Q Si3N4 microresonators. a, Cross sectional diagram of the ultra-low loss waveguide, consisting of Si3N4

as the core material, silica as the cladding, and silicon as the substrate (not to scale). b, Top view of the Si3N4 microresonators
with 30 GHz FSR (ring, left panel) and 10 GHz FSR (racetrack, right panel). c, Transmission spectrum (upper panel) of a
high-Q mode at 1560 nm in a 30 GHz ring resonator. Interfacial and volumetric inhomogeneities induce Rayleigh scattering,
causing resonances to appear as doublets due to coupling between counter-propagating modes. Intrinsic Q of 220 M and loaded
Q of 150 M is extracted by fitting the asymmetric mode doublet. The ring-down trace of the mode (lower panel) shows 124 ns
photon lifetime, corresponding to a 150 M loaded Q. d, Measured intrinsic Q factors plotted versus wavelength in a 30 GHz
ring resonator with 8 µm wide Si3N4 core (upper panel) and a 5 GHz racetrack resonator with 2.8 µm wide Si3N4 core (lower
panel). Insets: simulated optical mode profile.

200 mm wafers following the process of Bauters et al.31,
but we increase the thickness of the Si3N4 core from
40 nm to 100 nm. Thicker Si3N4 enables a bending
radius below 1 mm32, allowing higher integration den-
sity than the centimeter-sized resonators demonstrated
previously3,22,26. Furthermore, a top cladding thickness
of 2 µm is sufficient, which obviates the need for com-
plex chemical-mechanical polishing and bonding of ad-
ditional thermal SiO2 on top22,31. Microresonators hav-
ing three different free spectral ranges (FSR) were fab-
ricated. Those resonators having 30 GHz FSR were in
a whispering-gallery-mode ring geometry while single-
mode racetrack resonators with 5 GHz and 10 GHz FSR
were fabricated to reduce footprint (Fig. 1b). All devices
were fabricated on the same wafer.

Transmission spectra scans using a tunable exter-
nal cavity laser (calibrated by a separate interferome-
ter) were measured to study the resonator linewidth and
to infer loaded, coupled and intrinsic optical Q factors.
Cavity ring down was also performed as a separate check
of these Q measurments. Spectra were observed to oc-
cur in doublets on account of both the ultra-high-Q and
the presence of waveguide backscattering (Fig. 1c)33. By
fitting the doublet line shape of the 30 GHz ring res-
onator, intrinsic Q of 220 M and loaded Q of 150 M
are extracted at 1560 nm, which are further confirmed
by measuring the ring-down trace of the resonance as
shown in Fig. 1c. The spectral dependences of Q-factors
in ring- and racetrack-resonators (Fig. 1d) provide in-
sight into the origins of loss. A reduction in the value
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Fig. 2. Hybrid-integrated narrow-linewidth laser based on ultra-high-Q Si3N4 microresonator. a, Schematic of
the hybrid laser design (not to scale) and linewidth test setup. The red (yellow) arrow denotes the forward (backscattered) light
field. ISO: optical isolator; AOM: acousto-optic modulator; PC: polarization controller; PD: photodetector. b, Measurement
of single-sideband frequency noise of the free-running and self-injection locked DFB laser. The white-frequency-noise levels are
1 Hz2 Hz−1, 0.8 Hz2 Hz−1, 0.5 Hz2 Hz−1 for resonators with 20 GHz, 10 GHz and 5 GHz FSR, respectively. The dashed lines
give the simulated thermorefractive noise (TRN).

of Q around 1510 nm is due to absorptive N-H bonds
in the Si3N4 core. Beyond this wavelength, the intrin-
sic Q factor increases monotonically versus wavelength,
likely limited by Rayleigh scattering. The highest Q fac-
tor is obtained using the 30 GHz FSR resonator (mean
value of 260 M and standard deviation of 13.5 M over 34
modes) and observed in the 1630 nm to 1650 nm wave-
length range. The overall lower Q factor of the 5 GHz
racetrack resonator suggests excess propagation loss in
its single mode waveguides. This is possibly caused by
higher scattering loss from increased modal overlap with
the waveguide sidewall as compared to the whispering-
gallery mode waveguide.

Hertz-linewidth integrated laser

The hybrid-integrated laser comprises a commercial DFB
laser butt-coupled to the bus waveguide of the Si3N4 res-
onator chip (Fig. 2a). The laser chip, which is mounted

on a thermoelectric cooler to avoid long-term drift, is
able to deliver power up to 30 mW at 1556 nm into the
Si3N4 bus waveguide. Optical feedback is provided to the
laser by backward Rayleigh scattering in the microres-
onator, which spontaneously aligns the laser frequency to
the nearest resonator mode. As the phase accumulated
in the feedback is critical to determining the stability of
injection-locking18,29,32, we precisely control the feedback
phase by adjusting the air gap between the chips. The
laser output is taken through the bus waveguide of the
microresonator, and directed to a self-heterodyne setup
for linewidth characterization. Two photodetectors and a
cross-correlation technique are used to improve detection
sensitivity (see Methods).

The frequency noise spectra of the self-injection
locked laser system using the 30 GHz ring, and the
10 GHz and 5 GHz racetrack resonators (respective in-
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Fig. 3. Formation of mode-locked Kerr combs. a, Measured mode family dispersion is normal. The plot shows the
integrated dispersion defined as Dint = ωµ − ωo − D1µ where ωµ is the resonant frequency of a mode with index µ and D1

is the FSR at µ = 0. The wavelength of the central mode (µ = 0) is around 1550 nm. The dashed lines are parabolic fits
(Dint = D2µ

2/2) with D2/2π equal to −20.3 kHz and −80.2 kHz corresponding to 5 GHz and 10 GHz FSR, respectively.
Note: D2 = −cD2

1β2/neff where β2 is the group velocity dispersion, c the speed of light and neff the effective index of the
mode. b, Experimental comb power (upper panel) and detected comb repetition rate signal (lower panel) with laser turn-on
indicated at 5 ms. c, Measured optical spectra of mode-locked Kerr combs with 5 GHz (upper panel) and 10 GHz (lower
panel) repetition rates. The background fringes are attributed to the DFB laser. d, Single-sideband phase noise of dark soliton
repetition rates. Dark solitons with repetition rate 10.8 GHz and 5.4 GHz are characterized. Inset: electrical beatnote showing
5.4 GHz repetition rate. e, Phase diagram of microresonator pumped by an isolated laser. The backscattering is assumed weak
enough to not cause mode-splittings. The detuning is normalized to one half of microresonator linewidth, while the intracavity
power is normalized to parametric oscillation threshold. Green and red shaded areas indicate regimes corresponding to the c.w.
state and Kerr combs. The blue curve is the c.w. intracavity power, where stable (unstable) branches are indicated by solid
(dashed) lines. Simulated evolution of the unisolated laser is plotted as the solid black curve, and it converges to the steady
state as marked by the black dot. The initial condition is set within the self-injection locking bandwidth29, while feedback
phase is set to 0. f, Simulated intracavity field (upper panel) and optical spectrum (lower panel) of the unisolated laser steady
state in panel e.

trinsicQ factors of 250 M, 56 M and 100 M) are compared
in Fig. 2b. The ultra-high-Q factors enable the frequency
noise of the free-running DFB laser to, in principle, be
suppressed by up to 80 dB (see Methods). In practice,
however, the noise suppression over a broad range of off-
set frequencies (10 kHz to 2 MHz) is limited to 50 dB
by the presence of thermorefractive noise34,35 in the mi-
croresonator. Consistent with theory, microresonators
with larger mode volume, i.e. smaller FSR, experience
a lower thermorefractive fluctuation and exhibit reduced
frequency noise (Fig. 2b). At low frequency offset (below
10 kHz), frequency noise is primarily limited by temper-

ature drift and coupling stability between chips. This
can be suppressed by improved device packaging. At
high offset frequencies (above 5 MHz), frequency noise
rises with the square of offset frequency, as the maxi-
mum noise suppression bandwidth of injection locking is
limited to the bandwidth of the resonator16,32. Thus,
minimum frequency noise below 1 Hz2 Hz−1 is observed
at about 5 MHz offset frequency, where the contributions
of rising laser noise and falling thermorefractive noise are
approximately equal. To achieve an ultra-low white fre-
quency noise floor at high offset frequencies, the laser
output may be taken from a resonator featuring a drop-
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dependence of white frequency noise linewidth of comb lines
in panel a.

port. The drop port would provide low-pass filtering ac-
tion and is studied further in the Supplement32.

Mode-locked Kerr comb

The ultra-high Q of the microresonators enables strong
resonant build-up of the circulating intensity, providing
access to nonlinear optical phenomena at low input power
levels36. As an example, optical frequency combs have
been realized in continuously pumped high-Q optical mi-
croresonators due to the Kerr nonlinearity and they are
finding a wide range of applications37. To explore the
nonlinear operating regime of the hybrid-integrated laser
in pursuit of highly-coherent Kerr combs, the mode dis-
persion of racetrack resonators with 5 GHz and 10 GHz
FSR was characterized. Their mode families are mea-
sured to have normal dispersion across the telecommuni-
cation C-band (Fig. 3a). Also, the dispersion curves ex-
hibit no avoided-mode-crossings, which is consistent with
the single-mode nature of the waveguides. As distinct
from microresonators with anomalous dispersion wherein

bright soliton pulses are readily generated, comb forma-
tion is forbidden in microresonators with normal disper-
sion, unless avoided-mode-crossings are introduced to al-
ter mode family dispersion so as to allow formation of
dark solitons38. Surprisingly, however, it was nonethe-
less possible to readily form coherent combs in these de-
vices without either of the aforementioned conditions be-
ing satisfied.

Indeed, deterministic, turnkey comb formation was
experimentally observed when the DFB laser was
switched-on to a preset driving current (see Fig. 3b). A
clean and stable beatnote of the comb is established 5 ms
after turning on the laser, indicating that mode-locking
has been achieved (see Fig. 3b). Plotted in Fig. 3c are op-
tical spectra of the mode-locked Kerr combs in resonators
with 5 GHz and 10 GHz FSR, where the typical spectral
shape of dark soliton pulses is observed37–40. The stabil-
ity of mode-locking is characterized by measurement of
the comb beat note phase noise (Fig. 3d). For Kerr combs
with 10.8 (5.4) GHz FSR, the phase noise reaches -100
(-114) dBc Hz−1 at 10 kHz and -129 (-140) dBc Hz−1

at 100 kHz offset frequencies. We note that in order to
suppress noise at high-offset frequencies, the pump is ex-
cluded in the photodetection using a fiber Bragg grating
filter, as suggested by previous works10.

This unexpected result is studied theoretically in the
Supplement. Here, results from that study are briefly
summarized. A phase diagram of the microcomb system
is given in Fig. 3e, and separates resonator operation into
continuous-wave (c.w.) and Kerr comb regimes based on
the viability of parametric oscillation41. The intracavity
power exhibits a typical bi-stable behavior as a function
of cavity-pump frequency detuning when pumped by a
laser with optical isolation37. In contrast, a recent study
shows that the feedback from a nonlinear microresonator
to a non-isolated laser creates an operating point for the
compound laser-resonator system in the middle branch29.
The operating point is induced through a combination of
self- and cross-phase modulation, and is associated with
turnkey operation of soliton combs operating under con-
ditions of anomalous dispersion29. Here, we have vali-
dated through simulation that the same operating point
allows access to dark solitons (normal dispersion) without
the requirement for extra dispersion engineering provided
by avoided mode crossings. The black curve in Fig. 3e
gives the dynamics of the compound laser-resonator sys-
tem when initialized at a point that is within the lock-
ing bandwidth of the system. It converges to a steady
state located in the Kerr comb regime. The spectral and
temporal profile of the steady state solutions show that
flat-top pulses are formed in the microresonator with nor-
mal dispersion (Fig. 3f). The possible presence of dark
soliton formation in microresonators pumped by a self-
injection locked laser has been observed, but has not yet
been clarified previously39,40.

The combs generated in these devices exhibit sev-
eral important properties. In Fig. 4a, the spectrum of
a 43.2 GHz repetition rate comb is presented. Curiously,
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Table 1 | Current integrated ultra-high-Q microresonators

               and narrow-linewidth lasers

Material Q (M) FSR (GHz) Finesse

Si
3
N

4
 (this work)

Cladding

Si
3
N

4
 (low confinement)

Si
3
N

4
 (high confinement)

SiO
2

Air

Oxide

Oxide

Oxide

Si 

LiNbO
3

Phosphorous-doped silica

Oxide

Oxide

Doped-oxide

260

81

37

65

216

67

23

205

22

10

31

30

3.3

200

2.7

2.7

63

10

15.2

5.4

4

1

42,600

1,400

38,400

910

3,000

21,700

1,200

15,800

630

210

170

Operation principle Linewidth (Hz)

Self-injection locking 

(this work)

Configuration

External cavity

Hybrid III-V/Si
3
N

4
3

40

140External cavity

Hybrid III-V/Si
3
N

4

Heterogeneous III-V/Si

4,000External cavity Heterogeneous III-V/Si
3
N

4

50,000External cavity Monolithic III-V

Microresonators

Ref #

Lasers

Ref #

22

23

3

26

23

13

25

21

24

20

30

27

50

44

TABLE I. Upper: Best-to-date integrated ultra-high-
Q (> 10 M) microresonators with integrated waveg-
uides. Lower: Best-to-date integrated narrow-
linewidth lasers.

this spectrum was generated in a microresonator hav-
ing a 10.8 GHz FSR. The appearance of rates that
are different from the FSR rate has been observed for
dark solitons38. This line spacing is compatible with
DWDM channel spacings and 10 comb teeth feature on-
chip optical power over -10 dBm, which is a per chan-
nel power that is readily usable in DWDM communica-
tion systems42. However, most significant, is that the
white-frequency-noise-level floor for each of these opti-
cal lines (Fig. 4b) is measured to be on the order of
1 Hz2 Hz−1. We note that these spectra are truly white,
i.e., not rising for higher offset as discussed above for the
laser source. The corresponding fundamental linewidths
of the comb teeth are plotted in Fig. 4c. One of the
lines exhibits degraded linewidth of approximately 30 Hz,
which is suspected to be due to its coincidence with a
sub-lasing-threshold side-mode of the DFB laser. No-
tably, certain comb teeth are quieter than the pump
due to the filtering of pump noise by the ultra-high-Q
modes. These results represent a two order-of-magnitude
improvement as compared to previously demonstrated in-
tegrated microcombs28,29,43.

Performance Comparison

For devices with both integrated waveguide coupler and
resonator, a few platforms have emerged as able to pro-

Intrinsic Q (M)
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Fig. 5. Comparison of finesse and intrinsic Q factors
of state-of-the-art integrated microresonators.

vide ultra-high Q (Q > 10 M). In silica ridge resonators,
a Q factor of 205 M has been demonstrated25, while in
low-confinement silicon nitride, a Q factor of 216 M has
been demonstrated26. However, these platforms pose
challenges to photonic integration with large scale and
high density, e.g. the use of suspended structures25 or the
requirement for centimeter-level bending radius26. While
these limitations are not present in high-confinement sili-
con nitride resonators, the highest demonstratedQ factor
is lower, 67 M23. In Table I, we list key figures of merit
for integrated microresonators with ultra-high-Q factors.
In addition to record-high Q factor, owing to their com-
pact footprint, the current resonators stand out among
ultra-high Q resonators for having the highest finesse as
well. Fig. 5 provides a comparison as a plot of the Q and
finesse of the current work with the state-of-the-art.

We further compare the current hybrid-integrated
laser linewidth to state-of-the-art results in Table I. The
Lorentzian linewidth of monolithic III-V lasers is gener-
ally limited to the 100 kHz to 1 MHz range by passive
waveguide losses well above 1 dB cm−1, with best demon-
strated linewidth below 100 kHz44. Phase and amplitude
noise scale according to the square of cavity losses16,18.
Thus, hybrid integration, where the active III-V and
passive photonic chips are assembled post-fabrication,
and heterogeneous integration45, where III-V material is
directly bonded to the passive chip during fabrication,
have emerged as primary technologies to create narrow-
linewidth integrated lasers. As shown in Table I, hybrid
and heterogeneous integration can produce fundamental
linewidth well below 1 kHz. In this work, fundamental
frequency noise is suppressed to 0.5 Hz2 Hz−1, or equiv-
alently, a 3 Hz linewidth, which is more than an order of
magnitude improvement over the best results to date27.

Discussion

As single-frequency or mode-locked lasers, these hybrid-
integrated devices are readily applicable to many co-
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herent optical systems. For example, while laboratory
communication experiments pursuing spectral efficiency
approaching 20 bit s−1 Hz−1 rely on high performance
single-frequency fiber lasers15, narrow-linewidth inte-
grated photonic comb lasers could accelerate the adop-
tion of similar schemes in practical data-center and metro
links28,29,42,43,46,47. Microwave photonics9–13, atomic
clocks1,2, and quantum information48 will also benefit
greatly from the reduced size, weight, power and cost
provided by the combination of ultra-high Q and pho-
tonic integration.

Many improvements beyond the results presented
here are feasible. We infer propagation loss of
0.1 dB m−1, however, lower loss of 0.045 dB m−1 is
feasible in thinner cores31, suggesting that the limits of
Q for this platform have not been fully explored. Spi-
ral resonators with increased modal volume can suppress
low-offset frequency noise induced by thermodynamic
fluctuations49. Finally, heterogeneous integration of III-
V lasers and ultra-high-Q microresonators may eventu-
ally unite the device onto a single chip30,45,50, leading to
scalable production with high yield using foundry-based
technologies.
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Methods

Experimental details

The Q is obtained by frequency-down-scanning a
external-cavity-diode-laser (ECDL) across a mode, with
frequency calibrated using a Mach-Zehnder interferom-
eter (MZI). Measured transmission spectra at various
wavelengths are shown in the Supplement32. Similarly,
the mode family dispersion is extracted from the broad-
band transmission spectrum of the resonator, with cali-
bration provided by the MZI as well.

The laser switch-on test is performed by rapidly mod-
ulating its driving current with square wave functions.
The real-time evolution of comb repetition rate is ob-
tained by down-mixing the photodetected beatnote with
a local microwave oscillator. The trace, which is recorded
using a high-speed oscilloscope, is Fourier transformed to
give the spectrograph. Multiple turnkey tests are shown
with 100 percent success rate (see Supplement32). The
phase noise of comb repetition rates is characterized us-
ing a Rohde & Schwarz phase noise analyzer.

Laser linewidth measurement

The noise in the photodetection, e.g., shot noise, ther-
mal noise and dark current, limit the sensitivity of self-
heterodyne method especially at high-offset frequencies.
To overcome such limit, we use two photodetectors to
measure the self-heterodyne signals simultaneously. The
instantaneous frequency is extracted using Hilbert trans-
formation, and their cross correlation Cν(f) is given by

Cν(f) = 2
[
1− (1− τ0BW)

+
cos(2πfτ0)

]
Sν(f)

− 1

2

[
1 + (1− τ0BW)

+
cos(2πfτ0)

]

× f2(SI(fc + f) + SI(fc − f))

(1)

where Sν(f) and SI(f) are the single-sideband power
spectral density of frequency and relative intensity noise
(RIN) of the laser, τ0 the delay between the two arms,
and x+ = max(0, x) the ramp function. The resolution
bandwidth of the cross-correlator BW is set as 20 kHz
so that τ0BW ≪ 1. To reduce the contribution of RIN
as well as enhance the detection sensitivity of frequency
noise, at high-offset frequencies (f > 2 MHz) we only se-
lect the data where cos(2πfτ0) ≈ −1. The enhancement

of sensitivity equals
√
BW ∗ T with T the recording time.

In this measurement T is set 200 ms, corresponding to
18 dB enhancement of sensitivity.

Thermorefractive noise

Constant heat exchange between the microresonator and
its ambient results in thermodynamic fluctuations, which
could induce changes in the refractive index through
thermo-optic effect, giving rise to thermorefractive noise
of the resonant frequencies34,35. The variance of the ther-

morefractive noise (TRN) is given by

< δω2
c >=

n2
Tω

2
c

n2
eff

kBT
2

ρCV
. (2)

where nT is the thermo-optic coefficient, ωc the resonant
frequency, neff the effective index of the mode, kB the
Boltzmann’s constant, T the temperature of the heat
bath, ρ the density, C the specific heat and V the volume.
Owing to their larger mode volumes, the low-confinement
resonators in this work feature notably smaller TRN
than those of high-confinement resonators35. The spec-
tral density of the TRN is computed using finite-
element-method (FEM) based on fluctuation-dissipation
theorem18, as plotted in Fig. 2b in the maintext.

Linewidth-reduction factor

The amount of linewidth-reduction in self-injection
locked laser depends on the spectral response and power
of the backscattered field, which has been derived in
the supplement based on a complete theory involving
both laser and microresonator dynamics18. We introduce
the coupling between the clockwise and counterclockwise
field in the microresonator, β, which is normalized to one
half of the cavity linewidth. In the case of weak backscat-
tering (β ≪ 1), i.e., the mode remains as a singlet, the
laser linewidth can be reduced by

α ≈ 64(1 + α2
g)T

2η2|β|2Q
2
R

Q2
d

, (3)

where QR and Qd stand for the Q of the microresonator
and the laser diode, respectively. η = QR/Qe is the mi-
croresonator loading factor with Qe being the coupling
Q between the bus waveguide and the resonator. T de-
notes the power insertion loss between the facets of the
laser and the bus waveguide, while αg is the amplitude-
phase coupling coefficient of the laser. In the presence of
a strong backscattered field (β ≫ 1), i.e., the mode splits
into doublets, the linewidth-reduction factor is saturated
as

α ≈ 4(1 + α2
g)T

2η2
Q2

R

Q2
d

, (4)

which is independent of the backscattering coefficient.
Typical values of these parameters in our systems are:
αg = 2.5, T = −6 dB, η = 0.5, Qd = 104. For mode fea-
turing loaded Q of 50 M and split resonances, the max-
imum estimated noise reduction factor is around 70 dB,
which is 20 dB higher than the noise suppression achieved
in experiment. In the experiment, the locking point is in-
tentionally offset from the exact resonance by adjusting
the feedback phase to avoid nonlinearity.

Phase diagram

The phase diagram presented in Fig. 3b of the maintext
is a powerful tool to interpret how self-injection lock-
ing can deterministically lead to mode-locked Kerr comb
formation. Assuming homogeneous intracavity field, the
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parametric gain of the ±lth modes relative to the pump
is given by41

Γ(±l) = Re
{
−1 +

√
ρ2 − (∆− 2ρ+ d2l2)2

}
, (5)

where ρ2 is the intracavity power normalized to the para-
metric oscillation threshold37, κ represents the modal
linewidth, ∆ = 2δω/κ the normalized detuning, δω the
pump-cavity detuning, and d2 = D2/κ the normalized
dispersion. To initiate parametric oscillation, Γ(±l) > 0
is required. At the minimal value of l2 = 1, the regime
corresponding to Kerr comb is given by

∆ > 2ρ+ d2 −
√
ρ2 − 1. (6)

Data availability
All data generated or analysed during this study are
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I. DEVICE DESIGN

Among the design parameters involved in achieving ultra-high Q factors, the choice of waveguide thickness is critical,
as thinner cores will minimize the impact of scattering losses through lower modal confinement, at the expense of
larger bending radius and thus lower integration density. In Fig. S1, we compare simulated bending loss in waveguides
of 250 nm, 100 nm, and 40 nm thickness and 1.4 µm, 2.8 µm, and 5.6 µm width, respectively, where width is chosen to
guarantee single-mode propagation within the C band. Although the lowest propagation loss has been demonstrated
in 40 nm thick cores1, a radius of 1 cm is required to guarantee bending loss below 0.01 dB/m, which limits the
integration density to a single resonator per die for typical lithography stepper reticles of 2 cm by 2 cm dimension.
On the other hand, 250 nm thick cores allow for highly compact resonators, with just 100 µm bend radius. In this
work, we focus on achieving ultra-low loss while maintaining moderate integration density. Thus, we select 100 nm
as the optimal core thickness to allow bend radius as low as 700 µm, permitting as many as 100 resonators to be
integrated on a single die while still suppressing the contribution of the waveguide sidewall roughness to scattering
loss. For the resonators designed in this work, the minimum bend radius is chosen as 1 mm, ensuring that bend losses
are entirely negligible.
To achieve the highest Q factor, we use multi-mode ring resonators to further minimize the contribution of sidewall

scattering. For 1 mm bend radius, the fundamental mode propagation constant is insensitive to waveguide width for
width beyond 8 µm. Hence, we choose a width of 8 µm, which produces a whispering-gallery mode and free spectral
range (FSR) of 30 GHz. To ensure selective, low-loss coupling to the fundamental mode, a pulley coupler2 is used.
The coupler waveguide width is chosen to precisely phase-match the propagation constant of the coupler waveguide
mode with that of the ring waveguide for a 5 µm width space between the waveguides. The length of the coupler
is approximately 1 mm long, and is designed to be under-coupled to allow accurate measurement of the intrinsic Q
factor. Measured resonator transmission spectra at various wavelength are provided in Fig. S2.
To achieve larger mode volume and smaller FSR while retaining reasonable footprint and ultra-high Q, racetrack
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FIG. S1. Bending loss versus radius. Simulated waveguide bending loss of single mode waveguides at three thicknesses of
Si3N4 core.
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FIG. S2. Q factor measurement. Transmission of high-Q modes at various wavelength in a 30 GHz resonator for determina-
tion of intrinsic and loaded Q factors (red). Fitted doublet lineshape is overlaid. The tuning rate of the laser is simultaneously
calibrated by the transmission of an MZI with 14.3 MHz FSR, also pictured (blue).

resonators with 5 GHz and 10 GHz FSR are used. Racetrack resonators were designed for critical coupling at 1550 nm
to ensure efficient delivery of power to the resonator. To convert the mode between straight and bending waveguides,
a sine curve evaluated between 0 and π/2 is used as an adiabatic transition between the two. However, the transition
between straight and bending waveguides still leads to residual conversion of the fundamental mode to unguided
radiation modes, which causes excess loss. This is indicated by the lower intrinsic Q factor of the 10 GHz racetrack
resonator as compared to the 5 GHz resonator of 56 M and 100 M at 1560 nm, respectively. Imperfect adiabaticity can
also cause coupling to higher-order waveguide modes. When those higher order modes are antiresonant, this coupling
is suppressed, however strong coupling can occur at mode crossings. As the loss in higher-order modes typically
exceeds that of the fundamental, the Q at a mode crossing can be further degraded. Furthermore, the location of
these mode crossings can be highly variable due to fabrication variability. Thus, to simplify operation of the device,
we use single-mode waveguides within all racetrack resonators, at the expense of lower Q factor. Nonetheless, the
Q factor is still high enough that the frequency noise of the self injection-locked laser is limited by thermorefractive
noise, so the impact of reduced Q factor is negligible.

II. THEORY: SELF-INJECTION LOCKING

In this section we apply the theory of self-injection locking to study the linewidth-reduction factor when the laser is
stabilized to the microresonator. The hybrid-laser system can be split into three parts: the laser field AL, the forward
optical field AF and the backscattered field AB in the microresonator. The complete set of equations of motion are3,4:

∂AF

∂t
= −(

κ

2
+ iδω)AF + i

D2

2

∂2AF

∂θ2
+ ig(2|AB|2 + |AF|2)AF + iβ

κ

2
AB −

√
TκRκLe

iφBAL,

∂AB

∂t
= −(

κ

2
+ iδω)AB + i

D2

2

∂2AB

∂θ2
+ ig(2|AF|2 + |AB|2)AB + iβ

κ

2
AF,

dAL

dt
= i(δωL − δω)AL − γL

2
AL +

gL
2
(1 + iαg)AL −

√
TκRκLe

iφBAB.

(S1)

Here κ and γL are the damping rates of the microresonator mode and the laser, respectively. δω = ωc − ωo is
the detuning of the cold-cavity resonant frequency ωc relative to the injection-locked laser frequency ωo. Similarly,
δωL = ωc−ωL with ωL being the free-running, cold laser frequency. The nonlinear coupling coefficient g = ωocn2/n

2
effV

with c the speed of light, n2 the Kerr coefficient, neff the effective index and V the effective mode volume. θ is
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the polar angle of the resonator in rotational frame, and D2 is the group velocity dispersion. β stands for the
dimensionless backscattering coefficient normalized to the mode linewidth κ/2, which is chosen as a positive real
number for simplicity. κR and κL denote the external coupling rate of the resonator and the laser facet, respectively.
T is the energy coupling efficiency between the facets of the laser and the Si3N4 waveguide, and φB is the propagation
phase delay between the resonator and the laser. gL is the intensity dependent gain of the laser, and αg is the

amplitude-phase coupling coefficient. The average intracavity intensity |AF,B|2 =
∫ 2π

0 |AF,B|2dθ/2π, while the average
amplitude AF,B =

∫ 2π

0
AF,Bdθ/2π.

Introducing the normalized amplitude ρF,B,L = AF,B,L/
√
Eth with Eth = κ/(2g) the intracavity parametric oscilla-

tion threshold, the equations of motion can be normalized to a dimensionless form

∂ρF
∂τ

= −(1 + i∆)ρF + id2
∂2ρF
∂θ2

+ i(2|ρB|2 + |ρF |2)ρF + iβρB + F,

∂ρB
∂τ

= −(1 + i∆)ρB + id2
∂2ρB
∂θ2

+ i(2|ρF |2 + |ρB |2)ρB + iβρF,

dρL
dτ

= i(∆L −∆)ρL − ΓρL +GL(1 + iαg)ρL − 2
√
TηΛeiφBρB,

(S2)

where normalized coefficients τ = κt/2, ∆ = 2δω/κ, d2 = D2/κ, ∆L = 2δωL/κ, η = κR/κ, Λ = κL/κ, Γ = γL/κ and
GL = gL/κ. The normalized pump term F = −2

√
TηΛeiφBρL. Note that if the Q of the laser diode is limited by the

coating on its emission end, then Λ = Qm/Qd with Qm the Q of the microresonator and Qd the Q of the laser diode.

Expanding the laser field as ρL = |ρL|eiφL , the dynamics of the amplitude and phase are given by

1

|ρL|
d|ρL|
dτ

= GL − Γ− Re[2
√
TηΛeiφB

ρB
ρL

], (S3)

dφL
dτ

= ∆L −∆+ αgGL − Im[2
√
TηΛeiφB

ρB
ρL

]. (S4)

In the presence of sufficient gain saturation, the laser dynamics can be adiabatically eliminated so that d|ρL|/dτ = 0.
Therefore the gain can be solved as

GL = Γ+ Re[2
√
TηΛeiφB

ρB
ρL

]. (S5)

Substituting Eq. S5 into Eq. S4, we obtain

dφL
dτ

= ∆L −∆+ αgΓ− Im[2(1− iαg)
√
TηΛeiφB

ρB
ρL

]

= ∆L −∆+ αgΓ + 4TηΛ
√
1 + α2

g Im[eiψ
ρB
F

],

(S6)

where

ψ = 2φB − arctan(αg). (S7)

Note that Eq. S6 resembles the form of Adler’s equation5, whose stationary solution gives the frequency of the
self-injection locked laser as

∆ = ∆L + αgΓ +K Im[eiψ
ρB
F

]. (S8)

It should be noted that, the locking strength K = 4TηΛ
√
1 + α2

g, is usually much greater than 1 (> 103 in this work).

The linewidth-reduction factor is derived as follows. For simplicity, we ignore all nonlinear terms by assuming
homogeneous intracavity field, i.e., ρF,B = ρF,B. Therefore, at steady state, the backscattered field is given by

ρB =
iβF

(1 + i∆)2 + |β|2 . (S9)
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Substituting Eq. S9 into Eq. S8, we have

∆ = ∆L + αgΓ +K Im[ieiψ
β

(1 + i∆)2 + |β|2 ] = ∆L + αgΓ +Kχ. (S10)

The equation has two solutions. However, stable self-injection locking is established only when ∂χ/∂∆ < 0. Assuming
the system is operating at steady state, the linewidth-reduction factor at low offset frequencies can be calculated using

α = (
∂∆L

∂∆
)2, (S11)

which can be solved analytically in the two following regimes:

Weak backscattering (β ≪ 1): In this case, the mode will remain as a singlet. Stable locking occurs when
ψ ≈ −π/2. Assuming the laser is locked to the center of the mode, i.e., ∆ = 0, the linewidth-reduction factor yields

α ≈ 64(1 + α2
g)T

2η2Λ2|β|2 = 64(1 + α2
g)T

2η2|β|2Q
2
R

Q2
d

, (S12)

where QR and Qd stand for the Q of the microresonator and the laser diode, respectively.

Strong backscattering (β ≫ 1): In this case, the mode will split as doublets. When ψ ≈ 0(π), the laser will be
locked to the mode at the red (blue) side. Assuming the laser is locked to the center of a split mode, i.e., ∆ = ±|β|,
the linewidth-reduction factor yields

α ≈ 4(1 + α2
g)T

2η2Λ2 = 4(1 + α2
g)T

2η2
Q2

R

Q2
d

, (S13)

which is irrelevant to the backscattering coefficient β.

Typical values of these parameters in our systems are: αg = 2.5, T = −6 dB, η = 0.5, Qd = 104. For mode featuring
loaded Q of 50 M and split resonances, the maximum estimated noise reduction factor is around 70 dB, which is 20
dB higher than the noise suppression achieved in experiment. Under single-mode operation, we expect the locking
point to be detuned from resonance center to avoid nonlinearity.

III. THEORY: SPECTRAL DEPENDENCE OF NOISE SUPPRESSION FACTOR

In this section, we derive the spectral dependence of the noise suppression factor, where the frequency response
of the microresonator is taken into consideration. For simplicity, the backscattering is assumed weak enough to not
cause mode splitting (β ≪ 1). The laser is assumed locked to the center of the resonance, i.e., ∆ = 0. Nonlinearities,
dispersion and the phase-amplitude coupling coefficient αg are also ignored. The steady state solutions from Eq. S2
now read

ρF = RρL,

ρB = iβRρL,
(S14)

where R = −2
√
TηΛeiφB . The fluctuation of laser can be introduced using a Langevin term f , which includes

spontaneous emission and carrier density fluctuations. As a result, the system will fluctuate in the vicinity of the
steady state, as denoted by field perturbation uF, uB and uL. With proper linearization, the dynamics of perturbation
terms are formulated as

u̇F = −uF + iβuB +RuL,

u̇B = −uB + iβuF,

u̇L = i∆LuL + (GL − Γ)uL − 2ǫGLAuρL +RuB + f(t),

(S15)

where

uL = ρL(1 +Au)e
iφu − ρL ≈ ρLAu + iρLφu. (S16)
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The gain saturation effect is described by GL = Go/(1 + ǫ|ρL|2). The amplitude and phase perturbations of the laser
can be studied separately as

Ȧu = −2∆Lφu + (GL − Γ)Au − 2ǫGLAu +
1

2
(
RuB + f

ρL
+ c.c.),

φ̇u = ∆LAu + (GL − Γ)φu +
1

2i
(
RuB + f

ρL
− c.c.).

(S17)

Assuming the gain saturation is large, i.e., ǫ ≫ 1, the amplitude fluctuation diminishes (Au ≈ 0). Therefore, using
Eq. S5 and Eq. S14 we obtain

φ̇u = − iβ(R
2 −R∗2)

2
φu +

1

2i
(
RuB + f

ρL
− c.c.). (S18)

Applying Fourier transform, the spectral density of φu yields

iωφ̃u = − iβ(R
2 −R∗2)

2
φ̃u +

1

2i
(R
ũB
ρL

−R∗ ũ
∗
B

ρ∗L
) +

1

2i
(
f̃

ρL
− f̃∗

ρ∗L
). (S19)

The spectrum of uB can be derived from Eq. S15 as

iωũF = −ũF + iβũB + iRρLφ̃u,

iωũB = −ũB + iβũF,
(S20)

where ũL ≈ iρLφ̃u is used. Therefore, we have

ũB = − 1

(1 + iω)2
βRρLφ̃u, (S21)

where β ≪ 1 is applied. Similarly, by taking conjugation and replacing ω with −ω, the spectrum of u∗B is given by

ũ∗B = − 1

(1 + iω)2
βR∗ρ∗Lφ̃u. (S22)

Substituting Eqs. S21 and S22 into Eq. S19, we have

iωφ̃u = − iβ(R
2 −R∗2)(2iω − ω2)

2(1 + iω)2
φ̃u + s̃, (S23)

where s = 1
2i(

f̃
ρL

− f̃∗

ρ∗
L

). If the feedback phase ψ = 2φB = π/2, we have

R2 −R∗2 = −8iT ηΛ. (S24)

Therefore, the phase noise of the self-injection locked laser can be written as

|φ̃u|2 =
|s̃|2

ω2|1 + 4βTηΛ(2+iω)
(1+iω)2 |2

. (S25)

Compared with the free-running laser noise (obtained by setting β = 0), the spectrum of noise reduction factor is
given by

α(ω) = |1 + 4βTηΛ(2 + iω)

(1 + iω)2
|2. (S26)

It is noted that at low offset frequencies, Eq. S26 resembles the form of Eq. S12 except for correction from amplitude-
phase coupling term, which is set to be 0 in the derivation. Plotted in Fig. S3 is a typical spectral dependence of
the noise reduction factor, which decreases at the rate of 1/ω2 at frequencies exceeding the resonator linewidth. Such
ineffectiveness at high-offset frequencies can be resolved by introducing a drop-port to the microresonator. For a laser
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FIG. S3. Spectral dependence of noise reduction factor. a, Configuration of a laser butt-coupled to a microresonator
with add-drop port. b, Calculated noise reduction factor of laser emission from through (red) and drop (blue) port. The
frequency offset is normalized to κ/2, one half of resonator linewidth. The term 4TηΛ is set to be 1000 in the plot.

emitting from the drop-port of the microresonator, the phase is given by

φF = Im[
uF
ρF

] =
1

2i
(
uF
ρF

− u∗F
ρ∗F

), (S27)

whose spectrum yields

φ̃F =
1

2i
(
uF
ρF

− u∗F
ρ∗F

) =
1

1 + iω
φ̃u. (S28)

Therefore, the noise reduction factor of the drop-port emission versus the free-running laser takes the form

αdrop(ω) = (1 + ω2)|1 + 4βTηΛ(2 + iω)

(1 + iω)2
|2. (S29)

The additional noise suppression term at high-offset frequencies is attributed to the filtering effect of the high-Q
mode. As a result, the noise reduction factor remains nearly constant across a wider frequency span. Stronger
noise suppression at higher-frequencies is expected, though a model involving multiple longitudinal modes should be
established at offset frequency on the order of the microresonator FSR.
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FIG. S4. Numerical simulation of Kerr comb formation in microresonators pumped by self-injection locked

lasers. a, Evolution of intracavity field (upper panel), steady-state intracavity field (middle panel), and steady-state optical
spectrum (lower panel) when the mode is a singlet. The result is identical to that has been provided in Fig. 3 in the maintext.
Parameters used in the simulation are: d2 = −0.01, β = 0.1, K = 2700, F 2 = 10, ψ = −π/2, ∆L + αgΓ = 5. b, Evolution of
intracavity field (upper panel), steady-state intracavity field (middle panel), and steady-state optical spectrum (lower panel)
when the mode splits into doublets. Parameters used in the simulation are: d2 = −0.01, β = 5, K = 2700, F 2 = 10, ψ = 0,
∆L + αgΓ = 5.

IV. THEORY: KERR COMB FORMATION

In this section we use the formalism in Section I to study the dynamics of Kerr comb formation in microresonators
pumped by self-injection locked laser. On account of Kerr nonlinearity and dispersion, the intracavity field is no
longer homogeneous. Since the Q of the laser cavity is much lower than the microresonator, the dynamics of the laser
are much faster than the optical field in the microresonator, which can be assumed to operate at steady state as given
by Eq. S8. Therefore we can retrieve a set of coupled Lugiato-Lefever equations4,6 as

∂ρF
∂τ

= −(1 + i∆)ρF + id2
∂2ρF
∂θ2

+ i(2|ρB|2 + |ρF |2)ρF + iβρB + F,

∂ρB
∂τ

= −(1 + i∆)ρB + id2
∂2ρB
∂θ2

+ i(2|ρF |2 + |ρB |2)ρB + iβρF,

∆ = ∆L + αgΓ +K Im[eiψ
ρB
F

].

(S30)
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Numerical simulation based on the equations above is shown in Fig. S4, where two conditions are considered. With
weak backscattering, the mode remains a singlet. By setting the feedback phase as −π/2, a spontaneous pattern
forms, leading to a flat-top pulse in the time domain as shown in Fig. S4a. Such a pulse is usually referred to as
a dark soliton pulse7 or platicon8. The optical spectrum is similar to the 10 GHz Kerr comb shown in Fig. 3C in
the maintext. When the backscattering is strong enough to cause mode splitting, spontaneous Kerr comb formation
is also feasible by setting feedback phase ψ ≈ 0, as shown in Fig. S4b. Compared with the case of weak-scattering,
a pulse with shorter duration is formed, which is attributed to the increased effective detuning resulting from mode
splitting. The simulated optical spectrum mimics the shape of the 5 GHz Kerr comb shown in Fig. 3c in the maintext.
It should be noted that although stable injection can be established with feedback phase of π, spontaneous Kerr comb
formation is forbidden as imposed by the requirement of parametric oscillation.

V. ADDITIONAL MEASUREMENT
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FIG. S5. Repeatability of turnkey Kerr comb generation. Measured comb power (upper panel) and spectrograph
of comb repetition rate (lower panel) of 10 consecutive laser switching-on tests. The shaded region indicates the periodic
switching-on of lasers.
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