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1. Introduction

The new generation of high energy colliders such as the Large Hadron Collider (LHC) or a

future linear collider (NLC) require new tools for the simulation of signals and backgrounds.

The widely used event generators HERWIG [1] and PYTHIA [2] underwent tremendous

development during the LEP era. However, they have also reached the limit of reasonable

maintenance in the future. The codes have evolved into large-scale programming projects,

making the implementation of new concepts and ideas increasingly difficult. Therefore

these programs (Pythia7) [3] as well as new projects, like SHERPA [4], are being completely

(re-)developed in the object-oriented programming language C++.

In this paper we present results from the new Monte Carlo event generator Herwig++

as the first step in the redevelopment of HERWIG. The generator will be used here to

simulate e+e− annihilation events. In order to have full control of the basic physics steps

that are simulated, we need to put the new generator on a firm basis with respect to

LEP and SLC results before we go on to upgrade it to initial-state showers and the other

requirements for the simulation of lepton-hadron and hadron-hadron collisions. Therefore

we have tested the predictions of the generator against a wide range of observables that have

been measured at LEP and SLC, and have explored the sensitivity to the most important

parameters and cutoffs. We did not perform a high-precision tuning: our aim here is rather

to describe the program and to show that it is able to give results as acceptable as those

generated by its predecessor HERWIG for a reasonable choice of parameters.

2. Main features of the code

The details of Herwig++ will be described in conjunction with the release of the code [5].

The main stages of the simulation of e+e− annihilation are the same as in HERWIG [1].

However, in comparison to its predecessor, Herwig++ features a new parton shower and

an improved cluster hadronization model. At present, hadronic decays are implemented in

the same fashion as they were in HERWIG.

The program is based on the Toolkit for High Energy Physics Event Generation

(ThePEG) [7] and the Class Library for High Energy Physics (CLHEP) [8]. They are

utilized in order to take advantage of the extended general functionality they can provide.

The usage of ThePEG unifies the event generation framework with that of Pythia7. This

will provide benefits for the user, as the user interface, event storage etc. will appear to be

the same. The implementations of the physics models, however, are completely different

and independent from each other.

Our simulation starts with an initial hard process e+e− → (γ∗, Z0) → qq̄ + γγ. The

final state photons simulate QED radiation from the initial state, so that a radiative return

can be properly simulated. For the present paper we shall only be interested in the details

of the QCD parton shower in the final state. The final-state parton shower starts with a

quark and antiquark that carry momenta pq and pq̄, respectively, and have an invariant

mass squared of Q2 = (pq + pq̄)
2. The only detail we are concerned with in relation to

initial-state radiation is that the centre-of-mass frame of the qq̄-pair is slightly boosted
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with respect to the collider laboratory frame and that Q may be different from the e+e−

centre-of-mass energy. We have made sure that the applied cuts on the energy of the

annihilating e+e− subsystem are the same as those used in the experimental analyses.

2.1 Parton shower

The partonic evolution from the large scale of the hard collision process down to hadronic

scales via the coherent emission of partons, mainly gluons, is simulated on the basis of

the Sudakov form factor. Starting from the hard process scale Q0, subsequent emissions

at scales Qi and momentum fractions zi are randomly generated as a Markov chain on

the basis of the soft and collinear approximation to partonic matrix elements. Details

are described in chapter 5 of [9]. In Herwig++ we have chosen a new framework of vari-

ables, generically called (q̃, z). Here, q̃ is a scale that appears naturally in the collinear

approximation of massive partonic matrix elements and generalizes the evolution variable

of HERWIG to the evolution of massive quarks. z is a relative momentum fraction; the

evolution is carried out in terms of the Sudakov decomposition of momenta in the frame

where the respective colour partners are back-to-back. As in HERWIG, the use of the

new variables allows for an inherent angular ordering of the parton cascade, which simu-

lates coherence effects in soft gluon emission. The details of the underlying formalism are

described elsewhere [10].

The most important parameter of the parton shower that we will be concerned with

in this paper is the cutoff parameter Qg, which regularizes the soft gluon singularity in the

splitting functions and determines the termination of the parton shower. Less important

but relevant in extreme cases is the treatment of the strong coupling constant at low scales.

We have parametrized αS(Q) below a small scale Qmin > ΛQCD in different ways. We keep

Qmin generally to be of the order of 1 GeV, where we expect non-perturbative effects to

become relevant. Below that scale αS(Q) can optionally be

• set to zero, αS(Q < Qmin) = 0,

• frozen, αS(Q < Qmin) = αS(Qmin),

• linearly interpolated in Q, between 0 and αS(Qmin),

• quadratically interpolated in Q, between 0 and αS(Qmin) .

We put the final partons of the shower evolution on their constituent mass shells, since

the non-perturbative cluster hadronization will take over at this scale, so we usually have

kinematical constraints that keep Q above Qmin, in which case the treatment below Qmin

is irrelevant. Typically, αS(Qmin) ∼ 1 here.

2.2 Hadronization and decay

The partonic final state is turned into a hadronic final state within the framework of the

cluster hadronization model of HERWIG [11]. In order to address some shortcomings [12]
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a new cluster hadronization model1 has been created for Herwig++, which is discussed in

section 4. The emerging hadrons are possibly unstable and eventually decay. The decay

matrix elements and modes correspond to those in HERWIG.

3. The parton shower in detail

3.1 Hard matrix element correction

Before we begin the parton shower evolution, but after obtaining the final state qq̄-pair

from the hard process, we decide whether or not a so-called hard matrix element correction

will be applied. In order to do so, we decompose the qq̄g-phase space into regions that will

be covered by the parton shower emissions and a ‘dead’ region that, based on our choice

of evolution variables and initial conditions, is never populated by first parton shower

emissions (see [10]). To take into account gluon emissions into the dead region we generate

a pair of three-body phase-space variables x, x̄ according to the first order QCD matrix

element. However, we only accept emissions into the dead region of phase space at a rate

that is given by the QCD matrix element, that is, only 3% of all emissions are corrected

by the hard matrix element at all. Once we accept an additional hard gluon emission,

we replace the qq̄-final state with the qq̄g final state. We keep the orientation of either

the quark or antiquark with weights x2 and x̄2 respectively, resulting in properly oriented

three-jet events apart from finite mass effects [14]. In this way, we take into account the

most important subleading higher-order corrections that are not enhanced by additional

soft or collinear logarithms.

3.2 Initial conditions

Having completed the hard matrix element correction, the next task is to determine the

initial conditions for the parton shower evolution. For every particle a we determine the

colour partner or, more generally, the gauge ‘charge’ partner ā. In the case of a qq̄ final

state there is no ambiguity, whereas the gluon in qq̄g is assigned the quark or the antiquark

with equal probability.

For different interactions there can be different ‘charge’ partners. In our case we have

also implemented collinearly enhanced photon emission from charged particles. In the case

of the qq̄g final state the gluon doesn’t radiate photons and the only two charge partners are

the quark and the antiquark. The remaining parts of the shower evolution are carried out

in exactly the same way. Different sorts of interaction just add another splitting possibility

for a given particle, which will compete with the others for the next possible splitting that

occurs.

Once the colour partners are determined, we fix the shower kinematics and the initial

evolution scale. As explained in detail in [10], the shower evolution of a particle a is carried

out in a Sudakov basis,

q = αpa + βnā + q⊥ , (3.1)

1A new cluster hadronization model that addresses some of these shortcomings is also a feature of

SHERPA [13].
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where pa is the momentum of particle a with (current) mass-squared p2
a = m2

a, nā is a

lightlike vector in the ‘backwards’ direction, along the momentum pā of the partner ā, and

q⊥ is the transverse momentum, q⊥ · pa = q⊥ ·nā = 0. In the centre-of-mass frame of a and

ā we have pa = 1
2Q(1, v) and we set nā = 1

2Q(v,−v), q⊥ = (0, q⊥) with q⊥ · v = 0. Given

this basis, we calculate the initial evolution scale for each particle as

q̃2
ini = (pa + pā) · (pa + nā) =

1

2
Q2(1 + v) . (3.2)

We note that this is the most symmetric choice of initial conditions (see [10]). In the qq̄-

case, this choice starts the evolution of quark and antiquark at the same scale. We could

as well choose another pair of evolution scales. If we do so, however, we make sure that

the phase space region of soft gluon emission is covered uniquely and smoothly with the

radiation from the two partners [10]. For later kinematic reconstruction we have to store

the momenta pi of the outgoing partons at this stage.

3.3 Parton splittings and kinematics

Starting from the evolution scale q̃i = q̃ini we now carry out the parton shower evolution

for each final state particle separately. For every possible splitting a → bc of particle a we

determine the scale of the next branching q̃i+1 based on the Sudakov form factor

Sba(q̃i, q̃i+1) =
∆ba(q̃c, q̃i)

∆ba(q̃c, q̃i+1)
, (3.3)

where

∆ba(q̃c, q̃) = exp

{

−
∫ q̃

q̃c

dq̃2

q̃2

∫

dz
αS(z, q̃)

2π
Pba(z, q̃)Θ(p⊥ > 0)

}

. (3.4)

q̃c is the lower cutoff of the parton shower which, by default, is taken to be the nonper-

turbative gluon mass mg = 750 MeV. αS(z, q̃) is the running coupling in the case of QCD

evolution and generally depends on the evolution scale and momentum fraction. We choose

z(1 − z)q̃ as the argument of the running coupling which reduces to the transverse mo-

mentum q⊥ in the massless case. Pba(z, q̃) are the quasi collinear splitting functions that

depend on the evolution scale in the case of massive partons [15]. For QCD branchings

they are

Pqq(z, q̃) = CF

[

1 + z2

1 − z
− 2m2

a

z(1 − z)q̃2

]

, (3.5)

Pqg(z, q̃) = TR

[

1 − 2z(1 − z) +
2m2

a

z(1 − z)q̃2

]

, (3.6)

Pgg(z, q̃) = CA

[

z

1 − z
+

1 − z

z
+ z(1 − z)

]

. (3.7)

Similarly, for the branching q → qγ, ignoring the parton mass, we have,

P γ
qq(z, q̃) = e2

a

1 + z2

1 − z
, (3.8)
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with ea being the electric charge of the parton in units of the elementary charge. Of course

we have to take the fine structure constant αem in eq. (3.4) in this case. Θ(q⊥ > 0) limits

the phase space to the region where it is possible to reconstruct the transverse momentum

p⊥ from the evolution variables (q̃, z), which is a complicated and implicit function in our

case. However, using the veto algorithm described below we do not need to know the phase

space boundary explicitly.

The evolution variables q̃ and z determine the kinematics of the parton shower. The

momentum fraction z is simply the ratio of the Sudakov variables α in eq. (3.1) for the

parent and daughter parton,

αi+1 = zαi . (3.9)

Based on its meaning in the quasi-collinear limit, q̃ determines the relative transverse

momentum as

|p⊥| =
√

(1 − z)2(z2q̃2 − µ2) − zQ2
g (quark branching), (3.10)

|p⊥| =
√

z2(1 − z)2q̃2 − µ2 (gluon branching) , (3.11)

where

µ = max(ma, Qg) , (3.12)

when a quark of mass a is involved in the branching and simply µ = Qg for the splitting

g → gg. Here we have introduced the cutoff Qg in order to regularize the soft gluon

singularities in the splitting function. The relative transverse momentum p⊥ is related to

the Sudakov variables (3.1) of the parton branching as

p⊥ = q⊥i+1 − zq⊥i . (3.13)

From eqs. (3.10) and (3.11) we immediately get the phase space constraint for p⊥

in eq. (3.4). We require z to correspond to a real value of p⊥. For gluon splittings we

explicitly obtain

z− < z < z+ , z± =
1

2

(

1 ±
√

1 − 4µ

q̃

)

and q̃ > 4µ . (3.14)

For quark splittings the phase space boundary is the solution of a cubic equation but the

allowed z range always lies within

µ

q̃
< z < 1 − Qg

q̃
. (3.15)

Therefore it is simplest to generate z within this range and reject those values that lie

outside phase space. Finally, it takes an azimuthal angle φ, which is currently chosen

randomly and may later be related to spin correlations [16], to complete the four-momenta

of the parton shower in a final kinematic reconstruction.
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Figure 1: Available phase space of light (left) and b-quarks (right) for q → qg splitting for various

values of Qg and depending on the parametrization in terms of δ, eq. (3.16). The dashed lines on

the right correspond to the same Qg values as for the light quarks.

3.4 Parametrization of Qg

We introduced the cutoff parameter Qg quite naturally as a gluon virtuality into the shower

kinematics. Considering the phase space that is available to the parton shower, we would

expect a natural threshold in q̃ of the order of mq +Qg. In contrast, we find from eq. (3.10)

that the actual threshold behaves approximately as Qthr = 1.15(mq +2Qg). Hence, we find

that, particularly for heavy quarks the phase space limit is well above our expectation.

There is no reason why Qg should be kept as the same parameter for all quark flavours.

Therefore, we have chosen to parametrize the threshold for different flavours in terms of a

unique parameter δ as

Qg =
δ − 0.3 mq

2.3
, (3.16)

which leaves us with a threshold Qthr = 0.85 mq + δ for all flavours.2 The resulting phase

space in q̃ and z is then as shown in figure 1. We show the dependence of our results on

the parameter δ in most of the plots of section 6. In the case of gluon splitting mq is the

mass of the splitting products, i.e. the quark mass in case of a g → qq̄ splitting or mq = 0

in g → gg splitting.

3.5 Single branching process

For timelike (i.e. final state) branchings, given an initial scale q̃i, the Sudakov form factor

eq. (3.3) gives the probability for no branching above the scale q̃i+1. Hence, 1−Sab(q̃i, q̃i+1)

is the probability for the next branching to happen above q̃i+1 and its derivative with respect

to q̃i+1 is the probability density for the next branching to happen at the scale q̃i+1.

2In principle, the coefficient of mq could be a model parameter.

– 7 –



J
H
E
P
0
2
(
2
0
0
4
)
0
0
5

We sample the next branching scale with the veto algorithm. We overestimate the

integrands as follows. We take the absolute maximum of the relevant coupling αmax as this

is generally a very slowly varying function. The splitting functions are overestimated by

gqq(z) =
2CF

1 − z
, (3.17)

gqg(z) = TR , (3.18)

ggg(z) = CA

[

1

1 − z
+

1

z

]

, (3.19)

gγ
qq(z) =

2e2
a

1 − z
, (3.20)

in such a way that their integrals Gba(z) are invertible functions. Furthermore, they do not

depend on q̃ anymore. The phase space in z is overestimated by taking the maximum value

of the evolution scale, q̃i. From this, we calculate the limits in z from eq. (3.14) or (3.15),

respectively. As we can now easily integrate and invert the exponent in eq. (3.4), we can

sample values q̃s and zs. Then we subsequently apply vetoes with weights

w1 = Θ(p⊥ > 0) , w2 =
Pba(z, q̃)

gba(z)
, w3 =

α(z, q̃)

αmax
. (3.21)

When all vetoes are passed, we have a scale q̃i+1 = q̃s and a momentum fraction zs value.

If not, we try to obtain a new branching, now starting at scale q̃s, repeating until we either

accepted a scale as the next branching scale or we obtain a scale q̃s < q̃c at which we cannot

resolve a parton any further.

In this way we calculate branching scales q̃i+1 for every possible splitting process for

a given particle. The splitting with the largest scale of those above q̃c is then taken to be

the next branching. In this way we can easily include any type of branching.

3.6 Angular ordering

Once a parton is split its resolution scale q̃i is still above the smallest resolution scale q̃c. In

order to have angular ordering we now calculate the subsequent branchings of its daughters

as q̃i+1 and k̃i+1 with the conditions

q̃i+1 < zq̃i k̃i+1 < (1 − z)q̃i . (3.22)

This branching process is repeated until no more daughter particles are resolved at scales

above the resolution scale q̃c. Note that, for our choice of evolution variables, the parton

shower is terminated because there is no more phase space available at low scales. The

lower limit of evolution is normally given by the soft gluon cutoff Qg (or δ) or the masses

m of the branching particles (cf. figure 1). However, when we choose very small cutoffs

Qg, which are in principle allowed, we apply the additional constraint q̃ > q̃c on the shower

termination.
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3.7 Soft matrix element correction

As explained in section 3.1 we explicitly populate the ‘dead region’ of the qq̄g phase space

according to the correct QCD matrix element. We also improve parton shower emissions

within the shower regions of the phase space, as the parton shower might generate relatively

hard gluon emissions which are not within the domain of validity of the quasi-collinear

approximation anymore.

In order to do so, we keep track of the relative transverse momentum p⊥ (cf. eqs. (3.10),

(3.11)) that was generated during the parton shower evolution of one jet. Whenever we

find that this transverse momentum is the largest that was generated during the evolution

so far we apply a so-called soft matrix element correction [17].

We consider all previous gluon emissions as being infinitely soft in comparison to the

one we are testing. This allows us to compute the three-body (i.e. qq̄g) variables (x, x̄) from

the parton shower variables (q̃, z) and the respective jacobian. Then we compare a random

number with the ratio of the true matrix element to the parton shower approximation and

reject the branching if the ratio is smaller. Clearly this requires the parton shower emission

probability to be larger that the matrix element everywhere in phase space, which is true

for this process and our choice of evolution variables.

3.8 Reconstruction of kinematics

As we generate the parton splittings i → (i + 1)k we can calculate the αi+1-component

and the transverse momentum of the daughter parton (i + 1) using eqs. (3.9) and (3.13).

The respective variables of the second particle k are simply obtained using 1 − z and the

difference of the transverse momenta of i and (i + 1). However, we can only reconstruct

the β variables when we know the virtuality of each particle. This is done recursively

once the parton shower evolution has terminated. The final-state particles are put on their

constituent mass shells and then we obtain the beta components from

β =
q2 + q

2
⊥ − α2p2

2αp · n , (3.23)

where p and n are the Sudakov basis vectors of the shower. These were determined in the

initial phase and remain fixed for each jet.

After the completion of the shower evolution of every parton j involved in the hard

process, the jet parent partons are not on their mass shells p2
j = m2

j anymore. Instead, they

have acquired virtualities q2
j . If the original momenta were given as pj = (

√

p
2
j + m2

j , pj)

in the centre-of-mass frame of the hard process, we want to preserve the total energy in

this frame,

√
s =

n
∑

j=1

√

m2
j + p

2
j , (3.24)

while we want to keep the sum of spatial momenta vanishing. As the jet parents have

momenta qj = (Ej , qj) after the showering, we need some way to restore momentum

conservation in a way that most smoothly preserves the internal properties of each jet.
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The simplest way to do this so-called “momentum reshuffling” is to rescale the mo-

mentum of each jet with a common factor k that is determined implicitly from

√
s =

n
∑

j=1

√

q2
j + kp

2
j . (3.25)

Then, for every jet we determine a Lorentz transformation such that

qj = (Ej , qj)
boost−→ q′j = (E′

j , kpj) . (3.26)

Typically the rescaling parameters k are very close to unity and hence the resulting angles

and boost parameters in eq. (3.26) are small.

4. The cluster hadronization in detail

The cluster hadronization has two main steps. The first is the cluster formation, in which

all of the colour connected partons created in the shower are combined to form clusters

which are colour singlets. The other step is the decay of these colour singlet clusters into

hadrons. The new model presented here only changes the second stage, how the cluster

decays. The process of cluster formation remains identical to HERWIG, with the same set

of parameters.

4.1 Cluster formation

The gluons in the partonic final state are split non-perturbatively into qq̄ pairs. The choice

of flavour is between the u, d and s flavours. The splitting is done with a simple isotropic

decay where the gluon is given an effective gluon mass, mg > 2mq. The default value for

mg is 0.75 GeV.

Once we have a state of all on-shell quarks, the colour partners are combined into

clusters. Owing to the colour-preconfinement property of the parton shower [18], the

cluster mass distribution is independent of the nature and energy of the hard process to a

good approximation. This can be seen in figure 2 for light (uds) quark clusters and clusters

containing a b quark separately.

The hadronization model in HERWIG and Herwig++ also has a stage where some of

these clusters are decayed into two new clusters, rather than directly to hadrons. This

step is called cluster fission. The mass of a cluster is given by M 2 = p2, where p is the

momentum of the cluster. The cluster C is decayed into two new clusters C1, C2 if this

mass does not satisfy the condition

MClpow < Clmax
Clpow + Σ

Clpow
c , (4.1)

where Clpow and Clmax are parameters of the model and Σc is the sum of the masses of the

constituent partons which form the cluster. If a cluster does decay into two new clusters,

a flavour is drawn from the vacuum. Again this is drawn from the u, d and s flavours. The

mass of cluster i is drawn from the following distribution

Mi =
[(

MP − (mi + m3)
P
)

ri + (mi + m3)
P
]1/P

, (4.2)
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Figure 2: Primary cluster mass distribution in e+e− annihilation at various centre-of-mass energies

Q for clusters containing only light quarks (left) and a b quark (right).

where mi is the mass of the constituent quark from the original cluster that is going into the

new cluster and m3 is the constituent mass of the flavour that was drawn from the vacuum.

Here P is a parameter of the model and ri is a random number. The value of P is given by

PSPLT(1) if parton i is of u, d, s or c flavour and by PSPLT(2) for a cluster where parton i

is of b flavour. The two masses are also correlated by the constraint that M1 + M2 ≤ M .

If this constraint is violated, a new flavour is drawn from the vacuum and two new cluster

masses are drawn from the distribution (4.2). The decay kinematics is determined in the

rest frame of C, as the original constituent quarks continue their movement in the same

direction also when they are boosted into the rest frame of the new clusters C1, C2. As all

masses are given, the momenta of clusters and constituents are determined.

4.2 Cluster decays

The last stage of the hadronization is the cluster decays. The problem with the original

HERWIG cluster decay model [11] can be shown as follows. The probability of accepting

a decay of a cluster with flavours i, j into hadrons of type a, b is

P (ai,q, bq,j |i, j) = PqP (a|i, q)P (b|q, j)PPS(a, b) . (4.3)

Here Pq is the probability of drawing flavour q from the vacuum and PPS is the probability

due to phase space. The probabilities of interest are the other two. These have the form

P (a|i, j) =
wa

NijMij
, (4.4)

where wa is a hadron specific weight, Mij is the maximum weight of all the hadrons of

flavour i, j and Nij is the number of hadrons of flavour i, j in the model. We can see that

the probabilities have a dependence on Nij . As described in [12] this causes adverse side

effects when new hadrons are added to the model. If we consider adding a new hadron

of flavour ud, for example, it will generally be heavier than those already present. This
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will suppress the probability of choosing a lighter ud meson as Nud̄ is increased. Therefore

properties such as the charged to neutral pion ratio are controlled heavily by how many

hadrons of a particular flavour are in the model.

To solve this problem a new construction of the probability was created in [12]. Instead

of independently choosing the flavour from the vacuum and then choosing the hadrons, this

is all combined into one distribution. The weight of one choice is

W (ai,q, bq,j |i, j) = PqwawbPPS(a, b) . (4.5)

This gives the probability

P (ai,q, bq,j |i, j) =
W (ai,q, bq,j |i, j)

∑

q′,c,d W (ci,q′ , dq′,j |i, j)
. (4.6)

Because PPS is zero for heavy decay modes only accessible modes influence the prob-

abilities. Unfortunately, this solution has a new problem in that the ratio of mesons to

baryons is dictated by the number of available particles. Since there are many more mesons

then baryons the denominator in eq. (4.6) is quite large and the total probability of choos-

ing a baryonic decay mode is very small. So though this new approach is able to make

quantities such as pion ratios independent of the number of hadrons in the model it fails

to produce the correct amount of baryons.

The solution implemented in Herwig++ is to treat the baryon sector independently

from the meson sector. This is done by re-interpreting the parameter for the diquark

weight, Pwtdi, to be the parameter that controls the frequency of drawing independently

from the baryon sector. This is expressed as

PB =
Pwtdi

Pwtdi + 1
. (4.7)

So there is a probability PB of choosing only from the baryon sector and a probability

PM = 1 − PB of choosing from the meson sector. The actual choice of hadrons is then

made according to the probability

P (ai,q, bq,j |i, j) =
W (ai,q, bq,j |i, j)

∑

M/B W (ci,q′ , dq′,j |i, j)
. (4.8)

where the sum over M/B indicates only summing over the flavours that produce either

mesons or baryons.

4.3 Hadron decays

Most of the hadrons created in the cluster hadronization are not stable and need to be

decayed. At present, the decays in Herwig++ are done in the same way as in HERWIG.

Most decays are treated as simple n-body isotropic decays. Weak decays are done by either

free particle V − A matrix elements or bound quark V − A matrix elements. Examples of

these are τ− → e−νeντ and K− → e−νeπ
0, respectively.

Heavy hadrons, such as B mesons, are sometime decayed into partonic states. These

states are then fed back into the shower and are re-showered and re-hadronized. There

are two different types of heavy partonic decays. One is a weak decay, for which we use

the same free or bound V − A matrix elements as for the light mesons. This would occur,
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for example, in the decay B0 → sccd. There are also quarkonium decays that have gluons

as decay products, for example the decay ηc → gg. These decays are done using the

appropriate positronium matrix elements.

5. Observables

5.1 Observables considered

We considered the following observables in our study.

Event shape variables: event shape distributions havebeen measured to very high ac-

curacy at LEP and aim at resolving the properties of the parton shower quite deeply. In

particular we have chosen the thrust (T ), thrust major (M), thrust minor (m) and oblate-

ness (O) as they are the most commonly used. In addition we look at the C-parameter and

D-parameter as they are more sensitive to multijet events. We also look at the sphericity

and planarity (S, P ), which are calculated from the quadratic momentum tensor and there-

fore put more emphasis on 2-jet like events. Furthermore we look at the wide and narrow jet

broadening measures (Bmax, Bmin), which are more sensitive to the transverse jet structure.

Jet multiplicity: the multiplicity of (mini-)jets in e+e−-collisions for different values of

the jet resolution ycut. We use the Durham- or k⊥-clustering scheme [19] throughout the

paper for jet observables. To be specific, for a given final state the jet measure

yij =
2 min(E2

i , E2
j )

Q2
(1 − cos θij) (5.1)

is calculated for every particle pair (i, j). The particles with minimal jet measure are

clustered such that the momentum of the clustered pseudo-particle is the sum of the four-

momenta of the constituents. The jet multiplicity is then the number of pseudo-particles

remaining when all yij > ycut. This inclusive observable has been predicted and measured

at LEP energies and will test the dynamics of the parton shower as well as the interface

between parton shower and hadronization. We use the KtJet-package [20] that implements

the above jet-finding algorithm in C++ and have written a simple wrapper around it in

order to use it with our own particle record.

Jet fractions and Yn: a closer look ‘into’ the jets is provided by considering the rates

of jets at a given value of ycut in the Durham scheme, Rn = Nn−jet/Nevts for n = 2 up to

n = 6 jets. We also look at the distributions of Yn, the ycut-values at which an n + 1 jet

event is merged into an n-jet event in the Durham clustering scheme. Here we look at n = 2

up to n = 5. These distributions will not only probe the dynamics of the parton shower

but also the hadronization model: at the lowest values of ycut ∼ (q̃c/Q)2 the dynamics is

dominated by the latter.

Four-jet angles: a very interesting set of observables are the distributions of the angles

between jets in four-jet events, χBZ, ΦKSW, θ∗NR and α34, defined for example in ref. [21].

These angles are expected to be sensitive to the accuracy of the simulation of higher-order

matrix elements.
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Single particle distributions: another interesting set of observables are the momen-

tum distributions of final-state particles with respect to the event orientation. yT is the

rapidity distribution with respect to the thrust axis, pT
⊥,in and pT

⊥,out are the respective

transverse momenta within and out of the event plane, defined by the thrust and thrust

major axes. Without any reference to the event orientation, we look at the distribution of

the momentum fraction xp = 2|p|/Q and at ξp = − log xp which displays better the effects

of soft gluon coherence at small xp.

Identified particle spectra: we consider the exclusive momentum distributions of π±,

K±, p, p̄ and Λ, Λ̄. These are generally expected to be sensitive to the hadronization model.

In all cases except Λ, Λ̄ we can compare with data on the momentum distributions from

uds, c and b events separately.

Hadron multiplicities: the charged particle multiplicity distribution and the average

multiplicities of a wide range of hadron species were taken to test the overall flow of quan-

tum numbers through the different stages of simulation. The improved cluster hadroniza-

tion model can be tested thoroughly against these observables.

B fragmentation function: the energy fraction of B-hadrons is taken as a test for the

new parton shower which is specifically designed to improve the description of heavy quark

observables with respect to the description in HERWIG.

The above list of observables has proven to be very useful to test different domains of

the available phase space of parameters and has led us to important conclusions for the

ongoing development of the code for hadronic collisions.

5.2 Analysis

We have booked histograms for all the above distributions in the same bins as the exper-

imental data. For a given bin i we then compare the data Di value with the Herwig++

Monte Carlo result Mi. Given the data errors δDi (statistical plus systematic) and Monte

Carlo errors δMi (statistical only), we can calculate a χ2 for each observable. We keep

the statistical error of the Monte Carlo generally smaller than the experimental error. In

distributions where the normalization is not fixed, such as momentum spectra, we allow

the normalization of the Monte Carlo to be free to minimize χ2. The normalization is

then tested separately against the average multiplicity. In all other cases we normalize

histograms to unity.

As we do not want to put too much emphasis on a single observable or a particular

region in phase space where the data are very precise, in computing χ2 we set the relative

experimental error in each bin to max(δDi/Di, 5%). This takes into account the fact that

the Monte Carlo is only an approximation to QCD and agreement with the data within

5% would be entirely satisfactory. The general trend for the preferred range of a single

parameter was however never altered by this procedure.

After normalization the ratio

Ri =
Mi − Di

Di
±
(

δMi

Di
⊕ MiδDi

D2
i

)

(5.2)
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is computed for each bin in order to see precisely where the model fails. This ratio as well

as the relative experimental error (yellow) and the relative contribution of each bin to the

χ2 of an observable is plotted below each histogram.

5.3 Strategy
Parameter Preferred Initial

αs(MZ) 0.118 0.114

δ/GeV 2.3 —

mg/GeV 0.750 —

Qmin/GeV in αs(Qmin) 0.631 —

Clmax/GeV 3.2 3.35

Clpow 2.0 —

PSplt1 1 —

PSplt2 0.33 —

B1Lim 0.0 —

ClDir1 1 —

ClDir2 1 —

ClSmr1 0.40 —

ClSmr2 0.0 —

Pwtd 1.0 —

Pwtu 1.0 —

Pwts 0.85 1.0

Pwtc 1.0 —

Pwtb 1.0 —

Pwtdi 0.55 1.0

Singlet Weight 1.0 —

Decuplet Weight 0.7 1.0

Table 1: The preferred parameters for Herwig++.

The first group are shower parameters, the second

are all of the hadronization parameters. In the third

column we show initial values of our study, taken

from HERWIG, where these differ from the pre-

ferred values.

We have taken χ2 values for hadron mul-

tiplicities into account in the same way

as we weighted the event shapes. In gen-

eral the multiplicities of individual parti-

cle species are sensitive to a completely

different set of parameters. The general

strategy was to start from an initial set

of hadronization parameters taken from

HERWIG, and to aim for a good value

for the total number of charged parti-

cles with reasonable values for the par-

ton shower cutoff parameter δ and the

maximum cluster mass parameter CLMax.

Once these were fixed, the hadronization

parameters that determine the multiplic-

ities of individual particle species were

determined. Following this we compared

this ‘preferred’ set of parameters with the

‘initial’ set from HERWIG. The resulting

parameter set is shown in table 1.

6. Results

We have chosen a wide range of observ-

ables in order to test different aspects

of the model. Event shape variables

and multiplicities are considered in order

to test the dynamical aspects of parton

shower and hadronization models, which are closely linked at their interface via the parton

shower cutoff parameter δ. Ideally, the two models should merge smoothly at scales where

Qg ∼ 1 GeV. All figures shown at the end of the paper contain three sets of plots:

• the actual distribution. The Herwig++ result is plotted as a histogram together with

the experimental data points (top);

• the ratio Ri (5.2) together with an error band, showing the relative experimental

statistical and systematic errors (middle);

• the relative contribution of each data point to the total χ2 of each plot (bottom).
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Particle Experiment Measured Old Model Herwig++ Fortran

All Charged M,A,D,L,O 20.924 ± 0.117 20.22∗ 20.814 20.532∗

γ A,O 21.27 ± 0.6 23.03 22.67 20.74

π0 A,D,L,O 9.59 ± 0.33 10.27 10.08 9.88

ρ(770)0 A,D 1.295 ± 0.125 1.235 1.316 1.07

π± A,O 17.04 ± 0.25 16.30 16.95 16.74

ρ(770)± O 2.4 ± 0.43 1.99 2.14 2.06

η A,L,O 0.956 ± 0.049 0.886 0.893 0.669∗

ω(782) A,L,O 1.083 ± 0.088 0.859 0.916 1.044

η′(958) A,L,O 0.152 ± 0.03 0.13 0.136 0.106

K0 S,A,D,L,O 2.027 ± 0.025 2.121∗ 2.062 2.026

K∗(892)0 A,D,O 0.761 ± 0.032 0.667 0.681 0.583∗

K∗(1430)0 D,O 0.106 ± 0.06 0.065 0.079 0.072

K± A,D,O 2.319 ± 0.079 2.335 2.286 2.250

K∗(892)± A,D,O 0.731 ± 0.058 0.637 0.657 0.578

φ(1020) A,D,O 0.097 ± 0.007 0.107 0.114 0.134∗

p A,D,O 0.991 ± 0.054 0.981 0.947 1.027

∆++ D,O 0.088 ± 0.034 0.185 0.092 0.209∗

Σ− O 0.083 ± 0.011 0.063 0.071 0.071

Λ A,D,L,O 0.373 ± 0.008 0.325∗ 0.384 0.347∗

Σ0 A,D,O 0.074 ± 0.009 0.078 0.091 0.063

Σ+ O 0.099 ± 0.015 0.067 0.077 0.088

Σ(1385)± A,D,O 0.0471 ± 0.0046 0.057 0.0312∗ 0.061∗

Ξ− A,D,O 0.0262 ± 0.001 0.024 0.0286 0.029

Ξ(1530)0 A,D,O 0.0058 ± 0.001 0.026∗ 0.0288∗ 0.009∗

Ω− A,D,O 0.00125 ± 0.00024 0.001 0.00144 0.0009

f2(1270) D,L,O 0.168 ± 0.021 0.113 0.150 0.173

f ′
2(1525) D 0.02 ± 0.008 0.003 0.012 0.012

D± A,D,O 0.184 ± 0.018 0.322∗ 0.319∗ 0.283∗

D∗(2010)± A,D,O 0.182 ± 0.009 0.168 0.180 0.151∗

D0 A,D,O 0.473 ± 0.026 0.625∗ 0.570∗ 0.501

D±
s A,O 0.129 ± 0.013 0.218∗ 0.195∗ 0.127

D∗±
s O 0.096 ± 0.046 0.082 0.066 0.043

J/Ψ A,D,L,O 0.00544 ± 0.00029 0.006 0.00361∗ 0.002∗

Λ+
c D,O 0.077 ± 0.016 0.006∗ 0.023∗ 0.001∗

Ψ′(3685) D,L,O 0.00229 ± 0.00041 0.001∗ 0.00178 0.0008∗

Table 2: Multiplicities per event at 91.2 GeV. We show results from Herwig++ with the imple-

mentation of the old cluster hadronization model (Old Model) and the new model (Herwig++), and

from HERWIG 6.5 shower and hadronization (Fortran). Parameter values used are given in table 1.

Experiments are Aleph(A), Delphi(D), L3(L), Opal(O), Mk2(M) and SLD(S). The ∗ indicates a

prediction that differs from the measured value by more than three standard deviations.

6.1 Hadron multiplicities

Table 2 shows the results of the new algorithm in comparison with the old algorithm.

The column labelled ‘Old Model’ is the result of using the old algorithm with the new

shower variables. The column Herwig++ is using the new algorithm with the new shower
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Figure 3: The distribution of the charged particle multiplicity. The three panels here and in

figures 5–15 are explained in section 6.

and the last column, labeled Fortran, is using the Fortran HERWIG program (version

6.5). Data are combined and updated from a variety of sources, see ref. [22]. We see

that, even before systematic tuning, the overall results are better than those of HERWIG,

with fewer prediction that differ from the data by more than three standard deviations

(starred).

We also considered the distribution of the charged particle multiplicity in comparison

to OPAL data [23] and find fairly good agreement (figure 3), although with some excess at

low multiplicity.

6.2 Jet multiplicity

In figure 4 we show the average number of jets 〈njets〉 at the Z0-pole, as a function of the

Durham jet resolution ycut, for various values of the cutoff parameter δ. At the parton

level (top left) the jet multiplicity varies a lot as we go to small values of ycut, saturating

at the number of partons that are present in a single event. The order of magnitude of the

visible saturation scales is characterized for each flavour by the different cutoff values Qg

as ysat = Q2
g/Q

2 (cf. (3.16)). During hadronization, low parton multiplicities lead to large

mass clusters which tend to decay into low mass clusters below a given cutoff mass, which

is fixed to its default value throughout the current section. Figure 4 (top right) shows that
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Figure 4: Jet multiplicities for different values of the cutoff parameter δ and different c.m. energies.

– 18 –



J
H
E
P
0
2
(
2
0
0
4
)
0
0
5

the hadronization compensates for lower partonic multiplicities, giving a result insensitive

to δ at the hadron level. In other words, we have a smooth interface between perturbative

and non-perturbative dynamics between the lower end of the parton shower on one side

and the cluster hadronization model on the other side. On the hadron level we describe

LEP data from OPAL [24] well.

In order to test the sensitivity of our model against the variation of the c.m. energy, we

calculate the jet multiplicities at PETRA and LEP II energies as well (figure 4, bottom).

The comparison to JADE [25] and OPAL [24] data shows a good agreement. In all runs we

applied the same cutoffs on the energy of the partonic subsystem as did the experiments.

The additional curves in figure 4 show predictions for the jet multiplicity [26] from

the resummation of leading logarithms. Note that the parameter ΛQCD in the resummed

calculation is not ΛMS. We see that for the value ΛQCD = 500 MeV there is good agreement

with the data and the Herwig++ result throughout the perturbative region, ycut > 10−4.

6.3 Jet rates and Yn distributions

Another set of observables that is known to be well-described at LEP energies are the

fractions of n-jet events at a given ycut in the Durham scheme. In figure 5 we compare

the results from Herwig++ with LEP data from [24] and find good agreement. On the

hadron level these predictions are not very sensitive to the cutoff parameter δ. The 5-jet

distribution is not shown and R6 is the rate of ≥ 6-jet events.

The Durham Yn distributions in figure 6 are histograms of those ycut-values at which

an n + 1-jet is merged into an n-jet event in the Durham jet clustering scheme. We may

say that they resolve more internal structure of the jets than the n-jet rates. Still, the

agreement between model and data is quite good, although there is a tendency (which was

also present in HERWIG) to exceed the data at low Yn.

6.4 Event shapes

In order to test the dynamics of the parton shower in Herwig++ in more detail we consider

a set of commonly used event shape variables. Not only the collinear region of the parton

shower is probed in greater detail but also the regions of phase space which are vetoed as

matrix element corrections. We compare all results to DELPHI data [27].

In figure 7 we show the distribution of thrust, thrust-major and thrust-minor. These

variables are all obtained from a linear momentum tensor. The thrust distribution is shown

with and without matrix element corrections switched on. The prediction without matrix

element corrections is very much better than that of HERWIG, owing to the improved

shower algorithm. It is interesting that the matrix element corrections seem to generate

almost too much transverse structure, leading to event shapes that are less two-jet-like.

On the other hand, there is also a slight excess of events close to the two-jet limit.

It is remarkable how well distributions like C and D parameter (figure 8) which are

sensitive to three- and four-jet-like events are described by our model even though we are

limited to three jet matrix elements plus showers. Here again we have in fact a small excess

at high values.
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Figure 5: Jet rates in the Durham algorithm for different values of the cutoff δ.
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Figure 6: Durham Yn distributions for different values of the cutoff δ.
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Figure 7: Thrust without (top left) and with (top right) matrix element corrections switched on,

thrust major and thrust minor (bottom).
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We show also in figure 8 the distributions of sphericity and planarity, which are ob-

tained from a quadratic momentum tensor and therefore put more emphasis on high mo-

menta. As was the case for the thrust-related distributions, we tend to have slightly wide

events. In addition we consider the jet broadening measures Bmax and Bmin and the hemi-

sphere jet masses (figure 9). In all cases the agreement between model and data is good.

6.5 Four jet angles

We show the four-jet angles in figure 10. They are considered only for events where we

have a four-jet event at ycut = 0.008. Despite the fact that we do not have any match-

ing to higher order matrix elements, as was proposed in [28] and implemented in [6], the

agreement between model and data [29] is remarkably good. Even though we expected the

implementation of hard and soft matrix element corrections in Herwig++ to be most im-

portant for the description of these observables, we did not find very significant differences

with or without the application of matrix element corrections.

6.6 Single particle distributions

In figure 11 we show single charged particle distributions within the event, oriented along

the thrust axis. The transverse momentum within the event plane pT
⊥,in is shown with and

without matrix element corrections. In contrast to the thrust distribution we find that the

matrix element corrections actually improve the distribution. Furthermore, pT
⊥,out and the

rapidity along the thrust axis are rather well described. We do not show the analogous

momentum distributions with respect to the sphericity axis which have similar features.

We consider the distribution of scaled momentum xp = 2|p|/Q of charged particles in

figure 12. In addition to the full distribution we also consider the results from light (uds),

c and b events.3 In all cases we compare with data from SLD [30]. The charged particle

distribution is well described in all four cases, in fact somewhat better for heavy primary

quarks.

6.7 Identified hadron spectra

As in the case of all charged particles we can compare identified particle spectra from events

of different flavour to SLD data [30]. Data for π± (not shown, being almost equivalent to

all charged particles), K± and (p, p̄) are available. In figure 13 we see the data for (p, p̄)

spectra from events of different flavour. For large values of xp we clearly overshoot the

data in light flavoured events. This is somewhat compensated by the heavy quark events

which in turn seem to prefer lower values of xp. We believe that this feature is related to

the hadronization, being similar to but smaller than that seen in HERWIG.

Figure 14 shows distributions for K± and Λ, Λ̄. Both are rather better described than

the proton spectra but the distribution of Λ, Λ̄ tends to have a similar, though smaller,

‘bump’ in comparison to data from ALEPH [31].

3The flavour of the quark-antiquark produced in the initial hard process.
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Figure 8: Sphericity, planarity, C parameter and D parameter distributions.
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Figure 9: The wide and narrow jet broadening measures Bmax and Bmin and the high and low

hemisphere masses.
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Figure 10: Four jet angle distributions. The points are from preliminary DELPHI data.
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Figure 11: Momentum distributions of charged particles with respect to the thrust axis, pT
⊥,in

(with and without matrix element corrections), pT
⊥,out and yT .

– 27 –



J
H
E
P
0
2
(
2
0
0
4
)
0
0
5

0.01 0.1 1

xp(charged) [all]

-0.3
-0.2
-0.1

0
0.1
0.2
0.3

10−3

10−2

10−1

100

101

102

Herwig++ 1.0

δ = 1.7 GeV
δ = 2.3 GeV
δ = 3.2 GeV

SLD 03

0.01 0.1 1

xp(charged)[uds]

-0.3
-0.2
-0.1

0
0.1
0.2
0.3

10−2

10−1

100

101

102

Herwig++ 1.0

δ = 1.7 GeV
δ = 2.3 GeV
δ = 3.2 GeV

SLD 03

0.01 0.1 1

xp(charged)[c]

-0.3
-0.2
-0.1

0
0.1
0.2
0.3

10−4

10−3

10−2

10−1

100

101

102

Herwig++ 1.0

δ = 1.7 GeV
δ = 2.3 GeV
δ = 3.2 GeV

SLD 03

0.01 0.1 1

xp(charged)[b]

-0.3
-0.2
-0.1

0
0.1
0.2
0.3

10−4

10−3

10−2

10−1

100

101

102

Herwig++ 1.0

δ = 1.7 GeV
δ = 2.3 GeV
δ = 3.2 GeV

SLD 03

Figure 12: The scaled momentum distribution xp of charged particles for all events as well as for

uds, c and b events separately.
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Figure 13: The scaled momentum distribution xp of protons, shown separately for all events as

well as for uds, c and b events.
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Figure 14: Distribution of scaled kaon momentum and Λ, Λ̄ momentum.

6.8 B fragmentation function

In figure 15 we consider the B hadron frag-
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Figure 15: The B-hadron fragmentation

function for different values of the cutoff δ.

mentation function in comparison to data from

SLD [32]. We have also considered data from

ALEPH [33] (not shown). We can describe

the data quite well without any additional tun-

ing of the hadronization model to this data.

The parton shower formulation in terms of the

new variables [10] and taking quark masses in

the splitting functions into account clearly im-

proves the description of heavy quark events.

6.9 Overall results

In table 3 we show a list of χ2 values for all

observables that were studied during our anal-

ysis, including those not shown in the plots.

The most sensitive parameters were the cutoff

value δ and the use of (hard plus soft) matrix

element corrections. The table shows three val-

ues of δ: our preferred value of δ = 2.3 GeV as

well as the lowest and highest values that we

considered.
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ME corrections off ME corrections on
Observable ref. δ = 1.7 GeV δ = 2.3 GeV δ = 3.2 GeV δ = 1.7 GeV δ = 2.3 GeV δ = 3.2 GeV

1 − T [27] 44.65 33.15 22.29 72.80 45.57 26.34
M [27] 246.25 273.42 198.37 275.80 274.43 186.34
m [27] 150.74 157.91 137.43 174.29 163.02 129.10
O [27] 7.41 5.58 5.14 22.24 19.33 13.34

S [27] 4.42 3.50 4.07 24.70 14.10 8.50
P [27] 4.48 5.63 6.54 10.69 7.40 5.62
A [27] 19.52 10.80 7.17 44.83 20.26 11.33

C [27] 66.86 59.26 39.56 81.41 67.44 43.08
D [27] 84.23 29.30 12.36 161.90 60.42 26.92

Mhigh [27] 25.78 18.88 12.38 38.43 25.69 11.52
Mlow [27] 15.25 5.37 2.50 31.53 10.42 5.00
Mdiff [27] 7.28 5.27 7.25 18.32 12.17 4.61

Bmax [27] 54.48 50.29 38.91 59.61 49.92 33.23
Bmin [27] 53.25 55.72 53.18 64.52 58.08 50.64
Bsum [27] 102.29 97.35 74.60 121.86 103.10 70.98
Bdiff [27] 8.28 5.42 4.70 18.39 13.64 6.09

pT
⊥,in

[27] 2.48 3.11 11.52 3.39 1.70 4.26

pT
⊥,out

[27] 0.25 3.28 21.65 0.80 1.70 16.06

yT [27] 34.52 60.55 66.05 34.94 53.81 59.07

pS
⊥,in

[27] 2.53 3.19 11.76 2.32 1.39 4.30

pS
⊥,out

[27] 0.37 3.77 22.64 0.90 2.01 16.78

yS [27] 9.04 17.49 24.85 7.78 14.72 21.94

DD
2 [27] 9.37 3.54 3.76 25.56 11.27 5.25

DD
3 [27] 25.85 6.33 2.14 47.11 15.31 5.42

DD
4 [27] 43.90 10.47 2.69 78.82 23.26 7.11

y23 [24] 8.75 6.11 5.36 12.35 8.65 6.40
y34 [24] 10.20 9.65 9.07 11.46 10.02 8.81
y45 [24] 15.53 14.40 11.78 17.74 15.57 11.75
y56 [24] 16.02 17.77 15.13 15.50 17.51 14.32

〈Njets〉 [24] 12.84 3.30 0.62 28.29 12.80 5.95

R2 [24] 9.75 6.56 6.18 19.84 13.45 9.59
R3 [24] 10.46 8.51 9.36 23.49 15.86 11.95
R4 [24] 13.47 10.95 10.36 15.26 12.42 10.22
R5 [24] 25.53 24.98 23.43 28.09 26.35 22.30
R6 [24] 10.37 1.74 0.67 18.38 4.33 1.47

cos(χBZ) [29] 2.90 1.10 0.48 2.48 1.05 0.53
cos(ΦKSW) [29] 2.30 2.06 2.56 1.22 1.50 1.64
cos(θ∗NR) [29] 7.68 5.06 2.72 8.66 6.22 3.57
cos(α34) [29] 1.41 1.57 1.71 0.60 0.64 0.76

Nch [23] 21.86 25.71 12.90 19.81 22.84 12.97

xp(ch)[all] [30] 5.32 5.65 3.49 4.75 4.10 3.02
xp(ch)[uds] [30] 15.72 8.50 6.13 12.63 6.69 5.86
xp(ch)[c] [30] 3.95 2.29 2.17 2.96 1.76 2.73
xp(ch)[b] [30] 35.05 3.23 1.79 35.79 2.49 1.22

xp(π±)[all] [30] 8.29 9.27 6.18 7.21 7.50 5.51
xp(π±)[uds] [30] 28.30 15.92 10.47 24.05 13.29 9.46
xp(π±)[c] [30] 4.65 2.99 1.38 3.67 2.28 1.62
xp(π±)[b] [30] 49.13 3.14 1.56 49.44 3.57 2.02

xp(K±)[all] [30] 4.99 2.02 15.38 3.67 2.88 17.37
xp(K±)[uds] [30] 6.46 17.05 36.45 6.83 19.36 38.79
xp(K±)[c] [30] 21.01 2.20 3.35 18.16 1.75 4.14
xp(K±)[b] [30] 8.56 7.14 4.34 7.63 5.84 4.97

xp(p, p̄)[all] [30] 143.34 98.19 42.90 140.48 87.08 36.23
xp(p, p̄)[uds] [30] 145.35 102.51 52.78 139.85 91.07 45.10
xp(p, p̄)[c] [30] 2.26 2.41 2.86 2.34 2.48 2.85
xp(p, p̄)[b] [30] 11.26 13.71 8.12 11.47 13.54 8.31

p(Λ, Λ̄) [31] 58.02 28.52 9.47 55.27 25.50 7.86

xE(B) [32] 8.93 0.92 8.16 9.44 1.39 9.92
xE(B) [33] 15.40 1.75 7.35 15.76 2.01 8.21

〈χ2〉/bin 32.75 25.84 20.93 40.69 28.41 20.56

Table 3: χ2/bin for all observables we studied and a relevant subset of parameters.
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The results should be interpreted with care. The overall trend suggests that we should

prefer a large cutoff scale. However, we have just averaged over all possible observables.

Taking a closer look, we may want to weight different observables in a different way.

In more detail, the general trend is the following: event shapes, jet rates and differential

jet rates prefer a low cutoff. The single particle distributions along the thrust and sphericity

axes prefer a small cutoff value. The ynm distributions prefer either a high or a low

cutoff value. The spectra of identified particles tend to prefer the high cutoff value with

some exceptions for light quark events. The B fragmentation function clearly prefers the

intermediate value.

In addition, as indicated in section 5.3, we found that the measured yields of identified

particles clearly prefer the value δ = 2.3 GeV.

7. Conclusions

We have achieved a complete event generator for e+e− annihilation into hadrons. The

main physics features, in comparison to the previous versions of HERWIG, are an improved

parton shower, capable of properly describing the perturbative splitting of heavy quarks,

and an improved cluster hadronization model.

We have tested our model against a wide range of data from e+e− colliders and are

able to give a good general description of the data.

For many observables the description of the data has been improved with respect

to HERWIG. The new parton shower has a number of remarkable features. The need

for matrix element corrections has decreased. The main reason for this is the use of

improved splitting functions, which give a far better approximation of the matrix elements

in the region of collinear gluon emissions. We can describe observables involving light or

heavy quark splitting with a unique set of parameters. The new hadronization model also

improves the description of identified particle spectra and multiplicities.

The detailed analysis of our results leaves us with a recommendation: the set of pa-

rameters that is shown in table 1. This set of parameters is understood as a weighted

compromise in order to give a good overall description of the data we have considered so

far. We did not aim at a complete tuning of the model, but rather wanted to study its abil-

ity to describe the broad features of the data, which turned out to be very successful. In its

current state, the program may be used to simulate jet physics at a future linear collider,

provided cuts are applied to suppress the contributions from non-annihilation processes.

Future work on the program will extend the parton shower to initial state radiation

and include a model for the soft underlying event in hadron-hadron collisions, aiming at a

complete event generator for the simulation of Tevatron and LHC events.
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