
Eur. Phys. J. C (2008) 58: 639–707

DOI 10.1140/epjc/s10052-008-0798-9

Special Article - Tools for Experiment and Theory

Herwig++ physics and manual

Manuel Bähr1, Stefan Gieseke1, Martyn A. Gigg2, David Grellscheid2, Keith Hamilton3, Oluseyi Latunde-Dada4,

Simon Plätzer1, Peter Richardson2,5,a, Michael H. Seymour5,6, Alexander Sherstnev4, Bryan R. Webber4

1
Institut für Theoretische Physik, Universität Karlsruhe, Karlsruhe, Germany

2
IPPP, Department of Physics, Durham University, Durham, UK

3
Centre for Particle Physics and Phenomenology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

4
Cavendish Laboratory, University of Cambridge, Cambridge, UK

5
Physics Department, CERN, Geneva, Switzerland

6
School of Physics and Astronomy, University of Manchester, Manchester, UK

Received: 1 September 2008 / Published online: 20 November 2008

© Springer-Verlag / Società Italiana di Fisica 2008

Abstract In this paper we describe Herwig++ version 2.2,

a general-purpose Monte Carlo event generator for the sim-

ulation of hard lepton-lepton and hadron-hadron collisions.

A number of important hard scattering processes are avail-

able, together with an interface via the Les Houches Ac-

cord to specialized matrix element generators for addi-

tional processes. The simulation of Beyond the Standard

Model (BSM) physics includes a range of models and allows

new models to be added by encoding the Feynman rules

of the model. The parton-shower approach is used to sim-

ulate initial- and final-state QCD radiation, including colour

coherence effects, with special emphasis on the correct de-

scription of radiation from heavy particles. The underlying

event is simulated using an eikonal multiple parton-parton

scattering model. The formation of hadrons from the quarks

and gluons produced in the parton shower is described using

the cluster hadronization model. Hadron decays are simu-

lated using matrix elements, where possible including spin

correlations and off-shell effects.

PACS 12.38.Cy · 13.87.Ce · 13.87.fh

Contents

1 Introduction . 640

2 Technical details 641

3 Matrix elements 643

3.1 Matrix elements for specific processes . . . 643

3.2 Les Houches interface 644

3.3 Code structure 644

4 Perturbative decays and spin correlations 646

a e-mail: herwig@projects.hepforge.org

4.1 Spin correlations 646

4.2 Standard model decays 647

4.3 QED radiation 647

4.4 Code structure 647

5 Physics beyond the standard model 649

5.1 Hard process 649

5.2 Decays . 650

5.3 Model descriptions 650

5.4 Code structure 652

6 Parton showers 654

6.1 Shower kinematics 655

6.2 Shower dynamics 657

6.3 Initial conditions 660

6.4 Final-state radiation 662

6.5 Initial-state radiation 664

6.6 Radiation in particle decays 667

6.7 The running coupling constant αS 669

6.8 Matrix element corrections 671

6.9 Code structure 672

7 Hadronization 674

7.1 Gluon splitting and cluster formation . . . 674

7.2 Cluster fission 674

7.3 Cluster decays 675

7.4 Hadronization in BSM models 677

7.5 Code structure 677

8 Underlying event and beam remnants 679

8.1 Model basics 679

8.2 Connection to different simulation phases . 680

8.3 Soft underlying event 681

8.4 Code structure 681

9 Hadron Decays 682

9.1 Particle properties 683

9.2 Line shapes 685

9.3 Tau decays 685

mailto:herwig@projects.hepforge.org

640 Eur. Phys. J. C (2008) 58: 639–707

9.4 Strong and electromagnetic hadron decays 687

9.5 Weak hadronic decays 690

9.6 Code structure 693

10 Summary . 694

Acknowledgements 694

Appendix A: Repository commands 694

A.1 Example 695

Appendix B: Examples 696

B.1 Switching parts of the simulation off 696

B.2 Changing particle properties 697

B.3 Changing some simple cuts 697

B.4 Setting up an AnalysisHandler 697

B.5 Usage of ROOT 698

B.6 Using BSM models 700

B.7 Intrinsic pT 701

B.8 LesHouchesEventHandler 701

B.9 Use of LHAPDF 702

B.10 Use of a simple saturation model for PDFs 703

Appendix C: Tuning 703

References . 705

1 Introduction

Herwig++ is a general-purpose event generator for the simu-

lation of high-energy lepton-lepton and hadron-hadron col-

lisions with special emphasis on the accurate simulation of

QCD radiation. It builds upon the heritage of the HERWIG

program [1–6], while providing a much more flexible struc-

ture for further development. It already includes several

features more advanced than the last FORTRAN version.

Herwig++ provides a full simulation of high energy colli-

sions with the following special features:

– Initial- and final-state QCD jet evolution taking account

of soft gluon interference via angular ordering;

– A detailed treatment of the suppression of QCD radiation

from massive particles, the dead-cone effect [7];

– The simulation of BSM physics including correlations be-

tween the production and decay of the BSM particles to-

gether with the ability to add new models by simply en-

coding the Feynman rules;

– An eikonal model for multiple partonic scatterings to de-

scribe the underlying event [8];

– A cluster model of the hadronization of jets based on non-

perturbative gluon splitting;

– A sophisticated model of hadron and tau decays using ma-

trix elements to give the momenta of the decay products

for many modes and including a detailed treatment of off-

shell effects and spin correlations.

Some of these features were already present in the first ver-

sion of Herwig++ [9]. However, there have been many im-

provements to both the physics and structure of the simu-

lation following this first release, most notably the exten-

sion to hadron-hadron collisions. Given the significant dif-

ferences between the current version of the program, 2.2,

and that described in [9] we will describe all of the features

of the program in this paper.

A number of other generators are also being (re-)written

for the LHC era. The PYTHIA event generator is cur-

rently being rewritten as PYTHIA8 [10]. The rewrite of

ARIADNE [11] is in progress as well. Like Herwig++, this

is built on the platform of ThePEG [12], which we describe

below. SHERPA [13] is a completely new event generator

project.

It is useful to start by recalling the main features of a

generic hard, high-momentum transfer, process in the way

it is simulated by Herwig++. The processes involved can be

divided into a number of stages corresponding to increasing

time and distance scales:

1. Elementary hard subprocess. In the hard process the in-

coming particles interact to produce the primary outgo-

ing fundamental particles. This interaction can involve

either the incoming fundamental particles in lepton col-

lisions or partons extracted from a hadron in hadron-

initiated processes. In general this is computed at leading

order in perturbation theory, although work is ongoing

to include higher-order corrections [14, 15]. The energy

scale of the hard process, together with the colour flow

between the particles, sets the initial conditions for the

production of QCD radiation in the initial- and final-state

parton showers.

2. Initial- and final-state parton showers. The coloured par-

ticles in the event are perturbatively evolved from the

hard scale of the collision to the infrared cutoff. This

occurs for both the particles produced in the collision,

the final-state shower, and the initial partons involved in

the collision for processes with incoming hadrons, the

initial-state shower. The coherence of the emission of

soft gluons in the parton showers from the particles in

the hard collision is controlled by the colour flow of

the hard collision. Inside the parton shower, it is sim-

ulated by the angular ordering of successive emissions.

The choice of evolution variable together with the use

of quasi-collinear splitting functions allows us to evolve

down to zero transverse momentum for the emission, giv-

ing an improved simulation of the dead-cone effect for

radiation from massive particles [7].

3. Decay of heavy objects. Massive fundamental particles

such as the top quark, electroweak gauge bosons, Higgs

bosons, and particles in many models of physics be-

yond the Standard Model, decay on time-scales that are

either shorter than, or comparable to that of the QCD

parton shower. Depending on the nature of the particles

and whether or not strongly interacting particles are pro-

duced in the decay, these particles may also initiate par-

ton showers both before and after their decay. One of the

Eur. Phys. J. C (2008) 58: 639–707 641

major features of the Herwig++ shower algorithm is the

treatment of radiation from such heavy objects in both

their production and decay. Spin correlations between the

production and decay of such particles are also correctly

treated.

4. Multiple scattering. For large centre-of-mass energies

the parton densities are probed in a kinematic regime

where the probability of having multiple partonic scatter-

ings in the same hadronic collision becomes significant.

For these energies, multiple scattering is the dominant

component of the underlying event that accompanies the

main hard scattering. These additional scatterings take

place in the perturbative regime, above the infrared cut-

off, and therefore give rise to additional parton showers.

We use an eikonal multiple scattering model [8], which

is based on the same physics as the FORTRAN JIMMY

package [16], together with some minor improvements.

5. Hadronization. After the parton showers have evolved

all partons involved in hard scatterings, additional scat-

ters and partonic decays down to low scales, the fi-

nal state typically consists of coloured partons that are

close in momentum space to partons with which they

share a colour index, their colour ‘partner’ (in the large

Nc limit this assignment is unique). Herwig++ uses the

cluster hadronization model [2] to project these colour–

anticolour pairs onto singlet states called clusters, which

decay to hadrons and hadron resonances. The original

model of Ref. [2], which described this decay as pure

phase space has been progressively refined as described

in Sect. 7. Clusters that are too massive or too light for

decay directly to hadrons to provide a good description

are treated differently, again described in Sect. 7.

6. Hadron decays. The hadron decays in Herwig++ are sim-

ulated using a matrix element description of the distri-

butions of the decay products, together with spin corre-

lations between the different decays, wherever possible.

The treatment of spin correlations is fully integrated with

that used in perturbative production and decay processes

so that correlations between the production and decay of

particles like the tau lepton, which can be produced per-

turbatively but decays hadronically, can be treated con-

sistently.

The program and additional documentation are available

from http://projects.hepforge.org/herwig. This manual con-

centrates on the physics included in the Herwig++ simula-

tion, which has been the subject of a number of publica-

tions [9, 14, 15, 17–23]. Additional documentation of the

code, together with examples of how to use the program and

further information is available from our website and wiki.

We provide a bug-tracker, which should be used to report

any problems with the program or to request user support.

Herwig++ is distributed under the GNU General Public

License (GPL) version 2. This ensures that the source code

will be available to users, grants them the freedom to use and

modify the program and sets out the conditions under which

it can be redistributed. However, it was developed as part of

an academic research project and is the result of many years

of work by the authors, which raises various issues that are

not covered by the legal framework of the GPL. It is there-

fore distributed together with a set of guidelines,1 agreed by

the MCnet collaboration, which set out various expectations

that we have of responsible users. In particular, concerning

citation of relevant physics publications, they state that the

main software reference as designated by the program au-

thors (i.e. this manual for Herwig++ versions 2.1 onwards)

should always be cited, as well as the original literature on

which the program is based to the extent that it is of rele-

vance for a study, applying the same threshold criteria as for

other literature. To help users in this, Herwig++ produces a

LATEX file that lists the primary physics citation(s) for each

module that has been active during a given run. The authors

are always happy to help users determine which citations are

relevant to a particular study.

The remainder of this manual is set out as follows. The

next section contains a brief technical description which

should be sufficient to understand the details of the pro-

gram included in the discussion of the physics simula-

tion. More detailed technical documentation can be obtained

from the website above, including Doxygen descriptions of

all classes.

The rest of the manual then discusses the physics of

each stage of the simulation process in detail, describing

the physics models used in the simulation, together with

the main parameters of the models and the structure of the

code. Finally, we give a summary and our plans for future

improvements. Appendices give some more technical infor-

mation, a series of examples of the program in use, and a

brief description of the process by which the default para-

meters were tuned to data.

2 Technical details

While this manual is primarily a description of the physics

models used in Herwig++, by its nature we cannot wholly

avoid discussing the technical details of the program. We

need to discuss some aspects of the program’s structure and

the mechanism for changing physics model parameters, so

that users can adjust parameters, change the hard process

they are simulating, or make any of the other modifications

that are necessary to make the program useful to an individ-

ual user. In this section we will give a basic overview of the

1These guidelines are contained in the GUIDELINES file distributed

with the release and are also available from http://www.montecarlonet.

org/index.php?p=Publications/Guidelines.

http://projects.hepforge.org/herwig
http://www.montecarlonet.org/index.php?p=Publications/Guidelines
http://www.montecarlonet.org/index.php?p=Publications/Guidelines

642 Eur. Phys. J. C (2008) 58: 639–707

structure of the program, which is designed to supplement

the Doxygen documentation of the source code available

at http://projects.hepforge.org/herwig/doxygen. Herwig++

is based on ThePEG [12]—the Toolkit for High Energy

Physics Event Generation, a framework for implementing

Monte Carlo event generators. ThePEG provides all parts

of the event generator infrastructure that do not depend on

the physics models used as a collection of modular building

blocks. The specific physics models of Herwig++ are imple-

mented on top of these.

Each part of Herwig++ is implemented as a C++ class that

contains the implementation of the Herwig++ physics mod-

els, inheriting from an abstract base class in ThePEG. This

allows the implementations of different physics models to

live side-by-side and be easily exchanged.

The central concept in ThePEG is the Repository, which

holds building blocks in the form of C++ objects that can

be combined to construct an EventGenerator object, which

in turn will be responsible for all steps of event generation.

Within the Repository, one can create objects, set up refer-

ences between them, and change all parameter values. The

Repository object needs to be populated with references to

all required objects for the physics models used at run time.

The objects can then be persistently stored, or combined to

produce an EventGenerator. The default Repository layout

for Herwig++ is shown in Table 1. The composition of the

Repository is controlled through a simple configuration lan-

guage, described in Appendix A. This set of commands al-

lows the user to configure the generator at run time. Through

this mechanism, selection of different physics models or dif-

ferent model parameters is possible without recompilation

of the code.

The EventGenerator object is responsible for the run2 as a

whole. It holds the infrastructure objects that are needed for

the run, like the generation of random numbers, the particle

properties stored as ParticleData objects, and handles any

exceptions.

The actual generation of each event is the responsibility

of the EventHandler. It manages the generation of the hard

scattering process3 and the subsequent evolution of the event

through five StepHandler objects, each of which is respon-

sible for generating one main part of the event:

1. The SubProcessHandler is responsible for generating the

hard sub-process as described in Sect. 3. This handler is

skipped if the hard process is read in from a Les Houches

Accord event file.

2. The CascadeHandler generates the parton shower from

the hard process.

2The generation of a series of events.

3The generation of the hard process by the EventHandler and its inher-

iting classes is discussed in more detail in Sect. 3.3.

3. The MultipleInteractionHandler produces additional hard

scatters when using a multiple parton-parton scattering

model to simulate the underlying event in hadron-hadron

collisions. In practice, given the close relationship be-

tween the parton shower and the additional hard scat-

ters in Herwig++, the multiple scattering model is imple-

mented as part of the Herwig++ implementation of the

CascadeHandler, the ShowerHandler.

4. The HadronizationHandler is responsible for the forma-

tion of hadrons out of the quarks and gluons left after the

parton shower.

5. The DecayHandler is responsible for decaying both the

unstable hadrons produced by the HadronizationHan-

dler, and any unstable fundamental particles that may

have been produced in either the hard process or parton

shower.

The StepHandler base classes in ThePEG do not implement

any physics models themselves. This must be done by inher-

iting classes, which provide an implementation of a specific

model. The Herwig++ ShowerHandler for example, inherits

from CascadeHandler and implements the Herwig++ parton

shower model by overriding the virtual cascade() member

function.

In addition to the five main handlers, the EventHandler al-

lows for pre- and post-handlers to be called before and after

each step. This allows for additional processing of the event

where required: in Herwig++ BSM physics or top quark pro-

duction, the HwDecayHandler is used as a pre-handler for

the ShowerHandler to ensure that all the unstable fundamen-

tal particles have decayed before the parton shower occurs.

The implementation of a physics model as a StepHandler

generally does not put all the code needed for the simulation

in one class, but makes use of an, often large, number of

helper classes.

This brief description only discusses the classes respon-

sible for generating the core parts of the event. Other classes

and concepts are discussed in more detail in the Doxygen

documentation.

The mechanisms for exploring and changing the values of

switches and parameters are also described in Appendix A.

It is worth mentioning that ‘default’ values of switches and

parameters can appear in one of two places: the repository

entries in the default .in files; or the class constructors

and at present there is no built-in mechanism to ensure that

they are consistent. When both exist, the former takes prece-

dence. The values described as ‘default’ in this manual are

those that appear in the default .in files. A further confu-

sion appears, because the value described as default in the

Doxygen documentation is not guaranteed to be the same as

either of the others. A mechanism to ensure that all three

default values are the same will be introduced in a future

version, but until then, users are reminded that the default

.in files remain the primary source of parameter values.

http://projects.hepforge.org/herwig/doxygen

Eur. Phys. J. C (2008) 58: 639–707 643

Table 1 Overview of the

default Repository layout for

Herwig++. Each box represents a

reference to an independent C++

object held in the repository,

which can be swapped out for a

different implementation

Repository

Event generator

Random number generator

Physics model

Vertices

Running couplings

Running masses

CKM matrix

Analysis handler

Analysis handler

...

Event handler

Luminosity function Beam A Beam B Sampler Cuts

Cascade handler

MPI handler
Hadronization handler Decay handler

Subprocess handler

Parton extractor

Matrix element

Matrix element

...

. . .

Subprocess handler

Parton extractor

Matrix element

Matrix element

...
Particle data

Mass generator

Width generator

PDF (for beam particles only)

. . .

Particle data

Mass generator

Width generator

PDF (for beam particles only)

Decay mode

Decayer
. . .

Decay mode

Decayer
. . . Decay mode

Decayer
. . .

Decay mode

Decayer

3 Matrix elements

In Herwig++ the library of matrix elements for QCD and

electroweak processes is relatively small, certainly with re-

spect to the large range of processes available in its FOR-

TRAN predecessor [5, 6]. Indeed, the library of Standard

Model processes is largely intended to provide a core of im-

portant processes with which to test the program. Whereas,

at the time of the development of the original FORTRAN

program, matrix elements needed to be calculated and im-

plemented by hand, nowadays there are a number of pro-

grams that automate these calculations, for a wide range of

processes with high multiplicity final states. It has therefore

been our intention that, in general, users should study most

processes of interest via our interface to these programs.

Nevertheless, there are still some cases for which it is

useful to have Herwig++ handle all stages of the event gener-

ation process. This is particularly true for processes in which

spin correlations between the production and decay stages

are significant e.g. those involving top quarks or tau leptons.

Such correlation effects are hard to treat correctly if different

programs handle different steps of the simulation process.

In order to facilitate the process of adding new ma-

trix elements, where needed, and to enable us to gener-

ate the spin correlation effects [24–27], we have based

all matrix element calculations on the helicity libraries of

ThePEG. As well as providing a native library of Standard

Model processes and an interface to parton-level generators,

Herwig++ also includes matrix elements for hard 2 → 2 col-

lisions and 1 → 2 decays, arising in various models of new

physics (see Sect. 5).

3.1 Matrix elements for specific processes

For e+e− colliders only three hard processes are included:

– Quark-antiquark and dilepton pair production, via in-

terfering photon and Z0 bosons. The associated ma-

trix elements are implemented in the MEee2gZ2qq and

MEee2gZ2ll classes respectively. No approximation is

644 Eur. Phys. J. C (2008) 58: 639–707

made regarding the masses of the particles.4 These

processes are essential for us to validate the program us-

ing QCD analyses of LEP data and, similarly, to check

the implementation of spin correlations in τ decays.

– The Bjorken process, Z0h0 production, which is imple-

mented in the MEee2ZH class. This process is included as

it is very similar to the production of Z0h0 and W±h0 in

hadron-hadron collisions and uses the same base class for

most of the calculation.

A much wider range of matrix elements is included in

the standalone code for the simulation of events in hadron

colliders:

– Difermion production via s-channel electroweak gauge

bosons. The matrix elements for the production of fermion-

antifermion pairs through W± bosons, or interfering pho-

tons and Z0 bosons, are implemented in the MEqq2W2ff

and MEqq2gZ2ff classes respectively. Only s-channel

electroweak gauge boson diagrams are included for the

hadronic modes.

– The production of a Z0 or W± boson in association

with a hard jet is simulated using the MEPP2ZJet or

MEPP2WJet class respectively. The decay products of the

bosons are included in the 2 → 3 matrix element and the

option of including the photon for Z0 production is sup-

ported.

– The 2 → 2 QCD scattering processes are implemented

in the MEQCD2to2 class. Currently all the particles are

treated as massless in these processes.

– The matrix element for the production of a heavy quark-

antiquark pair (top or bottom quark pairs), is coded in the

MEPP2QQ class. No approximations are made regarding

the masses of the outgoing qq̄ pair.

– The MEPP2GammaGamma class implements the matrix

element for the production of prompt photon pairs. In

addition to the tree-level qq̄ → γ γ process the loop-

mediated gg → γ γ process is included.

– Direct photon production in association with a jet is simu-

lated using the MEPP2GammaJet class. As with the QCD

2 → 2 process all of the particles are treated as massless

in these processes.

– The production of an s-channel Higgs boson via both

gg → h0 and qq̄ → h0 is simulated using the

MEPP2Higgs class.

– The production of a Higgs boson in association with the

Z0 or W± bosons is simulated using the MEPP2ZH or

MEPP2WH class respectively.

– The production of the Higgs boson in association with a

hard jet is simulated using the MEPP2HiggsJet class.

4t -channel photon and Z0 boson exchange are not included.

In addition to the processes described above, which are

intended for realistic physics studies, we have a small num-

ber of classes that are primarily intended to test certain

aspects of the Herwig++ code. These are: the MEee2Vec-

torMeson class for the simulation of an s-channel vector me-

son, which is used to test the hadron decays by producing the

ϒ(4S); the MEee2Z class, which produces an s-channel Z0

boson in e+e− collisions to test the spin correlation effects

in Z0 decays; and the MEee2Higgs2SM class, which simu-

lates s-channel Higgs boson production in e+e− collisions

to test spin correlations in the decays of tau leptons produced

in the decay of scalar and pseudoscalar Higgs bosons.

In addition we have one matrix element class,

MEQCD2to2Fast, that uses hard-coded formulae for the

QCD 2 → 2 scattering matrix elements rather than the he-

licity libraries of ThePEG. This class is significantly faster

than the default MEQCD2to2 class, although it does not im-

plement spin correlations. It is intended to be used in the

generation of the multiple parton-parton scatterings for the

underlying event where the spin correlations are not impor-

tant but due to the number of additional scatterings that must

be generated the speed of the calculation can significantly

affect the run time of the event generator.

3.2 Les Houches interface

There are a number of matrix element generators available

that can generate parton-level events using either the original

Les Houches Accord [28] or the subsequent extension [29],

which specified a file format for the transfer of the infor-

mation between the matrix element generator and a general-

purpose event generator, such as Herwig++, rather than the

original FORTRAN COMMON block.

In addition to the internal mechanism for the generation

of hard processes, ThePEG provides a general LesHouches-

EventHandler class, which generates the hard process using

the Les Houches Accord. In principle a run-time interface

could be used to directly transfer the information between

the matrix element generator and Herwig++, however we ex-

pect that the majority of such interfaces will be via data files

containing the event information using the format specified

in Ref. [29].

We expect that this approach will be used for the majority

of hard processes in Herwig++.

3.3 Code structure

In ThePEG the generation of the hard process is the respon-

sibility of the EventHandler. The base EventHandler class

only provides the abstract interfaces for the generation of

the hard process with the actual generation of the kine-

matics being the responsibility of inheriting classes. There

are two such classes provided in ThePEG: the Standard

Eur. Phys. J. C (2008) 58: 639–707 645

EventHandler, which implements the internal mechanism

of ThePEG for the generation of the hard process; and the

LesHouchesEventHandler, which allows events to be read

from data files.

3.3.1 StandardEventHandler

The StandardEventHandler uses a SubProcessHandler to

generate the kinematics of the particles involved in the hard

process. In turn the SubProcessHandler makes use of a num-

ber of MEBase objects to calculate the matrix element and

generate the kinematics for specific processes. The specific

matrix elements used in a given run of the EventGenerator

can be specified using the MatrixElements interface of the

SubProcessHandler. The MEBase object is responsible for:

– defining the particles that interact in a given process,

by specifying a number of DiagramBase objects; one

DiagramBase is specified per flavour combination.

– returning the differential partonic cross section

dσ

dr1..drn
, (1)

when supplied with the partonic centre-of-mass energy of

the collision and n random numbers between 0 and 1.

Each MEBase class specifies how many random num-

bers it requires to calculate the partonic cross section and

kinematics for the processes it implements. For example

a 2 → 2 process typically needs two5 random numbers,

one each for the polar and azimuthal angles.

– creating a HardVertex object describing the interaction

that occurred, including the spin-unaveraged matrix ele-

ment to allow spin correlation effects to be generated.

One MEBase object is generally used to describe one physi-

cal process with different partonic flavours. The selection of

flavours within each subprocess is carried out internally by

the EventHandler. The resulting cross sections can be output

with varying levels of detail, controlled by the StatLevel

switch; by default they are only broken down by MEBase

objects. The SubProcessHandler then uses a SamplerBase

object to perform the unweighting of the cross section and

generate events with unit weight. In practice for 2 → 2 cross

section the generation of the kinematics and other technical

steps is handled by the ME2to2Base class. In addition the

actual calculation of the matrix element can be easily im-

plemented using the Helicity classes of ThePEG. All of the

matrix elements in Herwig++ inherit6 from ME2to2Base and

make extensive use of the Helicity library of ThePEG.

5In practice as the matrix elements do not depend on the azimuthal

angle we often only use one random number for the polar angle and

generate the second random number locally.

6The only exception is the MEQCD2to2Fast class, which is ‘hand writ-

ten’ for speed.

In general the main switch for the generation of the hard

process is the MatrixElements interface, which allows the

MEBase objects to be specified and hence determines which

hard scattering processes are generated. In addition, each

class inheriting from MEBase in Herwig++ has a number of

parameters that control the incoming, outgoing and inter-

mediate particles in a specific process. These are controlled

by Interfaces in the specific matrix element classes. A num-

ber of different partonic subprocesses can be handled at the

same time by simply specifying several MEBase objects.

3.3.2 LesHouchesEventHandler

The LesHouchesEventHandler class inherits from the Event

Handler class of ThePEG. The class has a list of LesHouch-

esReader objects that are normally connected to files with

event data produced by an external matrix element genera-

tor program, although it could in principle include a direct

run-time link to the matrix element generator or read events

‘on the fly’ from the output of a matrix element generator

connected to a pipe.

When an event is requested by LesHouchesEventHandler,

one of the readers is chosen according to the cross sec-

tion of the process for which events are supplied by that

reader. An event is read in and subsequently handled in the

same way as for an internally generated process. The use of

the LesHouchesEventHandler class is described in Appen-

dix B.8.

3.3.3 Kinematic cuts

For cuts on the hard process we use Cuts objects from

ThePEG. All cuts applied to the generation of the hard

process can be specified via its Interfaces. There are many

types of cuts that can be applied.

Cuts applied to the overall hard process, such as a min-

imum or maximum invariant mass M̂ of the process, can

be specified directly as a parameter of the Cuts class. The

minimum value of the invariant mass for the hard process is

set using the MhatMin parameter. Many more cuts can be

specified by using the Interfaces of the Cuts class. Among

those that are used in Herwig++ are cuts on the momentum

fractions x1,2 of the incoming partons and the hard process

scale. The default set of cuts we apply in hadronic collisions

is M̂ > 20 GeV (MhatMin), x1,2 > 10−5 (X1Min, X2Min)

and Q > 1 GeV (ScaleMin).

In addition to these general cuts it is possible to spec-

ify cuts that are only applied to particular particles, particle

pairs or resonant intermediate particles. In order to do so,

one has to specify a number of OneCutBase, TwoCutBase

or MultiCutBase objects in the Cuts object that is applied.

Whenever we use OneCutBase cuts we use SimpleKTCut

objects. These require that a Matcher object is set up for the

646 Eur. Phys. J. C (2008) 58: 639–707

particles to which the cut is applied. The Matcher classes

used in Herwig++ all inherit from MatcherType. In addition

to the Matcher classes provided by ThePEG, Herwig++ pro-

vides additional matchers for top quarks, TopMatcher, and

photons, PhotonMatcher. This can be either a single par-

ticle, for example the top quark, or a group of particles,

like the leptons. Then, for example, the minimum trans-

verse momentum of that particle k⊥,min can be specified as

MinKT. In addition we use minimum and maximum val-

ues of pseudorapidity via MinEta and MaxEta. By default

we use k⊥,min > 20 GeV for partons and |η| < 3 for photons

from the hard scattering process.

An example of a MultiCutBase class is the V2LeptonsCut

class. We use it to limit the invariant mass of lepton pairs.

It is given similarly to the general cut as MinM. We use the

rather loose cut 20 GeV < M < 1.4 TeV by default. Another

useful parameter of this class is the specification of the lep-

ton families (Families) or the charge combination (CComb)

of the lepton pair the cut is applied to.

As the cuts are applied to all the particles produced in the

collision, for W±/Z0 production in association with either

a jet or a Higgs boson the cuts are also applied to the de-

cay products of the boson. This can lead to inefficiencies in

the generation of the hard process and a suppression of the

hadronic boson decays with the default cuts on the quarks.

4 Perturbative decays and spin correlations

In Herwig++ the decays of the fundamental particles and the

unstable hadrons are handled in the same way in order that

correlation effects for particles such as the tau lepton, which

is produced perturbatively but decays non-perturbatively, are

correctly treated. Eventually it is intended that the unstable

fundamental particles will be decayed during the parton-

shower stage of the event, however currently in order that

the correlation effects are correctly generated all the pertur-

bative particle decays are performed before the generation

of the parton shower by using the HwDecayHandler as one

of the PreCascadeHandlers in the EventHandler responsi-

ble for generating the event. The Decayer classes used in

Herwig++ to perform the decays of the fundamental Stan-

dard Model particles make use of the Helicity classes of

ThePEG to calculate the helicity amplitudes for the decay

matrix elements. The code structure for the Decayer classes

used in Herwig++ and the HwDecayHandler implement the

algorithm of Refs. [24–27] to correctly include the spin cor-

relations.

In the next subsection we describe the spin correlation

algorithm of [24–27] using the example of top production

and decay. This is followed by a description of the modelling

of the decay of the fundamental particles of the Standard

Model, the production and decays of particles in models of

physics Beyond the Standard Model is discussed in Sect. 5.

We then describe the simulation of QED radiation in particle

decays. Finally we briefly discuss the structure of the code

for the decays of fundamental particles.

4.1 Spin correlations

When calculating the matrix element for a given hard

process or decay one must take into account the effect of

spin correlations, as they will affect the distributions of par-

ticles in the final state. In particular these correlations are

important in the production and decay of the top quark, for

the production of tau leptons in Higgs decays and in models

of BSM physics where one can have two models that pos-

sess a very similar particle spectrum but with particles that

have different spins.

An algorithm for correctly incorporating these correla-

tions into a Monte Carlo is demonstrated in Refs. [24–27].

Rather than discuss the algorithm in full detail here we

will describe it by considering the example of the process

e+e− → t t̄ where the top quark subsequently decays, via a

W+ boson, to a b quark and a pair of light fermions.

Initially, the outgoing momenta of the t t̄ pair are gener-

ated according to the usual cross-section integral

(2π)4

2s

∫
d3pt

(2π)32Et

d3pt̄

(2π)32Et̄

M
e+e−→t t̄
λtλt̄

M
∗e+e−→t t̄
λtλt̄

, (2)

where Me+e−→t t̄
λtλt̄

is the matrix element for the initial hard

process and λt,t̄ are the helicities of the t and t̄ respectively.

One of the outgoing particles is then picked at random, say

the top, and a spin density matrix calculated

ρt

λtλ
′
t

=
1

N
M

e+e−→t t̄
λtλt̄

M
∗e+e−→t t̄

λ
′
tλt̄

, (3)

with N defined such that Trρ = 1.

The top is decayed and the momenta of the decay prod-

ucts distributed according to

(2π)4

2mt

∫
d3pb

(2π)32Eb

d3pW+

(2π)32EW+
ρt

λtλ
′
t

M
t→bW+
λtλW+ M

∗t→bW+

λ
′
tλW+

,

(4)

where the inclusion of the spin density matrix ensures the

correct correlation between the top decay products and the

beam.

A spin density matrix is calculated for the W+ only, be-

cause the b is stable

ρW+

λW+λ
′
W+

=
1

N
ρt

λtλ
′
t

M
t→bW+
λtλW+ M

∗t→bW+

λ
′
tλ

′
W+

, (5)

and the W+ decayed in the same manner as the top. Here

the inclusion of the spin density matrix ensures the correct

Eur. Phys. J. C (2008) 58: 639–707 647

correlations between the W+ decay products, the beam and

the bottom quark.

The decay products of the W+ are stable fermions so the

decay chain terminates here and a decay matrix for the W+

DW+

λW+λ
′
W+

=
1

N
M

t→bW+
λtλW+ M

∗t→bW+

λtλ
′
W+

, (6)

is calculated. Moving back up the chain a decay matrix for

the top quark is calculated using the decay matrix of the W+,

Dt

λtλ
′
t

=
1

N
M

t→bW+
λtλW+ M

∗t→bW+

λ
′
tλ

′
W+

DW+

λW+λ
′
W+

. (7)

Since the top came from the hard scattering process we must

now deal with the t̄ in a similar manner but instead of using

δλtλ
′
t

when calculating the initial spin density matrix, the de-

cay matrix of the top is used and the t̄ decay is generated ac-

cordingly. The density matrices pass information from one

decay chain to the associated chain thereby preserving the

correct correlations.

The production and decay of the top, using the spin cor-

relation algorithm, is demonstrated in Figs. 1–3. The hard

scattering process and subsequent decays were generated us-

ing the general matrix elements described in Sect. 5 rather

than the default ones. The results from the full matrix ele-

ment calculation are also included to show that the algorithm

has been correctly implemented. The separate plots illustrate

the different stages of the algorithm at work. Figure 1 gives

the angle between the beam and the outgoing lepton. The

results from the simulation agree well with the full matrix

element calculation, which demonstrates the consistency of

the algorithm for the decay of the t̄ .

Figure 2 gives the angle between the top quark and the

produced lepton. This shows the same agreement as the pre-

vious figure and demonstrates the correct implementation of

the spin density matrix for the t̄ decay. Finally, Fig. 3 gives

the results for the angle between the final-state lepton/anti-

lepton pair showing the correct implementation of the decay

matrix that encodes the information about the t̄ decay. Dis-

tributions for various processes within the Minimal Super-

symmetric Standard Model and for tau production in Higgs

decay are shown in Refs. [21, 22].

The same algorithm is used regardless of how the par-

ticles are produced, in order to consistently implement

the spin correlations in all stages of the event generation

process.

4.2 Standard model decays

There are a small number of decays of fundamental Stan-

dard Model particles currently implemented. These are im-

plemented as Decayer classes for top quark, W± and Z0,

and Higgs boson decays. The following classes are avail-

able:

– the SMTopDecayer implements the three-body decay of

the top quark to the bottom quark and a Standard Model

fermion-antifermion pair, via an intermediate W+ boson;

– the SMWZDecayer class implements the decay of the W±

and Z0 bosons to a Standard Model fermion-antifermion

pair;

– the SMWZGammaDecayer class implements the decay of

the W± and Z0 bosons to a Standard Model fermion-

antifermion pair with the radiation of a photon, it is only

intended for comparison with the radiation of photons us-

ing the YFS formalism [30] by the SOPHTY DecayRadi-

ationGenerator in particle decays [19];

– the SMHiggsFermionsDecayer class implements the de-

cay of the Higgs boson to a Standard Model fermion-

antifermion pair, i.e. h0 → f f̄ ;

– the SMHiggsWWDecayer implements the decay of the

Higgs boson to W± or Z0 bosons, i.e. h0 → W+W−,

Z0Z0, including the decay of the gauge bosons;

– the SMHiggsGGHiggsPPDecayer implements the decay

of the Higgs boson to a pair of either gluons or photons.

In general, external top quarks and W± and Z0 bosons

are produced on mass-shell. In cases where we wish to in-

clude off-shell effects for the electroweak gauge bosons they

are included as intermediate particles, for example in top

quark and Higgs boson decays. In the future we will improve

this to use the same treatment of off-shell effects we use in

hadron decays, see Sect. 9. This approach is already imple-

mented for the Higgs boson as in the FORTRAN HERWIG

program together with the more sophisticated approaches

described in Ref. [31].

4.3 QED radiation

The simulation of QED radiation using the approach of

Ref. [20] has been included for both particle decays and un-

stable s-channel resonances produced in the hard process.

This approach is based on the YFS formalism [30], which

takes into account large double- and single- soft photon log-

arithms to all orders. In addition, the leading collinear log-

arithms are included to O(α) by using the dipole splitting

functions. By default the production of QED radiation is

switched off for both decays and hard processes. It may be

included by using the QEDRadiationHandler in the Even-

tHandler as one of the PostSubProcessHandlers for the

hard process or using the PhotonGenerator interface of the

relevant Decayer inheriting from the DecayIntegrator class

for the decays.

4.4 Code structure

The code structure for particle decays in Herwig++ is de-

scribed in more detail in Sect. 9.6 for the hadronic decays.

All of the Decayer classes for fundamental particles inherit

648 Eur. Phys. J. C (2008) 58: 639–707

Fig. 1 Angle between the beam and the outgoing lepton in e+e− →
t t̄ → bb̄l+νl l

−ν̄l in the lab frame for a centre-of-mass energy of

500 GeV with (a) unpolarized incoming beams, (b) negatively polar-

ized electrons and positively polarized positrons and (c) positively po-

larized electrons and negatively polarized electrons. The data points

show the results of the simulation as production and decay including

spin correlations, while the histograms use the full matrix element for

e+e− → t t̄ → bb̄l+νl l
−ν̄l

Fig. 2 Angle between the lepton and the top quark in e+e− → t t̄ →
bb̄l+νl l

−ν̄l in the lab frame for a centre-of-mass energy of 500 GeV

with (a) unpolarized incoming beams, (b) negatively polarized elec-

trons and positively polarized positrons and (c) positively polarized

electrons and negatively polarized electrons. The data points show

the results of the simulation as production and decay including spin

correlations, while the histograms use the full matrix element for

e+e− → t t̄ → bb̄l+νl l
−ν̄l

from the DecayIntegrator class in order to use the multi-

channel phase-space integration it provides.

The SMHiggsMassGenerator implements the generation

of the mass of off-shell Higgs bosons using the running

width implemented in the SMHiggsWidthGenerator class.

These classes inherit from the GenericMassGenerator and

GenericWidthGenerator classes of Herwig++ in order to have

access to the full infrastructure for the simulation of off-shell

particles described in Sect. 9.

The structure of the code for the simulation of QED ra-

diation in particle decays is designed to be general, so that

other approaches can be implemented. The generation of the

radiation is handled by a class inheriting from the abstract

DecayRadiationGenerator class. Currently only the YFS ap-

Eur. Phys. J. C (2008) 58: 639–707 649

Fig. 3 Angle between the outgoing lepton and anti-lepton in e+e− →
t t̄ → bb̄l+νl l

−ν̄l in the lab frame for a centre-of-mass energy of

500 GeV with (a) unpolarized incoming beams, (b) negatively polar-

ized electrons and positively polarized positrons and (c) positively po-

larized electrons and negatively polarized electrons. The data points

show the results of the simulation as production and decay including

spin correlations, while the histograms use the full matrix element for

e+e− → t t̄ → bb̄l+νl l
−ν̄l

proach, as described in Ref. [20], is implemented in the

SOPHTY class, which uses the helper FFDipole and IFDi-

pole classes for radiation from final-final and initial-final

dipoles, respectively. In addition the QEDRadiationHandler

is included to allow the DecayRadiationGenerator to be used

to generate radiation in the decay of particles generated as

s-channel resonances in the hard process.

5 Physics beyond the standard model

No one knows what kind of physics will be encountered in

the LHC era and it is likely that a variety of new physics

models will need to be considered in determining its exact

nature. This eventuality has been accounted for in the de-

sign of the Herwig++ program, by the inclusion of a general

framework for the implementation of new physics models.

Using this framework, new models can be realized quickly

and efficiently. This method is described in full in Ref. [21]

and will be reviewed here.

In describing the features needed to simulate Beyond the

Standard Model (BSM) processes, we need only concern

ourselves with the hard collisions, either producing known

particles through modified couplings or the exchange of new

particles, or producing new particles in the final state, and

with decays of the new particles. All other steps of event

generation are handled in the same way as for Standard

Model processes.7 Both of these steps involve calculating an

7Other features do emerge in certain models, for example the

hadronization of new long-lived coloured particles, which is not yet

amplitude, which in turn relies on knowledge of the Feyn-

man rules within the model being used. In Herwig++ the

Feynman rules are implemented as a series of Vertex classes,

which inherit from the generic classes of ThePEG. These

Vertex classes are based on the HELAS formalism [32], with

each class able to evaluate the vertex as a complex num-

ber or, given different information, an off-shell wavefunc-

tion that can be used as input for another calculation. Each

Feynman diagram contributing to a given process is evalu-

ated in terms of these vertex building blocks and the sum

of the resulting contributions is squared to give the matrix

element.

In this section we start by briefly describing the gener-

ation of the hard processes and decays in models of new

physics, this is followed by a description of models currently

implemented in Herwig++, including the Standard Model,

and the structure of the code.

5.1 Hard process

Section 3 gave details on the default matrix elements avail-

able for generating Standard Model processes in Herwig++.

These classes are based on specific particle interactions

whereas the classes used for BSM models are based on the

external spin structure of a 2 → 2 scattering process. To gen-

erate a specific process the user specifies the desired states

fully implemented in Herwig++, but for the majority of new physics

models under active study this is the case.

650 Eur. Phys. J. C (2008) 58: 639–707

that are to participate in the hard interaction, using the con-

figuration files, and the code then generates the relevant di-

agrams and a MatrixElement object for each process.8

The generic matrix elements use a colour flow decom-

position to calculate the value of |M|2. This method cuts

down on the amount of colour algebra necessary in the eval-

uation of QCD processes by rewriting the colour structures

of certain diagrams in terms of others in the same process.

As an example, consider the process qa q̄b → g̃c g̃d , which

has diagrams with amplitudes given by

tdbi t
c
ia Mt , (8a)

tcbi t
d
ia Mu, (8b)

if cdi t iba Ms, (8c)

where M{t,u,s} is the colour-stripped amplitude for each di-

agram type. Using the colour matrix identities, (8c) can be

rewritten as [tc, td]ba Ms and is then a combination of the

other two colour structures. By defining a colour flow fi

as a combination of colour-stripped amplitudes possessing

the same colour structure, in this case f1 = Mt − Ms and

f2 = Mu + Ms , we can cut down the number of colour

factors that need to be evaluated. The full matrix element

squared, summed over final-state spins and colours and av-

eraged over initial spins and colours, is obtained by adding

up products of colour flows and the appropriate colour fac-

tor. For any process a b → c d this can be written as

|M|2 = Z
1

Sa

1

Sb

1

Ca

1

Cb

∑

λ

Cijf
λ
i f ∗λ

j , (9)

where Cij is a matrix containing the squared colour factors,

f λ
i denotes the ith colour flow for the set of helicities λ, Z is

an identical particle factor, Sa,b is the number of polarization

states for each incoming particle and Ca,b is the number of

colour states for each incoming particle.

To carry out the parton showering and hadronization

stages of the simulation we must assign a colour to each

particle participating in each hard collision. This informa-

tion is needed in determining the initial conditions for the

parton shower (Sect. 6.3), and how clusters are formed in

the hadronization model (Sect. 7). To this end, each funda-

mental coloured particle is associated to a ColourLine ob-

ject. For the particles involved in the hard interactions, the

colour assignments are made by selecting a colour flow from

a list contained in the corresponding MatrixElement class as

follows. Once a momentum configuration for the primary

hard scattering has been generated, each colour flow is as-

signed a weight according to how much it contributes to the

8It is only necessary to specify a single outgoing particle as the code

will produce all processes with this particle in the final state.

total value of the matrix element (neglecting the interfer-

ence between them, which is typically suppressed by 1/N2
c

and also by dynamical effects). One of these colour flows

is then probabilistically chosen on the basis of this weight

distribution.

5.2 Decays

To be able to decay the BSM states, the possible decay

modes must first be known. If a supersymmetric model is

required one can use a spectrum generator to produce not

only the required spectrum, in accordance with the SUSY

Les Houches Accord [33], but also a decay table. Herwig++

is designed to be able to read this information and set up the

appropriate decay modes for later use. Other models do not

have such programs and therefore the list of possible 1 → 2

decays is generated automatically.

When generating the possible decays automatically we

also need to be able to calculate the partial width of a given

mode so that the branching fraction and total width can be

calculated. For a general two-body decay, the matrix ele-

ment only depends on the mass-square values of each par-

ticle so the phase-space factor can be integrated separately

and the partial width is given by

Ŵ(a → b, c) = |M|2pcm

8πm2
a

, (10)

where |M|2 is the matrix element squared summed over

final-state colours and spins and averaged over initial-state

colours and spins and pcm is the centre-of-mass momentum

pcm =
1

2ma

[(m2
a −(mb +mc)

2)(m2
a −(mb −mc)

2)]1/2. (11)

The total width of the parent is then simply the sum of the

partial widths.

To compute the momenta of the decay products we need

to be able to calculate the matrix element for a selected de-

cay mode. When each mode is created it is assigned a De-

cayer object that is capable of calculating the value of |M|2
for that process. It is done in a similar manner to the hard

matrix element calculations, i.e. using the helicity libraries

of ThePEG.

In decays involving coloured particles that have more

than one possible colour flow, the colour is treated in exactly

the same way as described in Sect. 5.1 for hard processes.

5.3 Model descriptions

This section will give a description of the models that are in-

cluded in Herwig++. In general in Herwig++ the implemen-

tation of a physics model consists of a main class, which

inherits from the StandardModel class and implements the

Eur. Phys. J. C (2008) 58: 639–707 651

calculation of any parameters required by the model or, for a

SUSY model, reads them from an input SUSY Les Houches

file. In addition, there are various classes that inherit from

the general Vertex classes of ThePEG, which implement the

Feynman rules of the model. There may also be some classes

implementing other features of the model, for example the

running couplings in the specific model.

5.3.1 Standard model

The implementation of the Standard Model in Herwig++

inherits from the StandardModelBase class of ThePEG.

ThePEG includes classes to implement the running strong

and electromagnetic couplings, together with the CKM ma-

trix.

In Herwig++ we include our own implementations of the

running electromagnetic coupling, in the AlphaEM class, and

the running strong coupling in the O2AlphaS class. By de-

fault we use the implementations of the running couplings

from ThePEG and the Herwig++ implementations are only

provided to allow us to make exact comparisons with the

FORTRAN HERWIG program.

In order to perform helicity amplitude calculations we

need access to the full CKM matrix. However the CKMBase

class of ThePEG only provides the squares of the matrix ele-

ments. The StandardCKM class therefore provides access to

the matrix elements as well and it is used in all our helicity

amplitude calculations.

We have also included a structure for the implementation

of running mass calculations. The RunningMassBase class

provides a base class and the two-loop QCD running mass

is implemented in the RunningMass class.

The Standard Model input parameters in Herwig++ do not

form a minimal set in that it is possible to independently

set the value of the weak mixing angle in such a way that

the tree-level relationship between the W± and Z0 boson

masses is not satisfied. The electroweak parameters we use

are:

– the value of the electromagnetic coupling at zero momen-

tum transfer, [EW/AlphaEM=137.04];

– the value of sin2 θW , [EW/Sin2ThetaW=0.232];

– the masses of the W±, MW = 80.403 GeV, and Z0, MZ =
91.1876 GeV, bosons, which are taken from their Particle-

Data objects;

– the mixing angles, θ12 [theta_12=0.2262],

θ13 [theta_13=0.0037] and θ23 [theta_23=0.0413], and

phase, δ [delta=1.05], of the CKM matrix.

In addition, many of the Standard Model couplings to the

Z0 boson can be changed to simulate non-Standard Model

effects if desired.

5.3.2 Minimal supersymmetric standard model

The Minimal Supersymmetric Standard Model (MSSM)

is the most studied supersymmetric model and as such it

should be included in any generator attempting to simulate

BSM physics. As its name suggests it contains the small-

est number of additional fields required for the theory to be

consistent. The additional particle content over that of the

Standard Model is listed in Table 2.

The additional particles must have masses and couplings

to be of any use in an event simulation. For supersymmetric

models various programs are available that, given some set

of input parameters, produce a spectrum containing all of the

other parameters necessary to be able to calculate physical

quantities within the model. As stated in the previous sec-

tion the output from such a generator must comply with the

SUSY Les Houches Accord (SLHA) [33] for it to be used

with Herwig++.

While reading the information from an SLHA file is

straightforward, there is a minor complication when dealing

with particle masses that have a mixing matrix associated

with them. For example, consider the neutralinos, which are

an admixture of the bino b̃, third wino w̃3 and 2 higgsinos

h̃1 and h̃2. The physical eigenstates χ̃0
i are given by

χ̃0
i = Nij ψ̃

0
j , (12)

where Nij is the neutralino mixing matrix in the ψ̃0 =
(−ib̃,−iw̃, h̃1, h̃2)

T basis. The diagonalized mass term for

the gauginos is then N∗Mψ̃0N
†, which in general can pro-

duce complex mass values. To keep the mass values real the

phase is instead absorbed into the definition of the corre-

sponding field thereby yielding a strictly real mass and mix-

ing matrix. There is however a price to be paid for this—

while the masses are kept real they can become negative.

For an event generator a negative mass for a physical particle

does not make sense so we instead choose a complex-valued

mixing matrix along with real and non-negative masses. If a

negative mass is encountered while reading a Les Houches

file, the physical mass is taken as the absolute value and the

Table 2 The additional particle content of the MSSM contained in

Herwig++. The particle’s PDG codes are the standard ones given by the

Particle Data Group [34]

Spin Particles

0 d̃L, ũL, s̃L, c̃L, b̃1, t̃1

ẽL, ν̃eL, μ̃L, ν̃μL, τ̃1, ν̃τL

d̃R, ũR, s̃R, c̃R, b̃2, t̃2

ẽR, μ̃R, τ̃2

H 0, A0, H+

1/2 g̃, χ̃0
1 , χ̃0

2 , χ̃0
3 , χ̃0

4 , χ̃+
1 , χ̃+

2

652 Eur. Phys. J. C (2008) 58: 639–707

appropriate row of the mixing matrix is multiplied by a fac-

tor of i. This approach is used in order to facilitate the imple-

mentation of extended supersymmetric models in the future.

5.3.3 Randall-Sundrum model

The first models proposed with extra dimensions were of

the Randall-Sundrum (RS) [35] type where a tensor parti-

cle, namely the graviton, is included and is allowed to prop-

agate in the extra dimensions. All other matter, however, is

restricted to our usual 4D brane and as a result all of the

SM couplings are left unchanged. The only extra couplings

required are those of the graviton to ordinary matter, which

depend on a single parameter �π .

5.3.4 Minimal universal extra dimensions model

We also include a model based on the idea of universal extra

dimensions where all fields are allowed to propagate in the

bulk. Following similar lines to supersymmetry, the model

included in Herwig++ is of a minimal type and has a single

compact extra dimension of radius R [36].

Compactifying the extra dimension and allowing all

fields to propagate in it leads to a rich new structure within

the theory. Analogous to the particle-in-a-box scenario, one

obtains an infinite number of excitations of the fields all

characterized by a quantity called the KK-number. This is

most easily demonstrated by showing how a scalar field �

would decompose after compactification

�(xμ, y) =
1

√
πR

[
�0(x

μ) +
√

2

∞∑

n=1

�n(x
μ) cos

(
ny

R

)]
,

(13)

where xμ are the 4D coordinates, y the position in the

5th dimension and n is the KK-number of the mode with

n = 0 identified as the SM mode. In general, in some com-

pactification schemes, it is possible to have KK-number-

violating interactions but in the Minimal Universal Extra Di-

mensions (MUED) framework in Herwig++ we include only

those interactions that conserve KK-parity P = (−1)n and

also limit ourselves to n = 1.

Table 3 shows the MUED particle content contained in

Herwig++ along with their particle ID codes as these have

not been standardized by the Particle Data Group [34]. Un-

like the MSSM there are no external programs available

that calculate the mass spectrum so this must be done inter-

nally by the UEDBase class, which inherits from the Stan-

dardModel class and implements the UED model. At tree

level the mass of any level-n particle is simply given by

(m2
0 + (n/R)2)1/2, where m0 is the mass of the SM parti-

cle, and 1/R is generally much larger than the SM mass so

Table 3 The MUED particle spectrum contained in Herwig++ along

with their ID codes. • denotes a doublet under SU(2) and ◦ a singlet.

As with the standard PDG codes an antiparticle is given by the negative

of the number in the table

Spin Particle ID code Spin Particle ID code

0 h0
1 5100025 1 g∗

1 5100021

A0
1 5100036 γ ∗

1 5100022

H+
1 5100037 Z0∗

1 5100023

W+∗
1 5100024

1/2 d•
1 5100001 1/2 d◦

1 6100001

u•
1 5100002 u◦

1 6100002

s•
1 5100003 s◦

1 6100003

c•
1 5100004 c◦

1 6100004

b•
1 5100005 b◦

1 6100005

t•1 5100006 t◦1 6100006

e−•
1 5100011 e−◦

1 6100011

ν•
e1 5100012

μ−•
1 5100013 μ−◦

1 6100013

ν•
μ1 5100014

τ−•
1 5100015 τ−◦

1 6100015

ν•
τ1 5100016

the spectrum is highly degenerate and no decays can occur.

This situation changes once radiative corrections are taken

into account and a spectrum that can be phenomenologi-

cally similar to the MSSM arises. The full set of radiative

corrections, as derived in Ref. [37], is incorporated in the

UEDBase class to give a realistic spectrum.

5.4 Code structure

The ModelGenerator class is responsible for setting up the

new MatrixElement objects, which inherit from the Gener-

alHardME class, and DecayMode objects for a new physics

model. Helper classes aid in the creation of these objects,

they are:

HardProcessConstructor this class is responsible for creat-

ing the diagrams for the requested processes and construct-

ing the appropriate GeneralHardME object(s);

ResonantProcessConstructor this class is of a similar de-

sign to the HardProcessConstructor but it only constructs

the resonant diagrams for a process;

DecayConstructor the DecayConstructor stores a collec-

tion of objects that inherit from the NBodyDecayConstructor

class. Each of these is responsible for constructing all of the

decay modes for the 1 → N decays. Currently only the Two-

BodyDecayConstructor class, for two-body decays, and the

WeakCurrentDecayConstructor class, for weak decays using

Eur. Phys. J. C (2008) 58: 639–707 653

the weak currents from Sect. 9.3.1 for decays where two par-

ticles are almost mass degenerate, are implemented.

The matrix element classes all inherit from the

GeneralHardME class and implement the matrix element for

a particular spin configuration. The classes inheriting from

the GeneralHardME class and the spin structures they imple-

ment are given in Table 4.

All of the on-shell decayer classes inherit from the Gen-

eralTwoBodyDecayer class and each is responsible for cal-

culating the value of the matrix element for that particu-

lar set of spins. There is also a GeneralTwoBodyCurrentDe-

cayer class for decay modes created with the WeakCurrent-

DecayConstructor class. The Decayer classes implemented

in Herwig++ and the types of decay they implement are given

in Table 5.

The use of BSM physics models is described in Appen-

dix B.6 where examples of using all the models included

with the release are given.

The specification of the particles involved in the hard

process is achieved through the Incoming and Outgoing in-

terfaces of the HardProcessConstructor. Both interfaces are

lists of ParticleData objects. The switch IncludeEW can be

set to No to include only the strong coupling diagrams.

In order to pass spin correlations through the decay stage,

DecayIntegrator objects must be created. This is achieved

by populating a list held in the ModelGenerator class, which

can be accessed through the DecayParticles interface. The

particles in this list will have spin correlation information

passed along when their decays are generated. If a decay

table is read in for a SUSY model then the CreateDecay-

Modes interface should be set to No so that only the decay

modes listed in the externally generated decay table are cre-

ated.9 For all other models the possible decay modes are also

created from the particles in the DecayParticles list.

In addition to the code that handles the calculation of the

matrix elements for the decays and scattering cross sections

each model requires a number of classes to implement the

model.

The Standard Model is implemented in the Standard-

Model class, which inherits from the StandardModelBase

class of ThePEG and implements access to the helicity Ver-

tex classes and some additional couplings, such as the run-

ning mass, used by Herwig++. The Vertex classes that imple-

ment the Standard Model interactions are given in Table 6.

The structure of the implementation of the MSSM in

Herwig++ is designed to allow extended SUSY models to

be added in the future. Therefore the SusyBase class, which

inherits from the StandardModel class, is designed to read in

the SLHA files specifying the SUSY spectrum. The details

9If a decay table is being used with a SUSY model then the Decay-

Particles list must still be populated so that the decays will have spin

correlation information included.

Table 4 The general hard process matrix elements, based on spin

structures, implemented in Herwig++

Class Name Hard Process

MEff2ff Fermion fermion to fermion fermion

MEff2ss Fermion fermion to scalar scalar

MEff2vs Fermion fermion to vector scalar

MEff2vv Fermion fermion to vector vector

MEfv2fs Fermion vector to fermion scalar

MEfv2vf Fermion vector to vector fermion

MEvv2ff Vector vector to fermion fermion

MEvv2ss Vector vector to scalar scalar

MEvv2vv Vector vector to vector vector

Table 5 The general decays based on spin structures implemented in

Herwig++

Class Name Decay

FFSDecayer Fermion to fermion scalar decay

FFVDecayer Fermion to fermion vector decay

FFVCurrentDecayer Fermion to fermion vector decay

with the vector off-shell and

decaying via a weak current

from Sect. 9.3.1

SFFDecayer Scalar to fermion fermion decay

SSSDecayer Scalar to two scalar decay

SSVDecayer Scalar to scalar vector decay

SVVDecayer Scalar to two vector decay

SVVLoopDecayer Scalar to two vector decay via a loop

VFFDecayer Vector to two fermion decay

VSSDecayer Vector to two scalar decay

VVVDecayer Vector to two vector decay

TFFDecayer Tensor to two fermion decay

TSSDecayer Tensor to two scalar decay

TVVDecayer Tensor to two vector decay

of the MSSM are implemented in the MSSM class, which

inherits from the SusyBase class. The Vertex classes for the

MSSM are given in Table 7. A spectrum file in SLHA for-

mat must be supplied, as described in Appendix B.6.1, or

the MSSM model cannot be used.

The UED model is implemented in the UEDBase class,

which inherits from the StandardModel class and imple-

ments the calculation of the parameters of the model. The

Vertex classes for the UED model are given in Table 8.

There are three parameters that can be set to control the

UED model: the inverse of the radius of compactification

R−1; the cutoff scale �; and the mass of the Higgs boson at

the boundary of the compactified dimension mh. These are

controlled through the interfaces:

654 Eur. Phys. J. C (2008) 58: 639–707

InverseRadius the value of R−1, the default value is

500 GeV;

LambdaR the dimensionless number �R, the default

value is 20;

HiggsBoundaryMass the value of the Higgs mass at the

boundary, the default value is 0 GeV.

The RSModel class inherits from the StandardModel

class and implements the calculations needed for the Randall-

Sundrum model. We have only implemented the vertices

that are phenomenologically relevant and therefore some

Table 6 Herwig++ Vertex classes for the Standard Model

Class Interaction

SMFFGVertex Gluon with the SM fermions

SMFFPVertex Photon with the SM fermions

SMFFWVertex W± boson with the SM fermions

SMFFZVertex Z0 boson with the SM fermions

SMFFHVertex Higgs boson with the SM fermions

SMGGGVertex Triple gluon vertex

SMGGGGVertex Four gluon vertex

SMWWWVertex Triple electroweak gauge boson vertex

SMWWWWVertex Four electroweak gauge boson vertex

SMWWHVertex Higgs boson and weak gauge bosons

SMHGGVertex Higgs boson coupling to two

gluons via quark loops

SMHPPVertex Higgs boson coupling to two

photons via fermion and boson loops

four-point vertices that are not important for resonance

graviton production are not included. The Vertex classes

implemented for the Randall-Sundrum model are given in

Table 9.

Two parameters can be controlled in the Randall-Sundrum

model; the cutoff �π and the mass of the graviton. The

default mass of the graviton is 500 GeV and this can be

changed via the NominalMass interface of its ParticleData

object. The cutoff is set via the Lambda_pi interface of the

RSModel object and has a default value of 10 TeV.

The full list of interfaces for all the classes is provided in

the Doxygen documentation.

6 Parton showers

A major success of the original HERWIG program was its

treatment of soft gluon interference effects, in particular the

phenomenon of colour coherence, via the angular ordering

of emissions in the parton shower [1, 38–46]. Herwig++ sim-

ulates parton showers using the coherent branching algo-

rithm of [17], which generalizes that used in the original

HERWIG program [1–3]. The new algorithm retains angular

ordering as a central feature and improves on its predecessor

in a number of ways, the most notable of these being:

– a covariant formulation of the showering algorithm,

which is invariant under boosts along the jet axis;

– the treatment of heavy quark fragmentation through the

use of mass-dependent splitting functions [47] and kine-

matics, providing a complete description of the so-called

dead-cone region.

Table 7 Herwig++ Vertex

classes for the MSSM Class Interaction

SSNFSVertex Neutralino with a SM fermion and a sfermion

SSCFSVertex Chargino with a SM fermion and a sfermion

SSGFSVertex Gluino with a quark and squark

SSNNZVertex A pair of neutralinos with a Z0 boson

SSCCZVertex A pair of charginos with a Z0 boson

SSCNWVertex Chargino with a neutralino and a W± boson

SSGSGSGVertex SM gluon with a pair of gluinos

SSGSSVertex SM gluon with a pair of squarks

SSWSSVertex SM gauge boson with a pair of sfermions

SSFFHVertex A pair of SM fermions with a Higgs boson

SSWHHVertex SM electroweak gauge bosons with a pair of Higgs bosons

SSWWHVertex A pair of gauge bosons with a Higgs boson

SSGOGOHVertex A pair of gauginos with a Higgs boson

SSHSFSFVertex A Higgs boson with a pair of sfermions

SSHHHVertex Triple Higgs boson self coupling

SSHGGVertex A Higgs boson with a pair of gluons via quark and squark loops

SSGGSQSQVertex A pair of gluons with a pair of squarks

Eur. Phys. J. C (2008) 58: 639–707 655

Table 8 Herwig++ Vertex

classes for the UED model Class Interaction

UEDF1F1P0Vertex SM photon with a pair of KK-1 fermions

UEDF1F1W0Vertex SM W± boson with a pair of KK-1 fermions

UEDF1F1Z0Vertex SM Z0 boson with a pair of KK-1 fermions

UEDF1F1G0Vertex SM gluon with a pair of KK-1 fermions

UEDF1F0W1Vertex KK-1 fermion with an EW KK-1 boson and a SM fermion

UEDF1F0G1Vertex KK-1 fermion with a KK-1 gluon and a SM fermion

UEDF1F0H1Vertex KK-1 fermion with a KK-1 Higgs boson and a SM fermion

UEDP0H1H1Vertex SM photon with a pair of KK-1 charged Higgs boson

UEDW0W1W1Vertex A pair of KK-1 gauge bosons with a SM W± or Z0 boson

UEDG1G1G0Vertex A pair of KK-1 gluons with a SM gluon

UEDG0G0G1G1Vertex A pair of SM gluons with a pair of KK-1 gluons

UEDW0A1H1Vertex SM W± boson with a KK-1 charged Higgs boson and a

KK-1 pseudoscalar Higgs boson

UEDZ0H1H1Vertex SM Z0 boson with a pair of KK-1 charged Higgs boson

UEDZ0A1h1Vertex SM Z0 boson with a KK-1 pseudoscalar Higgs boson and

a KK-1 scalar Higgs boson

Table 9 Herwig++ Vertex classes for the Randall-Sundrum model

Class Interaction

RSModelFFGRVertex Graviton to SM fermions

RSModelSSGRVertex Graviton to the Higgs boson

RSModelFFVGRVertex Graviton to two SM

fermions and a gauge boson

RSModelVVGRVertex Graviton to two gauge bosons

RSModelVVVGRVertex Graviton to three gauge bosons

In this section we give a full description of the parton shower

model and its implementation in the program. We begin

by introducing the fundamental kinematics and dynamics

underlying the shower algorithm. This is followed by de-

scriptions of the initial conditions and the Monte Carlo al-

gorithms used to generate the showers. Toward the end of

the section we discuss how some next-to-leading log correc-

tions can be included by a redefinition of the running cou-

pling constant and process-specific matrix element correc-

tions. The section concludes with details of the C++ code

structure.

6.1 Shower kinematics

Each colour-charged leg of the hard sub-process is consid-

ered to be a shower progenitor. We associate a set of basis

vectors to each progenitor, in terms of which we can express

the momentum (qi) of each particle in the resulting shower

as

qi = αip + βin + q⊥i . (14)

This is the well known Sudakov basis. The vector p is equal

to the momentum of the shower progenitor generated by the

prior simulation of the hard scattering process, i.e. p2 = m2,

where m is the on-shell mass of the progenitor. The refer-

ence vector n is a light-like vector that satisfies n · p > m2.

In practice n is chosen anticollinear to p in the frame where

the shower is generated, maximizing n · p. Since we almost

always generate the shower in the rest frame of the progen-

itor and an object with which it shares a colour line, n is

therefore collinear with this colour partner object. The q⊥i

vector gives the remaining components of the momentum,

transverse to p and n.

In fullness, our basis vectors satisfy the following rela-

tions:

q⊥i · p = 0, p2 = m2, q2
⊥i = −q2

⊥i,

q⊥i · n = 0, n2 = 0, n · p > m2,
(15)

where q⊥i is the spatial component of q⊥i in the frame

where the shower is generated (q2
⊥i ≥ 0). Given these defin-

itions, calculating q2
i , one finds that βi may be conveniently

expressed in terms of the mass and transverse momentum of

particle i as

βi =
q2
i − α2

i m
2 − q2

⊥i

2αin · p
. (16)

The shower algorithm does not generate the momenta or

Sudakov parameters directly. In practice what is generated

first is a set, each element of which consists of three shower

variables, which fully parameterize each parton branch-

ing. One of these variables parameterizes the scale of each

branching, the so-called evolution scale, which we shall dis-

cuss in more detail below. Typically this evolution scale

656 Eur. Phys. J. C (2008) 58: 639–707

starts at a high value, characteristic of the process that pro-

duces the progenitors, and continually reduces as the shower

develops, via the radiation of particles. When the evolution

scale has reduced to the point where there is insufficient

phase space to produce any more branchings, the resulting

partons are considered to be on-shell, and the reconstruction

of the momenta from the shower variables may begin in full.

We now define these shower variables.

The first shower variable we introduce is the light-cone

momentum fraction z. Given a branching, ĩj → i + j ,10 this

parameterizes how the momentum component of the parent

parton, ĩj , in the direction of the shower progenitor, is di-

vided between its two daughter partons, i and j . We define

z as

z =
αi

αĩj

=
n · qi

n · qĩj

. (17)

For particles in the final state we use a forward evolution

algorithm where the parton shower consists of a sequence of

branchings ĩj → i + j , ordered in the evolution scale. For

incoming particles we use a backward evolution algorithm

where we start at the large evolution scale of the scattering

process and evolve the incoming particles backwards toward

the incoming hadron to give the mother ĩj and the sister

parton j , again with a decreasing evolution scale. We use

the definition of z in (17) both for forward and backward

parton shower algorithms.

The second variable used to parameterize a branching is

the azimuthal angle, φ, of the relative transverse momentum

of each branching p⊥, measured with respect to the p di-

rection. The relative transverse momentum p⊥ is defined to

be

p⊥ = q⊥i − zq⊥ĩj . (18)

As with the definition of z, this definition of the relative

transverse momentum is the same for both forward and

backward parton-shower evolution algorithms.

The last, and most important, of the shower variables

defining a branching is the evolution scale. Parton shower

algorithms may be formulated as an evolution in the virtu-

alities of the branching partons, or as an evolution in the

transverse momentum of the branching products. However,

a careful treatment of colour coherence effects [1, 38–46]

reveals that branchings involving soft gluons should be or-

dered in the angle between the branching products.

The key finding in these studies is that, when soft gluon

emissions are considered, branchings that are not angular

ordered do not give any leading logarithmic contributions.

10We reserve the tilde notation ĩj exclusively to denote the parent par-

ton, which decays into daughters i and j .

This is a dynamical effect whereby radiation from the emit-

ting partons, with smaller angular separations, interferes de-

structively in these non-ordered regions. Some intuitive un-

derstanding of the effect may be gained by considering that a

soft gluon, emitted at a large angle from a jet-like configura-

tion of partons, does not have sufficient transverse resolving

power to probe the internal jet structure. As a result, it is

only sensitive to the coherent sum of the collinear singular

contributions associated with the constituents, resulting in

a contribution equivalent to that from the original progen-

itor parton. Destructive interference in the non-ordered re-

gion effectively decreases the available phase space for each

branching, from the virtuality-ordered region to the angular-

ordered region.

It may be shown that the contributions that angular or-

dering misses are purely soft and suppressed by at least one

power of N2
C , where NC = 3, the number of colours in QCD.

Formally then, omitting such contributions amounts to ne-

glecting terms of next-to-leading-log accuracy that are also

strongly colour suppressed. We stress however, that whereas

angular ordering leads to an omission of these suppressed

higher order terms, other forms of ordering must prove that

they do not overestimate leading-log contributions.

For the forward evolution of partons with time-like vir-

tualities, the variable used to achieve such ordering, q̃2, is

defined according to

z(1 − z)q̃2 = −m2
ĩj

+
m2

i

z
+

m2
j

1 − z
−

p2
⊥

z(1 − z)
, (19)

where mi is the on-shell mass of particle i etc. This defini-

tion is arrived at by generalizing the FORTRAN HERWIG an-

gular evolution variable, q̃2 = q2
ĩj
/(z(1 − z)), to include the

effects of the mass of the emitting parton. This may be seen

by writing qĩj = qi + qj , and calculating q2
ĩj
(z,p2

⊥, q2
i , q2

j),

which shows

q̃2 =
q2
ĩj

− m2
ĩj

z(1 − z)

∣∣∣∣
q2
i =m2

i , q2
j =m2

j

. (20)

For showers involving the evolution of partons with space-

like virtualities, the evolution variable is instead defined by

(1 − z)q̃2 = −zm2

ĩj
+ m2

i +
zm2

j

1 − z
−

p2
⊥

1 − z
. (21)

Once again this definition of the evolution variable is a

generalization of the analogous FORTRAN HERWIG angu-

lar evolution variable used for initial-state radiation: q̃2 =
q2
i /(1 − z). Using momentum conservation, qĩj = qi + qj ,

we may calculate q2
i (z,p2

⊥, q2
ĩj
, q2

j), whence one finds

q̃2 =
m2

i − q2
i

1 − z

∣∣∣∣
q2
ĩj

=m2
ĩj

, q2
j =m2

j

. (22)

Eur. Phys. J. C (2008) 58: 639–707 657

To see how these variables relate to the angle between

the branching products, consider that the parton shower is

generated in the frame where the light-like basis vector n

is anticollinear to the progenitor. For forward evolving par-

tons with small time-like virtualities, expanding z and q2
ĩj

in

component form, one finds

q̃2 =
2E2

ĩj
(1 − cos θij)(1 + cos θĩj)

2

(1 + cos θi)(1 + cos θj)
, (23)

where θi and θj are the angles between the daughter par-

ticles i, j and the progenitor, θ
ĩj

is the angle between the

parent and the progenitor, and θij is the angle between the

two daughters. E
ĩj

denotes the energy of the parent. This

expression for the time-like evolution variable in terms of

angles is more complicated than the analogous FORTRAN

HERWIG formula: q̃2 = 2E2
ĩj
(1 − cos θij). This is due to the

fact that in FORTRAN HERWIG z was defined to be the en-

ergy fraction Ei/Eĩj , instead of the light-cone momentum

fraction as given in (17). Nevertheless, for small angles we

find that the Herwig++ and FORTRAN HERWIG evolution

variables are both given by

q̃ = Eĩj θij (1 − O(θ2
x)). (24)

When a branching occurs, the daughter partons i and j ,

with momentum fractions z and 1 − z, have their starting

evolution scales set to zq̃ and (1 − z)q̃ respectively, where

zq̃ ≈ Eiθij and (1 − z)q̃ ≈ Ej θij . In this way the maximum

opening angle of any subsequent branching is θij , thereby

implementing angular ordering.

For initial-state showers the same QCD coherence argu-

ment applies, so in evolving backwards, away from the hard

process, the angle between the mother of the branching and

its final-state daughter parton must decrease. Writing the

space-like evolution variable (see (21)) in terms of angles,

neglecting parton virtualities, one finds the same form as for

the time-like variable in (24). This means that once a branch-

ing has occurred in the course of the backward evolution, the

mother of the branching evolves backward from scale q̃ , and

the daughter evolves forward from scale (1 − z)q̃ , as in the

time-like case.

As stated above, when the evolution in terms of the

shower variables has run its course, i.e. there is no more

phase space available for further emissions, the external par-

ticles are taken as being on-shell and the reconstruction in

terms of the physical momenta can start. First, all of the

α coefficients in the Sudakov decomposition of each mo-

mentum are calculated. This is done by first setting α equal

to one for final-state progenitors and to the associated PDF

light-cone momentum fraction x, generated in the preceding

simulation of the hard process, for initial-state progenitors.

Using the defining z relation (17), together with the momen-

tum conservation relation αĩj = αi + αj , one can iteratively

calculate all α values, starting from the hard process and

working outward to the external legs.

For final-state showers the q⊥ components of each

momentum may be simultaneously calculated. Final-state

showering cannot change the direction of the progenitor

since the transverse momentum must be conserved at each

branching, hence the q⊥ component of the progenitor is

zero. The q⊥ components of the branching products are iter-

atively computed by adding the relative transverse momen-

tum,

p⊥ = (|p⊥| cosφ, |p⊥| sinφ,0;0), (25)

to z times the transverse momentum of the mother, q⊥ĩj , to

give q⊥i according to (18); q⊥j = q⊥ĩj − q⊥i immediately

follows by momentum conservation. The magnitude of the

relative transverse momentum |p⊥| =
√

−p2
⊥ is calculated

in terms of the evolution variables z and q̃2 using (19).

The only remaining Sudakov parameters to be deter-

mined are the β values. These can be obtained once the

evolution in terms of the shower variables is complete, by

using the fact that the external partons are on-shell, in order

to compute their β coefficients from (16). The coefficients

of their parent momenta may then be computed using mo-

mentum conservation: βĩj = βi + βj . The latter step may be

iterated until the progenitor is reached, yielding all β coeffi-

cients.

The reconstruction of the initial-state parton showers is

slightly different but it follows essentially the same reason-

ing. Our aim here has been to simply sketch how the recon-

struction occurs. More detailed presentations of these pro-

cedures will be given later in Sects. 6.4, 6.5 and 6.6.

6.2 Shower dynamics

With the kinematics defined, we now consider the dynamics

governing the parton branchings. Each parton branching is

approximated by the quasi-collinear limit [47], in which the

transverse momentum squared, p2
⊥, and the mass squared

of the particles involved are small (compared to p · n) but

p2
⊥/m2 is not necessarily small. In this limit the probability

of the branching ĩj → i + j can be written as

dPĩj→ij = αS

2π

dq̃2

q̃2
dzPĩj→ij (z, q̃), (26)

where Pĩj→ij (z, q̃) are the quasi-collinear splitting func-

tions derived in [47]. In terms of our light-cone momen-

tum fraction and (time-like) evolution variable the quasi-

collinear splitting functions are

Pq→qg =
CF

1 − z

[
1 + z2 −

2m2
q

zq̃2

]
, (27a)

658 Eur. Phys. J. C (2008) 58: 639–707

Pg→gg = CA

[
z

1 − z
+

1 − z

z
+ z(1 − z)

]
, (27b)

Pg→qq̄ = TR

[
1 − 2z(1 − z) +

2m2
q

z(1 − z)q̃2

]
, (27c)

Pg̃→g̃g =
CA

1 − z

[
1 + z2 −

2m2
g̃

zq̃2

]
, (27d)

Pq̃→q̃g =
2CF

1 − z

[
z −

mq̃

zq̃2

]
, (27e)

for QCD and singular SUSY QCD branchings.11 These

splitting functions give a correct physical description of the

dead-cone region p⊥ � m, where the collinear singular limit

of the matrix element is screened by the mass m of the emit-

ting parton.

The soft limit of the splitting functions is also impor-

tant. The splitting functions with soft singularities Pq→qg ,

Pq̃→q̃g , Pg→gg , and Pg̃→g̃g , in which the emitted particle j

is a gluon, all behave as

lim
z→1

Pĩj→ij =
2Cĩj

1 − z

(
1 −

m2
i

q̃2

)
, (28)

in the soft z → 1 limit, where Cĩj equals CF for Pq→qg

and Pq̃→q̃g , 1
2
CA

12 for Pg→gg , and CA for Pg̃→g̃g . In using

these splitting functions to simulate the emission of a gluon

from a time-like mother parton ĩj , associated to a general n

parton configuration with matrix element Mn, one is effec-

tively approximating the matrix element for the process with

the additional gluon, Mn+1, by

|Mn+1|2 =
8παS

q2
ĩj

− m2
ĩj

Pĩj→ij |Mn|2. (29)

Using the definitions of our shower variables, (17), and mak-

ing the soft emission approximations qĩj ≈ qi ≈ p, q2
i ≈

m2
i = m2

ĩj
in (28), (29) we find [20]

lim
z→1

8παS

q2
ĩj

− m2
ĩj

Pĩj→ij

= −4παSCĩj

(
n

n · qj

−
p

p · qj

)2

. (30)

11The Pg→gg splitting presented here is for final-state branching where

the outgoing gluons are not identified and therefore it lacks a factor

of two due to the identical particle symmetry factor. For initial-state

branching one of the gluons is identified as being space-like and one as

time-like and therefore an additional factor of 2 is required.

12Note that for g → gg, there is also a soft singularity at z → 0 with

the same strength, so that the total emission strength for soft gluons

from particles of all types in a given representation is the same: CF in

the fundamental representation and CA in the adjoint.

Recalling that we choose our Sudakov basis vector n to point

in the direction of the colour partner of the gluon emitter

(ĩj/i), (30) is then just the usual soft eikonal dipole func-

tion describing soft gluon radiation by a colour dipole [48],

at least for the majority of cases where the colour partner

is massless or nearly massless. In practice, the majority of

processes we intend to simulate involve massless or light

partons, or partons that are light enough that n reproduces

the colour partner momentum to high accuracy.13

For the case that the underlying process with matrix el-

ement Mn is comprised of a single colour dipole (as is the

case for a number of important processes), the parton shower

approximation to the matrix element Mn+1, (29), then be-

comes exact in the soft limit as well as, and independently

of, the collinear limit. This leads to a better description

of soft wide angle radiation, at least for the first emission,

which is of course the widest angle emission in the angular

ordered parton shower. Should the underlying hard process

consist of a quark anti-quark pair, this exponentiation of the

full eikonal current, (30), hidden in the splitting functions,

combined with a careful treatment of the running coupling

(Sect. 6.7), will resum all leading and next-to-leading loga-

rithmic corrections [49–52]. In the event that there is more

than one colour dipole in the underlying process, the situa-

tion is more complicated due to the ambiguity in choosing

the colour partner of the gluon, and the presence of non-

planar colour topologies.

In general, the emission probability for the radiation of

gluons is infinite in the soft z → 1 and collinear q̃ → 0

limits. Physically these divergences would be canceled by

virtual corrections, which we do not explicitly calculate but

rather include through unitarity. We impose a physical cut-

off on the gluon and light quark virtualities and call radia-

tion above this limit resolvable. The cutoff ensures that the

contribution from resolvable radiation is finite. Equally the

uncalculated virtual corrections ensure that the contribution

of the virtual and unresolvable emission below the cutoff is

also finite. Imposing unitarity,

P (resolved) + P (unresolved) = 1, (31)

gives the probability of no branching in an infinitesimal in-

crement of the evolution variable dq̃ as

1 −
∑

i,j

dPĩj→ij , (32)

where the sum runs over all possible branchings of the parti-

cle ĩj . The probability that a parton does not branch between

13Even when the colour partner has a large mass, as in e+e− → t t̄ ,

the fact that each shower evolves into the forward hemisphere, in the

opposite direction to the colour partner, means that the difference be-

tween (30) and the exact dipole function is rather small in practice.

Eur. Phys. J. C (2008) 58: 639–707 659

two scales is given by the product of the probabilities that it

did not branch in any of the small increments dq̃ between

the two scales. Hence, in the limit dq̃ → 0 the probability of

no branching exponentiates, giving the Sudakov form factor

�(q̃, q̃h) =
∏

i,j

�ĩj→ij (q̃, q̃h) (33)

which is the probability of evolving between the scale q̃h

and q̃ without resolvable emission. The no-emission proba-

bility for a given type of radiation is

�ĩj→ij (q̃, q̃h) = exp

{
−

∫ q̃h

q̃

dq̃ ′2

q̃ ′2

∫
dz

αS(z, q̃ ′)

2π

× Pĩj→ij (z, q̃
′)�(p2

⊥ > 0)

}
. (34)

The allowed phase space for each branching is obtained by

requiring that the relative transverse momentum is real, or

p2
⊥ > 0. For a general time-like branching ĩj → i + j this

gives

z2(1 − z)2q̃2 − (1 − z)m2
i − zm2

j + z(1 − z)m2
ĩj

> 0, (35)

from (19).

In practice rather than using the physical masses for the

light quarks and gluon we impose a cutoff to ensure that the

emission probability is finite. We use a cutoff, Qg , for the

gluon mass, and we take the masses of the other partons to

be μ = max(m,Qg), i.e. Qg is the lowest mass allowed for

any particle.

There are two important special cases.

1. q → qg, the radiation of a gluon from a quark, or indeed

any massive particle. In this case (35) simplifies to

z2(1 − z)2q̃2 > (1 − z)2μ2 + zQ2
g, (36)

which gives a complicated boundary in the (q̃, z) plane.

However as

(1 − z)2μ2 + zQ2
g > (1 − z)2μ2, z2Q2

g (37)

the phase space lies inside the region

μ

q̃
< z < 1 −

Qg

q̃
(38)

and approaches these limits for large values of q̃ . In this

case the relative transverse momentum of the branching

can be determined from the evolution scale as

p⊥ =
√

(1 − z)2(z2q̃2 − μ2) − zQ2
g . (39)

2. g → gg and g → qq̄ , or the branching of a gluon into

any pair of particles with the same mass. In this case the

limits on z are

z− < z < z+, z± =
1

2

(
1 ±

√
1 −

4μ

q̃

)
and q̃ > 4μ.

(40)

Therefore analogously to (38) the phase space lies within

the range

μ

q̃
< z < 1 −

μ

q̃
. (41)

In this case the relative transverse momentum of the

branching can be determined from the evolution scale as

p⊥ =
√

z2(1 − z)2q̃2 − μ2. (42)

These two special cases are sufficient for all the branchings

currently included in the simulation, although the general

case of three unequal masses for the particles in the branch-

ing is supported.

The cutoff parameter, Qg , is the minimum virtuality

of the gluon. However, if we consider the phase space

that is available to the parton shower we would expect

a natural threshold of order m + Qg for gluon emission

from a quark of mass m. In practice for the radiation of a

gluon from a quark, (39) gives a threshold that behaves as

Qthr ≃ 1.15(mq + 2Qg). This means that the phase-space

limit is well above our expectation, particularly for heavy

quarks.

There is no reason why Qg should be the same for all

quark flavours. Therefore, we have chosen to parameterize

the threshold for different flavours as

Qg = max

(
δ − amq

b
, c

)
, (43)

where a [aParameter=0.3] and b [bParameter=2.3] are

parameters chosen to give a threshold Qthr = βmq + δ, with

β = 0.85, in order to slightly reduce the threshold distance

for heavier quarks. As a result, the threshold for radiation

from heavy quarks is closer to its physical limit. The para-

meter δ is tuned to data as [cutoffKinScale=2.8 GeV] and,

only relevant for partons heavier than the bottom quark, the

parameter c is chosen to prevent the cutoff becoming too

small, [cParameter=0.3 GeV].

The formalism discussed above allows us, if given a start-

ing scale q̃h, to evolve a parton down in scale and generate

the next branching of this particle at a lower scale. The no-

emission probability encoded in the Sudakov form factor is

used to generate (q̃, z) for this branching. This procedure

can then be iterated to generate subsequent branchings of the

particles produced until no further emission occurs above

the cutoff.

660 Eur. Phys. J. C (2008) 58: 639–707

6.3 Initial conditions

Before we can simulate possible radiation from a hard

process we need to know the initial conditions, i.e. the scale

q̃h from which to start the evolution. The initial conditions

for the parton shower are determined by the colour flow in

the hard process [3]. For each particle involved in the hard

process a colour partner is chosen. In the case of particles in

the fundamental representation of the SU(3) gauge group

this choice is unique, at least in processes where baryon

number is conserved. In the case of a gluon a uniform ran-

dom choice is made between the two possible partners. In

processes involving baryon number violation a uniform ran-

dom choice is made between all the potential colour part-

ners [53, 54]. The direction of this colour partner determines

the maximum angle for emission of QCD radiation from a

particle in the angular-ordered parton shower.

Following the choice of the colour partner the maximum

scale for radiation from the particle must be calculated, as

must the choice of the p and n reference vectors defined

in (14). We always take the choice of p along the direction

of the radiating particle but the choice of n is related to the

direction of the colour partner.

6.3.1 Final-final colour connection

The easiest case to consider is the colour connection be-

tween two final-state particles, b and c. Working in their

centre-of-mass frame, we may write their momenta as

pb =
1

2
Q(0, λ;1+b− c), pc =

1

2
Q(0,−λ;1−b+ c),

(44)

where Q2 = (pb + pc)
2, b = m2

b/Q
2, c = m2

c/Q
2 and

λ = λ(1, b, c) =
√

1 + b2 + c2 − 2b − 2c − 2bc (45)

is the Callan function.

In order that the soft region of phase space is fully cov-

ered, the initial evolution scales for b and c (q̃hb, q̃hc) are

related by

(κ̃b − b)(κ̃c − c) =
1

4
(1 − b − c + λ)2, (46)

where κ̃b = q̃2
hb/Q

2, κ̃c = q̃2
hc/Q

2 [17]. By varying the

starting scales of the individual particles we can control how

much radiation is generated from each of them, in order to

assess the uncertainties. In practice we currently allow four

choices controlled by the FinalFinalConditions switch:

Symmetric The most symmetric choice of the initial con-

ditions, giving equal amounts of radiation from both partons

is given by

κ̃b =
1

2
(1 + b − c + λ), κ̃c =

1

2
(1 − b + c + λ). (47)

This is our default choice [FinalFinalConditions=
Symmetric].

Coloured The largest emission scale that is possible for

radiation from one of the particles is given by

κ̃b = 4(1 − 2
√

b − b + c). (48)

The [FinalFinalConditions=Coloured] choice of initial

conditions maximizes the initial evolution scale for the

shower of the coloured particle. Naturally, this therefore

minimizes the phase space volume available for the first

emission from the anti-coloured parton.

AntiColoured This choice of initial conditions,

[FinalFinalConditions=AntiColoured] is the converse of

the [FinalFinalConditions=Coloured] choice.

Random Selecting the option [FinalFinalConditions=
Random], the program randomly sets the initial evolution

scales according to the Coloured or AntiColoured options,

for each final-state pair of colour partners, for each event.

As stated in Sect. 6.1 the p basis vector (see (14)) is given

by the momentum of the progenitor as it was generated in

the initial simulation of the hard process. The light-like ba-

sis vector n is chosen to be collinear with the colour partner

in the rest frame of the coloured connected pair, i.e. in sim-

ulating radiation from b, n is defined to be

n =
1

2
Q(0,−λ;λ). (49)

To simulate parton showering from c, we simply reverse the

spatial components of n in (49).

6.3.2 Initial-initial colour connection

Here again we opt to work in the rest frame of the colour

partners, so that the momenta of the particles are

pb =
1

2
Q(0,1;1), pc =

1

2
Q(0,−1;1), (50)

where Q is the partonic centre-of-mass energy of the colli-

sion.

In this case the requirement that the soft region of phase

space is smoothly covered is simply

κ̃bκ̃c = 1. (51)

Eur. Phys. J. C (2008) 58: 639–707 661

Contrary to the case of the final-final colour connection,

there is no upper bound on the values of κ̃b or κ̃c , i.e. there

is no choice that maximizes the phase space available to one

parton relative to the other (at least none that might reason-

ably be expected to give sensible results). Currently only the

most symmetric choice is implemented, i.e. κ̃b = κ̃c = 1.

In this case, as we assume that the incoming particles are

massless, we can simply take the p reference vector to be

the momentum of the beam particle from which the emit-

ting parton was extracted and the n reference vector to be

the momentum of the beam particle from which its colour

partner was extracted. The fact that p is parallel to the mo-

mentum of the emitting parton makes it easier to reconstruct

the momenta of the shower particles in terms of the fraction

of the beam momentum they carry.

Finally, defining the p and n vectors as being equal to the

beam momenta rather than the actual parton momenta does

not affect our earlier assertions relating to the soft limit of

the splitting functions, since (30) is clearly invariant under

overall rescalings of the dipole momenta n and p.

6.3.3 Initial-final colour connection in the hard process

Consider the initial-final-state colour connection in the con-

text of a process a + b → c, where a is a colour-singlet sys-

tem and b and c are colour connected, e.g. deep inelastic

scattering. As in the last two cases we work in the rest frame

of the colour dipole, in this case the Breit frame, where we

may write

pb =
1

2
Q(0,1 + c;1 + c),

pc =
1

2
Q(0,−1 + c;1 + c),

(52)

with Q2 = −p2
a .

To achieve a smooth matching of the phase space for the

first emission from parton b’s shower with that of parton c’s

shower, at wide angles, requires the initial evolution scales

(q̃hb, q̃hc) to obey

κ̃b(κ̃c − c) = (1 + c)2. (53)

In practice, we opt to assign more-or-less the same phase

space volume to each shower, i.e. we use the most symmet-

ric choice: κ̃b = 1 + c, κ̃c = 1 + 2c. Of course, a larger or

smaller combination that satisfies (53) is also allowed.

For emission from the final-state particle, the p vector

is taken to be the momentum of the radiating particle and

the n reference vector is set equal to the momentum of the

beam particle from which the initial-state colour partner was

extracted. For emission from the initial-state particle the p

vector is defined to be the momentum of the beam particle

from which the radiating parton was extracted and

n =
1

2
Q(0,−1 − c;1 + c), (54)

in the Breit frame. As discussed at the end of the description

of the initial-initial colour connection, the normalization of

n and/or p, does not affect the eikonal dipole limit of the

splitting functions (30).

6.3.4 Initial-final colour connection in decays

The Herwig++ shower differs from other approaches in in-

cluding initial-state radiation from a decaying coloured par-

ticle, as well as final-state radiation from the coloured decay

products. This is required in order to ensure that the full soft

region of phase space is filled by radiation from the parton

shower [17, 20].

Consider the decay b → ac, where b and c are colour

partners and a is a colour singlet system, in the rest frame of

the decaying particle. In this frame the momentum of b and

its colour partner c are

pb = mb(0,0;1), pc =
1

2
mb(0, λ;1 − a + c), (55)

where c = m2
c/m2

b and hence λ = λ(1, a, c) where a =
m2

a/m2
b .

In this case the requirement that the full soft region of

phase space is filled by radiation from the parton shower

gives

(κ̃b − 1)(κ̃c − c) =
1

4
(1 − a + c + λ)2. (56)

While there is no limit on the value of κ̃b as with the final-

final colour connection the maximum value of κ̃c is

κ̃c = 4(1 + a − 2
√

c − c). (57)

We support three choices for the values of the scales con-

trolled by the switch InitialFinalDecayConditions.

Symmetric The most symmetric choice of initial condi-

tions is

κ̃b =
1

2
(3 − a + c + λ), κ̃c =

1

2
(1 − a + 3c + λ), (58)

which is the default choice [InitialFinalDecayConditions=
Symmetric].

Maximal The maximal choice corresponds to generat-

ing the maximal amount of radiation from the final-state

particle, i.e. κc is given by (57). This corresponds to

[InitialFinalDecayConditions=Maximal].

662 Eur. Phys. J. C (2008) 58: 639–707

Smooth In this case the initial conditions are chosen in or-

der to guarantee that, in addition to covering the full soft

region, the radiation pattern smoothly changes between the

region filled by radiation from b and c. In this case

κ̃b =
2λ

λ − (1 −
√

c)2 + a
, (59)

with κ̃c obtained from (56). This option is obtained by set-

ting [InitialFinalDecayConditions=Smooth]. In, for ex-

ample, top decays, this choice leads to more radiation from

the decaying particle and less from its colour partner than

either of the other options.14

For radiation from the decaying particle, p is chosen to

be the momentum of the decaying particle and

n =
1

2
mb(0,1;1), (60)

in its rest frame, i.e. n is aligned with the colour partner.

In the case of radiation from the final-state particle, p is

set equal to its momentum, as generated in the hard decay

process, however, there is no obvious choice of n related to

the colour partner, since we are working in its rest frame. We

therefore choose n such that it is in the opposite direction to

the radiating particle in this frame, i.e.

n =
1

2
(0,−λ;λ). (61)

A more rigorous approach to this problem was carried out

in [20], using a more generalized splitting function, derived

assuming a massive gauge vector n. This feature is not im-

plemented in the standard released code, since any related

deficiency in the shower is completely avoided by using the

associated matrix element correction (Sect. 6.8).

6.4 Final-state radiation

6.4.1 Evolution

The parton shower algorithm generates the radiation from

each progenitor independently, modulo the prior determi-

nation of the initial evolution scale and the n and p basis

vectors. Consider then, the evolution of a given final-state

progenitor, downward from its initial evolution scale q̃h.

Given that �(q̃, q̃h) gives the probability that this parton

14In the extreme limit c → 0, e.g. if in top decays the bottom quark is

considered massless relative to the top, κ̃b → ∞ and κ̃c → 0, meaning

that emission only comes from the decaying top quark and none at

all from the massless bottom quark. This is because in the limit of a

massless bottom quark radiation from the top quark gives the correct

dipole distribution in the soft limit.

evolves from scale q̃h to q̃ without any resolvable branch-

ings, we may generate the scale of this first branching (q̃)

by solving

�(q̃, q̃h) = R, (62)

where R is a random number uniformly distributed between

0 and 1.

In the FORTRAN HERWIG program this equation was

solved by a brute force numerical calculation, using an inter-

polation table for �(q̃, q̃h). In Herwig++ an alternative ap-

proach is used, which determines the scale of the branch-

ings without the need for any explicit integration of the

Sudakov form factor [55]. The method involves generating

each branching according to a crude Sudakov form factor,

based on an overestimated branching probability (see (26)),

simple enough that (62) can be solved analytically. Each of

these crudely determined branchings is subject to a vetoing

procedure based on a series of weights relating to the true

form factor. In this way the overestimated, crude emission

rate and emission distribution is reduced to the exact distri-

bution.

The first ingredient we need in order to implement the

algorithm is therefore a crude approximation to the Sudakov

form factor (see (35)), for each type of branching of a parent

parton ĩj , ĩj → i + j . We write these as

�over
ĩj→ij

(q̃, q̃h) = exp

{
−

∫ q̃h

q̃

dP
over,res.

ĩj→ij

}
, (63)

where

dP
over,res.

ĩj→ij
=

dq̃2

q̃2

∫ zover
+

zover
−

dz
αover

S

2π
P over

ĩj→ij
(z), (64)

is the overestimated probability that a resolvable branching

occurs in the interval [q̃2, q̃2 + dq̃2]. Overestimates of the

splitting functions and the coupling constant are denoted

P over
ĩj→ij

(z) ≥ Pĩj→ij (z, q̃) and αover
S ≥ αS(z, q̃), while the

limits zover
± also denote overestimates of the true z integra-

tion region15 for all q̃ . To solve (62) analytically we also

require that P over
ĩj→ij

(z) should be analytically integrable and,

in order to generate z values, this integral should be an in-

vertible function of z.

Using this simplified Sudakov form factor we may ana-

lytically solve �over
ĩj→ij

(q̃, q̃h) = R for q̃ as

q̃2 = q̃2
h R

1
r , (65)

where

r =
dP

over,res.

ĩj→ij

d ln q̃2
, (66)

15The overestimates of these limits were given in (38), (41).

Eur. Phys. J. C (2008) 58: 639–707 663

which can be thought of as the number of emissions per unit

of the shower formation ‘time’ ln q̃2 (for the crude distrib-

ution this is a constant). It is clear from (65) how increas-

ing this rate r causes the first branching to be generated

‘sooner’, closer to q̃h. When a value is generated for the

evolution scale of a branching, an associated z value is then

generated according to

z = I−1[I (zover
−) + R

′(I (zover
+) − I (zover

−))], (67)

where I (z) is the primitive integral of P over
ĩj→ij

(z) over z, I−1

is the inverse of I and R′ is a uniformly distributed random

number in the interval [0,1].
We now reject these values of q̃ and z if:

– the value of z lies outside the true phase-space limits, i.e.

if p2
⊥ < 0;

–
αS (z,q̃)

αover
S

< R1;

–
Pĩj→ij (z,q̃)

P over
ĩj→ij

(z)
< R2,

where R1,2 are random numbers uniformly distributed be-

tween 0 and 1.

If we reject the value of q̃ we repeat the whole proce-

dure with q̃h = q̃ until either we accept a value of q̃ , or

the value drops below the minimum value allowed due to

the phase-space cutoffs, in which case there is no radiation

from the particle. As shown in [55] this procedure, called the

veto algorithm, exponentiates the rejection factors and gen-

erates the values of q̃ and z according to (62) for one type of

branching.

This procedure is repeated to give a value of the evolution

scale for each possible type of branching, and the branching

with the largest value of q̃ is selected, which then gener-

ates both the type of branching, its scale, and the momentum

fraction according to (62), as required.

The relative transverse momentum for the branching p⊥
(see (18)) is then calculated, using (39) or (42) depending on

the type of branching. Currently the azimuthal angle of p⊥
is randomly generated between 0 and 2π about the direction

of the progenitor (the Sudakov basis vector p), although in

future this will change when we include spin correlations in

the parton shower as described in [24–27].

The requirement of angular ordering, as discussed in

Sect. 6.1, defines the initial scales for the daughter particles,

q̃h i and q̃hj , produced in each branching, ĩj → i + j , to be

q̃h i = zq̃, q̃hj = (1 − z)q̃, (68)

where q̃ and z, are the evolution scale and light-cone mo-

mentum fraction of the branching. By imposing these upper

bounds on the evolution scale of the emitted partons, sub-

sequent branchings will have a nesting of the angular sepa-

ration of the resulting daughters, where each one is smaller

than the one preceding it.

All of the steps above, required to generate the shower

variables associated with this initial branching, may then

be repeated for the daughter partons, and their daughter

partons, should they also branch. All showering terminates

when the evolution scale (q̃) for each final-state parton falls

below its minimum value, when there is no phase space

for any more resolvable emissions. The resulting partons,

at the end of each shower, are deemed to be on constituent

mass-shell, as defined in Sect. 7, at which point the pertur-

bative parton shower evolution is no longer sensible, since

hadronization effects dominate at these scales.

6.4.2 Kinematic reconstruction

At this point we have a set of partons produced in the par-

ton shower from each of the progenitor partons, the scales

q̃ at which they are produced, the momentum fractions z

and azimuthal angles φ of the branchings. Mapping these

kinematic variables into physical momenta is what we call

kinematic reconstruction. We will now describe this proce-

dure for showers generated by final-state progenitors. First,

the kinematics of the individual showers are reconstructed

by putting the external masses on their constituent mass-

shell16 and working back through the shower, as described

in Sect. 6.1.

The shower evolution causes all progenitor partons, J ,

produced in the hard process to gain a virtual mass, i.e. the

progenitor partons, which initiated the jets, are no longer on

mass shell, q2
J �= m2

J . We want to preserve the total energy of

the system in the centre-of-mass frame of the hard collision.

If the momenta of the progenitor partons before the shower

evolution were pJ = (pJ ;
√

p2
J + m2

J) in this frame, then

n∑

J=1

√
p2

J + m2
J =

√
s, (69)

while the sum of the spatial momenta is zero. As the jet par-

ents have momenta qJ = (qJ ;
√

q2
J + q2

J) after the parton

showering, we need to restore momentum conservation in

a way that disturbs the internal structure of the jet as little

as possible. The easiest way to achieve this is by boosting

each jet along its axis so that their momenta are rescaled by

a common factor k determined from

n∑

J=1

√
k2p2

J + q2
J =

√
s, (70)

16The Herwig++ shower allows these masses to be set to zero so that an

alternative hadronization model, rather than the cluster model, can be

used.

664 Eur. Phys. J. C (2008) 58: 639–707

which can be solved analytically for two jets or numerically

for higher multiplicities. For every jet a Lorentz boost is ap-

plied such that

qJ = (qJ ;
√

q2
J + q2

J)
boost−→ q ′

J = (kpJ ;
√

k2p2
J + q2

J). (71)

Applying these boosts to each of the jets, in the centre-

of-mass frame of the collision, ensures global energy-

momentum conservation. Typically the rescaling parameters

k are close to unity, hence the resulting boosts and rotations

are small.

6.5 Initial-state radiation

6.5.1 Evolution

As stated in Sect. 6.1, in generating the initial-state radia-

tion we use a backward evolution algorithm, starting with

the space-like daughter parton that initiates the hard scatter-

ing process, i, and evolving it backward to give its space-

like parent, ĩj , and time-like sister parton j . This evolution

algorithm therefore proceeds from the high scale of the hard

process to the low scale of the external hadrons. Such a pro-

cedure is greatly more efficient than the alternative forward

evolution algorithm, which would start from the incoming

beam partons and evolve them to the scale of the hard col-

lision. This is because the forward evolution cannot be con-

strained to end on the x and Q2 values associated to the hard

process, which in turn makes it impossible to perform im-

portance sampling of any significant resonant contributions.

While forward evolution would dynamically generate the

parton distribution functions (PDFs), backward evolution

uses the measured PDFs to guide the evolution. As with the

final-state shower, the initial conditions for the initial-state

shower are determined by the colour partners of the incom-

ing particles (Sect. 6.3.2).

The angular-evolution variable q̃2 for space-like showers

was defined in (21). We shall work exclusively with light

initial-state partons so we take mĩj = mi = 0, and mj = μ

if j is a quark and mj = Qg if j is a gluon, to regulate the

infrared divergent regions, hence (21) simplifies to

q̃2 =
zm2

j − p2
⊥

(1 − z)2
, (72)

where p2
⊥ = −p2

⊥ (see (18), (25)).

From the requirement that p2
⊥ ≥ 0, (72) implies an upper

limit on z,

z ≤ z+ = 1 +
Q2

g

2q̃2
−

√(
1 +

Q2
g

2q̃2

)2

− 1. (73)

In addition, if the light-cone momentum fraction of parton i

is x, we must have z ≥ x to prevent the initial-state branch-

ing simulation evolving backward into a parent with x > 1.

In this case the Sudakov form factor for backward evolu-

tion is [3, 56]

�(x, q̃, q̃h) =
∏

ĩj ,j

�ĩj→ij (x, q̃, q̃h), (74)

where the Sudakov form factor for the backward evolution

of a given parton i is

�ĩj→ij (x, q̃, q̃h)

= exp

{
−

∫ q̃h

q̃

dq̃ ′2

q̃ ′2

∫ z+

x

dz
αS(z, q̃ ′)

2π
Pĩj→ij (z, q̃

′)

×
x
z
fĩj (

x
z
, q̃ ′)

xfi(x, q̃ ′)
�(p2

⊥ > 0)

}
, (75)

and the product runs over all possible branchings ĩj →
i + j capable of producing a parton of type i. This is similar

to the form factor used for final-state radiation, (35), with

the addition of the PDF factor, which guides the backward

evolution.

The backward evolution can be performed using the veto

algorithm in the same way as the forward evolution. We need

to solve

�(x, q̃, q̃h) = R, (76)

to give the scale of the branching. We start by considering

the backward evolution of i via a particular type of branch-

ing, ĩj → i + j . We can obtain an overestimate of the inte-

grand in the Sudakov form factor

�over
ĩj→ij

(x, q̃, q̃h) = exp

{
−

∫ q̃h

q̃

dq̃ ′2

q̃ ′2

∫ zover
+

x

dz
αover

S

2π

× P over
ĩj→ij

(z)PDFover(z)

}
, (77)

where P over
ĩj→ij

(z), αover
S and the overestimate of the limits

must have the same properties as for final-state branching.

In addition

PDFover(z) ≥
x
z
fĩj (

x
z
, q̃)

xfi(x, q̃)
∀ z, q̃, x. (78)

In this case the product P over
ĩj→ij

(z)PDFover(z) must be inte-

grable and the integral invertible. If we define

r =
αover

S

2π

∫ zover
+

x

dz P over
ĩj→ij

(z)PDFover(z), (79)

then we can solve (76) using this overestimated Sudakov

giving

q̃2 = q̃2
h R

1
r . (80)

Eur. Phys. J. C (2008) 58: 639–707 665

The value of z can then be generated according to

z = I−1[I (x) + R
′(I (zover

+) − I (x))], (81)

where I (z) =
∫

dzP over
ĩj→ij

(z)PDFover(z), I−1 is the inverse

of I and R′ is a random number uniformly distributed be-

tween 0 and 1.

We now reject these values of q̃ and z if:

– the value of z lies outside the true phase-space limits, i.e.

if p2
⊥ < 0;

–
αS (z,q̃)

αover
S

< R1;

–
Pĩj→ij (z,q̃)

P over
ĩj→ij

(z)
< R2;

–

x
z fa(x

z ,q̃′)
xfb(x,q̃′)

PDFover(z)
< R3;

where R1,2,3 are random numbers uniformly distributed be-

tween 0 and 1.

As with the final-state branching algorithm, if a set of val-

ues of q̃ and z, generated according to the approximate form

factor in (78) is rejected, a further set is then generated by

repeating the process with q̃h = q̃ in (78). This procedure is

repeated until either a generated set of branching variables

passes all four vetoes, or the generated value of q̃ falls below

the minimum allowed value, in which case the showering

of the particle in question ceases. To determine the species

of partons involved, a trial value of q̃ is generated for each

possible type of branching and the largest selected. By ap-

plying the four vetoing criteria to each emission generated

by the approximate, overestimated, Sudakov form factor, the

accepted values of q̃ and z are distributed according to the

exact Sudakov form factor, (76) [55].

When a branching is generated, the relative transverse

momentum p⊥ (see (18), (25)) is calculated according

to (72). At present the azimuthal angle associated to each

p⊥ is randomly generated between 0 and 2π , although in

future this will change when we include spin correlations

in the parton shower as described in [24–27]. In the case of

backward evolution the angular ordering requirement is sat-

isfied by simply continuing the backward evolution down-

ward in q̃ , starting from the value generated in the previous

generated branching.

As stated above, when the evolution scale has reduced

to the point where there is no more phase space for further

resolvable branchings, the backward evolution ends. The in-

coming particle produced in the last backward branching,

assumed to be on-shell (massless), has no transverse mo-

mentum, since this is measured with respect to the beam

axis.17 This final parton also has a light-cone momentum

17Herwig++ supports the option of including a non-perturbative intrin-

sic transverse momentum for the partons inside the incoming hadron,

as described in Appendices B.7 and C, which can give the initial in-

coming parton a transverse momentum.

fraction x/
∏

i zi , with respect to the incoming hadron’s mo-

mentum, where x is the light-cone momentum fraction gen-

erated in the initial simulation of the hard process, and the

product is comprised of all z values generated in the back-

ward evolution.

Before any momentum reconstruction can begin, we

must simulate the effects of final-state showers from each

time-like daughter parton j , generated from the backward

evolution of each space-like parton i, in branchings ĩj →
i + j . As discussed in Sect. 6.1, for such a branching occur-

ring at scale q̃ with light-cone momentum fraction z, angu-

lar ordering is achieved by evolving j down from an initial

scale q̃h = (1 − z)q̃ . This initial condition ensures that for

each parton j , the angular separation of any of j ’s subse-

quent branching products is less than the angle between j

and j ’s sister i.

This algorithm is all that is needed to generate the val-

ues of the scales, momentum fractions and azimuthal an-

gles, for the evolution of both the incoming particles and

the time-like particles emitted in their backward evolution.

These values are sufficient for us to determine the momenta

of all of the particles in the associated showers, to perform

the kinematic reconstruction.

6.5.2 Kinematic reconstruction

The kinematic reconstruction begins by finding the last

initial-state particle produced in the backward evolution of

each of the beam particles. This parton’s momentum is cal-

culated as described in the previous section. The momen-

tum of the final-state time-like jet that it radiates is then re-

constructed in the same way as for the final-state shower.

Knowing the momenta of the former light-like parent par-

ton and the latter final-state, time-like, daughter parton, the

momentum of the initial-state, space-like, daughter, follows

by momentum conservation. This process is iterated for

each initial-state branching, eventually giving the momen-

tum of the space-like progenitor parton, colliding in the hard

process.

The reconstructed momentum of the colliding parton in-

cident from the +z direction is denoted q⊕, and that of

the colliding parton incident from the −z direction is de-

noted q⊖.

Although the showering of initial-state partons with final-

state colour partners and initial reconstruction is performed

as described above, using the colour partner’s direction as

the basis vector n, at present the final momentum reshuffling

to ensure energy and momentum conservation is performed

as if the colour partner were the other incoming parton.

As discussed in Sect. 6.3.2 the hadronic beam momenta,

p⊕ and p⊖, then define the Sudakov basis for the initial-

state shower algorithms, in terms of which we have

q±© = α±© p±© + β±© p∓© + q⊥±©. (82)

666 Eur. Phys. J. C (2008) 58: 639–707

The Sudakov coefficients may be calculated using the fact

that p⊕ and p⊖ are light-like and orthogonal to the q⊥ com-

ponent:

α±© = 2p∓© · q±©/s, β±© = 2p±© · q±©/s, (83)

where s = 2p⊕ · p⊖, the hadronic centre-of-mass en-

ergy squared. The q⊥ components follow by subtracting

α±©p±© + β±©p±© from the reconstructed momentum q±©.

Through the emission of initial-state radiation the col-

liding partons acquire both space-like virtualities and trans-

verse momenta, of which they had neither in the initial sim-

ulation of the hard process. Consequently, whereas momen-

tum conservation in the prior simulation of the hard process

implies that the total initial- and final-state momentum are

equal to pcms = x⊕p⊕ + x⊖p⊖, we now have a momentum

imbalance between the two: q⊕ + q⊖ �= x⊕p⊕ + x⊖p⊖.

In order to return to a momentum conserving state we

choose to rescale the energies and longitudinal momenta of

the colliding initial-state partons, in a way that preserves

the invariant mass and rapidity of the centre-of-mass sys-

tem. The transverse momentum of the emitted radiation can

only be absorbed by the final-state system. When the rescal-

ing factors have been determined, we can then calculate a

Lorentz boost that produces the same effect. This boost can

then be applied to all elements of the initial-state shower,

including the final-state jets they emit.

The energies and longitudinal momenta of the colliding

partons are rescaled by two factors, k⊕ and k⊖, giving shuf-

fled momenta q ′
⊕ and q ′

⊖, according to

q ′
±© = α±© k±© p±© +

β±©
k±©

p∓© + q⊥±©. (84)

In simulating the hard process the momentum of the partonic

centre-of-mass system was given by

pcms = x⊕p⊕ + x⊖p⊖ (85)

and in terms of the shuffled momenta it is

q ′
cms =

(
α⊕k⊕+

β⊖
k⊖

)
p⊕+

(
α⊖k⊖+

β⊕
k⊕

)
p⊖+q⊥⊕+q⊥⊖.

(86)

Imposing that the centre-of-mass energy generated in the

simulation of the hard process is preserved, q ′2
cms = p2

cms, the

Sudakov decompositions of (85), (86), imply that the rescal-

ings k⊕ and k⊖ obey the relation

α⊕α⊖s k2
⊕⊖ + β⊕β⊖s

+
(
(α⊕β⊕ + α⊖β⊖ − x⊕x⊖)s

+ (q⊥⊕ + q⊥⊖)2
)
k⊕⊖ = 0, (87)

where k⊕⊖ = k⊕k⊖. The further imposition that the rapidity

of the partonic centre-of-mass is preserved requires that the

ratio of the p⊕ coefficient to the p⊖ Sudakov coefficient in

q ′
cms should equal that in pcms. This implies a second con-

straint on k⊕ and k⊖

k2
⊕ = k⊕⊖

x⊕
x⊖

β⊕ + α⊖k⊕⊖
α⊕k⊕⊖ + β⊖

. (88)

The two relations in (85), (86) fully determine the k⊕ and

k⊖ rescaling factors. Having solved these equations for k⊕
and k⊖ we go on to determine a longitudinal boost for each

initial-state jet such that

q±©
boost−→ q ′

±©. (89)

This boost may then be applied to all elements of the initial-

state shower including any final-state partons/jets that they

emit.

The procedure outlined above is sufficient for the produc-

tion of colour-singlet systems, such as electroweak gauge

bosons in the Drell-Yan process. However, for processes

where both the initial- and final-state particles can radiate,

a more complicated procedure is needed. In [17] a proce-

dure for the reconstruction of the kinematics based on the

colour structure of the hard process was suggested.

In Herwig++ we have opted to use a simpler procedure.

In the current approach, first the initial conditions for the

shower of both the initial- and final-state particles are cho-

sen (Sect. 6.3). Following this, the evolution of the incom-

ing and outgoing particles is performed as described in

Sects. 6.4.1 and 6.5.1. The initial-state jets are then recon-

structed as discussed above. The final-state jets are recon-

structed in the partonic centre-of-mass frame of the original

hard scattering process as described in Sect. 6.4.2. This is

effectively the same as reconstructing them in the q ′
cms rest

frame, since the kinematic reconstruction for initial-state ra-

diation, described here, preserves the invariant mass of the

hard process. In the end, the jets originating from the final-

state particles in the hard process are boosted back to the lab

frame, where they have a total momentum q ′
cms. This pro-

cedure is simpler than that suggested in [17]; it represents a

general approach to ensuring global energy and momentum

conservation in all processes, whereas the methods in [17]

are more process-specific, by being sensitive to the details

of the underlying colour flow in the hard process.

6.5.3 Forced splitting

After the perturbative shower evolution has terminated, the

cluster hadronization model may necessitate some addi-

tional forced splitting of the initial-state parton that results.

In hadronic collisions we require the external initial-state

partons, which give rise to the first hard interaction, to be va-

lence quarks (antiquarks), colour triplet states. This allows

Eur. Phys. J. C (2008) 58: 639–707 667

us to treat each proton (antiproton) remnant as a diquark (an-

tidiquark) which will be in a colour antitriplet/triplet state,

in order to keep the incoming hadron colour neutral. Mod-

elling the dissociation in this way allows for a simple, min-

imal, hadronization of the remnant in the cluster hadroniza-

tion model.

Usually, the perturbative evolution, which is guided by

the PDFs, will terminate on a valence quark, since the evolu-

tion works towards large x and small Q2. In the cases where

this has not happened, we force the resulting initial-state par-

ton to undergo one or two additional splittings. The genera-

tion of these additional forced splittings is largely based on

the same principles as that of the perturbative splittings.

In the perturbative evolution the scale of the PDFs is

frozen at a value Qs for values Q < Qs . The default value

of Qs is chosen to be small, close to the non-perturbative re-

gion but still above typical values for the parton shower cut-

off [(PDFFreezingScale=2.5*GeV]). This freezing scale

leaves a little phase space for the (non-perturbative) forced

splittings. The forced splittings are generated in much the

same vein as the perturbative splittings. The evolution starts

at Qs and the next branching scale is distributed according to

dQ/Q, with a lower limit determined by the available phase

space. The z values are determined from the splitting func-

tions in the same way as in the perturbative evolution. The

splittings are reweighted by ratios of PDFs as in the pertur-

bative evolution. There is only one slight difference, the evo-

lution of the PDFs themselves with Q is frozen below Qs .

Nevertheless, this reweighting gives the right flavour con-

tent of the initial hadron. E.g. in the case of a proton we

produce twice as many u quarks as d quarks. To force the

evolution to end up on a valence quark, we only allow one

or two flavours in the evolution:

1. If the initial parton is a seaquark (q) or –antiquark (q̄),

it is forced to evolve into a gluon, emitting a q̄ or q , re-

spectively.

2. If the initial parton is a gluon, from either the perturbative

evolution or the forced splitting of a seaquark, it is forced

to evolve into a valence quark, emitting the matching an-

tiquark.

In the initial-state showering of additional hard scatters

we force the backward evolution of the colliding partons to

terminate on a gluon. We therefore only need the first kind

of forced splitting in this case. This gluon is assumed to be

relatively soft and branches off from the remnant diquark.

Again, this allows us to uniquely match up the final-state

partons to the cluster hadronization model. We should note

that the emitted partons from these forced splittings, as well

as the remnant diquarks, will show up in the event record as

decay products of a fictious remnant particle, in order to dis-

tinguish them from those which originate from the perturba-

tive evolution. Additional details about the colour structure

and the event record can be found in [8].

6.6 Radiation in particle decays

In general the hard processes simulated by Herwig++ consist

of 2 → n scatterings. These are generated by first using the

relevant matrix elements to produce an initial configuration,

and then initiating parton showers from the external legs.

After this showering phase the final-state consists of a set of

partons with constituent masses. For processes involving the

production and decay of unstable particles, including decay

chains, rather than attempting to calculate high multiplicity

matrix elements, the simulation is simplified by appealing

to the narrow width approximation, i.e. treating the produc-

tion and decay processes according to separate matrix ele-

ments, assuming no interference between the two. Unstable

coloured particles are therefore produced in hard processes

and the decays of other unstable particles, and showered like

any other final-state coloured particle. In this case the show-

ering process does not assign a constituent mass to the final

state of the shower, but rather preserves whatever mass was

assigned at the production stage.

For very high mass coloured particles, e.g. the top quark,

the phase space available for the decay can be so large

that the decay occurs before any hadronization can take

place. Consequently, as well as undergoing time-like show-

ers (q2 > m2) in their production phase, these partons will

also undergo a further space-like showering (q2 < m2) of

QCD radiation prior to their decay. In addition, due to colour

conservation, the decay products themselves will also give

rise to time-like showers.

Since, in the narrow width approximation, the matrix el-

ement factorizes into one for the production process and an-

other for the decay process, we may regard these as two

independent hard processes, and this is the sense in which

we simulate the associated parton showers. Given this pic-

ture it is immediately clear that the time-like parton showers,

from coloured decay products, have an identical evolution to

those used to simulate final-state radiation in the production

process. Only the initial conditions for the shower evolution

are different, although their selection is, nevertheless, still

based on examining the colour flow in the underlying hard

decay process (see Sect. 6.3.4).

Conversely, the initial-state space-like shower created by

a decaying particle is quite different to that of an initial-state

particle from the production process (Sect. 6.5). In particu-

lar, it involves no PDFs, since the heavy parton originates

from a hard scattering as opposed to a hadron. Furthermore,

in the hard process it was necessary to evolve the initial-

state partons backwards from the hard scattering to the in-

cident hadrons, to efficiently sample any resonant structure

in the underlying matrix elements. On the contrary, in de-

cay processes, degrading the invariant mass of the decaying

particle, via the emission of radiation, does not affect the

efficiency with which any resonant structures in the decay

668 Eur. Phys. J. C (2008) 58: 639–707

matrix element are sampled. Hence, it is natural for the evo-

lution of space-like decay showers to start with the unstable

particle from the production process, and evolve it forward,

towards its decay.

6.6.1 Evolution

As in our discussion of the other showering algorithms, the

description here uses the Sudakov decomposition of the mo-

menta given in (14). In space-like decay showers, the decay-

ing particle ĩj undergoes branchings ĩj → i + j , where j is

a final-state time-like parton and i is the same decaying par-

ticle with an increased space-like virtuality: q2
i < q2

ĩj
≤ m2

ĩj
.

In this process the original particle acquires a space-like vir-

tuality,

q2
i = zq2

ĩj
+

p2
⊥ − zq2

j

1 − z
, (90)

where z = αi/αĩj , p2
⊥ = −p2

⊥ ≥ 0, and p⊥ = q⊥i − zq⊥ĩj .

Since, in the decay shower, mi = mĩj , the space-like evolu-

tion variable in (21) simplifies to

q̃2 = m2
i +

zm2
j − p2

⊥
(1 − z)2

. (91)

Unlike the previous discussions of final- and initial-

state showers, here, by evolving forward toward the decay

process, the evolution variable is increasing. The require-

ment that the relative transverse momentum of the branching

is real, p2
⊥ ≥ 0, imposes an upper limit, z+, on z where

z+ = 1 +
m2

j

2(q̃2 − m2
i)

(1 −
√

1 + 4(q̃2 − m2
i)/m2

j). (92)

For the space-like decay shower we have the further con-

straint that the parton showering cannot degrade the invari-

ant mass of the decaying object below the threshold required

for the decay process, which imposes a lower limit on z.

Since no PDF is involved in this forward parton-shower

evolution algorithm, the Sudakov form factor has exactly the

same form as that used for final-state radiation in (33), (35).

Consequently the forward evolution can be performed us-

ing the veto algorithm in almost exactly the same way as

was done for the final-state showers (Sect. 6.4.1). The main

difference is in the implementation of the angular ordering

bounds for subsequent branchings. For final-state radiation

involving branchings ĩj → i + j , where i has a light-cone

momentum fraction z, we evolved i and j downward from

q̃h i = zq̃ and q̃hj = (1 − z)q̃ respectively, where q̃ was the

scale of the ĩj branching. Since the decay shower is really

a forward-evolving initial-state shower, we evolve i upward

from q̃h i = q̃ and j downward from q̃hj = (1 − z)q̃ . This

procedure is iterated until the scale q̃ approaches the mini-

mum compatible with the threshold for the underlying decay

process.

6.6.2 Kinematic reconstruction

In the approach of [17], for the simulation of QCD radia-

tion in particle decays, the recoil due to the radiation emit-

ted from the decaying particle is absorbed by its final-state

colour partner. The reconstruction described in [20], valid

for the decay of a coloured particle to a colour connected

final-state particle and a colour-singlet system, was designed

to preserve the mass of the colour-singlet system. In the case

of top decay this amounts to preserving the mass of the W

boson, and the momentum of the decaying particle. More

complicated colour structures, involving more coloured par-

ticles in the final-state, e.g. gluino decays, require a general-

ization of this momentum reconstruction procedure.

Consider the decay of a coloured particle with momen-

tum p, to n + 1 particles. We denote the momentum of the

colour partner of the decaying particle p̄, and the momenta

of the remaining primary decay products are denoted pi=1,n.

Prior to simulating the effects of QCD radiation,

p = p̄ +
n∑

i=1

pi . (93)

After simulating parton-shower radiation in the decay, the

original momenta of the decay products must be shifted and

rescaled to accommodate the additional initial-state radia-

tion. We require the sum of the new momenta of the colour

partner, q̄ , the other primary decay products, qi , and the ra-

diation emitted prior to the decay, qISR, to equal that of the

decaying particle:

p = q̄ + qISR +
n∑

i=1

qi . (94)

To achieve this momentum balance we rescale the three-

momenta of all pi by a common factor k1, and the three-

momentum of the colour partner p̄ by a separate factor k2.

The component of the momentum of the emitted radiation

transverse to the colour partner is absorbed by the colour

partner. In the rest frame of the decaying particle these

rescalings and shiftings look as follows:

p = (0;m); (95a)

qi = (k1pi;
√

k2
1 |pi |2 + p2

i); (95b)

q̄ = (k2p̄ − q⊥ISR;
√

k2
2 |p̄|2 + |q⊥ISR|2 + p̄2), (95c)

where m is the mass of the decaying particle and q⊥ISR is

the component of the three-momentum of the initial-state

radiation perpendicular to p̄.

The rescaling factors k1,2 allow for the remaining conser-

vation of energy and of momentum in the longitudinal direc-

tion. Three-momentum conservation in the longitudinal, p̄,

Eur. Phys. J. C (2008) 58: 639–707 669

direction requires that

k2p̄ + k1

n∑

i=1

pi + q‖ISR = 0. (96)

The momentum of the initial-state radiation perpendicular

to the direction of the colour partner, q⊥ISR , can be pro-

jected out, leaving the parallel component q‖ISR , by taking

the dot product with the spatial component of the n basis

vector (aligned with p̄). Doing so gives

k1 = k2 +
qISR · n

p̄ · n
. (97)

Finally, from the conservation of energy we have

n∑

i=1

√
k2

1 |pi |2 + p2
i +

√
k2

2 |p̄|2 + |q⊥ISR|2 + p̄2 + EISR = m,

(98)

where EISR is the energy of the initial-state radiation. This

system of equations (96), (97), (98) for the rescaling factors

can be solved analytically for two-body decays, or numeri-

cally, using the Newton-Raphson method, for higher multi-

plicities.

6.7 The running coupling constant αS

The running coupling constant enters every dynamical as-

pect of the parton shower, so a thorough treatment of it is

mandatory for all parton shower simulations.

6.7.1 The argument of αS

As was noted in Sect. 6.2, our definition of the momentum

fraction z is consistent with that used in the derivation of

the quasi-collinear splitting functions, hence n does not just

define a basis vector in the Sudakov decomposition but it

also specifies the choice of light-cone (axial) gauge.

Axial gauges have many special properties, most notable

of these is that they are ghost-free. Another, related, interest-

ing feature of the light-cone gauge is that, similar to QED,

where the Ward identities guarantee the equality of the elec-

tron field and vertex renormalization constants, in light-cone

gauge QCD, the Ward identities reveal that the 3-gluon ver-

tex renormalization constant ZA3 , is equal to that of the

transverse components gluon field Z
1/2
A [57]. This simplifies

the usual relation between the bare coupling g
(0)
S and renor-

malized coupling constant gS from g
(0)
S = ZA3Z

−3/2
A gS , to

g
(0)
S = Z

−1/2
A gS , i.e. in the light-cone gauge, the running of

the QCD coupling constant is due to the gluon self-energy

corrections alone. It is therefore no surprise that explicit, di-

mensionally regulated, one-loop calculations of the gluon

self-energy in this gauge possess an ultraviolet divergence

proportional to the usual QCD beta function [57, 58].

In calculating higher order corrections to the splitting

functions one must consider self-energy corrections to the

emitted gluons and their associated counter-terms. The self-

energy corrections are equal to zero because the gluons are

on-shell and so the associated loop integrals have no scale,

which means they vanish in dimensional regularization. This

vanishing is essentially a complete cancellation of the ultra-

violet and infrared parts of the integrals. Therefore including

the counter-terms cancels explicitly the ultraviolet divergent

parts of the loop integrals leaving behind infrared divergent

parts, which must have the same pole structure as the ultravi-

olet parts i.e. they must also be proportional to the beta func-

tion. The residual virtual infrared divergence is canceled by

the associated real emission corrections, in this case the two

graphs where the emitted gluon splits either to two on-shell

gluons or to a quark-antiquark pair.

As usual, this cancellation of infrared poles generates an

associated logarithm, with the same coefficient as the pole

(the beta function), of the phase space boundary divided

by μ (the renormalization scale) [39, 59]. The phase space

boundary is equal to the maximum possible virtuality of the

daughter gluon, the branchings of which comprise the real

emission corrections. For a time-like splitting, ĩj → i + j

where ĩj is a quark, i is a daughter quark and j is the daugh-

ter gluon, to which we consider real and virtual corrections,

a quick calculation in the Sudakov basis (14) shows

q2
j ≤ (1 − z)q2

ĩj
. (99)

The net effect of these real and virtual corrections is there-

fore to simply correct the leading order q → qg splitting

function by a multiplicative factor

1 − β0αS(μ2) ln((1 − z)q2
ĩj
/μ2) + O(αS), (100)

where the omitted O(αS) terms are non-logarithmic, non-

kinematic, constant terms, β0 is the QCD beta function, and

μ2 is the renormalization scale.

Two important points follow directly from this analysis.

Firstly, for soft configurations, z → 1, the effect of these

loop contributions can produce large, numerically signifi-

cant, logarithms. Secondly, plainly, by choosing the renor-

malization scale to be (1 − z)q2
ĩj

, instead of the more ob-

vious q2
ĩj

, the corrections vanish, or rather, more correctly,

they are absorbed in the coupling constant.

For g → gg splittings the same arguments hold but in this

case it is apparent that as well as large logarithms of 1 − z,

large logarithms of z are also possible from soft emission

in the z → 0 region. We may simultaneously include both

types of correction by using z(1 − z)q2
ĩj

as the argument of

the running coupling, which we implement in practice as

αS(z2(1 − z)2q̃2). (101)

670 Eur. Phys. J. C (2008) 58: 639–707

From the point of view of the leading-log approximation,

the choice of scale is technically a higher order consider-

ation, nevertheless, these effects turn out to be highly phe-

nomenologically significant, particularly their effect on mul-

tiplicity distributions and cluster mass spectra [59, 60].

6.7.2 The Monte Carlo scheme for αS

We reiterate that by choosing the scale of the running cou-

pling as advocated in Sect. 6.7.1 (see (99), (101)) we have

lim
z→1

αS((1 − z)q2

ĩj
)P [1]

q→qg(z)

= αS

2CF

1 − z
(1 − αSβ0 ln(1 − z)) + O(α3

S), (102)

where we have momentarily abbreviated αS(q2

ĩj
) by αS , and

used a superscript [1] to denote that P
[1]
q→qg is the one-loop

(i.e. leading order) q → qg splitting function. This is almost,

but not exactly equal to the soft z → 1 singular limit of the

two-loop q → qg splitting function P
[2]
q→qg with αS evalu-

ated at q2
ĩj

,

lim
z→1

αS(q2

ĩj
)P [2]

q→qg(z)

= αS

2CF

1 − z

(
1 − αSβ0 ln(1 − z) +

αS

2π
Kg

)

+ O(α3
S), (103)

where18

Kg = CA

(
67

18
−

π2

6

)
− TRnf

10

9
. (104)

On integrating over the phase space of the two-loop split-

ting function the Kg term gives rise to terms ∼α2
S ln2 q2

ĩj
,

i.e. it gives next-to-leading log soft-collinear contributions

to the Sudakov exponent ∼αn
S lnn q2

ĩj
(as opposed to leading-

log contributions ∼αn
S lnn+1 q2

ĩj
). In a similar way to that in

which the higher order β0αS ln(1 − z) term was included,

we may exploit the fact that the z → 1 dependence of the

Kg term in P
[2]
q→qg(z) is equal to that of P

[1]
q→qg(z), to incor-

porate it in the running coupling as well.

This is done by swapping the usual �MS QCD scale,

from which the coupling runs, for �MC [49],

�MC = �MS exp(Kg/4πβ0), (105)

where MC denotes the so-called Monte Carlo scheme. Ex-

panding αSP
[1]
q→qg(z) again, as in (103), but with αS eval-

uated at (1 − z)q2
ĩj

in the MC scheme, reproduces exactly

18In fact the constants Kg are given by the finite remainder of the real

emission phase space corrections due to the daughter gluon splitting

discussed in the last Sect. 6.7.1 (see e.g. (5.28), (C.12), (C.13) of [61]).

the two-loop result in (104). With this prescription the Su-

dakov form factor generally includes all leading and next-to-

leading log contributions, except for those due to soft wide

angle gluon emissions, however, for the case that the under-

lying hard process comprises of a single colour dipole, these

are also included (see Sect. 6.2 and [50, 51]).

6.7.3 Options for the treatment of αS in parton showers

Although we have made strong physical arguments restrict-

ing the argument of the coupling constant and suggesting

a more physical renormalization scheme, there is still some

degree of freedom in how precisely αS is calculated. In what

follows below we enumerate the options associated with

these in the program.

InputOption This option selects the way in which ini-

tial conditions for running the coupling constant are de-

termined. The default setting [InputOption=AlphaMZ]

uses the experimentally determined value of αS at the Z0

resonance to calculate a value of �QCD from which to

run the coupling constant. This experimental input can

be reset from the default value19 of 0.127 using the Al-

phaMZ interface. Alternatively one may select an option

[InputOption=LambdaQCD], which uses the input or de-

fault value of �MS to calculate the coupling. The default

value used for �MS is 0.208 GeV, which may be reset using

the interface LambdaQCD.

LambdaOption This option determines whether the value

of �QCD, calculated from αS(mZ0) or input according to

InputOption, is given in the MC (Monte Carlo) scheme

of Ref. [49], as described in Sect. 6.7.2 [LambdaOption=
Same], the default, or the MS scheme [LambdaOption=
Convert].

NumberOfLoops This parameter specifies the loop order

of the beta function used to calculate the running of αS . The

default setting uses the three-loop beta function.

ThresholdOption This option selects whether to use the

current [ThresholdOption=Current] or constituent

[ThresholdOption=Constituent] quark masses in deter-

mining the flavour thresholds in the evolution of the cou-

pling constant. The default setting uses the (MS) current

quark masses.

Qmin The Qmin parameter represents the scale beneath

which non-perturbative effects are considered to render the

usual renormalization group running with a beta function

determined at some finite loop order, invalid. Below this

19The default value is tuned to e+e− annihilation data as described in

Appendix C and is typical of the values one gets when fitting leading

order QCD predictions to data.

Eur. Phys. J. C (2008) 58: 639–707 671

scale, which is currently tuned to 0.935 GeV, a number of

parameterizations of the scaling of the coupling with en-

ergy may be selected according to the NPAlphaS option de-

scribed below.

NPAlphaS The NPAlphaS option selects a parameteri-

zation of the scaling of the running coupling with energy

in what we regard as the non-perturbative region, where

the scale at which it is to be evaluated falls below the

value set by Qmin. By setting [NPAlphaS=Zero] the cou-

pling is simply taken to be zero for scales Q < Qmin. For

[NPAlphaS=Const] the coupling freezes out at Qmin, i.e. it

assumes the constant value α̃S = αS(Qmin) for all scales be-

low Qmin. This is the default parameterization. It is the same

prescription used in early works on resummation by Curci

and Greco [62, 63]. The options [NPAlphaS=Linear] and

[NPAlphaS=Quadratic] calculate the running coupling be-

low Qmin according to α̃SQ/Qmin and α̃S(Q/Qmin)2 re-

spectively. Setting [NPAlphaS=Exx1] assumes a quadrat-

ically decreasing running of the coupling in the non-

perturbative region from the value AlphaMaxNP down

to α̃S . Finally, [NPAlphaS=Exx2] sets αS equal to Al-

phaMaxNP for all input scales Q < Qmin, which amounts

to a minor variation of the default freeze-out option.

6.8 Matrix element corrections

As stated in Sect. 6.2, the effects of unresolvable gluon

emissions have been included to all orders through the Su-

dakov form factor. The master formula and shower algo-

rithms generate further resolvable emissions by approximat-

ing the full next-to-leading order real emission matrix ele-

ment by a product of quasi-collinear splitting functions mul-

tiplying the tree level amplitude. Ideally, we wish to include

higher-order effects as accurately as possible and do this for

certain processes using matrix element corrections. We aim

to correct two deficiencies of the shower algorithm: (i) it

may not cover the whole phase space, leaving a region of

high p⊥ (i.e. non-soft non-collinear) emission unpopulated;

and (ii) even in the region it does populate, as one extrapo-

lates away from the soft and collinear limits it may not do a

perfect job. We call these the hard and soft matrix element

corrections respectively [64].

6.8.1 Soft matrix element corrections

In the parton shower approximation the probability density

that the ith resolvable parton is emitted into [q̃2, q̃2 + dq̃2],
[z, z + dz] is

dP (z, q̃2) =
αS

2π

dq̃2

q̃2
dzPĩj→ij (z, q̃

2)�(p2
⊥ ≥ 0). (106)

This approximation works well for the case that the emission

lies within the domain of the quasi-collinear limit. On the

other hand the exact matrix element calculation gives us that

the probability of a resolved emission as

∫

R

dP
m.e. =

∫
dq̃2dz

1

σ0

d2σ

dzdq̃2
�(p2

⊥ ≥ 0), (107)

where dσ is the differential cross section for the underlying

process with a further parton emission, and R denotes the

region of phase space corresponding to resolved emissions.

The KLN and Bloch-Nordsieck theorems imply that all large

logarithmic corrections to the cross section must vanish once

the full available phase space is integrated over. It follows

that the O(αS) contribution to the total cross section from

an unresolved emission may be written −
∫

R
dP m.e., at the

level of large (leading and next-to-leading) logarithms. Pro-

ceeding in the same way as our earlier derivations (6.1), we

then have that the probability density that the ith resolvable

gluon is emitted into [q̃2, q̃2 + dq̃2], [z, z + dz] is given by

the integrand of

∫ q̃2
i−1

q̃2
min

dq̃2
i dz

1

σ0

d2σ

dzdq̃2
i

exp

(
−

∫ q̃2
i

q̃2
i−1

dq̃2dz
1

σ0

d2σ

dzdq̃2

)
.

(108)

We may generate the distribution in (108) by simply aug-

menting the veto algorithm that is used to produce (35) with

a single additional rejection weight, simply vetoing emis-

sions if a random number RS is such that

RS ≥
dP

dP

m.e.
∣∣∣∣
z,q̃2

. (109)

For this to work we require that the parton shower emission

probability dP always overestimates that of the exact matrix

element dP m.e., if necessary this can be achieved by sim-

ply enhancing the emission probability of the parton shower

with a constant factor.

This correction is consistently applied to every emission

that has the highest p⊥ so far in the shower. This ensures

not only that the leading order expansion of the shower dis-

tribution agrees with the leading order matrix element, but

also that the hardest (i.e. furthest from the soft and collinear

limits) emission reproduces it. One might be concerned that

it is really only proper to apply this correction to the fi-

nal, largest p⊥emission, however, in the context of a coher-

ent parton branching formalism (angular ordering) the ear-

lier wide-angle emission is considered too soft to resolve

the subsequent, smaller angle but larger p⊥ splitting, and is

therefore effectively distributed as if the latter emission did

not occur. In this way, not only the hardest emission is im-

proved by the correction, but all reasonably hard wide-angle

emissions. Thus the correct procedure is to correct all those

emissions that are the hardest so far, from the distribution in

(35) to that in (108) by applying the veto in (109) [64].

672 Eur. Phys. J. C (2008) 58: 639–707

Given that each soft matrix element correction amounts

to exponentiating the next-to-leading order real emission

matrix element divided by the leading order matrix element,

provided one selects the option to evaluate the running cou-

pling in the Monte Carlo scheme [49], the Sudakov form

factor is in this case formally of next-to-leading log accuracy

for corrections to processes comprised of a single colour

flow.20 For processes involving more than one underlying

colour the next-to-leading log accuracy of the Sudakov form

factor is only correct up to terms O(1/N2
C) [50, 51].

6.8.2 Hard matrix element corrections

In addition to correcting the distribution of radiation inside

the regions of phase space that are populated by the parton

shower, we also wish to correct the distribution of radiation

outside, in the high p⊥, unpopulated, dead region. We wish

to distribute the radiation in the dead regions according to

the exact tree-level real emission matrix element i.e. accord-

ing to

1

σ0

∫ xi,max

xi,min

dxi

∫ xj,max(xi)

xj,min(xi)

dxj

d2σ

dxidxj

, (110)

where dσ is the differential cross section obtained using

the next-to-leading order, real emission matrix element, and

(xi, xj) are variables parameterizing the phase space associ-

ated with the emission of the extra parton.

The algorithm for populating the dead region is basic in

principle. Prior to any showering the program checks if a

matrix element correction is available for the hard process.

If one is available the algorithm then generates a point in

the appropriate region of phase space, ideally with some im-

portance sampling of the integrand. The differential cross

section associated with this point, as given in (110), is eval-

uated and multiplied by a phase space volume factor V (xi)

given by

V (xi) = (xi,max − xi,min)(xj,max(xi) − xj,min(xi)), (111)

giving the event weight. The emission is retained if this

weight is less than a uniformly distributed random number

R ∈ [0,1], and the momenta of the new parton configuration

are reconstructed from the generated values of xi and xj .

6.8.3 Using Herwig++ matrix element corrections

The current version of Herwig++ contains matrix element

corrections for four different hard processes: neutral and

charged current Drell-Yan processes, gg → h0, top quark

decays and e+e− → qq̄ processes. The associated C++

20For processes involving initial-state radiation, this also requires eval-

uating the parton densities at a scale of order p⊥ [50].

classes are DrellYanMECorrection, GGtoHMECorrection,

TopDecayMECorrection and VectorBosonQQbarMECorrec-

tion.

Naturally each of these process-dependent matrix ele-

ment corrections checks whether it corresponds to the hard

process (or, for top quark decays, the decay process). In

other words, users need not worry that, if matrix element

corrections are globally switched on in the code, the cor-

rection for e.g. the Drell-Yan processes is applied to the

gg → h0 process they have selected to generate.

All three corrections are loaded in the Repository in the

default set-up. The switch MECorrMode determines the

way in which all matrix elements are used. If

[MECorrMode=0] is selected no matrix element correc-

tions will be applied at all. The default setting

[MECorrMode=1], applies both the hard and soft ma-

trix element corrections for each one loaded in the Repos-

itory (if the associated processes are generated). Options

[MECorrMode=2] and [MECorrMode=3] turn off the

soft and hard matrix element corrections respectively.

6.9 Code structure

The Herwig++ shower module consists of a large number

of classes and is designed to be flexible, in the sense that

any DGLAP-type shower evolution based on 1 → 2 branch-

ings where momentum conservation is enforced globally af-

ter the evolution has been performed can be implemented.

The only concrete implementation so far is the improved

angular-ordered shower based on [17] and described above.

We will only describe the structure of the code, i.e. how

the various classes work together to generate the parton

shower evolution. Detailed documentation of all the classes

can be found in the Doxygen documentation. In a future re-

lease, the structure will be slightly changed to allow for more

general shower evolution, such as dipole-type showers.

The main class implementing the Herwig++ shower is the

ShowerHandler class, which inherits from the CascadeHan-

dler class of ThePEG. It has responsibility for the overall

administration of the multiple interactions, as described in

Sect. 8, the showering of primary and secondary hard scat-

tering processes, the decay of any unstable fundamental par-

ticles21 and the generation of any radiation produced in their

decays. The ShowerHandler uses a number of helper classes

to implement various parts of the algorithm together with

some data storage classes, which hold information needed

to generate the parton shower.

The ShowerHandler proceeds as follows:

21Currently most fundamental particle decays are performed before the

parton shower is generated, although in future we plan to generate them

as part of the parton-shower algorithm.

Eur. Phys. J. C (2008) 58: 639–707 673

– The Event object supplied to the ShowerHandler is first

analysed and the particles to be showered extracted. These

particles are converted from Particle objects, which store

particle information in ThePEG, to ShowerParticle ob-

jects, which inherit from Particle and include the stor-

age of the additional information, such as the evolution

scales and colour partners, needed to generate the par-

ton shower. Each particle in a hard process, be that the

primary scattering process or the subsequent decay of a

fundamental particle, is assigned to a ShowerProgenitor

object containing references to the particle together with

additional information required for particles that initiate a

parton shower. For each hard process a ShowerTree object

is created containing the ShowerProgenitor objects for all

the particles in the hard process and the information re-

quired to shower that process.

– The ShowerHandler uses the helper Evolver to generate

the radiation from each hard scattering or decay process.

Once the parton showers have been generated for all the

hard processes the ShowerHandler inserts them into the

Event object.

– The MPIHandler then generates any secondary hard scat-

terings required, which are subsequently showered by the

Evolver, as described in Sect. 8.

– Finally, after all the scatterings have been showered, the

hadronic remnant is decayed to conserve momentum and

flavour using the HwRemDecayer class.

The main helper class of the ShowerHandler is the Evolver,

which is responsible for generating the parton shower from

an individual hard process, stored as a ShowerTree object.

The Evolver first finds the colour partners and initial scale

for the parton showers from each particle, as described in

Sect. 6.3. At this stage, if there is a suitable class inherit-

ing from MECorrectionBase, which implements the matrix

element correction for the process as described in Sect. 6.8,

the hard matrix element correction is applied. The Evolver is

also currently responsible for generating the intrinsic p⊥ of

incoming partons in hadronic collisions at this stage.

Given the initial scale, the evolution of the particles pro-

ceeds as described in Sects. 6.4–6.6, using the

SplittingGenerator class to generate the types and scales

of the branchings. In turn the SplittingGenerator uses the

SudakovFormFactor to generate the possible evolution scales

for each allowed type of branching and then selects the

branching with the highest scale, as described in Sect. 6.4.

The new ShowerParticles produced in the branching are then

evolved until no further branching is possible. When all the

particles have been evolved the KinematicsReconstructor re-

constructs the momentum of all the particles in the shower

(Sects. 6.4–6.6).

The ShowerHandler and Evolver classes are mainly ad-

ministrative, the actual physics is implemented in the var-

ious helper classes. For this reason these helper classes,

which are specific to the details of the parton shower al-

gorithm, are contained in the ShowerModel class. It is in-

tended that different DGLAP based parton shower algo-

rithms, for example the original angular-ordered parton

shower algorithm used in FORTRAN HERWIG, can be im-

plemented by inheriting from the ShowerModel and specify-

ing the helper classes to be used in that model, which inherit

from the KinematicsReconstructor, PartnerFinder, Sudakov-

FormFactor and MECorrectionBase classes. For example,

the QTildeModel, which implements the improved angular-

ordered shower described above, uses the QTildeRecon-

structor, QTildeFinder, QTildeSudakov and QTildeMECor-

rection classes.

In turn many of the helper classes used by the main

classes implementing the shower have their own helper

classes for various parts of the simulation.

The SplittingGenerator class holds lists of available

branchings, providing interface switches to either enable

or disable radiation, in the initial or final state, for differ-

ent interactions. They are used to generate the shower vari-

ables associated with each branching using SudakovForm-

Factor objects. The SplittingGenerator and SudakovForm-

Factor classes use the following helper classes:

SplittingFunction This is the base class for defining split-

ting functions used in the shower evolution. This includes

the calculation of the splitting function together with the

overestimate, integral and inverse integral of it required to

implement the veto algorithm as described in Sects. 6.4

and 6.5. The splitting functions implemented in Herwig++

are listed in Sect. 6.2.

ShowerAlpha This is the base class implementing the run-

ning couplings used in the shower evolution.

The Evolver uses the ShowerVeto class to provide a gen-

eral interface to veto emission attempts by the shower. The

veto may be applied to either a single emission (resetting

the evolution scale for the particle to the attempted branch-

ing scale), an attempt to shower a given event, or the overall

event generation.

Finally three special exception classes are used inside the

shower module, mainly to communicate exceptional events

or configurations, rather than signaling a serious error dur-

ing event generation. The exceptions are handled completely

within the shower module. In particular we use VetoShower

to communicate vetoing of a complete shower attempt. Kine-

maticsReconstructionVeto is used to signal an exceptional

configuration that cannot be handled by the KinematicsRe-

constructor, resulting in restarting the shower from the orig-

inal event (similar to a VetoShower exception). Shower-

TriesVeto signals that complete showering of a given event

failed a predefined number of times. This is handled together

with the generation of multiple interactions.

674 Eur. Phys. J. C (2008) 58: 639–707

Fig. 4 The mass spectrum of

(a) the primary clusters and

(b) the clusters after cluster

fission. The solid, dashed and

dot-dashed lines show the

clusters produced in

hadronization of e+e− → dd̄

events at a centre-of-mass

energy of 100 GeV, 1 TeV and

10 TeV respectively. Only

clusters containing light quarks

are shown

7 Hadronization

After the parton shower, the quarks and gluons must be

formed into the observed hadrons. The colour preconfine-

ment property [60] of the angular-ordered parton shower is

used as the basis of the cluster model [2], which is used in

Herwig++ to model the hadronization. This model has the

properties that it is local in the colour of the partons and in-

dependent of both the hard process and centre-of-mass en-

ergy of the collision [2, 3].

7.1 Gluon splitting and cluster formation

The first step of the cluster hadronization model is to non-

perturbatively split the gluons left at the end of the parton

shower into quark-antiquark pairs. Since, at the end of the

Herwig++ shower the gluons are given their constituent mass

it is essential that this mass is heavier than twice the con-

stituent mass of the lightest quark.22 The gluon is allowed to

decay into any of the accessible quark flavours with proba-

bility given by the available phase space for the decay.23

The gluon decays isotropically and following this iso-

tropic decay the event only contains colour connected

(di)quarks and anti-(di)quarks. The colour singlets formed

by these colour connected parton pairs are formed into

clusters with the momentum given by the sum of the mo-

menta of the constituent partons. The principle of colour-

preconfinement states that the mass distribution of these

clusters is independent of the hard scattering process and

its centre-of-mass energy. As can be seen in Fig. 4a, the

22We normally take the constituent masses of the up and down quarks

to be equal although they can in principle be different.

23The option of gluon decay into diquarks, which was available in

FORTRAN HERWIG is no longer supported. Diquarks are therefore

present only as remnants of incoming baryons, or from baryon num-

ber violating processes (see Sect. 7.4.2).

shower algorithm in Herwig++ obeys preconfinement fairly

well by 100 GeV and is clearly invariant beyond that.

7.2 Cluster fission

The cluster model is based on the observation that because

the cluster mass spectrum is both universal and peaked at

low masses, as shown in Fig. 4a, the clusters can be regarded

as highly excited hadron resonances and decayed, according

to phase space, into the observed hadrons. There is however

a small fraction of clusters that are too heavy for this to be a

reasonable approach. These heavy clusters are therefore first

split into lighter clusters before they decay.

A cluster is split into two clusters if the mass, M , is such

that

MClpow ≥ Clmax
Clpow + (m1 + m2)

Clpow , (112)

where Clmax and Clpow are parameters of the model, and

m1,2 are the masses of the constituent partons of the clus-

ter. In practice, in the most recent version of the model,

in order to improve the description of the production of

bottom and charm hadrons, we include separate values of

both Clmax (ClMaxLight, ClMaxCharm and ClMaxBot-

tom) and Clpow (ClPowLight, ClPowCharm, ClPowBot-

tom) for clusters containing light, charm and bottom quarks

respectively. The default values of these and other important

hadronization parameters are given in Table 10 at the end of

this Section.

For clusters that need to be split, a qq̄ pair is selected

to be popped from the vacuum. Only up, down and strange

quarks are chosen with probabilities given by the parameters

Pwti ,
24 where i is the flavour of the quark. Once a pair is

24We use Pwti to denote the probability of selecting a given quark

or diquark. This is given by the parameters PwtDquark, PwtUquark,

PwtSquark, PwtCquark and PwtBquark for the quarks and the prod-

uct of the diquark probability PwtDiquark, the probabilities of the

quarks forming the diquark, and a symmetry factor for diquarks.

Eur. Phys. J. C (2008) 58: 639–707 675

selected the cluster is decayed into two new clusters with

one of the original partons in each cluster. Unless one of the

partons is a remnant of the incoming beam particle the mass

distribution of the new clusters is given by

M1 = m1 + (M − m1 − mq)R
1/P

1 , (113a)

M2 = m2 + (M − m2 − mq)R
1/P

2 , (113b)

where mq is the mass of the parton popped from the vac-

uum and M1,2 are the masses of the clusters formed by

the splitting. The distribution of the masses of the clus-

ters is controlled by the parameter P , which is PSplit-

Light, PSplitCharm or PSplitBottom for clusters contain-

ing light, charm or bottom quarks.

In addition to the selection of the mass according to (113)

the masses of the daughter clusters are required to be less

than that of the parent cluster and greater than the sum of

the masses of their constituent partons. The spectrum of the

cluster masses after the cluster splitting is shown in Fig. 4b.

For clusters that contain a remnant of the beam particle in

hadronic collisions a soft distribution is used for the masses

of the clusters produced in the splitting. The RemnantOp-

tion switch controls whether the soft distribution is used

for both daughter clusters [RemnantOption=0] or only the

daughter cluster containing the remnant [RemnantOption

=1], the default. The mass of the soft clusters is given by

Mi = mi + mq + x, (114)

where x is distributed between 0 and M − m1 − m2 − 2mq

according to

dP

dx2
= exp(−bx), (115)

where b = 2/SoftClusterFactor.

7.3 Cluster decays

The final step of the cluster hadronization model is the

decay of the cluster into a pair of hadrons. For a cluster

of a given flavour (q1, q̄2) a quark-antiquark or diquark-

antidiquark pair (q, q̄) is extracted from the vacuum and a

pair of hadrons with flavours (q1, q̄) and (q, q̄2) formed. The

hadrons are selected from all the possible hadrons with the

appropriate flavour based on the available phase space, spin

and flavour of the hadrons. While the general approach is

the same in all cluster models there are some variations. In

Herwig++ the original model of Ref. [2] used in FORTRAN

HERWIG [5, 6], the approach of Ref. [65], which was de-

signed to solve the problem of isospin violation in the orig-

inal model if incomplete SU(2) multiplets of hadrons are

included, and a new variant that addresses the issue of the

low rate of baryon production in the approach of Ref. [65],

are implemented.

In all these approaches the weight for the production of

the hadrons a(q1,q̄) and b(q,q̄2) is

W(a(q1,q̄), b(q,q̄2)) = Pqwasawbsbp
∗
a,b, (116)

where Pq is the weight for the production of the given quark-

antiquark or diquark-antidiquark pair, wa,b are the weights

for the production of individual hadrons and sa,b are the sup-

pression factors for the hadrons, which allow the production

rates of individual meson multiplets, and singlet and decu-

plet baryons to be adjusted. The momentum of the hadrons

in the rest frame of the decaying cluster,

p∗
a,b =

1

2M
[(M2 − (ma + mb)

2)(M2 − (ma − mb)
2)]

1
2 ,

(117)

measures the phase space available for two-body decay. If

the masses of the decay products are greater than the mass

of the cluster then the momentum is set to zero. The weight

for the individual hadron is

wh = wmix(2Jh + 1), (118)

where wmix is the weight for the mixing of the neutral light

mesons22 and Jh is the spin of the hadron.

The different approaches vary in how they implement the

selection of the cluster decay products based on this proba-

bility.

In the approach of Ref. [2] the probability is generated in

a number of pieces. First the flavour of the quark-antiquark,

or diquark-antidiquark, pair popped from the vacuum is se-

lected with probability

Pq =
Pwtq∑
q ′ Pwtq ′

. (119)

Both the hadrons produced in the cluster decay are

then selected from the available hadrons of the appropriate

flavours using the weight

Ph =
wh

wmax(q,q̄ ′)
, (120)

where wmax(q,q̄ ′) is the maximum value of the weight for a

given flavour combination.

A weight is calculated for this pair of hadrons

W =
sasbp

∗
a,b

p∗
max

, (121)

22wmix = 1 for all other particles.

676 Eur. Phys. J. C (2008) 58: 639–707

where p∗
a,b is the momentum of the hadrons in the cluster

rest frame and p∗
max is the maximum momenta of the de-

cay products for hadrons with the relevant flavour.23 The

hadrons produced are then selected according to this weight.

This procedure approximately gives a probability

P(a(q1,q̄), b(q,q̄2)|q1, q̄2)

= Pq

1

N(q1,q̄)

1

N(q,q̄2)

wa

wmax(q1,q̄)

wb

wmax(q,q̄2)

sasbp
∗
a,b

p∗
max

(122)

of choosing hadrons a(q1,q̄) and b(q,q̄2). The number of

hadrons with flavour (q1, q̄2) is N(q1,q̄2).

Kupco [65] pointed out one problem with this approach:

as new hadrons with a given flavour are added, the produc-

tion of the existing hadrons with the same flavour is sup-

pressed. In order to rectify this problem he proposed a new

approach for choosing the decay products of the cluster. In-

stead of splitting the probability into separate parts, as in

Ref. [2], a single weight was calculated for each combina-

tion of decay products

W(a(q1,q̄), b(q,q̄2)|q1, q̄2) = Pqwawbsasbp
∗
a,b, (123)

which gives the probability of selecting the combination

P(a(q1,q̄), b(q,q̄2)|q1, q̄2)

=
W(a(q1,q̄), b(q,q̄2)|q1, q̄2)∑

c,d,q ′ W(c(q1,q̄
′), d(q ′,q̄2)|q1, q̄2)

. (124)

The addition of new hadrons now increases the probability

of choosing a particular flavour, however because these new

hadrons are usually heavy they will not contribute for the

majority of light clusters.

The main problem with this approach is that because

many more mesons are included in the simulation than

baryons not enough baryons are produced. In order to ad-

dress this problem in Herwig++, if a cluster mass is suf-

ficiently large that it can decay into the lightest baryon-

antibaryon pair the parameter Pwtqq is used to decide

whether to select a mesonic or baryonic decay of the cluster.

The probabilities of selecting a mesonic decay or baryonic

decay are 1
1+Pwtqq

and
Pwtqq

1+Pwtqq
. This modification not only

increases the number of baryons produced but gives direct

control over the rate of baryon production.

Once the decay products of the cluster are selected, the

cluster is decayed. In general the cluster decay products are

isotropically distributed in the cluster rest frame. However,

hadrons that contain a parton produced in the perturbative

stage of the event retain the direction of the parton in the

23That is, the momentum with the lightest possible choices for a and b.

cluster rest frame, apart from a possible Gaussian smearing

of the direction. This is controlled by the ClDir parame-

ter, which by default [ClDir=true] retains the parton direc-

tion, and the ClSmr parameter, which controls the Gaussian

smearing through an angle θsmear where

cos θsmear = 1 + ClSmr log R. (125)

The azimuthal angle relative to the parton direction is dis-

tributed uniformly. To provide greater control the parame-

ters ClDir (ClDirLight, ClDirCharm and ClDirBottom)

and ClSmr (ClSmrLight, ClSmrCharm and ClSmrBot-

tom) can be set independently for clusters containing light,

charm and bottom quarks.

In practice there is always a small fraction of clusters

that are too light to decay into two hadrons. These clusters

are therefore decayed to the lightest hadron, with the appro-

priate flavours, together with a small reshuffling of energy

and momentum with the neighbouring clusters to allow the

hadron to be given the correct physical mass. The cluster

with the smallest space-time distance that can absorb the re-

coil is used. In addition, for clusters containing a bottom or

charm quark in order to improve the behaviour at the thresh-

old the option exists of allowing clusters above the threshold

mass, Mthreshold, for the production of two hadrons to decay

into a single hadron such that a single hadron can be formed

for masses

M < Mlimit = (1 + SingleHadronLimit)Mthreshold. (126)

The probability of such a single-meson cluster decay is

assumed to decrease linearly for Mthreshold < M < Mlimit.

The parameters SingleHadronLimitCharm and Single-

HadronLimitBottom control the limit on the production of

single clusters for charm and bottom clusters respectively.

Increasing the limit has the effect of hardening the momen-

tum spectrum of the heavy mesons.

7.3.1 Mixing weights

For neutral mesons that only contain the light (up, down and

strange) quarks there is mixing. If we consider the wave-

functions of the neutral mesons, which we write for the 1S0

meson multiplet but the treatment applies to an arbitrary

SU(3) flavour multiplet, then

π0 =
1

√
2
(dd̄ − uū), (127a)

η = ψ8 cos θ − ψ1 sin θ, (127b)

η′ = ψ8 sin θ + ψ1 cos θ, (127c)

where θ is the nonet mixing angle and the wavefunctions for

the octet and singlet components are

ψ8 =
1

√
6
(uū + dd̄ − 2ss̄), (128a)

Eur. Phys. J. C (2008) 58: 639–707 677

ψ1 =
1

√
3
(uū + dd̄ + ss̄). (128b)

The probabilities of finding a given quark-antiquark inside a

particular neutral meson can be calculated, which gives the

mixing weights for the neutral light mesons

wπ0

uū = wπ0

dd̄
=

1

2
, wπ0

ss̄ = 0, (129a)

w
η
uū = w

η

dd̄
=

1

2
cos2(θ + φ), w

η
ss̄ = sin2(θ + φ),

(129b)

w
η′

uū = w
η′

dd̄
=

1

2
sin2(θ + φ), w

η′

ss̄ = cos2(θ + φ),

(129c)

where φ = tan−1
√

2 is the ideal mixing angle.

In the approach of Ref. [2] the factor of 1
2

in the weights

for the uū and dd̄ components was omitted as this is approx-

imately given by the ratio of the number of charged mesons

containing up and down quarks to neutral ones, which is ex-

actly two for ideal mixing where the ss̄ mesons do not mix

with those containing up and down quarks.

In practice the mixing angles can be adjusted for each

meson multiplet that is included in the simulation although

with the exception of the lightest pseudoscalar, vector, ten-

sor and spin-3 multiplets the assumption of ideal mixing is

used.

7.4 Hadronization in BSM models

In most cases the hadronization of events involving new

physics, using the cluster model, proceeds in the same way

as for Standard Model events. There are however some

classes of new physics model that require special treatment,

in particular:

Stable strongly interacting particles if there are strongly

interacting particles that are stable on the hadronization

timescale, these particles will hadronize before they decay.

If the new particles are in the fundamental representation of

colour SU(3) then their hadronization proceeds in the same

way as for quarks, however if they are in the octet represen-

tation the situation is more complicated [66].

Baryon number violation (BNV) there are models of new

physics in which the conservation of baryon number is vi-

olated. This typically occurs at a vertex that has the colour

tensor ǫijk leading to three quarks, or antiquarks, that are

colour connected to each other after the parton shower and

gluon splitting.

The Herwig++ hadronization module is designed so that

both stable coloured particles and baryon number violation

are correctly treated as described below.

7.4.1 Stable strongly interacting particles

Currently only the hadronization of objects in the fundamen-

tal representation of the SU(3) group of the strong force

is supported. Provided that the relevant hadrons exist the

hadronization of these particles is handled in the same way

as for quarks. In the future we will extend this to new parti-

cles in the octet representation as described in Ref. [66].

7.4.2 Baryon number violation

The treatment of QCD radiation and hadronization in mod-

els that violate baryon number conservation is described in

Refs. [53] and [54] and was implemented in the FORTRAN

HERWIG program. In events where baryon number is vio-

lated there are typically two situations that can arise.

1. The baryon number violating vertices are unconnected,

leading to three quarks, or antiquarks, connected to each

BNV vertex after the gluon splitting. These (anti)quarks

must be formed into a cluster, which decays to give a

(anti)baryon and a meson, giving the expected baryon

number violation. In the approach of Refs. [53, 54] this is

modelled by first combining two of the (anti)quarks into a

(anti)diquark, which is in the (anti)-triplet representation

of colour SU(3). The (anti)quark and (anti)diquark can

then be formed into a colour singlet cluster, which can be

handled by the hadronization module in the normal way.

2. Two baryon number violating vertices are colour con-

nected to each other, leading to two quarks connected

to one vertex and two antiquarks connected to the sec-

ond, after gluon splitting. In this case two clusters must

be formed by pairing one of the quarks with one of the

antiquarks at random and then pairing up the remaining

pair.

The handling of these colour flows in both the shower and

hadronization is fully supported although there are currently

no models that include baryon number violation imple-

mented.

7.5 Code structure

The ClusterHandronizationHandler inherits from the

HadronizationHandler of ThePEG and implements the clus-

ter hadronization model. The ClusterHandronizationHandler

makes use of a number of helper classes to implement dif-

ferent parts of the model. The helper classes, in the order

they are called, are:

PartonSplitter The PartonSplitter performs the non-pertur-

bative splitting of the gluons in quark-antiquark pairs.

ClusterFinder The ClusterFinder is responsible for taking

the partons after the gluon splitting and forming them into

colour singlet clusters as Cluster particles.

678 Eur. Phys. J. C (2008) 58: 639–707

Table 10 Important

hadronization parameters. For

all parameters other than the

light parton constituent masses,

the limits given are enforced by

the interface. For the light

partons, the limits are not

enforced but give a sensible

range over which the parameters

can be varied. For the gluon, the

upper limit we give is about the

largest value we would consider

reasonable, although it is not a

hard limit. The up and down

masses must be less than half

the gluon mass, otherwise the

non-perturbative gluon decays

are impossible, and the strange

mass must be large enough that

gluon decays into strange

quarks are not possible, to give

good agreement with LEP data

Parameter Default Allowed Description

Value Range

HadronSelector

PwtDquark 1. 0–10 Weight for choosing a down quark

PwtUquark 1. 0–10 Weight for choosing a up quark

PwtSquark 0.68 0–10 Weight for choosing a strange quark

PwtDIquark 0.52 0–10 Weight for choosing a diquark

SngWt 0.96 0–10 Weight for singlet baryons

DecWt 0.61 0–10 Weight for decuplet baryons

LightClusterDecayer

SingleHadronLimitBottom 0.16 0–10 Bottom cluster to 1 hadron param.

SingleHadronLimitCharm 0.0 0–10 Charm cluster to 1 hadron param.

ClusterDecayer

ClDirLight 1 0/1 Orientation of light cluster decays

ClDirBottom 1 0/1 Orientation of bottom cluster decays

ClDirCharm 1 0/1 Orientation of charm clusters

ClSmrLight 0.78 0–2 Smearing of light cluster decays

ClSmrBottom 0.10 0–2 Smearing of bottom cluster decays

ClSmrCharm 0.26 0–2 Smearing of charm cluster decays

OnShell 0 0/1 Masses of produced hadrons

ClusterFissioner

ClMaxLight 3.15 0–10 Max. mass for light clusters (GeV)

ClMaxBottom 3.10 0–10 Max. mass for bottom clusters (GeV)

ClMaxCharm 3.00 0–10 Max. mass for bottom clusters (GeV)

ClPowLight 2.00 0–10 Mass exponent for light clusters

ClPowBottom 1.18 0–10 Mass exponent for bottom clusters

ClPowCharm 1.52 0–10 Mass exponent for charm clusters

PSplitLight 1.20 0–10 Splitting param. for light clusters

PSplitBottom 1.00 0–10 Splitting param. for bottom clusters

PSplitCharm 1.18 0–10 splitting param. for charm clusters

RemnantOption 1 0/1 Treatment of remnant clusters

SoftClusterFactor 1 0.1–10 Remnant mass param. (GeV)

ConstituentMasses of light partons (set in their ParticleData objects)

gluon 0.9 0–1 Gluon constituent mass (GeV)

up 0.325 0–mg/2 Up quark constituent mass (GeV)

down 0.325 0–mg/2 Down quark constituent mass (GeV)

strange 0.5 mg/2–1 Strange quark constituent mass (GeV)

ColourReconnector It is possible that rather than using the

leading Nc colour structure of the event there is some re-

arrangement of the colour connections. The option of imple-

menting such a model in a class inheriting from the Colour-

Reconnector class is available, although the ColourRecon-

nector itself does not implement such a model.

ClusterFissioner The ClusterFissioner class is responsible

for splitting large mass clusters into lighter ones as described

in Sect. 7.2.

LightClusterDecayer The LightClusterDecayer decays any

clusters for which the decay to two hadrons is kinematically

impossible into the lightest hadron with the correct flavour

together with the reshuffling of momentum with neighbour-

ing clusters, which is required to conserve energy and mo-

mentum, as described at the end of Sect. 7.3.

ClusterDecayer The ClusterDecayer decays the remaining

clusters into pairs of hadrons as described in Sect. 7.3.

Eur. Phys. J. C (2008) 58: 639–707 679

In addition to these classes the ClusterDecayer makes

use of a HadronSelector to select the hadrons produced in

the cluster decay.24 In order to support the different options

described in Sect. 7.3 the base HadronSelector implements

much of the functionality needed to select the hadrons in the

cluster model but the chooseHadronPair() method, which is

used to select the hadrons, is virtual and must be imple-

mented in inheriting classes that implement specific variants

of the cluster model. The FORTRAN HERWIG algorithm is

implemented in the Hw64Selector class and the Kupco and

Herwig++ methods in theHwppSelector class.

There are a number of switches and parameters that con-

trol the hadronization. Here we merely give a summary of

the most important ones. All the parameters are described in

full in the Doxygen documentation of the relevant classes.

The main choice is which variant of the cluster model to

use. This can be controlled by using either the Hw64Selector

for the original model of Ref. [2] or theHwppSelector class

for the Kupco and Herwig++ variants. The choice of whether

to use the Hw64Selector or HwppSelector is controlled

by setting the HadronSelector interface of the Cluster-

Decayer and LightClusterDecayer classes. In addition, for

the HwppSelector the Mode switch controls whether the

Kupco [Mode=0] orHerwig++ [Mode=1], the default, vari-

ant is used. The production of specific hadrons by the cluster

model can be forbidden via the Forbidden interface of the

HadronSelector: this option is currently only used to forbid

the production of the σ and κ resonances, which are only in-

cluded in the simulation to model low-mass s-wave ππ and

Kπ systems in certain particle decays.

In addition the mixing angles for the various multiplets

can be changed in the HadronSelector as can the suppression

weights for different SU(3) meson flavour multiplets.

If the option of using the soft underlying event model [67]

is used, as described in Sect. 8.3, then the UnderlyingEvent-

Handler needs to be set to theUA5Handler, by default this

is set to the NULL pointer and the multiple scattering model

of the underlying event described in Sect. 8 used.

The other main parameters of the cluster model, and their

default values, are given in Table 10.

Finally the ConstituentMass of the gluon and, to a lesser

extent the light quarks, which can be set in their ParticleData

objects, have a major effect on the hadronization since they

set the scale for the cluster mass distribution.

8 Underlying event and beam remnants

The default underlying event model of Herwig++ is currently

based on the eikonal model discussed in Refs. [16, 68, 69].

24The LightClusterDecayer also makes use of this class to select the

lightest hadron with a given flavour.

Further development is planned, but so far it is intended to

provide very similar functionality to FORTRAN HERWIG

+ JIMMY with some minor improvements. That is, the un-

derlying event is modelled as multiple partonic interactions,

where one of them is the process of interest, accompanied

by several semi-hard scatterings.

In this section, we briefly discuss the basics of how to cal-

culate the multiplicities of the semi-hard scatterings, before

explaining the integration into the full Monte Carlo simula-

tion. For historical reasons, we also briefly mention an al-

ternative underlying event model available in Herwig++: the

UA5 model [67], even though this is ruled out by data and

not recommended for serious use. Finally we will describe

the code structure, which implements these ideas. A more

detailed explanation can be found in Ref. [8].

8.1 Model basics

The starting point is the observation that the cross section for

QCD jet production may exceed the total pp or pp̄ cross

section already at an intermediate energy range and even-

tually violates unitarity. For example, for QCD jet produc-

tion with a minimum pT of 2 GeV this already happens

at
√

s ∼ 1 TeV. This pT cutoff should however be large

enough to ensure that we can calculate the cross section us-

ing pQCD. The reason for the rapid increase of the cross

section turns out to be the strong rise of the proton structure

function at small x, since the x values probed decrease with

increasing centre of mass energy. This proliferation of low

x partons may lead to a non-negligible probability of having

more than one partonic scattering in the same hadronic col-

lision. This is not in contradiction with the definition of the

standard parton distribution function as the inclusive distri-

bution of a parton in a hadron, with all other partonic inter-

actions summed and integrated out. It does, however, signal

the onset of a regime in which the simple interpretation of

the pQCD calculation as describing the only partonic scat-

tering must be unitarized by additional scatters.

In principle, predicting the rate of multi-parton scatter-

ing processes requires multi-parton distribution functions,

about which we have almost no experimental information.

However, the fact that the standard parton distribution func-

tions describe the inclusive distribution gives a powerful

constraint, which we can use to construct a simple model.

The eikonal model used in Refs. [16, 68, 69] derives from

the assumption that at fixed impact parameter, b, individ-

ual scatterings are independent and that the distribution of

partons in hadrons factorizes with respect to the b and x de-

pendence. This implies that the average number of partonic

collisions at a given b value is

〈n(b, s)〉 = A(b) σ inc(s;pmin
T) , (130)

680 Eur. Phys. J. C (2008) 58: 639–707

where A(b) is the partonic overlap function of the colliding

hadrons, with

∫
d2b A(b) = 1, (131)

and σ inc is the inclusive cross section to produce a pair of

partons with pT > pmin
T . We model the impact parameter

dependence of partons in a hadron by the electromagnetic

form factor, resulting in an overlap function for pp and pp̄

collisions of

A(b;μ) =
μ2

96π
(μb)3K3(μb), (132)

where μ is the inverse proton radius and K3(x) is the modi-

fied Bessel function of the third kind. We do not fix μ at the

value determined from elastic ep scattering, but rather treat

it as a free parameter, because the spatial parton distribution

is assumed to be similar to the distribution of charge, but not

necessarily identical.

The assumption that different scatters are uncorrelated

leads to the Poissonian distribution for the number of scat-

ters, n, at fixed impact parameter,

Pn(b, s) =
〈n(b, s)〉n

n!
exp(−〈n(b, s)〉) . (133)

Using (133) the unitarized cross section can now be written

as

σinel(s) =
∫

d2b

∞∑

k=1

Pk(b, s)

=
∫

d2b [1 − exp(−〈n(b, s)〉)], (134)

which properly takes multiple scatterings into account. The

key ingredient for the Monte Carlo implementation is then

the probability of having n scatterings given there is at least

one, integrated over impact parameter space. This expres-

sion reads

Pn(s) =
∫

d2b Pn(b, s)∫
d2b

∑∞
k=1 Pk(b, s)

. (135)

It is worth noting that this distribution, after integration over

b, is much broader than Poissonian and has a long tail to

high multiplicities.

Equation (135) is used as the basis of the multi-parton

scattering generator for events in which the hard process is

identical to the one used in the underlying event, i.e. QCD

2 → 2 scattering. For scatterings of more than one type of

hard process, the formulae can be easily generalized, but in

fact for the realistic case in which all other cross sections

are small compared to the jet cross section, they saturate at

a simple form,

Pn(s) =
n

σ inc

∫
d2b Pn(b, s), (136)

which allows for a more efficient generation of additional

scatterings. It is worth noting that the fact that we have ‘trig-

gered on’ a process with a small cross section leads to a

bias in the b distribution and hence a higher multiplicity

of additional scatters than in the pure QCD 2 → 2 scatter-

ing case. A slight further modification to the distribution is

needed when the small cross section process is a subset of

the large one, for example QCD 2 → 2 scattering restricted

to the high pT region.

As described so far, the n scatters are completely in-

dependent, which is expected to be a good approxima-

tion in the region in which multiple scattering dominates,

i.e. small momentum fractions. However, some fraction of

events come from higher x values and must lead to corre-

lations between the scatters at some level. At the very least,

the total momentum and flavour must be conserved: the total

x value of all partons extracted from a hadron cannot exceed

unity and each valence parton can only be extracted once. In

Herwig++ these correlations are included in the simplest pos-

sible way, by vetoing any scatters that would take the total

extracted energy above unity and by only evolving the first

scatter back to a valence parton and all the others back to a

gluon.

8.2 Connection to different simulation phases

The model introduced so far is entirely formulated at the

parton level. However, an event generator aims for a full de-

scription of the event at the level of hadrons. This implies

that the implementation of multi-parton scattering must be

properly connected to the parton shower and hadronization

models, a few details of which we discuss in the following.

8.2.1 Parton showers and hard matrix elements

After generating the hard process and invoking parton show-

ers on its coloured particles, the number of additional scat-

ters is calculated according to (135) or (136) respectively.

After the initial-state shower has terminated, the incoming

partons are extracted out of the beam particles in the usual

way.

The requested additional scatters are then generated us-

ing a similar but completely independent infrastructure from

the one of the hard process. Dedicated hard matrix elements

with hand-coded formulae summed over parton spins are

used for greater speed, as mentioned in Sect. 3.1. This also

has the advantage that specific cuts, different to those used

for the main hard process, can be specified.

Eur. Phys. J. C (2008) 58: 639–707 681

For each additional scattering, parton showers evolve the

produced particles down to the hadronic scale. The back-

ward evolution of additional scatters is forced to terminate

on a gluon. After termination, these gluons are extracted

out of the beam particles. If this process leads to a viola-

tion of four-momentum conservation, the scattering cannot

be established. It is therefore regenerated until the desired

multiplicity has been reached. If a requested scattering can

never be generated without leading to violation of momen-

tum conservation, the program eventually gives up, reducing

the multiplicity of scatters.

8.2.2 Hadronization

The underlying event and beam remnant treatment are

closely connected because the generation of additional scat-

ters requires the extraction of several partons out of the pro-

ton. As described before, all additional partons are extracted

from the incoming beam particles. This is different from the

procedure that was used in FORTRAN JIMMY, where the

successive partons were always extracted from the previ-

ous beam remnant, a difference in the structure of the event

record that should not lead to significant differences in phys-

ical distributions.

The cluster hadronization described in the previous sec-

tion can only act on (anti)quarks or (anti)diquarks. How-

ever, naively extracting several partons from a hadron will

not leave a flavour configuration that is amenable to such a

description in general. Therefore, the strategy we use, as al-

ready mentioned, is to terminate the backward evolution of

the hard process on a valence parton of the beam hadron and

additional scatterings on gluons, giving a structure that can

be easily iterated for an arbitrary number of scatters. This

structure is essentially the same as in FORTRAN JIMMY.

8.3 Soft underlying event

While the new multiple interaction model provides a bet-

ter description of the underlying event and is recommended

for all realistic physics studies, Herwig++ still contains the

original soft model of the underlying event used before ver-

sion 2.1.

This model is based on the minimum-bias event genera-

tor of the UA5 Collaboration [67], which starts from a para-

meterization of the pp̄ inelastic charged multiplicity distri-

bution as a negative binomial distribution. In Herwig++ the

relevant parameters are made available to the user for mod-

ification, the default values being the UA5 ones as used in

the FORTRAN version of the program. These parameters are

given in Table 11.

The first three parameters control the mean charged mul-

tiplicity n̄ at c.m. energy
√

s as indicated. The next two spec-

Table 11 Parameters of the soft underlying event event model

Name Description Default

N1 a in n̄ = a(s/GeV2)b + c 9.110

N2 b in n̄ = a(s/GeV2)b + c 0.115

N3 c in n̄ = a(s/GeV2)b + c −9.500

K1 a in 1/k = a ln(s/GeV2) + b 0.029

K2 b in 1/k = a ln(s/GeV2) + b −0.104

M1 a in (M − m1 − m2 − a)e−bM 0.4 GeV

M2 b in (M − m1 − m2 − a)e−bM 2.0 GeV−1

P1 pt slope for d,u 5.2 GeV−1

P2 pt slope for s, c 3.0 GeV−1

P3 pt slope for qq 5.2 GeV−1

ify the parameter k in the negative binomial charged multi-

plicity distribution,

P(n) =
Ŵ(n + k)

n!Ŵ(k)

(n̄/k)n

(1 + n̄/k)n+k
.

The parameters M1 and M2 describe the distribution of

cluster masses M in the soft collision. These soft clusters

are generated using a flat rapidity distribution with Gaussian

shoulders. The transverse momentum distribution of soft

clusters has the form

P(pt) ∝ pt exp(−b

√
p2

t + M2),

where the slope parameter b depends as indicated on the

flavour of the quark or diquark pair created when the cluster

was produced. As an option, for underlying events, the value

of
√

s used to choose the multiplicity n may be increased by

a factor EnhanceCM to allow for an enhanced underlying

activity in hard events. The actual charged multiplicity is

taken to be n plus the sum of the moduli of the charges of

the colliding hadrons or clusters.

8.4 Code structure

In addition to being the main class responsible for the ad-

ministration of the shower, the ShowerHandler, described in

Sect. 6.9, is also responsible for the generation of the ad-

ditional hard scattering processes. It has a reference to the

MPIHandler set in the input files, which is used to actually

create the additional scattering processes. It invokes the par-

ton shower on all the available scatters and connects them

properly to the incoming beam particles. This includes po-

tential re-extraction of the incoming parton if it is changed

as a result of initial-state radiation. It modifies the Remnant-

Particles that were initially created by the PartonExtractor.

A number of classes are used by the ShowerHandler to gen-

erate the additional scattering processes.

682 Eur. Phys. J. C (2008) 58: 639–707

MPIHandler The MPIHandler administers the calculation

of the underlying event activity. It uses MPISampler to sam-

ple the phase space of the processes that are connected to

it. Using that cross section the probabilities for the individ-

ual multiplicities of additional scatters are calculated during

initialization. The method MPIHandler::multiplicity() samples

a number of extra scatters from that pretabulated probabil-

ity distribution. The method MPIHandler::generate() creates

one subprocess according to the phase space and returns it.

MPISampler The MPISampler performs the phase-space

sampling for the additional scatterings. It inherits from Sam-

plerBase and implements the Auto Compensating Divide-

and-Conquer phase space generator, ACDCGen.

HwRemDecayer The HwRemDecayer is responsible for

decaying the RemnantParticles to something that can be

processed by the cluster hadronization, i.e. (anti)quarks or

(anti)diquarks. This includes the forced splittings to valence

quarks and gluons respectively. Also the colour connections

between the additional scatters and the remnants are set here.

ForcedSplitting The ForcedSplitting class calculates the

kinematics of the forced splittings and creates the corre-

sponding particles.

The most important interfaces to set parameters for the

above mentioned classes are described here. An exhaustive

description of all interfaces is provided by our Doxygen doc-

umentation.

MPIHandler

Cuts: Via a cuts object the minimal pT of the additional

scatters can be set. This is one of the two main parameters

of the model. The current default, obtained from a fit to

Tevatron data is 3.1 GeV. See Ref. [8] for details.

InvRadius: The inverse beam particle radius squared. The

current default is 1.8 GeV2, obtained from the above men-

tioned fit.

Algorithm: A switch to enable efficient generation of ad-

ditional scatters in rare (high-pT) signal processes. Steers

whether to use (135) or (136). The options are:

– 0: Underlying event process and signal process are iden-

tical.

– 1: Underlying event process and signal process are of

the same type but the signal cross section is small. Here

a veto algorithm has to be applied, if an additional scatter

is produced with pT larger than the cutoff for the hard

process.

– 2: Underlying event process and signal process are dis-

tinct scattering types and the signal cross section is

small. This is the default choice.

ShowerHandler

MPI: Switch to turn multiple parton interactions on or off.

The default is Yes.

HwRemDecayer

ForcedSplitter: A reference to the object that calculates the

forced splittings. If this reference is set to NULL the forced

splittings after the initial-state parton showers are switched

off. This can be useful if a different hadronization model

should be used. However this model should then take care

of the remnants and has to set the colour connections to the

additional scatters.

Since it is not a recommended option, we do not go into

as much detail, but for completeness, we briefly mention the

structure of the UA5 code. The UA5 model is implemented

in the UA5Handler class, which is intended to be used as an

UnderlyingEventHandler in the ClusterHadronizationHan-

dler. The main interfaces of the UA5Handler are the parame-

ters named in Table 11, described in Sect. 8.3.

9 Hadron Decays

Herwig++ uses a sophisticated model of hadronic decays,

as described in Refs. [22, 70]. The simulation of decays in

Herwig++ is designed to have the following properties:

– a unified treatment of the decays of both the fundamen-

tal particles and the unstable hadrons, this is of particular

importance for particles like the τ lepton, which, while a

fundamental particle, is more akin to the unstable hadrons

in the way it decays;

– up-to-date particle properties, i.e. masses, widths, life-

times, decay modes and branching ratios together with

a new database to store these properties to make updat-

ing the properties easier and the choices made in deriving

them clearer;

– full treatment of spin correlation effects using the algo-

rithm of Refs. [24–27] for the decay of all unstable parti-

cles, it is important that the same algorithm is used con-

sistently in all stages of the program so that correlations

between the different stages can be correctly included;

– a sophisticated treatment of off-shell effects for both the

unstable hadrons and fundamental particles;

– a large range of matrix elements for hadron and tau decays

including both general matrix elements based on the spin

structures of the decays and specific matrix elements for

important decay modes;

– the accurate simulation of QED radiation in the particle

decays using the Yennie-Frautschi-Suura (YFS) formal-

ism.

Eur. Phys. J. C (2008) 58: 639–707 683

In this section we describe the simulation of hadron and

tau decays in Herwig++. We start by discussing the physi-

cal properties of the hadrons used in the simulation and how

they are determined. In ThePEG framework these physical

properties are stored using the ParticleData class, which has

one instance for each particle used in the simulation. In turn

the properties of a given decay mode are stored using the De-

cayMode class, which contains both the particles involved

in the decay and a reference to a Decayer object that can be

used to generate the kinematics of the decay products. The

DecayHandler class then uses these DecayMode objects to

select a decay of a given particle, according to the proba-

bilities given by the branching ratios for the different decay

modes, and then generates the kinematics using the relevant

Decayer specified by the DecayMode.

Following a brief discussion of the treatment of off-shell

effects we therefore discuss the different Decayer classes

available in Herwig++ for the decay of tau leptons, strong

and electromagnetic meson decays and then weak meson25

decays. This is followed by a discussion of the code struc-

ture.

9.1 Particle properties

The information in the Particle Data Group’s (PDG) compi-

lation [34] of experimental data is sufficient in many cases

to determine the properties of the hadrons used in Herwig++.

However, there are some particles for which the data are in-

complete or too inaccurate to be used. Equally, there are

a number of particles that are necessary for the simulation

but have not been observed, particularly excited bottom and

charm hadrons, which should perhaps be regarded as part of

the hadronization model affecting the momentum spectrum

of lighter states, rather than as physical states. A large num-

ber of choices therefore have to be made in constructing the

particle data tables used in the event generator based on the

data in Ref. [34].

In the past the data were stored as either a text file or the

contents of a FORTRAN COMMON block. However, due to

the relatively large amount of data that needs to be stored we

decided to adopt a database approach based on the MySQL

database system. The event generation still uses text files to

read in the particle properties but these files are now auto-

matically generated from the database. This provides us with

a range of benefits: the data can now be edited using a web

interface; additional information describing how the particle

properties were determined is stored in the database both

improving the long-term maintenance and allowing the user

to understand the uncertainties and assumptions involved.

25We currently rely on a phase-space distribution for the decay of the

baryons and essentially the same decay model as was used in FOR-

TRAN HERWIG. This will be improved in the next major release.

An example of the output from the database for the prop-

erties of the ω meson is shown in Fig. 5. This includes the

basic properties of the particle together with an explanation

of how they were derived. In addition there is a star rating

between one and five, which gives an indication of how re-

liable the properties of the particle and the modelling of in-

dividual decay modes are.

In general we used the following philosophy to determine

the particle properties used in Herwig++:

– The properties of the light mesons in the lowest lying mul-

tiplets were taken from Ref. [34]. In some cases we used

either lepton universality or the phase-space factors from

our Decayers to average the branching ratios for poorly

measured modes.

– Where possible the properties of the excited light mesons

were taken from Ref. [34] together with some additional

interpretation of the data. Except for the 13D1 multiplet,

which is missing a φ-like member, the mesons needed to

fill the 11S0, 13S1, 11P1, 13P0, 13P1, 13P2, 11D2, 13D1,

13D3, 21S0, 11S0 and 23S1 SU(3) multiplets are included

together with the K mesons from the 13D2 multiplet.

– The properties of the Du,d,s mesons were taken from

Ref. [34] together with the addition of some high mul-

tiplicity modes to ensure that the branching ratios sum to

one.

– The branching ratios and properties for Bu,d,s mesons

were taken from the data tables of EvtGEN [71], which

have been extensively tuned to B-factory data. This

means that partonic decay modes are used to model many

of the inclusive B decay modes.

– The mass of the Bc meson is taken from Ref. [34]. The

branching ratios were taken from the theoretical calcula-

tions of Ref. [72] together with some partonic modes to

ensure that the branching ratios sum to one.

– The properties and decay modes of the charmonium reso-

nances were taken from Ref. [34] where possible together

with the use of partonic decays, to ggg, gg or qq̄ , to

model the unobserved inclusive modes. For some of the

particles, in particular the hc and ηc(2S), the results of

Ref. [73] were used and the ηc(2S) branching ratios were

taken from the theoretical calculation of Ref. [74].

– The properties and decay modes of the bottomonium res-

onances were taken from Ref. [34] where possible. In ad-

dition we have added a large number of states that are

expected to have small widths, i.e. the mass is expected to

be below the BB̄ threshold, using the theoretical calcula-

tions of Refs. [75–79] for many of the properties.

– The properties of the excited D and Ds mesons were

taken from Ref. [34] including recent results for the D′
1

and D∗
0 states. The widths of the Ds1 and Ds2 mesons

were from the theoretical calculations of Ref. [80] and

Ref. [81], respectively. For many of the mesons we were

forced to assume that the observed modes saturated the

684 Eur. Phys. J. C (2008) 58: 639–707

ω ∗ ∗ ∗ ∗∗
The ω is the lightest isospin singlet from the 13S1 multiplet. The modes and properties are taken from Ref. [34] with the

lepton modes averaged. The modes with photons that can be produced by QED radiation are included in the mode without

the radiation. The ω is allowed to be off-shell by ten times the width. The ω has mass 782.65 MeV and is unstable. The ω

has spin 1, charge 0 and is colour neutral. The ω is a meson and is from the 13S1 multiplet. The ω has width 8.49 MeV.

The lower limit on the mass of the particle is 84.9 MeV and the upper limit is 84.9 MeV. These are the deviations from the

on-shell value. The branching ratios are fixed. The PDG code is 223. The mass generator is omegamass for the ω. The width

generator is omegawidth for the ω.

Fig. 5 An example of the particle properties in Herwig++, in this case

for the ω meson. The properties of the particle including the mass,

width, decay modes and branching ratios are given together with com-

ments on how properties were determined. In the full web version links

are included to the descriptions of the objects responsible for generat-

ing the kinematics for the various decay modes

total width in order to obtain the branching ratios using

the results in Ref. [34].

– The properties of the excited Bu,d,s mesons are uncertain.

The B∗
u,d,s have been observed and there is evidence in

Ref. [34] from LEP for further excited states, however it

was unclear which states have been observed. There have

been recent claims for the observation of the B1, B∗
2 and

B∗
s2 states by CDF and D0 [82, 83] and the Bs1 by CDF.

The situation is still unclear, the masses measured by the

two experiments disagree for the B1, B∗
2 states and D0 do

not observe the Bs1 state. We have chosen to use the D0

results for the B system and the CDF results for the Bs

Eur. Phys. J. C (2008) 58: 639–707 685

system for the observed states and have taken the proper-

ties of the remaining unobserved states from Ref. [81].

– The masses of the excited Bc mesons, which have not

been observed, are taken from the lattice results in

Ref. [84], which agree with potential model calculations.

The widths and branching ratios were taken from the the-

oretical calculation of Ref. [85].

All the particle properties used in Herwig++ can be accessed

via the online interface to our database of particle properties

at http://www.ippp.dur.ac.uk/~richardn/particles/.

9.2 Line shapes

In general, if we wish to include the off-shell effects for

an outgoing external particle in a hard production or decay

process we need to include the following factor in the calcu-

lation of the matrix element

Woff =
1

π

∫
dm2 mŴ(m)

(M2 − m2)2 + m2Ŵ2(m)
, (137)

where M is the physical mass of the particle, m is the

off-shell mass and Ŵ(m) is the running width evaluated at

scale m. In practice other effects can be included to improve

this simple formula, for example we include the Flatté line-

shape [86] for the a0(980) and f0(980) mesons. In Herwig++

we calculate the running width of the particle based on its

decay modes. The Decayer responsible for each decay mode

specifies the form of the running partial width, Ŵi(m), for

the decay mode either in a closed analytic form for two-

body decays or as a WidthCalculatorBase object, which is

capable of calculating the partial width numerically and is

used to construct an interpolation table. The running width

for a given particle is then the sum of the partial widths

Ŵ(m) =
∑

i

Ŵi(m). (138)

This gives both a sophisticated model of the running width

based on the decay modes and allows us to use the partial

widths to normalize the weights for the phase-space integra-

tion of the decays to improve efficiency close to the kine-

matic threshold for the decay.

In some cases, where the partial width varies signifi-

cantly over the mass range allowed in the simulation, we

can choose to use a variable branching ratio

BRi(m) =
Ŵi(m)

Ŵ(m)
(139)

both to prevent the production of kinematically unavailable

modes and to improve the physics of the simulation. The

classic examples are the decays of the f0 and a0 scalar

mesons, which lie close to the KK̄ threshold. This means

that, depending on their mass, they decay to either ππ or ηπ

respectively below the threshold or with a significant KK̄

branching fraction above the KK̄ threshold.

The weight in (137) is automatically included for all the

Decayers inheriting from the DecayIntegrator class, which

is the case for vast majority of the Herwig++ Decayers. The

GenericWidthGenerator calculates the running widths using

information from the Herwig++ Decayers inheriting from

the DecayIntegrator class. The GenericMassGenerator is re-

sponsible for calculating the weight in (137) or generating a

mass according to this distribution.

9.3 Tau decays

The simulation of τ lepton decays in Herwig++ is described

in detail in Ref. [22], together with a detailed comparison

between the results of Herwig++ and TAUOLA [87, 88]. Here

we simply describe the basic formalism for the decays of

the tau and the different models available for the different

decays, together with the structure of the code.

The matrix element for the decay of the τ lepton can be

written as

M =
GF√

2
Lμ Jμ, Lμ = ū(pντ) γμ(1 − γ5)u(pτ), (140)

where pτ is the momentum of the τ and pντ is the momen-

tum of the neutrino produced in the decay. The information

on the decay products of the virtual W boson is contained

in the hadronic current, Jμ. This factorization allows us to

implement the leptonic current Lμ for the decaying tau and

the hadronic current separately and then combine them to

calculate the τ decay matrix element.

In Herwig++ this factorization is used to have a TauDe-

cayer class, which implements the calculation of the lep-

tonic current for the τ decay and uses a class inheriting

from WeakDecayCurrent to calculate the hadronic current

for a given decay mode. This factorization allows us to reuse

the hadronic currents in other applications, for example in

weak meson decay using the naïve factorization approxima-

tion or in the decay of the lightest chargino to the lightest

neutralino in Anomaly Mediated SUSY Breaking (AMSB)

models where there is a small mass difference between the

neutralino and chargino.

9.3.1 Hadronic currents

We have implemented a number of hadronic currents, which

are mainly used for the simulation of τ decays. These are

all based on the WeakDecayCurrent class. In this section we

list the available hadronic currents together with a brief de-

scription, a more detailed description can be found in either

Ref. [22] or the Doxygen documentation.

http://www.ippp.dur.ac.uk/~richardn/particles/

686 Eur. Phys. J. C (2008) 58: 639–707

ScalarMesonCurrent The simplest hadronic current is that

for the production of a pseudoscalar meson, e.g. the cur-

rent for the production of π± in the decay of the tau. The

hadronic current can be written as

Jμ = fP p
μ
P , (141)

where p
μ
P is the momentum of the pseudoscalar meson and

fP is the pseudoscalar meson decay constant.

VectorMesonCurrent The current for the production of a

vector meson is given by

Jμ =
√

2gV ǫ
∗μ
V , (142)

where ǫ
∗μ
V is the polarization vector for the outgoing meson

and gV is the decay constant of the vector meson.

LeptonNeutrinoCurrent The current for weak decay to a

lepton and the associated anti-neutrino is given by

Jμ = ū(pℓ)γ
μ(1 − γ5)v(pν̄), (143)

where pν̄ is the momentum of the anti-neutrino and pℓ is the

momentum of the charged lepton.

TwoMesonRhoKStarCurrent The weak current for pro-

duction of two mesons via the ρ or K∗ resonances has the

form

Jμ = (p1 − p2)ν

(
gμν −

qμqν

q2

)
1∑
k αk

∑

k

αkBWk(q
2),

(144)

where p1,2 are the momenta of the outgoing mesons, q =
p1 + p2, BWk(q

2) is the Breit-Wigner distribution for the

intermediate vector meson k and αk is the weight for the

resonance, which can be complex. The Breit-Wigner terms

are summed over the ρ or K∗ resonances that can contribute

to a given decay mode.

The models of either Kühn and Santamaria [89], which

uses a Breit-Wigner distribution with a p-wave running

width, or Gounaris and Sakurai [90] are supported for the

shape of the Breit-Wigner distribution.

KPiCurrent Unlike the π+π0 decay of the tau the Kπ de-

cay mode can occur via either intermediate scalar or vector

mesons. We therefore include a model for the current for the

Kπ decay mode including the contribution of both vector

and scalar resonances based on the model of Ref. [91]. The

current is given by

Jμ = cV (p1 − p2)ν
1∑
k αk

∑

k

αkBWk(q
2)

(
gνμ −

qνqμ

M2
k

)

+ cSqμ 1∑
k βk

∑

k

βkBWk(q
2), (145)

where p1,2 are the momenta of the outgoing mesons, q =
p1 + p2, BWk(q

2) is the Breit-Wigner distribution for the

intermediate mesons and αk is the weight for the resonance.

The sum over the resonances is over the vector K∗ states

in the first, vector, part of the current and the excited scalar

K∗ resonances in the second, scalar, part of the current. By

default the vector part of the current includes the K∗(892)

and K∗(1410) states and the scalar part of the current in-

cludes the K∗
0 (1430) together with the option of including

the κ(800) to model any low-mass enhancement in the mass

of the Kπ system, although additional resonances can be

included if necessary.

ThreeMesonCurrentBase In order to simplify the imple-

mentation of a number of standard currents for the pro-

duction of three pseudoscalar mesons we define the current

in terms of several form factors. The current is defined to

be [87]

Jμ =
(

gμν −
qμqν

q2

)

× [F1(p2 − p3)
μ + F2(p3 − p1)

μ + F3(p1 − p2)
μ]

+qμF4 + iF5ǫ
μαβγ pα

1 p
β

2 p
γ

3 , (146)

where p1,2,3 are the momenta of the mesons in the order

given below and F1→5 are the form factors. We use this

approach for a number of three-meson modes that occur

in τ decays: π−π−π+; π0π0π−; K−π−K+; K0π−K̄0;

K−π0K0; π0π0K−; K−π−π+; π−K̄0π0; π−π0η;

K0
Sπ−K0

S ; K0
Lπ−K0

L; K0
Sπ−K0

L. The current is imple-

mented in terms of these form factors in a base class so

that any model for these currents can be implemented by

inheriting from this class and specifying the form factors.

We currently implement three models for these decays,

the ThreeMesonDefaultCurrent model of Refs. [87, 89, 92],

which treats all the decay modes, the ThreePionCLEOCur-

rent model of CLEO [93] for the three-pion modes and the

KaonThreeMesonCurrent model of Ref. [94] for the kaon

modes.

ThreeMesonDefaultCurrent This is the implementation of

the model of Refs. [87, 89, 92], which uses the form of

Ref. [89] for the a1 width. The form factors for the different

modes are given in Refs. [87, 92].

ThreePionCLEOCurrent This is the implementation of the

model of Ref. [93] for the weak current for three pions.

This model includes ρ mesons in both the s- and p-wave,

the scalar σ resonance, the tensor f2 resonance and scalar

f0(1370). The form factors for the π0π0π− mode are given

in Ref. [93] and the others can be obtained by isospin rota-

tion.

Eur. Phys. J. C (2008) 58: 639–707 687

KaonThreeMesonCurrent Like the model of Ref. [92] the

model of Ref. [94] is designed to reproduce the correct chiral

limit for tau decays to three mesons. However, this model

makes a different choice of the resonances to use away from

this limit for the decays involving at least one kaon and in

the treatment of the K1 resonances. The form factors for the

different modes are given in Ref. [94].

TwoPionPhotonCurrent The branching ratio for the decay

τ− → ωπ−ντ is 1.95% [34]. The majority of this decay is

modelled as an intermediate state in the four-pion current

described below. However there is an 8.90% [34] branching

ratio of the ω into π0γ , which must also be modelled. We do

this using a current for π±π0γ via an intermediate ω. The

hadronic current for this mode, together with the masses,

widths and other parameters, are taken from Ref. [87].

FourPionNovosibirskCurrent We use the model of

Ref. [95]26 to model the decay of the τ to four pions. The

model is based on a fit to e+e− data from Novosibirsk.

FivePionCurrent We use the model of Ref. [96], which in-

cludes ρω and ρσ intermediate states, via the a1 meson to

model the five-pion decay modes of the τ .

9.4 Strong and electromagnetic hadron decays

The vast majority of the strong and electromagnetic decays

in Herwig++ are simulated using a few simple models based

on the spin structure of the decay. These simple models are

supplemented with a small number of specialized models,

usually from experimental fits, for specific decay modes.

In this section we describe the different models we use for

these decays for the scalar, vector and tensor mesons. All of

these are implemented in Decayer classes that inherit from

the DecayIntegrator class of Herwig++.

For a number of the decays of bottomonium and char-

monium resonances we use inclusive electromagnetic and

strong decays to qq̄ , gg, ggg and ggγ , which are described

in a separate section.

A number of decays are still performed using a phase-

space distribution generated using the Hw64Decayer, which

implements the same models as were available in the FOR-

TRAN HERWIG program. In addition we use the MAMBO

algorithm, [97], implemented in the MamboDecayer class,

to generate the momenta of the decay products according to

a phase-space distribution for a number of high-multiplicity

modes.

26It should be noted that there were a number of mistakes in this paper,

which were corrected in Ref. [88].

9.4.1 Scalar mesons

While the majority of the scalar meson decays are performed

using general Decayers based on the spin structures there

are a number of models implemented for the rare radiative

decays of the light pseudoscalar mesons, three-body decays

of the η and η′, and the decay π0 → e+e−e+e−.

EtaPiGammaGammaDecayer We use the Vector-Meson

Dominance (VMD)-based model of Ref. [98] for the decays

η,η′ → π0γ γ . In practice we use a running width for the ρ

to include the η′ decay as well as the η decay and take the

parameters from Ref. [98].

EtaPiPiGammaDecayer We use either a VMD type model

or a model using either the theoretical or experimental form

of the Omnes function27 taken from Refs. [98, 99] for the

decay of the η or η′ to π+π−γ .

EtaPiPiPiDecayer The decay of a pseudoscalar meson,

for example the η or η′, to two charged and one neutral

or three neutral pions, or of the η′ to two pions and the

η, is performed using a parameterization of the matrix el-

ement squared taken from Ref. [100]. The experimental re-

sults of Refs. [101] and [102] are used for the η → π+π−π0

and η → π0π0π0 decays respectively. The theoretical val-

ues from Ref. [100] are used for the other decays.

PScalar4FermionsDecayer As the π0 is so copiously pro-

duced it is one of the small number of particles for which

we include branching ratios below the level of 10−4. The

matrix element for the sub-leading decay π0 → e+e−e+e−

is taken to be the combination of the standard matrix ele-

ment for π0 → γ γ and the branching of the photons into

e+e−.

PScalarPScalarVectorDecayer This matrix element is

used to simulate the decay of the 2S pseudoscalar mesons to

a vector meson and a 1S pseudoscalar meson. It is also used

for the decay of some scalar mesons to vector mesons and

another scalar meson, which has the same spin structure.

The matrix element has the form

M = gǫ
μ
2 (p0 + p1)μ, (147)

where ǫ2 is the polarization vector of the vector meson, p0

is the momentum of the decaying particle, p1 is the mo-

mentum of the outgoing pseudoscalar meson and g is the

coupling for the decay.

27Our default choice is to use the experimental form of the Omnes

function.

688 Eur. Phys. J. C (2008) 58: 639–707

PScalarVectorFermionsDecayer There are a number of

decays of a pseudoscalar meson to either a vector meson

or the photon and a lepton-antilepton pair. The classic ex-

ample is the Dalitz decay of the neutral pion, π0 → γ e+e−.

We take the propagator of the off-shell photon to be 1

m2
f f̄

,

where mf f̄ is the mass of the fermion-antifermion pair. The

option of including a vector meson dominance form factor

is included.

PScalarVectorVectorDecayer In practice the vast majority

of the decays of pseudoscalar mesons to two spin-1 particles

are of the form P → γ γ for which, because the photon is

stable, it is not as important to have a good description of the

matrix element. There are however some decays, e.g. η′ →
ωγ , for which this matrix element is needed.

The matrix element is taken to be

M = gǫμναβp1μǫ1νp2αǫ2β , (148)

where p1,2 and ǫ1,2 are the momenta and polarization vec-

tors of the outgoing vector particles and g is the coupling for

the decay.

ScalarMesonTensorScalarDecayer There are a limited

number of decays of a (pseudo)scalar meson to a tensor me-

son and another (pseudo)scalar meson. The matrix element

takes the form

M = gǫαβp0αp2β , (149)

where ǫαβ is the polarization tensor of the outgoing tensor

meson, p0 is the momentum of the decaying particle, p2 is

the momentum of the outgoing (pseudo)scalar meson and g

is the coupling for the decay.

ScalarScalarScalarDecayer The decay of a scalar meson

to two scalar mesons has no spin structure and we assume

that the matrix element is simply constant, i.e.

M = g. (150)

We still include a matrix element for this decay in order to

simulate both the off-shell effects in the decay and to give

the correct partial width to be used in the running width cal-

culation for the incoming particle.

ScalarVectorVectorDecayer A number of the scalar mesons

decay to two vector mesons. The matrix element is taken to

have the form

M = g[p1 · p2ǫ1 · ǫ2 − p1 · ǫ2p2 · ǫ1], (151)

where ǫ1,2 are the polarization vectors of the outgoing vector

particles and p1,2 are their momenta.

9.4.2 Vector mesons

With the exception of the three-pion decay modes of the ω,

φ and a1 mesons, and the two-pion decays of onium reso-

nances, we use general Decayers based on the spin structure

for all the strong and electromagnetic vector and pseudovec-

tor meson decays.

a1SimpleDecayer This class implements the model of

Ref. [89] for the decay of the a1 meson to three pions and

only includes the lightest two ρ meson multiplets in the

modelling of the decay.

a1ThreePionCLEODecayer This class implements the

model of CLEO [93] for a1 decay to three pions, which

is a fit to CLEO data on τ− → π0π0π−ντ . The model in-

cludes the coupling of the a1 to the ρ, ρ(1450), f0(1370),

f2(1270) and σ mesons.

a1ThreePionDecayer This class implements a model of a1

decay to three pions based on the modelling of the a1 used

in the 4π currents for tau decays presented in Ref. [95] and

includes the ρ and σ resonances.

OniumToOniumPiPiDecayer The decay of onium reso-

nances to lighter states and a pion pair, O′ → Oππ , uses

the matrix element [103]

M = ǫ′ · ǫ[A(q2 − 2m2
π) + BE1E2]

+ C((ǫ′ · q1)(ǫ · q2) + (ǫ′ · q2)(ǫ · q1)), (152)

where ǫ′ is the polarization vector of the decaying onium

resonance, ǫ is the polarization vector of the outgoing onium

resonance, A, B and C are complex couplings, mπ is the

pion mass, E1,2 are the pion energies, q1,2 are the pion mo-

menta and q is the momentum of the ππ system.

The results of BES [104] are used for ψ ′ → J/ψ and

CLEO [105] for ϒ(3S) and ϒ(2S) decays. The remaining

parameters are chosen to approximately reproduce the dis-

tributions from BaBar [106] and CLEO [107] for ϒ(4S) and

ψ(3770) decays respectively.

PVectorMesonVectorPScalarDecayer The matrix element

for the decay of a pseudovector meson to a spin-1 particle,

either a vector meson or a photon, and a pseudoscalar meson

is taken to be

M = gǫμ[pV · p0ǫ
μ
V − p

μ
V ǫV · p0], (153)

where ǫV is the polarization vector of the outgoing vector

meson, pV is the momentum of the outgoing vector meson,

ǫ is the polarization vector of the decaying pseudovector and

p0 is the momentum of the decaying particle.

Eur. Phys. J. C (2008) 58: 639–707 689

VectorMeson2FermionDecayer Most of the decays of the

vector mesons to a fermion-antifermion pair are the decays

of the light vector mesons to electron and muon pairs, and

of the bottomonium and charmonium resonances to all the

charged leptons. In addition we use this matrix element for

some baryonic charmonium decays.

The matrix element is taken to have the form

M = gǫμū(pf)γ μv(pf̄), (154)

where g is the coupling for the decay, pf is the four-

momentum of the outgoing fermion, pf̄ is the four-momentum

of the outgoing antifermion and ǫ is the polarization vector

of the decaying particle.

VectorMeson2MesonDecayer The matrix element for the

decay of a vector meson to two scalar (or pseudoscalar)

mesons is given by

M = gV PP ǫ · (p1 − p2), (155)

where gV PP is a dimensionless coupling, ǫ is the polariza-

tion vector of the decaying particle and p1,2 are the mo-

menta of the outgoing scalars.

VectorMeson3PionDecayer Both the lowest-lying isospin-

zero vector mesons, ω and φ, have large branching ratios

for the decay into three pions. For these mesons the decay

is assumed to be dominated by the production of the lowest

lying ρ multiplet. Our default model for the matrix element

for this decay is

M = gǫμαβνǫμp1αp2βp3ν

×
[
d +

∑

i

fi[BWi(s12) + BWi(s13) + BWi(s23)]
]
,

(156)

where p1,2,3 are the momenta of the outgoing particles,

sij = (pi +pj)
2, g is the overall coupling for the decay, d is

a complex coupling for the direct interaction, fi is the cou-

pling of the ith ρ multiplet and BWi(s) is a Breit-Wigner

distribution with a p-wave running width. This is an exten-

sion of the model used by KLOE [108] to include higher ρ

multiplets.

VectorMesonPScalarFermionsDecayer The decay of a

vector meson to a pseudoscalar meson and a fermion-

antifermion pair is simulated using a matrix element based

on that for the V → V P vertex combined with the branch-

ing of the vector, which is in reality always a photon, into a

fermion-antifermion pair.

VectorMesonPVectorPScalarDecayer There are a number

of decays of both the charmonium resonances and light

vector mesons from the higher multiplets to pseudovector

mesons. The matrix element for the decay is

M = g[pA · p0ǫA · ǫ − pA · ǫǫA · p0], (157)

where ǫA is the polarization vector of the outgoing pseudovec-

tor meson, pA is its momentum, ǫ is the polarization vector

of the decaying particle and p0 is its momentum.

VectorMesonVectorPScalarDecayer The decay of a vector

meson to another spin-1 particle and a pseudoscalar me-

son is common in both the radiative decay of the 1S vector

mesons and the decay of higher vector multiplets to the 1S

vector mesons. The matrix element for the decay is

M = gǫμναβǫ0μp0νp1αǫ1β , (158)

where p0 is the momentum of the decaying particle, p1 is

the momentum of the outgoing vector particle, ǫ0 is the po-

larization vector of the incoming meson and ǫ1 is the polar-

ization vector of the outgoing vector particle.

VectorMesonVectorScalarDecayer We include a number

of decays of the vector mesons to a scalar meson and either

the photon or another vector meson. In practice the vast ma-

jority of these decays are radiative decays involving scalar

mesons. The remaining decays use the σ meson as a model

for four-pion decays of the excited ρ multiplets.

The matrix element for the decay is

M = gǫμ[pV · p0ǫ
μ
V − p

μ
V ǫV · p0], (159)

where g is the coupling for the decay, ǫ is the polarization

vector of the decaying vector meson, ǫV is the polarization

vector of the outgoing vector meson, p0 is the momentum of

the decaying particle and pV is the momentum of the outgo-

ing vector meson.

VectorMesonVectorVectorDecayer There are a small num-

ber of decays of excited ρ multiplets to ρ mesons included

in the simulation. We model these decays using the matrix

element

M =
g

M2
0

(p0νǫ
α − p0αǫν)

× [(p1νǫ
β

1 − p
β

1 ǫ1ν)(p2αǫ2β − p2βǫ2α) − (ν ↔ α)],

(160)

where g is the coupling for the decay, ǫ1,2 are the polariza-

tion vectors of the outgoing mesons, p1,2 are the momenta

of the outgoing mesons, ǫ is the momentum of the decaying

particle and p0 is its momentum.

690 Eur. Phys. J. C (2008) 58: 639–707

9.4.3 Tensor mesons

Only a relatively small number of tensor meson states are in-

cluded in the simulation, compared to the vector and scalar

mesons. All their decays are simulated using a small number

of matrix elements based on the spin structure of the decays.

Many of the multi-body decays of the tensor mesons are

simulated using these two-body matrix elements with off-

shell vector and scalar mesons.

TensorMeson2PScalarDecayer The matrix element for

the decay of a tensor meson to two pseudoscalar (or scalar)

mesons is

M = gǫμνp1μp2μ, (161)

where g is the coupling for the decay, p1,2 are the momenta

of the decay products and ǫμν is the polarization tensor for

the decaying meson.

TensorMesonVectorPScalarDecayer There are a number

of decays of tensor mesons to a spin-1 particle, either a vec-

tor meson or the photon, and a pseudoscalar meson, exam-

ples include a2 → ρπ and a2 → πγ . The matrix element is

taken to be

M = ǫμνpPμǫναβγ pα
V ǫ

β
V p

γ

P , (162)

where g is the coupling for the decay, pP is the momen-

tum of the pseudoscalar meson, pV is the momentum of the

vector, ǫV is the polarization vector of the outgoing vector

meson and ǫμν is the polarization tensor for the decaying

meson.

TensorMesonVectorVectorDecayer We have based our ma-

trix element for the decay of a tensor meson to two vec-

tor mesons on the perturbative graviton decay matrix ele-

ment [109] in such a way that it vanishes if the polarizations

of the outgoing vectors are replaced with their momenta.

The matrix element is

M = g

[
ǫμν{(ǫ1αp

μ
1 − ǫ

μ
1 p1α)(ǫα

2 pν
2 − ǫν

2pα
2) + (μ ↔ ν)}

−
1

2
ǫμ
μ(ǫ1αp1β − ǫ1βp1α)(ǫα

2 p
β

2 − ǫ
β

2 pα
2)

]
, (163)

where g is the coupling for the decay, ǫ1,2 are the polariza-

tion vectors for the outgoing vector mesons and ǫμν is the

polarization tensor for the decaying meson. In practice this

matrix element is mainly used with off-shell vector mesons

to model three- and four-body decays of the tensor mesons.

9.4.4 Inclusive strong and electromagnetic decays

For a number of bottomonium and charmonium resonances

we make use of partonic decays of the mesons to model the

unobserved inclusive modes needed to saturate the branch-

ing ratios. These decays are modelled using the Quarkoni-

umDecayer class, which implements the decay of the onium

resonances to qq̄ and gg according to a phase-space dis-

tribution, and the decay to ggg and ggγ according to the

Ore-Powell matrix element [110]. The QuarkoniumDecayer

class inherits from the PartonicDecayerBase, which uses the

cluster model to hadronize the resulting partonic final state

with a veto to ensure that there is no double counting with

the exclusive modes.

9.5 Weak hadronic decays

There are five classes of weak mesonic decays currently in-

cluded in the simulation:

1. weak exclusive semi-leptonic decays of bottom and

charm mesons;

2. weak exclusive hadronic decays of bottom and charm

mesons;

3. weak inclusive decays;

4. weak leptonic decay of pseudoscalar mesons;

5. weak inclusive b → sγ mediated decays.

We adopt a number of different approaches for these decays

as described below.

9.5.1 Exclusive semi-leptonic decays

The matrix element for exclusive semi-leptonic decays of

heavy mesons, X → Yℓν, can be written as

M =
GF√

2
〈X|(V − A)μ|Y 〉ū(pν)γ

μ(1 − γ5)u(pℓ), (164)

where pℓ is the momentum of the outgoing charged lepton,

pν is the momentum of the neutrino and GF is the Fermi

constant. The hadronic current 〈X|(V −A)μ|Y 〉 can be writ-

ten as a general Lorentz structure, for a particular type of

decay, with a number of unknown form factors.

We have implemented a number of form-factor mod-

els based on experimental fits, QCD sum rule calculations

and quark models. The form factors for the weak decay

of pseudoscalar mesons are implemented using the general

Lorentz-invariant form. In each case the momentum of the

decaying particle, X, is pX while the momentum of the de-

cay product, Y , is pY . In general the form factors are func-

tions of the momentum transfer q2 where q = pX −pY . The

masses of the decaying particle and hadronic decay product

are mX and mY respectively.

Eur. Phys. J. C (2008) 58: 639–707 691

The scalar-scalar transition matrix element is defined by

〈Y(pY)|(V − A)μ|X(pX)〉

= (pX + pY)μf+(q2)

+
{

m2
X − m2

Y

q2

}
qμ[f0(q

2) − f+(q2)], (165)

where f+(q2) and f0(q
2) are the form factors for the transi-

tion. In general the terms proportional to qμ give rise to con-

tributions proportional to the lepton mass for semi-leptonic

decays and therefore only contribute to the production of tau

leptons.

The scalar-vector transition matrix element is defined to

be

〈Y(pY)|(V − A)μ|X(pX)〉

= −iǫ∗
μ(mX + mY)A1(q

2)

+ i(pX + pY)μǫ∗ · q
A2(q

2)

mX + mY

+ iqμǫ∗ · q
2mY

q2
(A3(q

2) − A0(q
2))

+ ǫμνρσ ǫ∗νp
ρ
Xpσ

Y

2V (q2)

mX + mY

, (166)

where the form factor A3(q
2) can be defined in terms of A1

and A2 using

A3(q
2) =

mX + mY

2mY

A1(q
2) −

mX − mY

2mY

A2(q
2) (167)

and A0(0) = A3(0). The independent form factors are

A0(q
2), A1(q

2), A2(q
2) and V (q2).

The transition matrix element for the scalar-tensor transi-

tion is

〈Y(pY)|(V − A)μ|X(px)〉

= ih(q2)ǫμνλρǫ∗ναpYα(pX + pY)λ(pX − pY)ρ

− k(q2)ǫ∗
μνp

ν
Y − b+(q2)ǫ∗

αβpα
Xp

β
X(pX + pY)μ

− b−(q2)ǫ∗
αβpα

Xp
β
X(pX − pY)μ, (168)

where h(q2), k(q2), b−(q2) and b+(q2) are the Lorentz in-

variant form factors.

The combination of the form factors and the leptonic

current is handled by the SemiLeptonicScalarDecayer class,

which combines the form factor and the current to calculate

the matrix element and uses the methods available in the

DecayIntegrator class, from which it inherits, to generate the

momenta of the decay products.

In addition to the form factors for the standard weak cur-

rent we include the form factors needed for weak radia-

tive decays where available, although these are not currently

used in the simulation.

The various form factors that are implemented in

Herwig++ are described below. They all inherit from the

ScalarFormFactor class and implement the relevant virtual

member functions for the calculation of the form factors.

BallZwickyScalarFormFactor This is the implementation

of the QCD sum rule calculation of the form factors of

Ref. [111] for the decay of a B-meson to a light pseudoscalar

meson.

BallZwickyVectorFormFactor This is the implementation

of the QCD sum rule calculation of the form factors of

Ref. [112] for the decay of a B-meson to a light vector me-

son.

HQETFormFactor This implements the form factors for

the transitions between mesons containing bottom and

charm quarks in the heavy quark limit. The parameterization

of Ref. [113] for the finite-mass corrections is used together

with the experimental results of Refs. [114, 115].

ISGWFormFactor The ISGW form factor model [116] is

one of the original quark models for the form factors and is

included in the simulation mainly for comparison with the

later, ISGW2 [117], update of this model. This set of form

factors has the advantage that it includes form factors for

most of the transitions required in the simulation. The form

factors are taken from Ref. [116] together with the form fac-

tors that are suppressed by the lepton mass from Refs. [118,

119].

ISGW2FormFactor The ISGW2 form factors [117] are an

update of the original ISGW form factors [116]. As with the

original model they are based on a quark model and supply

most of the form factors we need for the simulation.

KiselevBcFormFactor This is the implementation of the

form factors of Ref. [120] for the weak decays of Bc mesons.

This model is used as the default model for weak Bc decays

as the branching ratios for the Bc meson used in the simula-

tion are calculated using the same model.

MelikhovFormFactor This is the implementation of the

relativistic quark model form factors of Ref. [121] for B →
π,ρ.

MelikhovStechFormFactor This is the implementation of

the model of Ref. [122], which is an update of the model of

Ref. [121] including additional form factors.

WSBFormFactor This is the implementation of the form

factor model of Ref. [123] for the semi-leptonic form fac-

tors. It includes form factors for a number of D, B and Ds

692 Eur. Phys. J. C (2008) 58: 639–707

decays. In practice the parameters of the model were taken

from Ref. [124], which includes a number of transitions that

were not considered in the original paper.

This form factor model is included both to give an alter-

native for many modes to the ISGW models and for use in

the factorization approximation for hadronic charm meson

decays.

9.5.2 Exclusive hadronic decays

We include two types of simulation of exclusive weak meson

decays. The first is based on the naïve factorization approx-

imation. If we consider, for example, the decay of a charm

meson then the effective Lagrangian for the interaction can

be written as [124]

Leff =
GF√

2
VudVsc[a1(ūγμPLd)(s̄γμPLc)

+ a2(s̄γμPLd)(ūγμPLc)], (169)

where GF is the Fermi constant, Vud and Vsc are the rele-

vant CKM matrix elements and a1,2 are scale-dependent co-

efficients. The remainder of the expression involves the cur-

rents for the quark fields. When we consider the transition

between mesonic states the matrix element can be written in

terms of the form factors, for the c → s or c → u transitions,

and weak currents for (ūγμPLd) or (s̄γμPLd).

This allows us to simulate weak hadronic decays using

the form factors we have already implemented for semi-

leptonic meson decays together with the weak currents from

tau decays. The combination of the form factor classes,

which inherit from ScalarFormFactor, and weak currents,

which inherit from WeakDecayCurrent, is handled by the

ScalarMesonFactorizedDecayer class for the simulation of

weak hadronic decays in the factorization approximation.

In addition to the weak exclusive decays based on the

factorization approximation we include a small number of

classes for the simulation of D → Kππ Dalitz decays based

on various experimental fits. Currently there are three such

models implemented.

DtoKPiPiCLEO This class implements the CLEO fits of

Refs. [125] and [126] for the decays D0 → K̄0π+π− and

D0 → K−π+π0. This is our default simulation of these de-

cays.

DtoKPiPiE691 The DtoKPiPiE691 class implements the

model of E691 [127] for the decays D0 → K̄0π+π−, D0 →
K−π+π0 and D+ → K−π+π−. This is our default simu-

lation for the D+ → K−π+π− decay.

DtoKPiPiMarkIII This class implements the model of the

Mark-III collaboration for the decays D0 → K̄0π+π−,

D0 → K−π+π0, D+ → K−π+π− and D+ → K̄0π+π0.

This is our default model for the decay mode D+ →
K̄0π+π0.

9.5.3 Weak inclusive decays

In addition to the exclusive weak decays of the mesons to

specific final states we include a number of models of the

decay of mesons containing a heavy, i.e. bottom or charm,

quark based on the partonic decay of the heavy quark. The

Herwig++ cluster hadronization model is then applied to the

resulting partonic final state to produce hadrons. This ap-

proach is primarily used for the bottom mesons where there

are insufficient exclusive modes to saturate the branching

ratios. All of the classes implementing partonic decay mod-

els inherit from the PartonicDecayerBase to use the cluster

hadronization model to hadronize the partonic final state.

The HeavyDecayer class implements the weak decays of

mesons using either the weak V − A matrix element or flat

phase space. The WeakPartonicDecayer includes additional

features to simulate decays intended to increase the rate of

baryon production and gluonic penguin decays.

In addition the BtoSGammaDecayer for weak penguin-

mediated decays, described in Sect. 9.5.5, and the Quarko-

niumDecayer class for the decay of bottomonium and char-

monium resonances, described in Sect. 9.4.4, also perform

partonic decays and inherit from the PartonicDecayerBase

class.

9.5.4 Leptonic decays

There are a small number of decays of pseudoscalar mesons

to a charged lepton and a neutrino, e.g. π → ℓν and Ds →
ℓν. For most of these decays the inclusion of the matrix el-

ement is superfluous as the decay products are stable. How-

ever the B and Ds mesons can decay in this way to the

τ and therefore we include the PScalarLeptonNeutrinoDe-

cayer class to simulate these decays using the matrix ele-

ment

M =
1

√
2
fP GF VCKMml ū(pℓ)(1 − γ5)v(pν), (170)

where fP is the pseudoscalar decay constant, GF is the

Fermi constant, VCKM is the relevant CKM matrix element,

mℓ is the mass of the lepton, pℓ is the momentum of the

charged lepton and pν is the momentum of the neutrino.

9.5.5 b → sγ

There is a range of decays, both inclusive and exclusive, me-

diated by the b → sγ transition. We currently only include

modelling of the inclusive decay. These decays are simu-

lated by using a partonic decay of the B meson to a photon

and a hadronic system, composed of a quark and antiquark,

which recoils against the photon. The mass spectrum of the

hadronic system is calculated using a theoretical model.

The calculation of the mass spectrum is handled by a

class inheriting from the BtoSGammaHadronicMass class.

Eur. Phys. J. C (2008) 58: 639–707 693

Different models of the mass spectrum can then be imple-

mented by inheriting from this class. Currently we have

only implemented two such models. The first, BtoSGam-

maFlatEnergy, is solely designed for testing and generates

a mass spectrum such that the photon energy distribution is

flat. The second model, BtoSGammaKagan, which is the de-

fault, implements the theoretical calculation of Ref. [128].

The BtoSGammaDecayer then uses the calculation of the

hadronic mass spectrum to simulate the partonic decay as

a model of the inclusive mode. As with the Decayers de-

scribed in Sect. 9.5.3 the BtoSGammaDecayer inherits from

the PartonicDecayerBase class to use the cluster model to

perform the hadronization of the partonic final state.

9.6 Code structure

The HwDecayHandler class, which inherits from the Decay-

Handler class of ThePEG, is responsible for handling all par-

ticle decays in Herwig++. It uses the DecaySelector from the

ParticleData object of the decaying particle to select a De-

cayMode object corresponding to a specific decay accord-

ing to the probabilities given by the branching ratios for the

different modes. The DecayMode object then specifies a De-

cayer object that is responsible for generating the kinematics

of the decay products for a specific decay.

All of the Decayer classes in Herwig++ inherit from the

HwDecayerBase class, which in turn inherits from the De-

cayer class of ThePEG. In turn, with the exception of the

Hw64Decayer and MamboDecayer classes, which imple-

ment general phase-space distributions for the decay prod-

ucts, all the Decayer classes in Herwig++ inherit from either

the DecayIntegrator or PartonicDecayBase classes.

The DecayIntegrator class provides a sophisticated multi-

channel phase space integrator to perform the integration

over the phase space for the decays. This means that the

calculation of the matrix element and specification of the

phase-space channels are all that is required to implement

a new decay model. The majority of the matrix elements

are calculated as helicity amplitudes, which allows the spin-

propagation algorithm of Refs. [24–27] to be implemented.

The structure of the Herwig++ Decayer classes and HwDe-

cayHandler is designed so that these correlations are auto-

matically included provided the helicity amplitudes for the

matrix elements are supplied.

The PartonicDecayBase class provides a structure so

that the decay products of a partonic hadron decay can be

hadronized using the cluster model, while at the same time

ensuring that there is no overlap with the particle’s exclusive

decay modes. All classes implementing partonic decays in

Herwig++ inherit from the PartonicDecayBase class.

Certain Decayer classes also make use of helper classes

to implement the decays. The main examples are:

– the WeakDecayCurrent, which provides a base class

for the implementation of weak hadronic currents, is

used by the TauDecayer, SemiLeptonicScalarDecayer

and ScalarMesonFactorizedDecayer classes, which im-

plement tau decays, semi-leptonic meson decays and

hadronic weak meson decays using the naïve factoriza-

tion approximation, respectively;

– the ScalarFormFactor, which provides a base class for the

implementation of the scalar form factors and is used by

the SemiLeptonicScalarDecayer and ScalarMesonFactor-

izedDecayer classes, which implement semi-leptonic me-

son decays and hadronic weak meson decays using the

naïve factorization approximation, respectively;

– the BtoSGammaHadronicMass, which provides a model

of the hadronic mass spectrum in inclusive b → sγ de-

cays performed by the BtoSGammaDecayer class.

The vast majority of the decay models have a large num-

ber of parameters, all of which are accessible via the Inter-

faces of the classes. A more detailed description of both the

physics models used in the code and their parameters can be

found in the Doxygen documentation and Refs. [22, 70].

There are a number of classes that are designed to include

the off-shell weight given in (137) in the generation of the

particle decays. The GenericWidthGenerator is designed to

use the information on the partial widths for the different

decay modes supplied by the Decayer classes, which inherit

from DecayIntegrator, to calculate the running width for a

given particle. The GenericMassGenerator class then uses

the running width to allow the weight given in (137) to be

included when generating the particle decays. The inherit-

ing ScalarMassGenerator class implements the Flatté line-

shape [86] for the a0(980) and f0(980) mesons.

For decays where the decay products can be off-shell,

and three-body decays, integrals over either the masses of

the decay products or the three-body phase space must be

performed in order to calculate the running partial widths.

In order to facilitate the calculation of the partial widths a

number of classes inheriting from the WidthCalculatorBase

class are implemented to calculate the partial widths for var-

ious decays:

– the TwoBodyAllOnCalculator returns the partial width for

a two-body decay where both the decay products are on

mass-shell;

– the OneOffShellCalculator returns the partial width for a

decay where one of the outgoing particles is off mass-

shell;

– the TwoOffShellCalculator returns the partial width for a

decay where two of the outgoing particles are off mass-

shell;

– the ThreeBodyAllOnCalculator returns the partial width

for a three-body decay where all the decay products are

on mass-shell by performing the two non-trivial integrals

over the phase-space variables;

694 Eur. Phys. J. C (2008) 58: 639–707

– the ThreeBodyAllOn1IntegralCalculator returns the partial

width for a three-body decay where all the decay prod-

ucts are on mass-shell by performing one integral over the

phase-space variables, this requires that the second inte-

gral has already been performed analytically.

10 Summary

In this manual we have described the physics and struc-

ture of Herwig++ version 2.2. More detailed technical docu-

mentation can be obtained from the web site http://projects.

hepforge.org/herwig as well as a growing number of user

guides, example applications, frequently-asked-questions

and other useful information. Most of this is obtained by fol-

lowing the “wiki” link at the top of the page. To be able to

contribute to the wiki and submit trac tickets, please email

the authors, at herwig@projects.hepforge.org To improve

the current version of Herwig++ and plan development of

future versions, we depend on feedback from users. If you

use Herwig++ please register at the address above and post

your experience (positive or negative) and code examples

you feel other users would benefit from, and open a trac

ticket for any bugs or unexpected features you find, as well

as any new features or improvements you would like to see.

Of course, for any bug report, the more clearly you can il-

lustrate the problem, and the fact that it is a problem with

Herwig++ and not an external package it is connected to, the

more quickly we are likely to be able to solve it.

Herwig++ has been extended enormously since the last

version for which a published manual exists, 1.0. It now

provides complete simulation of hadron–hadron collisions

with a new coherent branching parton shower algorithm,

including quark mass effects, a sophisticated treatment of

BSM interactions and new particle production and decay, an

eikonal model for multiple partonic scattering, greatly im-

proved secondary decays of hadrons and tau leptons and a

set of input parameters that describe e+e− annihilation data

rather well.

New features planned for the near future include: an im-

proved treatment of baryon decays; spin correlations within

the parton shower; ‘multiscale’ showering of unstable par-

ticles; simulation of DIS processes; B mixing; and an im-

proved treatment of gluon splitting to heavy quarks. Of

course we are all users of Herwig++ as well as developers

and are working on a large number of other new features re-

lated to phenemenological studies we are making. The list

will continue to grow, according to the physics interest and

needs of ourselves and others using it for physics studies.

In many aspects, the physics simulation included in

Herwig++ is already superior to that in the FORTRAN

HERWIG and our intention is that with the features just

listed, the next major version release of Herwig++ will re-

place HERWIG as the recommended product for simulating

hadron emission reactions with interfering gluons.

Acknowledgements This work was supported by the Science and

Technology Facilities Council, formerly the Particle Physics and As-

tronomy Research Council, the European Union Marie Curie Research

Training Network MCnet under contract MRTN-CT-2006-035606

and the Helmholtz–Alliance “Physics at the Terascale”. Manuel Bähr

and Simon Plätzer acknowledge support from the Landesgraduierten-

förderung Baden-Württemberg. Keith Hamilton acknowledges support

from the Belgian Interuniversity Attraction Pole, PAI, P6/11.

Development of Herwig++ would not have been possible without

the early work of Alberto Ribon and Phil Stephens or the parallel devel-

opment of ThePEG and the support provided by Leif Lönnblad. We are

indebted to our collaborators Christoph Hackstein, Andrzej Siódmok

and Jon Tully for their valuable input and feedback, as well as the users

who have helped with testing of early versions, particularly Jeremy

Lys. The LCG Generator Services project have provided useful feed-

back. Fruitful discussions with Andy Buckley are gratefully acknowl-

edged. We have received technical advice and support from the Hep-

Forge project who host the Herwig++ development environment and

provide a variety of related services. The tuning of Herwig++ to exper-

imental data would not have been possible without the use of GRIDPP

computer resources.

Appendix A: Repository commands

The composition of the Repository is controlled through a

simple command language, which can be used either inter-

actively after calling Herwig++ read without any argu-

ments, or through input files, which can be provided as ar-

guments to the Herwig++ read command. The follow-

ing overview only describes the most important repository

commands. Examples of input files using this command lan-

guage can be found in the

HERWIGPATH/share/Herwig++
HERWIGPATH/share/Herwig++/defaults

directories. Please note that the repository allows for an

internal filesystem-like structure of directories and entries.

This does not, however, correspond to any physical files on

the operating system.

We first give the commands that affect the overall state

of the Repository, followed by commands for navigating

the filesystem-like structure, event generation, creating and

modifying objects in the Repository, and finally some mis-

cellaneous commands. We conclude with a brief example of

using the filesystem-like structure of the Repository to ob-

tain the parameter values used in a run.

Repository state

save file

Save the current repository state.

load file

Load a repository. Replaces the current state.

http://projects.hepforge.org/herwig
http://projects.hepforge.org/herwig
http://herwig@projects.hepforge.org

Eur. Phys. J. C (2008) 58: 639–707 695

read file

Read in additional commands from file.

library lib

Load the dynamic shared library lib immediately, making

all classes in the library available.

Repository tree

All operations in this section affect the repository tree only,

not the file system.

pwd

Print the current directory path.

cd dir

Change the current directory to dir.

mkdir dir

Make a directory called dir.

ls [dir]

List the entries in the current directory or in dir.

rmdir dir

Remove an empty directory.

rrmdir dir

Remove a directory and all its contents recursively.

Event generation

run run-name generator

Run the generator object for the pre-set number of events.

Files are saved under the label run-name.

saverun run-name generator

Save a generator as a file run-name.run, ready to use with

Herwig++ run.

Classes, objects, interfaces

create classname name [library]

Create a new object of C++ class classname and store it

under name. Optionally, specify the name of the library file

containing the class.

mv old-name name

Rename a repository object.

cp old-name name

Copy a repository object. The copy’s interfaces will be

identical to the original’s at the time of copying, but can

then be set independently.

rm name

Remove name from the repository.

get interface

Get the current value of an interface.

set interface value

Set the value of an interface. This can be either a numerical

value, the name of an object in the Repository, or a defined

key word for a Switch. set can also be used to set the value

of a member of an interface vector.

insert vector-interface[index] value

Insert a value into a vector of interface parameters.

erase vector-interface[index]

Remove a value from a vector of interface parameters.

describe object[:interface]

Describes object and lists its interfaces, or describes an in-

terface.

Miscellaneous commands

setup object args. . .

Passes args to object’s own setup function.28

decaymode tag BR active? decayer

Register a decay mode where tag is a semicolon-delimited

description of a decay, using the repository particle names,

such as pi0->gamma,e-,e+;, BR is the mode’s branch-

ing ratio, active? is either 1 or 0, indicating whether this

decay mode is active or not, and decayer is the object

that handles the generation of the kinematics for this de-

cay mode.

makeanti particle1 particle2

Register particle1 and particle2 to be a particle-antiparticle

pair.

defaultparticle particle [particle . . .]

Register particles as default particles, only these particles

are used with every event generator.

A.1 Example

This is a brief example of using the Repository to extract the

values of the default kinematic cuts on particles produced in

the hard scattering process. Many more complicated tasks

can also be performed.

While we expect that the most common way of using the

Repository will be changing the .in file for the relevant

collider it is sometimes useful to browse the directory-like

structure to check the parameters being used.

The filesystem-like structure of the Repository can be ex-

plored using

Herwig++ read

which gives access to a command-line prompt. The

current directory will be the last one used in the default

Herwig++ Repository, currently /Herwig/Analysis.

Typing lswill give a list of the AnalysisHandler objects that

have been created to analyse events generated by Herwig++.

The objects that supply the kinematic cuts are in the di-

rectory /Herwig/Cuts and can be listed using

cd /Herwig/Cuts
ls

28Used e.g. for particle data as setup particle ID PDGname mass

width cut ctau charge colour spin stable.

696 Eur. Phys. J. C (2008) 58: 639–707

which will list the following objects

EECuts
JetKtCut
LeptonKtCut
MassCut
PhotonKtCut
QCDCuts
TopKtCut

The QCDCuts and EECuts objects are the main objects

that impose the cuts for hadron-hadron and lepton-lepton

events respectively. Repository commands can now be used

to get information about the objects and their parameters, for

example

describe QCDCuts
describe QCDCuts:OneCuts
get QCDCuts:OneCuts

will give a brief description of the QCDCuts object and its

interfaces, followed by the description of the OneCuts in-

terface and the list of objects used to give the cuts on indi-

vidual particles, or groups of particles.

The JetKtCut object is used to impose cuts on par-

tons (the quarks other than the top quark, and the gluon).

The value of the cut on the transverse momentum of the par-

tons can be accessed and increased from the default value of

20 GeV to 30 GeV using

get JetKtCut:MinKT
set JetKtCut:MinKT 30.*GeV

A new event generator file with this changed cut could

now be written to file using

saverun LHCnew LHCGenerator

for the LHC.

Appendix B: Examples

This appendix contains a number of examples of using

Herwig++. Example input files for Herwig++ are also sup-

plied in the directory

HERWIGPATH/share/Herwig++/

where HERWIGPATH is the location of the Herwig++ instal-

lation. There are examples for e+e− collisions at LEP and

ILC energies and hadron-hadron collisions at the Tevatron

and LHC, as well as examples of using the different BSM

models included in Herwig++.

These can all be run with

Herwig++ read Collider.in
Herwig++ run -N no_of_events Collider.run

where Collider.in is one of the example input files.

The first read stage reads the input file and persistently

writes the EventGenerator object it creates into the Col-
lider.run file for future use. The second run stage

then uses this persistently stored generator to generate

no_of_events events.

The default parameters for the generator have already

been pre-set using the files contained in the directory

HERWIGPATH/share/Herwig++/defaults

and used to build the HerwigDefaults.rpo Repository file dis-

tributed with the release. Most users will not need to rebuild

this file, but may need to look at the default parameters con-

tained in the files used to build it.

More information on running Herwig++ can be found on

the wiki and in Appendix A.

The remainder of this appendix is designed to illus-

trate how these input files can be adapted to simulate the

physics scenario of interest to the user by changing the hard

processes, cuts, etc. All of the examples, together with the

source code, can be obtained from our wiki, where new ex-

amples will also be added in the future. Several of the ex-

amples assume that hadron-hadron collisions are being gen-

erated. If you are simulating lepton-lepton collisions replace

LHCGenerator with LEPGenerator.

B.1 Switching parts of the simulation off

In some cases it may be useful to switch off certain stages of

the simulation. The most simple way to do that is by assign-

ing NULL pointers to the appropriate StepHandlers of the

EventHandler. The following statements have to be added to

the Generator.in file used.

cd /Herwig/EventHandlers
set LHCHandler:CascadeHandler NULL
set LHCHandler:HadronizationHandler NULL
set LHCHandler:DecayHandler NULL

to switch off the parton shower, hadronization and hadronic

decays. For e+e− collisions the corresponding EventHandler

is called LEPHandler. In e+e− collisions it is possible,

although not recommended, to switch the shower off while

still hadronizing the event. This is not possible in hadron

collisions because the decay of the hadronic remnant, which

must occur before the event can be hadronized, is currently

handled by the shower module.

The Shower step can be controlled in more detail: initial-

state radiation can be turned off using

set /Herwig/Shower/SplittingGenerator:ISR No

Final-state radiation can be turned off using

set /Herwig/Shower/SplittingGenerator:FSR No

Multiple interactions can be turned off using

set /Herwig/Shower/ShowerHandler:MPI No

By default Herwig++ now uses a multiple scattering

model of the underlying event. If you wish to use the

old UA5 model, which we do not recommend for realistic

physics studies, you should first turn off the multiple scat-

tering model and then enable the UA5 model29:

29It should be remembered that there is a difference between the name

of the class used to create objects in the Repository and the names of

Eur. Phys. J. C (2008) 58: 639–707 697

set /Herwig/Shower/ShowerHandler:MPI No
cd /Herwig/Hadronization/
set ClusterHadHandler:UnderlyingEventHandler \
UA5

B.2 Changing particle properties

In Herwig++ each particle’s properties are contained in a

ParticleData object. This has a number of interfaces that can

be used to change the properties. The files leptons.in,

quarks.in, bosons.in, mesons.in, baryons.in

and diquarks.in, which can be found in the

HERWIGPATH/share/Herwig++/defaults directory,

set up the default properties of each particle type. The names

of the ParticleData objects in the Repository can be found in

these input files or by browsing the /Herwig/Particles

directory in the Repository using Herwig++ read.

All properties can be changed in the input file for an event

generator. For example to change the mass of the top quark

to 170 GeV the following lines should be added

set /Herwig/Particles/t:NominalMass 170.*GeV

By default, the properties of particles and their antiparti-

cles are forced to be the same so this will change the mass

of both the top and antitop.

The neutral pion can be set stable using

set /Herwig/Particles/pi0:Stable Stable

B.3 Changing some simple cuts

In many cases it will be important to specify particular

cuts on the hard process. The default values for all cuts in

Herwig++ are given in the file30 Cuts.in. Here we give a

number of examples of changing the cuts.

For example, in order to change the minimum k⊥ for a

parton produced in the hard process to 30 GeV one should

add

set /Herwig/Cuts/JetKtCut:MinKT 30.0*GeV

The pseudorapidity cut on hard photons can be changed

to |η| < 4 with

set /Herwig/Cuts/PhotonKtCut:MinEta -4.
set /Herwig/Cuts/PhotonKtCut:MaxEta 4.

and the cut on the minimum invariant mass of the hard

process can be increased to 50 GeV with

set /Herwig/Cuts/QCDCuts:MHatMin 50.*GeV

the objects, here ClusterHadHandler is the name of the Cluster-

HadronizationHandler object used by default in Herwig++ to perform

the hadronization.

30This can be found in the directory HERWIGPATH/share/
Herwig++/defaults

If one wants to restrict the invariant mass of the final state

in lepton pair production, however, one should use the class

V2LeptonsCut, our default instance of this is called Mass-

Cut. In this case one has to specify

set /Herwig/Cuts/MassCut:MinM 20.*GeV

B.4 Setting up an AnalysisHandler

Creating a new AnalysisHandler requires the following

steps:

1. Create skeleton class files. This can be done in emacs by

loading a Lisp script that can be found at THEPEGPATH/

lib/ThePEG.el.

2. Invoking M-x ThePEG-AnalysisHandler-

class-files queries the user for some input and in-

teractively creates the necessary files for an AnalysisHan-

dler. These are the questions asked:

(a) Class name:

Use for example MyName::Foo. It is useful to use

a namespace (replacing MyName with your name, of

course)

(b) Base class name:

The right answer is already suggested: Analysis

Handler

(c) include file for the base class:

Also filled out already

(d) Will this class be persistent (y or n)

If persistent members are needed: y otherwise n. n

is appropriate here.

(e) Will this class be concrete (y or n)

The answer y is appropriate unless you’re writing an

abstract base class.

This will create the following files:

Foo.h, Foo.fh, Foo.icc, Foo.cc

3. If actions need to be performed as part of the initializa-

tion (e.g. booking histograms) or termination (e.g. writ-

ing results to disk), the required class methods can be

automatically created by the same Lisp script:

(a) First the declaration of the methods. Go to Foo.h

where it says

// If needed, insert declarations of
// virtual function defined in the
// InterfacedBase class here (using
// ThePEG-interfaced-decl in Emacs).

and in emacs use M-x ThePEG-interfaced-

decl. This will insert the declaration of the methods

needed.

(b) To insert the implementation of these methods, go to

Foo.icc where it says

// If needed, insert default implement-
// ations of virtual function defined
// in the InterfacedBase class here
// (using ThePEG-interfaced-impl in Emacs).

698 Eur. Phys. J. C (2008) 58: 639–707

and start M-x ThePEG-interfaced-impl.

4. There is one important check left. Every class that can be

administered by ThePEG has to specify a static function

returning the name of the library that the class is stored

in. This has to agree with the library name in the Make-
file. In our case it is:

static string library() { return "Foo.so"; }

By default it is set to the name of the class, i.e.

Foo.so in our case, but may need changing if you are

linking several classes into one library.

5. A fully working AnalysisHandler, which currently has

no functionality, is now implemented. A Makefile to

compile it is supplied with the release. Copy it to your

working directory

cp HERWIGPATH/share/Herwig++/Makefile-UserModules\
Makefile

It will create a shared library object named after the

.cc filename, e.g. Foo.so.

6. The class can now be compiled by invoking make. This

command should terminate successfully.

7. Calling the newly created class requires copying an ap-

propriate Generator.in file into your directory from

HERWIGPATH/share/Herwig++ and modifying it

with the following statements

cd /Herwig/Analysis
create MyName::Foo foo Foo.so
insert \
/Herwig/Generators/LHCGenerator:AnalysisHandlers \
0 foo

which will create an instance of the new class Foo and

then insert it at position 0 in the vector of references to

AnalysisHandlers. It is always safest to insert the newly

created AnalysisHandler as the first entry in the list unless

you are sure of how many AnalysisHandlers have already

been inserted.

B.5 Usage of ROOT

To write a ROOT [129] based analysis outside the Herwig++

source tree, which is the recommended way of doing it, it

is not necessary to use the configure flag -with-root=
/path/to/root. This is only required to enable internal

ROOT based analyses, but you must define the environment

variable $ROOTSYS in any case, as it is required by ROOT,

as described in the ROOT manual.

In the following we will show two examples of an Analy-

sisHandler that will use ROOT output. Please refer to Ap-

pendix B.4 for the generic instructions on setting up an

analysis. Here, we will only mention specific code snippets,

which should be inserted in the appropriate locations.

The short description of what has to be done is:

1. create a new class derived from AnalysisHandler;

2. implement the functionality required;

3. compile a library from it;

4. create a Generator.in file where this AnalysisHan-

dler is called and run it.

Points 1 and 3 are universal for every AnalysisHandler and

are described in Appendix B.4. However, the corresponding

library and include statements for ROOT have to be added:

First copy the Makefile

cp HERWIGPATH/share/Herwig++/Makefile-UserModules \
Makefile

and then add the following lines

ROOTCFLAGS := $(shell root-config --cflags)
ROOTGLIBS := $(shell root-config --glibs)
ROOT = $(ROOTCFLAGS) $(ROOTGLIBS)

Finally the line containing the compilation command has

to be changed to include the content of the ROOT variable:

%.so : %.cc %.h
$(CXX) -fPIC $(CPPFLAGS) $(INCLUDE) $(ROOT) \
$(CXXFLAGS) -shared $< -o $@

A shared library with your code will be created in the

directory where you execute make. You need to make sure

that the ROOT libraries can be found at run-time. On Linux

systems you can add paths to the libraries to the environment

variable $LD_LIBRARY_PATH.

B.5.1 Root histograms

The goal of this example is to write an AnalysisHandler that

writes the charged particle multiplicity per event to a his-

togram and saves it as an encapsulated postscript (eps) file.

This is only a minimal example of the use of ROOT in the

analysis of Herwig++ events. It may for example be more

useful to write the histogram to a file, but we leave this to

the user as it is beyond the scope of this manual.

First a new AnalysisHandler has to be created, as de-

scribed in Appendix B.4. After setting up the necessary files,

the new functionality can be implemented:

– Foo.h

In the header file, several additional include files have to

be specified

#include "TH1F.h"
#include "TCanvas.h"

They are the ROOT headers of histograms and a canvas

upon which to draw the histogram.

The histogram should be available as a member of this

new class, because information on every event has to be

stored in it. A pointer to the histogram as private member

variable of the class can be used for that purpose:

Eur. Phys. J. C (2008) 58: 639–707 699

private:
/**
* A pointer to a Root histogram
*/
TH1F* histo;

– Foo.icc

The histogram should be booked in

inline void Foo::doinitrun()

with the following commands:

histo = new TH1F("test",
"charged multiplicity",
150, 0, 600);
histo->SetXTitle("N_{ch}");
histo->SetYTitle("events");

In

inline void Foo::dofinish()

the histogram is drawn on a canvas and saved to disk. Fi-

nally the pointers are freed:

TCanvas *can = new TCanvas("plot", "");
histo->Draw();
can->SaveAs("plot.eps");
delete can;
delete histo;

– Foo.cc

All that remains is the actual filling of the histogram. This

functionality will be added to the method

void Foo::analyze(tEventPtr event,
long, int loop, int state){
if (loop > 0 || state != 0 || !event)
return;
/** create local variable to
store the multiplicity */
int mult(0);
/** get the final-state particles */
tPVector particles=event->getFinalState();
/** loop over all particles */
for (tPVector::const_iterator
pit = particles.begin();
pit != particles.end(); ++pit){
/** Select only the charged particles */
if(ChargedSelector::Check(**pit))
++mult;
}
histo->Fill(mult);
}

The test in the first line is recommended for all sim-

ple AnalysisHandlers. The meaning of loop and state
can be obtained from the Doxygen documentation of the

AnalysisHandler class.

B.5.2 rtuple with TTree

If you are working with ROOT already, you can store events

in an rtuple directly. This example shows how to define an

AnalysisHandler that prepares an rtuple with ROOT TTree.

It is extracted from a more detailed example, available from

the wiki, for analysing four-b events at LEP.

– Foo.h

First, add the needed ROOT header files to your header

file for declaration of all ROOT classes you are going to

use. In this case:

#include "TTree.h"
#include "TFile.h"

Add TTree and TFile objects to the private part of the

class:

private:
// ROOT Tree
TTree * theTree;
// ROOT File
TFile * theFile;

Define all the variables and arrays that will be kept in

the ROOT tree:

private:
// ROOT tree internal arrays and variables
int Nentry, Nqurk, Nhdrn;
int Kf[16], Kp[16];
double Wgt, Alphas;
double Qscl[4];
double Px[16], Py[16], Pz[16], P0[16];

– Foo.icc

Methods for TTree booking and the writing of the TFile

to disk should be called in doinitrun() and

dofinish() respectively. Add the following lines to

doinitrun():

LEPbbbbComparison::doinitrun () {
...
// create ROOT Tree
theTree = new TTree ("bbbb",
"myAnalysis root tree",
1);
if (!theTree) {
cerr << "ROOT tree has not been created\n";
return;
}
// create ROOT File
theFile = new TFile (outname,"RECREATE");
if (!theFile) {
cerr << "ROOT file has not been created\n";
return;
}
theTree->SetDirectory (theFile);
// define ROOT Tree branches/leaves
theTree->Branch ("Nentry", &Nentry,
"Nentry/I");
theTree->Branch ("Nqurk", &Nqurk, "Nqurk/I");
...
theTree->Branch ("Pz", Pz, "Pz[Nentry]/D");
theTree->Branch ("P0", P0, "P0[Nentry]/D");
...
}

The last parameter in each command theTree-
>Branch() should be equal to “Name/Type” of each

700 Eur. Phys. J. C (2008) 58: 639–707

variable, e.g.I → int, D → double, etc. (Information

on other types can be found in the ROOT manual). Final

commands should be placed in LEPbbbbComparison::
dofinish(). So, add the following lines to

dofinish():

LEPbbbbComparison::dofinish() {
...
theTree->GetCurrentFile();
theTree->Write();
theFile->Close();
cout << "ROOT file has been written on disk"
<< endl;
...
}

After that, the class will keep theTree in theFile

and write theFile to disk.

– Foo.cc

All the TTree variables should be set in analyze(...).

As soon as all the variables have the right values for

analysing an event, execute the Fill() method for

theTree.

void Foo::analyze(tEventPtr event, long,
int loop, int state) {
...
// Fill TTree record
if (2 < bquark.size ()) {
theTree->Fill();
}
...
}

B.6 Using BSM models

There are example files installed in HERWIGPATH/share/

Herwig++ that show how to use the implemented BSM

physics modules. Each one is labelled Generator-Mod-

el.in. Also associated with each BSM physics module is

a .model file that is required to run with a specific module

but otherwise does not need to be touched by the user. The

easiest method to run a BSM physics module is to copy the

Generator-Model.in file that is appropriate to the col-

lider and model under study and make the necessary changes

there.

B.6.1 MSSM

To generate a process in the MSSM, first decide on the

accelerator to use, the LHC for example, and then copy

MSSM.model and LHC-MSSM.in files to the location

where Herwig++ will be used. LHC-MSSM.in contains the

settings that a user can manipulate, the default settings are

for squark production at the LHC. To change this to gluino

production one should delete the lines

insert HPConstructor:Outgoing 0 \
/Herwig/Particles/~u_L
insert HPConstructor:Outgoing 1 \
/Herwig/Particles/~u_Lbar

insert HPConstructor:Outgoing 2 \
/Herwig/Particles/~d_L
insert HPConstructor:Outgoing 3 \
/Herwig/Particles/~d_Lbar

and insert the line

insert HPConstructor:Outgoing 0 \
/Herwig/Particles/~g

A SUSY model requires a spectrum file to set the masses

and couplings. This file is produced using a spectrum gen-

erator.31 The name of the file, e.g. spectrum.spc, is set

via the command

setup MSSM/Model spectrum.spc

If the decay table is in a separate file to the spectrum then

a second setup line should be used to supply this file name.

The next step is to set up the particles that will require

spin correlations included in their decays. This is achieved

through the DecayParticles interface. In the example of

gluino production firstly one should remove the lines

insert NewModel:DecayParticles 0 \
/Herwig/Particles/~d_L
insert NewModel:DecayParticles 1 \
/Herwig/Particles/~u_L
insert NewModel:DecayParticles 2 \
/Herwig/Particles/~e_R-
insert NewModel:DecayParticles 3 \
/Herwig/Particles/~mu_R-
insert NewModel:DecayParticles 4 \
/Herwig/Particles/~chi_10
insert NewModel:DecayParticles 5 \
/Herwig/Particles/~chi_20
insert NewModel:DecayParticles 6 \
/Herwig/Particles/~chi_2+

and then insert the line

insert NewModel:DecayParticles 0 \
/Herwig/Particles/~g

This will generate spin correlations in the decay of the

gluino but not in the subsequent decays of its children. As-

suming these too are required then additional lines con-

taining all of unstable products in the cascade decays are

needed.

insert NewModel:DecayParticles 0 \
/Herwig/Particles/~g
insert NewModel:DecayParticles 1 \
/Herwig/Particles/~d_L
insert NewModel:DecayParticles 2 \
/Herwig/Particles/~u_L
...

The rest of the settings in the file deal with general para-

meters for the run. Herwig++ can then be run as described at

the beginning of this appendix.

B.6.2 MUED

The MUED model works in a similar fashion to the MSSM

but with some important differences due to the unavailabil-

ity of spectrum and decay generators. The mass spectrum is

31Some of these are listed at http://home.fnal.gov/~skands/slha/.

http://home.fnal.gov/~skands/slha/

Eur. Phys. J. C (2008) 58: 639–707 701

calculated by Herwig++ once the main parameters have been

set via the interfaces

set MUED/Model:InverseRadius 500.*GeV
set MUED/Model:LambdaR 20

and optionally

set MUED/Model:HiggsBoundaryMass 0.*GeV

Similarly to above the file LHC-MUED.in should be

copied to a new file i.e. mymued.in and the relevant pa-

rameters changed there.

The specification of the hard process is done in the same

manner as above using the particle content of the MUED

model. As there are no decay table generators for UED the

possible perturbative decays are calculated automatically for

the particles specified through the DecayParticles interface.

It is advisable to leave the list as it stands in the file as then

all of the necessary decays modes for the parents that are

children in cascade decays will be created properly.

Finally, the methods for running the generator are the

same as above.

B.6.3 RS Model

Currently there are no matrix elements for the hard scatter-

ing that have tensor particles as external particles, they are

only included as intermediates. The graviton can therefore

only be included as a resonance. There is a special class de-

signed to handle this as described in Appendix 5.

The set up differs only slightly from the MSSM and

MUED models. Using the example in LHC-RS.in, upon

copying this to a new file, the lines

insert ResConstructor:Incoming 0 \
/Herwig/Particles/g
insert ResConstructor:Incoming 1 \
/Herwig/Particles/u
insert ResConstructor:Incoming 2 \
/Herwig/Particles/ubar
insert ResConstructor:Incoming 3 \
/Herwig/Particles/d
insert ResConstructor:Incoming 4 \
/Herwig/Particles/dbar

insert ResConstructor:Intermediates 0 \
/Herwig/Particles/Graviton

insert ResConstructor:Outgoing 0 \
/Herwig/Particles/e+
insert ResConstructor:Outgoing 1 \
/Herwig/Particles/W+
insert ResConstructor:Outgoing 2 \
/Herwig/Particles/Z0
insert ResConstructor:Outgoing 3 \
/Herwig/Particles/gamma

can be changed to suit the user’s needs. The only parameter

in this model is the cutoff scale and it is changed through the

line

set RS/Model:Lambda_pi 10000*GeV

Again, running the generator follows the same steps as

before.

B.7 Intrinsic pT

An example of a particular choice for the implementa-

tion of the intrinsic pT can be found in the default file

Shower.in.

set Evolver:IntrinsicPtGaussian 2.2*GeV

As discussed in Appendix C, a Gaussian distribution for

intrinsic pT has been implemented. The root mean square

intrinsic pT of the Gaussian distribution required, σ , is set

using the IntrinsicPtGaussian parameter. The val-

ues for the intrinsic pT are generated according to:

d2pT

1

πσ 2
exp

[
−

(
pT

σ

)2]
. (B.1)

The default example above is for a Gaussian distribution

with root mean square pT of 2.2 GeV. In addition to this,

there is the option of selecting an inverse quadratic distribu-

tion for the intrinsic pT according to:

d2pT

1

π ln(1 + p2
Tmax

γ 2)

1

γ 2 + p2
T

, (B.2)

where γ is a constant and pTmax is an upper-bound on the

modulus of pT and makes the distribution normalizable.

These parameters can be changed from their default values

in Shower.in.

set Evolver:IntrinsicPtGamma 0*GeV
set Evolver:IntrinsicPtIptmax 0*GeV

A mixture of both distributions can also be selected by

setting a parameter β in Shower.in and is the proportion

of the inverse quadratic distribution required and ranges be-

tween 0 and 1.

set Evolver:IntrinsicPtBeta 0

Here the default setting is to generate the intrinsic pT

according to the Gaussian distribution only.

B.8 LesHouchesEventHandler

In order to use partonic events generated by an external ma-

trix element generator, a LesHouchesEventHandler object

has to be created in the Repository. This object is supplied

with at least one LesHouchesReader object. LesHouch-

esReader objects supply events in the Les Houches Ac-

cord (LHA) format [29] reading a file of events.

Here we give an example of how to use LHA event

files. The reading of the events is performed by the Mad-

GraphReader class. This is not, however, limited to reading

events generated by MadEvent [130] but can handle arbi-

trary event files in the Les Houches format.

First, the libraries required must be loaded,

702 Eur. Phys. J. C (2008) 58: 639–707

library LesHouches.so
library MadGraphReader.so

Suppose the event file is called myEvents.lhe.32 We

will assume it contains some process of interest at the LHC.

First, a *LesHouchesReader object needs to be created and

given the name of the file:

cd /Herwig/EventHandlers
create ThePEG::MadGraphReader myReader
set myReader:FileName myEvents.lhe

In principle, the information needed to generate full

events, i.e. beam energies, incoming particles and parton

distributions, is extracted from the event file, but may also

be set explicitly. For these switches, see the interface docu-

mentation of the LesHouchesReader and MadGraphReader

classes, respectively.

In case files with unweighted events not generated by

MadEvent are used, the LesHouchesReader needs to be as-

signed an event cache to gain information on the event sam-

ple. If, for example, events should be cached in a file named

cacheevents.tmp the following setting should be used:

set myReader:CacheFileName cacheevents.tmp

The cuts on the hard process cannot, in general, be ex-

tracted from event files. If the interface value

set myReader:InitCuts 0

is assigned, the LesHouchesReader object expects to be

given a Cuts object. For example, typical cuts for hadron

collisions may be chosen:

set myReader:Cuts /Herwig/Cuts/QCDCuts

The use of cuts in Herwig++ and examples of changing

them are given in Appendices 3.3.3 and B.3, respectively. If

no Cuts object is assigned, the Cuts object assigned to the

LesHouchesEventHandler is used.

Similar remarks apply to the use of parton distribution

functions, which can be set explicitly using

set myReader:InitPDFs 0
set myReader:PDFA firstBeamPDF
set myReader:PDFB secondBeamPDF

where firstBeamPDF and secondBeamPDF are PDF-

Base objects. Here, either the built-in PDF set or LHAPDF

may be used, see Appendix B.9.

Next a LesHouchesEventHandler object has to be cre-

ated. Objects of this class inherit from EventHandler and

provide the same interfaces. The setup is therefore similar to

the setup of a StandardEventHandler object, which needs to

be equipped with showering, hadronization and decay han-

dlers:

32The *LesHouchesReader class is also able to read in compressed

event files, .lhe.gz.

create ThePEG::LesHouchesEventHandler \
myLesHouchesHandler
set myLesHouchesHandler:CascadeHandler \
/Herwig/Shower/ShowerHandler
set myLesHouchesHandler:HadronizationHandler \
/Herwig/Hadronization/ClusterHadHandler
set myLesHouchesHandler:DecayHandler \
/Herwig/Decays/DecayHandler
set myLesHouchesHandler:PartonExtractor \
/Herwig/Partons/QCDExtractor

A Cuts object that is applied to all processes may be set

as for every EventHandler. Finally, the LesHouchesReaders

from which the event handler should draw events have to be

specified:

insert myLesHouchesHandler:LesHouchesReaders 0 \
myReader
insert myLesHouchesHandler:LesHouchesReaders 1 \
myOtherReader
...

An arbitrary number of readers may be used.

A default or custom EventGenerator object can use the

LesHouchesEventHandler object myLesHouchesHan-

dler and a run file can be created from this event gener-

ator:

cd /Herwig/Generators
cp LHCGenerator myLesHouchesGenerator
set myLesHouchesGenerator:EventHandler \
/Herwig/EventHandlers/myLesHouchesHandler
saverun myLesHouches myLesHouchesGenerator

The event generator can then be used as described at the

beginning of Appendix B.

B.9 Use of LHAPDF

Herwig++ provides a built-in PDF set.33 Other PDF sets may

be used through the LHAPDF [132] interface ofThePEG.

This section contains an outline of the use of LHAPDF.

ThePEG has to be configured to use LHAPDF by adding

the option

--with-LHAPDF=/path/to/LHAPDF/lib

to the call of the configure script. Note that the full path

to the LHAPDF libraries needs to be given. Once Herwig++

is built using ThePEG configured to use LHAPDF, PDF sets

can be created easily in the Repository, for example the

CTEQ6L set:

create ThePEG::LHAPDF myPDFset
set myPDFset:PDFName cteq6l.LHpdf
set myPDFset:RemnantHandler \
/Herwig/Partons/HadronRemnants
set /Herwig/Particles/p+:PDF myPDFset
set /Herwig/Particles/pbar-:PDF myPDFset

The custom PDF set myPDFset may also be used in a

LesHouchesReader object, see Appendix B.8.

33The default PDF set in Herwig++ is the leading-order fit from the

MRST’02 family [131].

Eur. Phys. J. C (2008) 58: 639–707 703

B.10 Use of a simple saturation model for PDFs

A very simple modification that mimics parton saturation ef-

fects can be applied for any PDF by using the SatPDF class.

The modification replaces xf (x) below x0 by

xf (x) →
(

x

x0

)Exp

x0f (x0), ∀x < x0, (B.3)

where X0 and Exp are the changeable parameters. Af-

ter copying an appropriate Collider.in to your local

directory, adding the following lines before any run or

saverun statement will enable the PDF modifications.

##
saturation modifications
##
cd /Herwig/Partons
create Herwig::SatPDF SaturationMod HwSatPDF.so
set SaturationMod:RemnantHandler HadronRemnants

Assign the pdf that should be modified:
use internal pdf
set SaturationMod:PDF MRST
use lhapdf. This depends on the name you have
chosen for the LHAPDF set
#set SaturationMod:PDF foo

may change X0: default is 1E-4
#set SaturationMod:X0 1E-3

may change Exp: default is 0
#set SaturationMod:Exp 1

Assign the modified pdf to the beam particles,
without this step the original pdf’s will be used
set /Herwig/Particles/p+:PDF SaturationMod
set /Herwig/Particles/pbar-:PDF SaturationMod
cd /Herwig/Generators

Appendix C: Tuning

The default hadronization and shower parameters in

Herwig++ have been tuned to a wide range of experimen-

tal data, primarily from LEP and B-factory experiments.

The following experimental data were used, with the ex-

ception of charm hadron spectra from the B-factory exper-

iments, all are from e+e− experiments operating at the Z0

peak:

– the momentum spectra of charm hadrons, i.e. D∗±,0,

D±,0, D±
s , and �+

c , measured by the Belle collaboration

away from the ϒ(4S) resonance, [133];

– the momentum spectra of charm hadrons, i.e. D∗±,0 and

D±0, measured by the CLEO collaboration away from the

ϒ(4S) resonance, [134];

– the weakly decaying B-hadron fragmentation functions

measured by the ALEPH [135] and SLD [136] collabora-

tions;

– four-jet angles measured by the ALEPH collaboration

[137];

– the momentum spectrum of charged particles, charged

pions, charged kaons and protons for all, light, charm

and bottom quark events measured by the SLD collabo-

ration [138];

– the momentum spectra for the production of π± [139],

K± [139], p [139], �++ [140], �∗0 [141], f2 [142],

f0(980) [142], φ [142], K∗0 [143], K0 [144], π0 [145],

η [145], η′ [145], ρ± [145], ω [145], a±
0 [145], �− [141],

�∗± [141], measured by the OPAL collaboration;

– the multiplicity of charged particles measured by the

OPAL collaboration [146];

– the momentum spectra for the production of ρ0 [147] and

D0 [148] measured by the DELPHI collaboration;

– the momentum spectrum of D∗± mesons measured by the

ALEPH collaboration [149];

– the momentum spectrum of �0 baryons [150] and K∗±

mesons [150] measured by the ALEPH collaboration;

– the differential distributions ynm where an event changes

from being an n to an m jet event according to the Durham

jet algorithm, jet production rates and the average jet mul-

tiplicity as a function of the Durham jet measure mea-

sured by the OPAL collaboration [151];

– the differential jet rates with respect to the Durham jet

measure measured by the DELPHI collaboration [152];

– the thrust, thrust major, thrust minor, sphericity, oblate-

ness, planarity, aplanarity, C and D parameters, hemi-

sphere masses, and jet broadening event shapes measured

by the DELPHI collaboration [152];

– the rapidity, and transverse pT in and out of the event

plane with respect to the thrust and sphericity axes mea-

sured by the DELPHI collaboration [152];

– the average multiplicities of charged particles, photons,

π0, ρ0, π+, ρ+, η, ω, f2, K0, K∗0, K∗0
2 , K+, K∗+, η′,

φ, f ′
2, D+, D∗+, D0, D+

s , J/ψ , n0, p+, �++, �−, �∗−,

�0, �0, �+, �∗+, �−, �∗0, �−, �+
c , f ′

0,f1, ψ(2S), a+
0

taken from the PDG [34];

– the fractions of B0, B± and b-baryons from the Heavy

Flavour Averaging Group (HFAG) [153].

The following parameters were tuned:

1. the value of αS at the Z0 mass, AlphaMZ;

2. the cutoff scale in the parton shower cutoffKinScale;

3. the ConstituentMass of the gluon used in the hadroniza-

tion model;

4. the scale Qmin below which a non-perturbative treat-

ment of αS is used, the default is to set αS to a constant

below this scale;

5. the maximum mass ClMaxLight above which clus-

ters containing light quarks undergo cluster fission, see

(112);

6. the exponent ClPowLight controlling whether clusters

containing light quarks undergo fission, see (112);

704 Eur. Phys. J. C (2008) 58: 639–707

7. the exponent PSplitLight controlling the masses of the

daughter clusters for light quark clusters that undergo

fission, see (113);

8. the ClSmrLight parameter, which controls the smear-

ing of the direction of hadrons containing perturbatively

produced light quarks, see (125);

9. the weight PwtSquark for producing a strange quark-

antiquark pair in the hadronization;

10. the weight PwtDIquark for producing a diquark-

antidiquark pair in the hadronization;

11. the relative weight SngWt for the production of singlet

baryons;

12. the relative weight DecWt for the production of decu-

plet baryons;

13. the maximum mass ClMaxCharm above which clus-

ters containing charm quarks undergo cluster fission,

see (112);

14. the exponent ClPowCharm controlling whether clus-

ters containing charm quarks undergo fission, see (112);

15. the exponent PSplitCharm controlling the masses of

the daughter clusters for charm quark clusters that un-

dergo fission, see (113);

16. the ClSmrCharm parameter, which controls the smear-

ing of the direction of hadrons containing perturbatively

produced charm quarks, see (125);

17. the SingleHadronLimitCharm parameter, which con-

trols the splitting of charm clusters to a single hadron

above the threshold for producing two hadrons, see (126);

18. the maximum mass ClMaxBottom above which clus-

ters containing bottom quarks undergo cluster fission,

see (112);

19. the exponent ClPowBottom controlling whether clus-

ters containing bottom quarks undergo fission, see

(112);

20. the exponent PSplitBottom controlling the masses of

the daughter clusters for bottom quark clusters that un-

dergo fission, see (113);

21. the ClSmrBottom parameter, which controls the smear-

ing of the direction of hadrons containing perturbatively

produced bottom quarks, see (125);

22. the SingleHadronLimitBottom parameter, which con-

trols the splitting of bottom clusters to a single hadron

above the threshold for producing two hadrons, see (126).

The tuning was performed in a number of stages:

– 200,000 events were generated at each of 2000 randomly

selected parameter points for the first 7 parameters, which

are sensitive to general properties of the events;

– for the values of the first 7 parameters that gave the

lowest χ2 from the first scan 200,000 events were gen-

erated for randomly selected values of parameters 8–

11, which mainly control the multiplicities of different

hadron species;

– for the values of the first 11 parameters that gave the low-

est χ2 from the second scan 200,000 events were gen-

erated for randomly selected values of parameters 12–21,

which mainly control the production of bottom and charm

hadrons;

– the parameters were then scanned about the minimum χ2

point and the parameter that gave the largest reduction in

the χ2 was adjusted to the value that gave the minimum

value;

– the scanning of parameters about the minimum was re-

peated until no significant improvement was found;

– finally some parameters, particularly in the charm and

bottom sector, that are not particularly sensitive to the

global χ2 were adjusted to reduce the χ2 for observables

sensitive to them. In practice the parameters 13–16 were

adjusted to improve the quality of the fit to charm hadron

multiplicities and spectra, the parameters 17–21 were ad-

justed to improve the quality of the fit to bottom hadron

multiplicities and spectra, and the parameters 10–11 were

adjusted to improve the quality of the fit to baryon multi-

plicities and spectra.

In each case 200,000 events were generated at both the Z0

pole for the LEP observables and below the ϒ(4S) reso-

nance for the B-factory observables. The χ2 value included

all the observables but in order to increase the sensitivity to

the particle multiplicities the χ2 for the total particle multi-

plicities were multiplied by 10 when computing the global

χ2, and the total charged multiplicities at LEP by 100.

The variation of the χ2 is shown in Fig. C.1 for some

of the parameters that are sensitive to the event shapes and

production of hadrons containing the light, i.e. down, up and

strange, quarks. The best fit point has a χ2 = 6.4, with the

increased weights for the hadron multiplicities and, χ2 =
5.4 if all observables have unit weight. While this may seem

too high a value, given the limited nature of the tuning it is

not out of line with previous event generator tunings and the

χ2 is about 4 times lower than before the tuning.

In addition to the above, the option of including an in-

trinsic transverse momentum for partons within a hadron

in hadron-hadron collisions has been implemented. It is

chosen from the Gaussian distribution shown in Appen-

dix B.7. For Drell Yan Z/W boson production at the Teva-

tron (
√

s = 1.96 TeV), the best fit tune has an rms transverse

momentum of 2.2 GeV [15]. For the CERN ISR experiment

(
√

s = 62 GeV) likewise, a best fit rms value of 0.9 GeV was

obtained. Assuming a linear dependence of the rms value on

ln(M/
√

s) where M is the invariant mass, the correspond-

ing value estimated for Z/W boson production at the LHC

is within the range 3.7–7.7 GeV. It is worth noting that the

lower value of 3.7 GeV gives the best agreement with an

alternative model [23], which introduces non-perturbative

smearing during the perturbative evolution by modifying the

implementation of αS .

Eur. Phys. J. C (2008) 58: 639–707 705

Fig. C.1 Variation of the χ2

about the minimum points for

the (a) AlphaMZ, (b)

cutoffKinScale, (c)

ClMaxLight, (d) PSplitLight,

(e) PwtSquark, and (f)

PwtDIquark parameters. The

solid line shows the total χ2, the

dot-dashed line shows the χ2

for the particle multiplicities

and the dotted line shows the χ2

for the event shape observables.

In (e) the dashed lines show the

χ2 for observables sensitive to

strange hadron production and

in (f) the dashed lines show the

χ2 for observables sensitive to

baryon production. The vertical

dashed lines show the final

values of the parameters,

described as default throughout

this manual. In each figure, all

other parameters are kept at

their default values

References

1. G. Marchesini, B.R. Webber, Nucl. Phys. B 38, 1 (1984)

2. B.R. Webber, Nucl. Phys. B 238, 492 (1984)

3. G. Marchesini, B.R. Webber, Nucl. Phys. B 310, 461 (1988)

4. G. Marchesini et al., Comput. Phys. Commun. 67, 465 (1992)

5. G. Corcella et al., J. High Energy Phys. 01, 010 (2001), hep-ph/

0011363

6. G. Corcella et al. (2002), hep-ph/0210213

7. G. Marchesini, B.R. Webber, Nucl. Phys. B 330, 261 (1990)

8. M. Bähr, S. Gieseke, M.H. Seymour (2008), arXiv:0803.3633

[hep-ph]

9. S. Gieseke, A. Ribon, M.H. Seymour, P. Stephens, B. Webber, J.

High Energy Phys. 02, 005 (2004), hep-ph/0311208

10. T. Sjöstrand, S. Mrenna, P. Skands (2007), arXiv:0710.3820

[hep-ph]

11. L. Lönnblad, Comput. Phys. Commun. 71, 15 (1992)

12. L. Lönnblad, Nucl. Instrum. Methods A 559, 246 (2006)

13. T. Gleisberg et al., J. High Energy Phys. 02, 056 (2004), hep-ph/

0311263

http://arxiv.org/abs/hep-ph/0011363
http://arxiv.org/abs/hep-ph/0011363
http://arxiv.org/abs/hep-ph/0210213
http://arxiv.org/abs/arXiv:0803.3633
http://arxiv.org/abs/hep-ph/0311208
http://arxiv.org/abs/arXiv:0710.3820
http://arxiv.org/abs/hep-ph/0311263
http://arxiv.org/abs/hep-ph/0311263

706 Eur. Phys. J. C (2008) 58: 639–707

14. O. Latunde-Dada, S. Gieseke, B. Webber, J. High Energy Phys.

02, 051 (2007), hep-ph/0612281

15. O. Latunde-Dada (2007), arXiv:0708.4390 [hep-ph]

16. J.M. Butterworth, J.R. Forshaw, M.H. Seymour, Z. Phys. C 72,

637 (1996), hep-ph/9601371

17. S. Gieseke, P. Stephens, B. Webber, J. High Energy Phys. 12, 045

(2003), hep-ph/0310083

18. S. Gieseke, J. High Energy Phys. 01, 058 (2005), hep-ph/

0412342

19. K. Hamilton, P. Richardson, J. High Energy Phys. 07, 010 (2006),

hep-ph/0603034

20. K. Hamilton, P. Richardson, J. High Energy Phys. 02, 069 (2007),

hep-ph/0612236

21. M. Gigg, P. Richardson, Eur. Phys. J. C 51, 989 (2007), hep-ph/

0703199

22. D. Grellscheid, P. Richardson (2007), arXiv:0710.1951 [hep-ph]

23. S. Gieseke, M.H. Seymour, A. Siódmok (2007), arXiv:

0712.1199 [hep-ph]

24. P. Richardson, J. High Energy Phys. 11, 029 (2001), hep-ph/

0110108

25. I.G. Knowles, Nucl. Phys. B 310, 571 (1988)

26. I.G. Knowles, Comput. Phys. Commun. 58, 271 (1990)

27. J.C. Collins, Nucl. Phys. B 304, 794 (1988)

28. E. Boos et al. (2001), hep-ph/0109068

29. J. Alwall et al., Comput. Phys. Commun. 176, 300 (2007),

hep-ph/0609017

30. D.R. Yennie, S.C. Frautschi, H. Suura, Ann. Phys. 13, 379

(1961)

31. M.H. Seymour, Phys. Lett. B 354, 409 (1995), hep-ph/9505211

32. H. Murayama, I. Watanabe, K. Hagiwara (1992), KEK-91-11
33. P. Skands et al., J. High Energy Phys. 07, 036 (2004), hep-ph/

0311123

34. W.M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006)

35. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999),

hep-ph/9905221

36. D. Hooper, S. Profumo, Phys. Rep. 453, 29 (2007), hep-ph/

0701197

37. H.C. Cheng, K.T. Matchev, M. Schmaltz, Phys. Rev. D 66,

036005 (2002), hep-ph/0204342

38. A. Bassetto, M. Ciafaloni, G. Marchesini, A.H. Mueller, Nucl.

Phys. B 207, 189 (1982)

39. A. Bassetto, M. Ciafaloni, G. Marchesini, Phys. Rep. 100, 201

(1983)

40. S. Catani, M. Ciafaloni, Nucl. Phys. B 236, 61 (1984)

41. M. Ciafaloni, Phys. Lett. B 95, 113 (1980)

42. M. Ciafaloni, Lectures given at Summer Workshop on High En-

ergy Physics, Trieste, Italy, Aug. 1981

43. Y.L. Dokshitzer, V.A. Khoze, S.I. Troian, Adv. Ser. Direct. High

Energy Phys. 5, 241 (1988)

44. A.H. Mueller, Phys. Lett. B 104, 161 (1981)

45. B.I. Ermolaev, V.S. Fadin, JETP Lett. 33, 269 (1981)

46. Y.L. Dokshitzer, V.S. Fadin, V.A. Khoze, Phys. Lett. B 115, 242

(1982)

47. S. Catani, S. Dittmaier, Z. Trócsányi, Phys. Lett. B 500, 149

(2001), hep-ph/0011222

48. R.K. Ellis, W.J. Stirling, B.R. Webber, Camb. Monogr. Part.

Phys. Nucl. Phys. Cosmol. 8, 1 (1996)

49. S. Catani, B.R. Webber, G. Marchesini, Nucl. Phys. B 349, 635

(1991)

50. S. Frixione, P. Nason, C. Oleari, J. High Energy Phys. 11, 070

(2007), arXiv:0709.2092 [hep-ph]

51. R. Bonciani, S. Catani, M.L. Mangano, P. Nason, Phys. Lett. B

575, 268 (2003), hep-ph/0307035

52. M. Cacciari, G. Corcella, A.D. Mitov, J. High Energy Phys. 12,

015 (2002), hep-ph/0209204

53. H.K. Dreiner, P. Richardson, M.H. Seymour, J. High Energy

Phys. 04, 008 (2000), hep-ph/9912407

54. M.J. Gibbs, B.R. Webber, Comput. Phys. Commun. 90, 369

(1995), hep-ph/9504232

55. T. Sjöstrand, S. Mrenna, P. Skands, J. High Energy Phys. 05, 026

(2006), hep-ph/0603175

56. T. Sjöstrand, Phys. Lett. B 157, 321 (1985)

57. A. Bassetto, G. Nardelli, R. Soldati, Yang–Mills Theories in

Algebraic Non-covariant Gauges (World Scientific, Singapore,

1991), p. 227

58. M. Dalbosco, Phys. Lett. B 180, 121 (1986)

59. D. Amati, A. Bassetto, M. Ciafaloni, G. Marchesini, G.

Veneziano, Nucl. Phys. B 173, 429 (1980)

60. D. Amati, G. Veneziano, Phys. Lett. B 83, 87 (1979)

61. S. Catani, M.H. Seymour, Nucl. Phys. B 485, 291 (1997), hep-ph/

9605323

62. G. Curci, M. Greco, Phys. Lett. B 92, 175 (1980)

63. G. Curci, M. Greco, Phys. Lett. B 102, 280 (1981)

64. M.H. Seymour, Comput. Phys. Commun. 90, 95 (1995), hep-ph/

9410414

65. A. Kupčo (1999), hep-ph/9906412

66. W. Kilian, T. Plehn, P. Richardson, E. Schmidt, Eur. Phys. J. C

39, 229 (2005), hep-ph/0408088

67. G.J. Alner et al. (UA5), Nucl. Phys. B 291, 445 (1987)

68. L. Durand, P. Hong, Phys. Rev. Lett. 58, 303 (1987)

69. L. Durand, H. Pi, Phys. Rev. D 40, 1436 (1989)

70. D. Grellscheid, K. Hamilton, P. Richardson, in preparation

71. D.J. Lange, Nucl. Instrum. Methods A 462, 152 (2001)

72. V.V. Kiselev (2003), hep-ph/0308214

73. T. Skwarnicki, Int. J. Mod. Phys. A 19, 1030 (2004), hep-ph/

0311243

74. E.J. Eichten, K. Lane, C. Quigg, Phys. Rev. Lett. 89, 162002

(2002), hep-ph/0206018

75. W. Kwong, J.L. Rosner, Phys. Rev. D 38, 279 (1988)

76. S. Godfrey, J.L. Rosner, Phys. Rev. D 66, 014012 (2002), hep-ph/

0205255

77. E.J. Eichten, C. Quigg, Phys. Rev. D 49, 5845 (1994), hep-ph/

9402210

78. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 67, 014027

(2003), hep-ph/0210381

79. W. Kwong, P.B. Mackenzie, R. Rosenfeld, J.L. Rosner, Phys.

Rev. D 37, 3210 (1988)

80. W.A. Bardeen, E.J. Eichten, C.T. Hill, Phys. Rev. D 68, 054024

(2003), hep-ph/0305049

81. M. Di Pierro, E. Eichten, Phys. Rev. D 64, 114004 (2001),

hep-ph/0104208

82. V.M. Abazov et al. (2007), arXiv:0705.3229 [hep-ex]

83. F. Filthaut (D0) (2007), arXiv:0705.0245 [hep-ex]

84. N. Brambilla et al. (2004), hep-ph/0412158

85. S. Godfrey, Phys. Rev. D 70, 054017 (2004), hep-ph/0406228

86. S.M. Flatté, Phys. Lett. B 63, 224 (1976)

87. S. Jadach, Z. Wa̧s, R. Decker, J.H. Kühn, Comput. Phys. Com-

mun. 76, 361 (1993)

88. P. Golonka et al. (2003), hep-ph/0312240

89. J.H. Kühn, A. Santamaria, Z. Phys. C 48, 445 (1990)

90. G.J. Gounaris, J.J. Sakurai, Phys. Rev. Lett. 21, 244 (1968)

91. M. Finkemeier, E. Mirkes, Z. Phys. C 72, 619 (1996), hep-ph/

9601275

92. R. Decker, E. Mirkes, R. Sauer, Z. Wa̧s, Z. Phys. C 58, 445

(1993)

93. D.M. Asner et al. (CLEO), Phys. Rev. D 61, 012002 (2000),

hep-ex/9902022

94. M. Finkemeier, E. Mirkes, Z. Phys. C 69, 243 (1996), hep-ph/

9503474

95. A.E. Bondar et al., Comput. Phys. Commun. 146, 139 (2002),

hep-ph/0201149

96. J.H. Kühn, Z. Wa̧s (2006), hep-ph/0602162

97. R. Kleiss, W.J. Stirling, Nucl. Phys. B 385, 413 (1992)

http://arxiv.org/abs/hep-ph/0612281
http://arxiv.org/abs/arXiv:0708.4390
http://arxiv.org/abs/hep-ph/9601371
http://arxiv.org/abs/hep-ph/0310083
http://arxiv.org/abs/hep-ph/0412342
http://arxiv.org/abs/hep-ph/0412342
http://arxiv.org/abs/hep-ph/0603034
http://arxiv.org/abs/hep-ph/0612236
http://arxiv.org/abs/hep-ph/0703199
http://arxiv.org/abs/hep-ph/0703199
http://arxiv.org/abs/arXiv:0710.1951
http://arxiv.org/abs/arXiv:0712.1199
http://arxiv.org/abs/arXiv:0712.1199
http://arxiv.org/abs/hep-ph/0110108
http://arxiv.org/abs/hep-ph/0110108
http://arxiv.org/abs/hep-ph/0109068
http://arxiv.org/abs/hep-ph/0609017
http://arxiv.org/abs/hep-ph/9505211
http://arxiv.org/abs/hep-ph/0311123
http://arxiv.org/abs/hep-ph/0311123
http://arxiv.org/abs/hep-ph/9905221
http://arxiv.org/abs/hep-ph/0701197
http://arxiv.org/abs/hep-ph/0701197
http://arxiv.org/abs/hep-ph/0204342
http://arxiv.org/abs/hep-ph/0011222
http://arxiv.org/abs/arXiv:0709.2092
http://arxiv.org/abs/hep-ph/0307035
http://arxiv.org/abs/hep-ph/0209204
http://arxiv.org/abs/hep-ph/9912407
http://arxiv.org/abs/hep-ph/9504232
http://arxiv.org/abs/hep-ph/0603175
http://arxiv.org/abs/hep-ph/9605323
http://arxiv.org/abs/hep-ph/9605323
http://arxiv.org/abs/hep-ph/9410414
http://arxiv.org/abs/hep-ph/9410414
http://arxiv.org/abs/hep-ph/9906412
http://arxiv.org/abs/hep-ph/0408088
http://arxiv.org/abs/hep-ph/0308214
http://arxiv.org/abs/hep-ph/0311243
http://arxiv.org/abs/hep-ph/0311243
http://arxiv.org/abs/hep-ph/0206018
http://arxiv.org/abs/hep-ph/0205255
http://arxiv.org/abs/hep-ph/0205255
http://arxiv.org/abs/hep-ph/9402210
http://arxiv.org/abs/hep-ph/9402210
http://arxiv.org/abs/hep-ph/0210381
http://arxiv.org/abs/hep-ph/0305049
http://arxiv.org/abs/hep-ph/0104208
http://arxiv.org/abs/arXiv:0705.3229
http://arxiv.org/abs/arXiv:0705.0245
http://arxiv.org/abs/hep-ph/0412158
http://arxiv.org/abs/hep-ph/0406228
http://arxiv.org/abs/hep-ph/0312240
http://arxiv.org/abs/hep-ph/9601275
http://arxiv.org/abs/hep-ph/9601275
http://arxiv.org/abs/hep-ex/9902022
http://arxiv.org/abs/hep-ph/9503474
http://arxiv.org/abs/hep-ph/9503474
http://arxiv.org/abs/hep-ph/0201149
http://arxiv.org/abs/hep-ph/0602162

Eur. Phys. J. C (2008) 58: 639–707 707

98. B.R. Holstein, Phys. Scripta T 99, 55 (2002), hep-ph/0112150

99. E.P. Venugopal, B.R. Holstein, Phys. Rev. D 57, 4397 (1998),

hep-ph/9710382

100. N. Beisert, B. Borasoy, Nucl. Phys. A 716, 186 (2003), hep-ph/

0301058

101. M. Gormley et al., Phys. Rev. D 2, 501 (1970)

102. W.B. Tippens et al. (Crystal Ball), Phys. Rev. Lett. 87, 192001

(2001)

103. L.S. Brown, R.N. Cahn, Phys. Rev. Lett. 35, 1 (1975)

104. J.Z. Bai et al. (BES), Phys. Rev. D 62, 032002 (2000), hep-ex/

9909038

105. D. Cronin-Hennessy et al. (CLEO) (2007), arXiv:0706.2317

[hep-ex]

106. B. Aubert et al. (BABAR), Phys. Rev. Lett. 96, 232001 (2006),

hep-ex/0604031

107. N.E. Adam et al. (CLEO), Phys. Rev. Lett. 96, 082004 (2006),

hep-ex/0508023

108. A. Aloisio et al. (KLOE), Phys. Lett. B 561, 55 (2003), hep-ex/

0303016

109. T. Han, J.D. Lykken, R.J. Zhang, Phys. Rev. D 59, 105006

(1999), hep-ph/9811350

110. A. Ore, J.L. Powell, Phys. Rev. 75, 1696 (1949)

111. P. Ball, R. Zwicky, Phys. Rev. D 71, 014015 (2005), hep-ph/

0406232

112. P. Ball, R. Zwicky, Phys. Rev. D 71, 014029 (2005), hep-ph/

0412079

113. I. Caprini, L. Lellouch, M. Neubert, Nucl. Phys. B 530, 153

(1998), hep-ph/9712417

114. B. Aubert et al. (BABAR) (2007), arXiv:0705.4008 [hep-ex]

115. A.E. Snyder (2007), hep-ex/0703035

116. N. Isgur, D. Scora, B. Grinstein, M.B. Wise, Phys. Rev. D 39,

799 (1989)

117. D. Scora, N. Isgur, Phys. Rev. D 52, 2783 (1995), hep-ph/

9503486

118. N. Isgur, M.B. Wise, Phys. Rev. D 43, 819 (1991)

119. D. Scora, N. Isgur, Phys. Rev. D 40, 1491 (1989)

120. V.V. Kiselev (2002), hep-ph/0211021

121. D. Melikhov, Phys. Lett. B 380, 363 (1996), hep-ph/9603340

122. D. Melikhov, B. Stech, Phys. Rev. D 62, 014006 (2000), hep-ph/

0001113

123. M. Wirbel, B. Stech, M. Bauer, Z. Phys. C 29, 637 (1985)

124. M. Bauer, B. Stech, M. Wirbel, Z. Phys. C 34, 103 (1987)

125. H. Muramatsu et al. (CLEO), Phys. Rev. Lett. 89, 251802 (2002),

hep-ex/0207067

126. S. Kopp et al. (CLEO), Phys. Rev. D 63, 092001 (2001), hep-ex/

0011065

127. J.C. Anjos et al. (E691), Phys. Rev. D 48, 56 (1993)

128. A.L. Kagan, M. Neubert, Eur. Phys. J. C 7, 5 (1999), hep-ph/

9805303

129. R. Brun, F. Rademakers, Nucl. Instrum. Meth. A 389, 81 (1997)

130. F. Maltoni, T. Stelzer, J. High Energy Phys. 02, 027 (2003),

hep-ph/0208156

131. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Phys.

Lett. B 531, 216 (2002), hep-ph/0201127

132. M.R. Whalley, D. Bourilkov (R.C. Group) (2005), hep-ph/

0508110

133. R. Seuster et al. (Belle), Phys. Rev. D 73, 032002 (2006),

hep-ex/0506068

134. M. Artuso et al. (CLEO), Phys. Rev. D 70, 112001 (2004),

hep-ex/0402040

135. A. Heister et al. (ALEPH), Phys. Lett. B 512, 30 (2001),

hep-ex/0106051

136. K. Abe et al. (SLD), Phys. Rev. D 65, 092006 (2002), hep-ex/

0202031

137. A. Heister et al. (ALEPH), Eur. Phys. J. C 27, 1 (2003)

138. K. Abe et al. (SLD), Phys. Rev. D 59, 052001 (1999), hep-ex/

9805029

139. R. Akers et al. (OPAL), Z. Phys. C 63, 181 (1994)

140. G. Alexander et al. (OPAL), Phys. Lett. B 358, 162 (1995)

141. G. Alexander et al. (OPAL), Z. Phys. C 73, 569 (1997)

142. K. Ackerstaff et al. (OPAL), Eur. Phys. J. C 4, 19 (1998),

hep-ex/9802013

143. K. Ackerstaff et al. (OPAL), Phys. Lett. B 412, 210 (1997),

hep-ex/9708022

144. G. Abbiendi et al. (OPAL), Eur. Phys. J. C 17, 373 (2000),

hep-ex/0007017

145. K. Ackerstaff et al. (OPAL), Eur. Phys. J. C 5, 411 (1998),

hep-ex/9805011

146. P.D. Acton et al. (OPAL), Z. Phys. C 53, 539 (1992)

147. P. Abreu et al. (DELPHI), Phys. Lett. B 449, 364 (1999)

148. P. Abreu et al. (DELPHI), Z. Phys. C 59, 533 (1993)

149. R. Barate et al. (ALEPH), Eur. Phys. J. C 16, 597 (2000), hep-ex/

9909032

150. R. Barate et al. (ALEPH), Phys. Rept. 294, 1 (1998)

151. P. Pfeifenschneider et al. (JADE), Eur. Phys. J. C 17, 19 (2000),

hep-ex/0001055

152. P. Abreu et al. (DELPHI), Z. Phys. C 73, 11 (1996)

153. http://www.slac.stanford.edu/xorg/hfag/osc/PDG_2007

http://arxiv.org/abs/hep-ph/0112150
http://arxiv.org/abs/hep-ph/9710382
http://arxiv.org/abs/hep-ph/0301058
http://arxiv.org/abs/hep-ph/0301058
http://arxiv.org/abs/hep-ex/9909038
http://arxiv.org/abs/hep-ex/9909038
http://arxiv.org/abs/arXiv:0706.2317
http://arxiv.org/abs/hep-ex/0604031
http://arxiv.org/abs/hep-ex/0508023
http://arxiv.org/abs/hep-ex/0303016
http://arxiv.org/abs/hep-ex/0303016
http://arxiv.org/abs/hep-ph/9811350
http://arxiv.org/abs/hep-ph/0406232
http://arxiv.org/abs/hep-ph/0406232
http://arxiv.org/abs/hep-ph/0412079
http://arxiv.org/abs/hep-ph/0412079
http://arxiv.org/abs/hep-ph/9712417
http://arxiv.org/abs/arXiv:0705.4008
http://arxiv.org/abs/hep-ex/0703035
http://arxiv.org/abs/hep-ph/9503486
http://arxiv.org/abs/hep-ph/9503486
http://arxiv.org/abs/hep-ph/0211021
http://arxiv.org/abs/hep-ph/9603340
http://arxiv.org/abs/hep-ph/0001113
http://arxiv.org/abs/hep-ph/0001113
http://arxiv.org/abs/hep-ex/0207067
http://arxiv.org/abs/hep-ex/0011065
http://arxiv.org/abs/hep-ex/0011065
http://arxiv.org/abs/hep-ph/9805303
http://arxiv.org/abs/hep-ph/9805303
http://arxiv.org/abs/hep-ph/0208156
http://arxiv.org/abs/hep-ph/0201127
http://arxiv.org/abs/hep-ph/0508110
http://arxiv.org/abs/hep-ph/0508110
http://arxiv.org/abs/hep-ex/0506068
http://arxiv.org/abs/hep-ex/0402040
http://arxiv.org/abs/hep-ex/0106051
http://arxiv.org/abs/hep-ex/0202031
http://arxiv.org/abs/hep-ex/0202031
http://arxiv.org/abs/hep-ex/9805029
http://arxiv.org/abs/hep-ex/9805029
http://arxiv.org/abs/hep-ex/9802013
http://arxiv.org/abs/hep-ex/9708022
http://arxiv.org/abs/hep-ex/0007017
http://arxiv.org/abs/hep-ex/9805011
http://arxiv.org/abs/hep-ex/9909032
http://arxiv.org/abs/hep-ex/9909032
http://arxiv.org/abs/hep-ex/0001055
http://www.slac.stanford.edu/xorg/hfag/osc/PDG_2007

	Herwig++ physics and manual
	Introduction
	Technical details
	Matrix elements
	Matrix elements for specific processes
	Les Houches interface
	Code structure
	StandardEventHandler
	LesHouchesEventHandler
	Kinematic cuts

	Perturbative decays and spin correlations
	Spin correlations
	Standard model decays
	QED radiation
	Code structure

	Physics beyond the standard model
	Hard process
	Decays
	Model descriptions
	Standard model
	Minimal supersymmetric standard model
	Randall-Sundrum model
	Minimal universal extra dimensions model

	Code structure
	HardProcessConstructor
	ResonantProcessConstructor
	DecayConstructor
	InverseRadius
	LambdaR
	HiggsBoundaryMass

	Parton showers
	Shower kinematics
	Shower dynamics
	Initial conditions
	Final-final colour connection
	Symmetric
	Coloured
	AntiColoured
	Random

	Initial-initial colour connection
	Initial-final colour connection in the hard process
	Initial-final colour connection in decays
	Symmetric
	Maximal
	Smooth

	Final-state radiation
	Evolution
	Kinematic reconstruction

	Initial-state radiation
	Evolution
	Kinematic reconstruction
	Forced splitting

	Radiation in particle decays
	Evolution
	Kinematic reconstruction

	The running coupling constant alphaS
	The argument of alphaS
	The Monte Carlo scheme for alphaS
	Options for the treatment of alphaS in parton showers
	InputOption
	LambdaOption
	NumberOfLoops
	ThresholdOption
	Qmin
	NPAlphaS

	Matrix element corrections
	Soft matrix element corrections
	Hard matrix element corrections
	Using Herwig++ matrix element corrections

	Code structure
	SplittingFunction
	ShowerAlpha

	Hadronization
	Gluon splitting and cluster formation
	Cluster fission
	Cluster decays
	Mixing weights

	Hadronization in BSM models
	Stable strongly interacting particles
	Baryon number violation (BNV)
	Stable strongly interacting particles
	Baryon number violation

	Code structure
	PartonSplitter
	ClusterFinder
	ColourReconnector
	ClusterFissioner
	LightClusterDecayer
	ClusterDecayer

	Underlying event and beam remnants
	Model basics
	Connection to different simulation phases
	Parton showers and hard matrix elements
	Hadronization

	Soft underlying event
	Code structure
	MPIHandler
	MPISampler
	HwRemDecayer
	ForcedSplitting
	MPIHandler
	ShowerHandler
	HwRemDecayer

	Hadron Decays
	Particle properties
	Line shapes
	Tau decays
	Hadronic currents
	ScalarMesonCurrent
	VectorMesonCurrent
	LeptonNeutrinoCurrent
	TwoMesonRhoKStarCurrent
	KPiCurrent
	ThreeMesonCurrentBase
	ThreeMesonDefaultCurrent
	ThreePionCLEOCurrent
	KaonThreeMesonCurrent
	TwoPionPhotonCurrent
	FourPionNovosibirskCurrent
	FivePionCurrent

	Strong and electromagnetic hadron decays
	Scalar mesons
	EtaPiGammaGammaDecayer
	EtaPiPiGammaDecayer
	EtaPiPiPiDecayer
	PScalar4FermionsDecayer
	PScalarPScalarVectorDecayer
	PScalarVectorFermionsDecayer
	PScalarVectorVectorDecayer
	ScalarMesonTensorScalarDecayer
	ScalarScalarScalarDecayer
	ScalarVectorVectorDecayer

	Vector mesons
	a1SimpleDecayer
	a1ThreePionCLEODecayer
	a1ThreePionDecayer
	OniumToOniumPiPiDecayer
	PVectorMesonVectorPScalarDecayer
	VectorMeson2FermionDecayer
	VectorMeson2MesonDecayer
	VectorMeson3PionDecayer
	VectorMesonPScalarFermionsDecayer
	VectorMesonPVectorPScalarDecayer
	VectorMesonVectorPScalarDecayer
	VectorMesonVectorScalarDecayer
	VectorMesonVectorVectorDecayer

	Tensor mesons
	TensorMeson2PScalarDecayer
	TensorMesonVectorPScalarDecayer
	TensorMesonVectorVectorDecayer

	Inclusive strong and electromagnetic decays

	Weak hadronic decays
	Exclusive semi-leptonic decays
	BallZwickyScalarFormFactor
	BallZwickyVectorFormFactor
	HQETFormFactor
	ISGWFormFactor
	ISGW2FormFactor
	KiselevBcFormFactor
	MelikhovFormFactor
	MelikhovStechFormFactor
	WSBFormFactor

	Exclusive hadronic decays
	DtoKPiPiCLEO
	DtoKPiPiE691
	DtoKPiPiMarkIII

	Weak inclusive decays
	Leptonic decays
	b->sgamma

	Code structure

	Summary
	Acknowledgements
	Appendix A: Repository commands
	Example

	Appendix B: Examples
	Switching parts of the simulation off
	Changing particle properties
	Changing some simple cuts
	Setting up an AnalysisHandler
	Usage of ROOT
	Root histograms
	rtuple with TTree

	Using BSM models
	MSSM
	MUED
	RS Model

	Intrinsic pT
	LesHouchesEventHandler
	Use of LHAPDF
	Use of a simple saturation model for PDFs

	Appendix C: Tuning
	References

